
IEEE 2004 CUSTOM INTEGRATED CIRCUITS CONFERENCE

Sandblaster Low Power DSP

John Glossner'32, Kai Chirca''2, Michael S~hulte',~, Haoran Wang', Nasir Nasimzada', David Har',
Shenghong Wang', A. Joseph Home, Jr.', Gary Nacer', Mayan Moudgill', and Stamatis Vassiliadis2

'Sandbridge Technologies, Inc. 2Delft University of Technology 3University of Wisconsin
White Plains, NY 10601 USA

jglossner@sandbridgetech.com and Computer Science Department ~ ~ ~ ~ ? $ ~ $ o ~ ~ &
Electrical Engineering, Mathematics

Delft, The Netherlands

Dept. of ECE

Abstract

General purpose processors have utilized complex and energy
inefficient techniques to accelerate performance. In embedded
DSP designs, power constraints have precluded general pur-
pose microarchitectural techniques. Rather than minimize av-
erage execution time, embedded DSP processors require the
worst case execution time to be minimized. Subsequently,
Very Long Instruction Word (VLIW) processors have been
employed, but architecturally visible side effects have imposed
restrictions on parallelism due to interrupt and latency consid-
erations - particularly if all loads must complete prior to ser-
vicing interrupts. In this paper, we present a low power multi-
threaded interlocked (transparent) microarchitecture capable of
parallelizing non-associative DSP arithmetic. We describe spe-
cific memory and logic techniques for reducing power dissipa-
tion and discuss how multithreading enables low power opti-
mization.

Introduction

The architecture of a computer system is the minimal set of
properties that determine what programs will run and what
results they will produce (1). It is the contract between the pro-
grammer and the hardware. Every computer is an interpreter of
its machine language - that representation of programs that
resides in memory and is interpreted (executed) directly by the
(host) hardware. The logical organization of a computer's data-
flow and controls is called the implementation or microarchi-
tecture. The physical structure embodying the implementation
is called the realization. The architecture describes what hap-
pens, while the implementation describes how it is made to
happen.

Programs for the same architecture should run unchanged on
different implementations. An architectural function is trans-
parent if its implementation does not produce any architectur-
ally visible side effects. An example of a non-transparent h c -
tion is the load delay slot made visible in the architecture due
to pipeline effects. Generally, it is desirable to have transparent
implementations. Most DSP and VLIW implementations are
not transparent and therefore the implementation affects the
architecture.

General purpose processors have utilized transparent microar-
chitectural techniques such as deep pipelines, multiple instruc-
tion issue, out-of-order instruction issue, and speculative exe-
cution to achieve very high performance. Recently, sirnultane-
ous multithreading (SMT), where multiple hardware thread
units simultaneously issue multiple instructions per cycle, have
been deployed (2). These techniques have produced perform-
ance increases at very high complexity and power dissipation
costs.

In the embedded DSP community, power dissipation con-
straints have precluded general purpose microarchitectural
techniques. Rather than minimize average execution time, em-
bedded DSP processors require the worst case execution time
to be minimized. Subsequently, VLIW or statically scheduled
microarchitectures with architecturally visible pipelines are
typically employed. Exposing pipelines may pose interrupt
latency restrictions, particularly if all memory loads must com-
plete prior to servicing an interrupt. Memory access in embed-
ded systems has traditionally operated at the processor clock
frequency to ease the programrmng burden. This has often re-
stricted the maximum processor clock frequency. Non-
associative, saturating DSP arithmetic is also a complicating
factor. In addition to prohibiting parallel execution, it is diffi-
cult for compilers to optimize.

In this paper, we explore embedded processor design power
reduction techniques at all levels. First, we describe explicit
architectural techniques that minimize power. Then, we discuss
low-power microarchitectural techniques. After this, we pre-
sent specific realization techniques for low power and describe
a concrete example of these techniques used on a 32-bit low-
power adder. Finally, we present some results and concluding
comments.

Low Power Architecture

A. Compound Instructions

The Sandblaster architecture is a compound instruction set
architecture (3). Historically, DSPs have used compound in-
struction set architectures to conserve instruction space encod-
ing bits. In contrast, VLIW architectures contain 111 orthogo-
nality, but only encode a single operation per instruction field,

0-7803-8495-4/04/%20.00 02004 IEEE. 27-1-1 575

mailto:jglossner@sandbridgetech.com

such that a single VLIW is composed of multiple instruction
fields. This has the disadvantage of requiring many instruction
bits to be fetched per cycle, as well as significant write ports
for register files. Both these effects contribute heavily to power
dissipation.

In the Sandblaster architecture, specific fields within the in-
struction format may issue multiple sub-operations including
data parallel vector operations. Restrictions may apply if a par-
ticular operation is chosen. In contrast, a VLIW ISA may allow
complete orthogonality of specification and then either in
hardware or through no operation (NOP) instructions fills in
any unused issue slots.

B. Vector Operations

In addition to compound instructions, the Sandblaster architec-
ture also contains vector operations that perform multiple op-
erations in parallel. As an example, Figure 1 shows a single
compound instruction with three compound operations. The
first compound operation, Ivu, loads the vector register, vr0,
with four 16-bit elements and updates the address pointer, r3,
to point to the next four elements. The vmulreds operation
reads four fured point (fractional) 16-bit elements from vr0,
multiplies each element by itself, saturates each product, adds
all four saturated products plus an accumulator register, acO,
with saturation after each addition, and stores the result back in
ac0. The vector architecture guarantees Global System for Mo-
bile communication (GSM) semantics (e.g. bit-exact results)
even though the arithmetic performed is non-associative (4).

LO: Ivu %vrO, %r3, 8
I I vmulreds %acO,%vrO,%vrO,%acO

Compound Instruction for Sum of Squares Inner Loop
I I loop %lcO,LO

Figure 1.

C. Simple Instruction Formats

Simple and orthogonal instruction formats are used for all in-
structions. The type of operation is encoded to allow simple
decoding and execution unit control. Multiple operation fields
are grouped within the same bit locations. All operand fields
within an operation are uniformly placed in the same bit loca-
tions whether they are register-based or immediate values. As
in VLIW processors, this significantly simplifies the decoding
logic.

D. Low Power Idle Instructions

Architecturally, it is possible to turn off an entire processor. All
clocks may be disabled or the processor may idle with clocks
running. Each hardware thread unit may also be disabled to
reduce toggling.

E. Fully Interlocked

Unlike a VLIW processor, our architecture is hlly interlocked
and transparent. In addition to the benefit of code compatibility,
this ensures that many admissible and application-dependent
implementations may be derived from the same basic architec-
ture.

Low Power Microarchitecture

A. Multithreading

Figure 2 shows the microarchitecture of the Sandblaster proc-
essor. In a multithreaded processor, all threads of execution
operate simultaneously. An important point is that multiple
copies (e.g. banks and/or modules) of memory are available for
each thread to access. The Sandblaster architecture supports
multiple concurrent program execution by the use of hardware
thread units (called contexts). The architecture supports up to
eight concurrent hardware contexts. The architecture also sup-
ports multiple operations being issued from each context. The
Sandblaster processor uses a unique form of multithreading
called Token Triggered Threading (T3), which consumes much
less power than simultaneous multithreading (SMT).

As shown in Figure 3, T3 is a unique form of multithreading
where each hardware context is allowed to simultaneously exe-
cute an instruction, but only one context may issue an instruc-
tion on a cycle boundary. This constraint is also imposed on
round robin threading. What disthguishes T3-threading is that
each clock cycle a token indicates the subsequent context that
is to execute. Tokens may be sequential (e.g. round-robin),
evedodd, or based on other communications patterns. Com-
pared to SMT, T3 has much less hardware complexity and
power dissipation, since the method for selecting threads is
simplified, only a single compound instruction issues each
clock cycle, and most dependency checking and bypass hard-
ware is not needed.

B. Decoupled Logic and Memory

As technology improves, processors are capable of executing
at very fast cycle times. Current state-of-the-art performance
for 13Onm technologies can produce processors faster than
3GHz. Unfortunately, current high-performance processors
consume significant power. If power-performance curves are
considered for both memory and logic within a technology,
there is a region in which you get approximately linear increase
in power for linear increase in performance. Above a specific
threshold, there is an exponential increase in power for a linear
increase in performance. Even more significant, memory and
logic do not have the same threshold.

576 27-1 -2

5 \,

Data Memory I-Cache

11. 64KB 64KB BudMernory

\ 8-Banks
64BLines Interface

4W (2-Ache) t t

Instruction Fetch
and Branch Unit 1- SlMD Vector Unit Integer and Load/ ’ Storeunit ‘

Figure 2. Sandblaster Microarchitecture
I

TO +T3 + T2 + T1+ T6 + T5+ T 4 + V

Figure 3. Token Triggered Multithreading, Even/Odd Sequence

\

For 1301x11 technology, the logic power-performance curve
may be in the linear range until approximately 600MHz. Un-
fortunately, memory power-performance curves are at best
linear to about 300MHz. This presents a dilemma as to whether
to optimize for performance or power. Fortunately, multi-
threading alleviates the power-performance trade-off. The
Sandblaster implementation of multithreading allows the proc-
essor cycle time to be decoupled from the memory access time.
This allows both logic and memory to operate in the linear
region, thereby significantly reducing power dissipation. The
decoupled execution does not induce pipeline stalls due to the
unique pipeline design.

B. Caches

An Instruction Cache Unit (ICU) stores instructions to be
fetched for each thread unit. We use associative caches to re-
duce the likelihood of one thread evicting another thread’s ac-
tive program. In our implementation, shown in Figure 4, a
Thread Identifier register (not shown) is used to select whether
the line from the left or right bank is evicted. This effectively
reduces the complexity of the line selection. In a 4-way set
associative cache, only one additional LRU bit is needed to
select which of the two lines from the left or right bank should
be evicted. This approach gives a complexity of n(n-2)/8 LRU
bits for a general n-way set-associative cache. This method of
using thread information and banked memory access signifi-
cantly reduces the complexity of the cache logic.

I 1 1 1
RldTReq

I

Figure 4. Cache Memoty Design

C. Pipeline

The pipeline for one particular implementation of the Sand-
blaster DSP is shown in Figure 5. The execution pipelines are
different for various hctions. The LoadStore (LdSt) pipeline
is shown to have 9 stages. It is assumed that the instruction is
already in the cache. The first stage decodes the instruction.
This is followed by a read from the General Purpose Register
file. The next stage generates the address to perform the Load
or Store. Five cycles are used to access data memory. Finally,
the result for a Load instruction is written back (WB) to the
referenced register file location. Once an instruction from a
particular context enters the pipeline, it runs to completion. It is
also guaranteed to write back its result before the next instruc-
tion issuing from the same thread tries to use the result.

27-1-3 577

Figure 5. Processor Pipeline

Similarly, there are multiple (variable) stages for other execu-
tion pipelines. The integer unit has three execute stages for
multiplication (I-MUL) and two execute stages for addition
(ALU). The Vector unit has four execute stages - two for mul-
tiplication and two for addition.

With this strategy, an even thread may accesses one register
file bank, while an odd thread accesses the other register file
bank. This effectively daubles the bandwidth of the register file,
without increasing the number of ports.

C. Single Ported Memories
D. Interlock Checking Hardware

Most interlocked architectures require significant interlock
checking hardware and bypass logic for both correctness and
performance reasons. Multithreading mitigates this effect. With
the carehlly designed pipeline shown in Figure 5 , there is only
one interlock that must actually be checked for in hardware - a
long memory load or store. All other operations are guaranteed
to complete prior to the same thread issuing a new instruction.
This completely removes the power consuming interlock
checks associated with most interlocked architectures.

Low Power Logic Design

A. Single Write Port Register Files

Having multithreading to cover the latency associated with
long pipeline implementations allows the use of single write-
port register files even though more than one write may occur
within an instruction cycle. An important point is that the Write
Back stages are staggered. This allows a single write port to be
implemented but provides the same functionality as multiple
write ports.

An example is loading the integer register file while perform-
ing an integer multiply. From the processor pipeline shown in
Figure 5, it is apparent that the reads and writes from the regis-
ter file are staggered in time. In addition, separate architected
register spaces for Vector, Integer, and Accumulate operations
help to reduce the number of ports. A VLIW implementation
of the instruction shown in Figure 1 may take up to 10 read
ports and 5 write ports for sustained single cycle throughput.
Comparatively, our solution requires at most two read ports
and one write port per register file.

B. Banked Register Files

Token triggered threading, which follows a permutation of
even and odd thread issue policies, and the pipeline implemen-
tation shown in Figure 5 enable the use of banked register files.

The same characteristics that allow banked register file opera-
tion also enable the use of single ported level-1 (Ll) memories
that may be banked and run at half the processor clock fie-
quency. Since decoupled memories are highly desirable to re-
duce power, this provides significant overall savings.

D. Minimal Control Signals

A combination of architectural and microarchitectural tech-
niques allows the processor to be implemented with very few
control signals. Since control signals often propagate to many
units they become not only a source of bugs, but also may dis-
sipate significant power:

E. Clock Gating

Because the architecture is modular and the pipeline is deep,
there is time to compute which functional units will be active
for a particular thread. If a functional unit is not active in a
given cycle, the clocks to that unit may be disabled. As an ex-
ample, if there are no vector operations on a given cycle, the
vector unit is disabled. Even within a unit it is possible to dis-
able the clocks. For example, when performing a vector addi-
tion, the multipliers in the vector processing unit are disabled.

5. Low Power Circuit Design

The average power consumption in a CMOS circuit can be
modeled as

Pavg = a C ‘2 f + V d d ‘mean + V d d Ilea, (1)

where a i s the average gate switching activity, C is the total
capacitance seen by the gates’ outputs, vdd is the supply volt-
age, f is the circuit’s operating frequency, I,,,, is the average
current drawn during input transition, and Ilea, is the average
leakage current. The first term, a C vdd A which represents
the dynamic switching power consumed by charging and
discharging the capacitive load on the gates’ outputs, often
dominates power consumption in high-speed microprocessors

578 27-1 -4

(5). The second term, vdd I,,,, which represents the dynamic
power due to short-circuit current flowing when both the
PMOS and NMOS transistors conduct during input signal
transitions, typically contributes 10% to 20% of the overall
dynamic power (6). The third term, vdd Iled, represents the
power consumed due to leakage current and occurs even in
devices that are not switching. Consequently, for systems that
are frequently in standby mode, the leakage power may be a
dominate factor in determining the overall battery life. Since
the leakage power increases exponentially with a linear de-
crease in device threshold voltage, leakage power is also a
concern in systems that use power supply voltage scaling to
reduce power.

A. Low Voltage Operation

Since the dynamic switching power, a c Vdd’f, is proportional
to the supply voltage squared, an effective technique for reduc-
ing power consumption is to use a lower supply voltage. Un-
fortunately, however, decreasing the supply voltage also de-
creases the maximum operating frequency. To achieve high-
performance with a low supply voltage, our arithmetic circuits
are heavily pipelined. For example, our multiply-accumulate
unit uses four pipeline stages. Our unique form of multithread-
ing helps mask long pipeline latencies, so that high-
performance is acheved.

B. Minimum Dimension Transistors

Minimum dimension transistors help to flirther reduce power
consumption, since they reduce circuit capacitance (7).
Throughout the processor, we use minimum dimension transis-
tors, unless other considerations preclude their use. For exam-
ple, transistors that are on critical delay paths often need to
have larger dimensions to reduce delay (8). Larger dimension
transistors are also used to dnve nodes with high fan-out and to
balance circuit delays.

C. Delay Balancing

Gates with unbalanced input delays can experience glitches,
which increase dynamic switching power and dynamic short
circuit power (9). To reduce glitches, we balance gate input
delays in our circuits through a combination of gate-level delay
balancing techniques (i.e., designing the circuits so that inputs
to a particular gate go through roughly the same number of
logic levels) and judicious transistor sizing. Glitches are further
reduced by having a relatively small number of logic levels
between pipeline registers.

D. Logic Combining and Input Ordering

Dynamic and static power consumption is also reduced by util-
izing a variety of specially designed complex logic cells. Our
circuits include efficient complex logic cells, such as 3-input
AndOrlnvert (AOI), 3-input OrAndInvert (OAI), half adder,

and Eull adder cells. Providing a wide variety of complex gates
with different dnve strengths, functionality, and optionally
inverted inputs gives circuit designers and synthesis tools
greater flexibility to optimize for power consumption. Keeping
nodes with a high probability of switching inside of complex
gates and reordering the inputs to complex gates can help fur-
ther reduce power. In general, inputs that are likely to be off
are placed closer to gate output nodes, while inputs that are
likely to be on are placed closer to the supply voltage (10).

E. Low Power Adder Example

As an example of our low power circuit design techniques, we
present the design and implementation of a low-power, high-
performance 32-bit carry skip adder. As demonstrated in (1 l),
carry skip adders dissipate less power than cany lookahead,
conditional sum, carry select, and parallel prefur adders due to
their low transistor counts and short wire lengths. Since carry
skip adders have O(n) area and O(n”’) delay, where n is the
operand size in bits, they provide a nice tradeoff in terms of
area and delay, along with simple and regular layout (12).

Figure 6 shows a block diagram of our 32-bit carry skip adder.
In this design, four carry skip adder blocks are cascaded to-
gether to form a single 32-bit adder. The CS4F block repre-
sents a 4-bit carry skip adder, the CS6 block represents a 6-bit
carry skip adder, etc. The left-most arrow on each block repre-
sents the carry out of the current block. It is connected to the
carry in of the subsequent carry skip block. Inverting carry
logic is used throughout the design to reduce delay and power
consumption. To achieve balanced delays and reduce glitches,
input bits are grouped unevenly in the carry chain and the di-
mensions of transistors along the critical delay path are sized
appropriately. For the least significant bits, fast carry genera-
tion is more important than sum generation, since the sum bits
are not on the critical delay path. To match the propagation
delay of each carry in the carry chain, block P and G logic
combines a small numbers of input bits, which means that
block sizes are small. A structure similar to a ripple carry adder
is used for the least significant bits because the ripple carry
adder has good performance and power consumption when
there are only a few adder input bits. The logic depth, however,
accumulates to make larger block sizes advantageous at the
more significant end, except for the last block, CS4L, where
fast generation of the sum bits is also required.

c
S312. S. 0

c a,
Figure 6. Block Diagram of 32-bit Low Power Adder

Figure 7 shows a block diagram of the first 4-bit carry skip
adder (CS4F). The delays for signals that affect the critical path
delay are shown in parenthesis next to the signal’s name. For

27-1 -5 579

example, P3 (2) indicates that the block propagate signal, P3 2,

is available after two complex gate delays. The LSB addition is
implemented using a standard full adder (FA). Since the sum
generation is not on the critical path here, minimal size devices
are used to reduce power consumption. This FA takes one
complex gate delay to generate the inverted carry out, c. In
the second FA, P and G logic operates in parallel with the carry
generation in the first EA to compute inverted generate and
propagate signals, and 7, after one logic level. These sig-
nals are combined with using a 3-input OAI cell to produce
C2 after one more complex gate delay. By matching the path
lengths on all the inputs of the OAI gate, glitches do not occur
on its output. This assumes the NAND, NOR and OAI gates
have the same delays, which is done by properly sizing the
transistors of the logic gates.

13onm,vdd=l.2v
~OIIIII,V~=I.OV

Figure 7. Block Diagram of CS4F block

0.675GKz 1 .089Gb . 1.625GHz
1.201GHz 1.997GHz. 3.102GHz

The next block is a 2-bit adder with inputs A32 and B32, and
carry in signal C2. To match the two units of propagation delay
on C2, two generate and propagate signals are combined to
form G32 and P32. Since all the inputs are non-inverted, an
A01 cell is used to generate the inverted carry, C, . As shown
in Figure 7, C, is available after three complex gate delays
and the inputs used to compute C, are balanced.

. 9Onm,vdd=l.OV

Similar delay balancing, logic optimization, and transistor siz-
ing techniques are used in the remaining three carry skip adder
blocks; CS6, CS18, and CS4L. The CS6 block internally uses
two 3-bit carry skip adders and the CS18 block uses six 3-bit
carry-skip adders to balance delays along the cany chain. Al-
though each adder block internally uses carry-skip logic, the
carry out of each block uses highly optimized carry-lookahead
logic to further decrease delay. In the CS4L block, a combina-
tion of carry lookahead, carry skip, and carry select logic is
used to quickly produce the sum bits. With these techniques,
the 32-bit carry-skip adder produces its output in just seven
complex gate delays. Compared to other high-speed adder im-
plementations, our adder decreases power consumption by

0.222mW 0.324mW 0.726mW

reducing the number of logic levels and glitches, while using
minimum dimension transistors off the critical delay paths.
Further details on our adder design are presented in (1 3).

Results

A. 32-bit Low Power Adder

Our 32-bit adder was implemented for different technologies
and process corners. All input delay balancing along the carry
chain was implemented in layout. To also balance wire lengths,
the carry chain is put close to the block P and G logic. Full
SPICE simulation with wire load estimation was performed on
the circuit. Table I shows performance results for 130nm and
90nm technologies for Slow (Vdd - IO%, 125C), Typical (vdd,
25C), and Fast (vdd + lo%, -4OC) process comers. Table I1
shows average power dissipation results at 600Mhz for Cold

125C) process corners. Going from 130nm to 90nm roughly
doubles the adder’s performance and decreases the adder’s
typical power at 600h4hz by roughly a factor of 2.4.

(vdd - lo%, -4OC), Typical (vdd, 25C), and Hot (Vdd + lo%,

TABLE 1. ADDER PERFORMANCE RESULTS
Process 1 Slow 1 Typical I Fast 1

TABLE 11. ADDER POWER RESULTS AT 600MHz
Process I Cold I Typical I Hot

B. Processor

Figure 8 shows the power-performance characteristics of a
number of modem digital signal processors. Performance is
characterized as Millions of Mulitply-Accumulates per second
(MMAC) plotted on a log scale. Power is characterized as
milliwatts also plotted on a log scale. Normalizing lines are
drawn at 1 MMAC/mW through 50 MMACs/mW. Not shown,
but characteristic of nearly all previous generation DSP proces-
sors, is that the power performance metric is below 1
MMAC/mW. Newer DSPs such as Starcore SCllO and SC140,
AD1 Blackfin, and TI C55x have much better power efficiency.
The Sandblaster core does not have significantly better power
efficiency than modem cores. However, through the use of low
power design techniques, the architecture provides a higher
peak performance at the same power efficiency. This is impor-
tant for executing baseband processing in software.

Table 111, column 2 shows a breakdown of power dissipation
of an RTL version of our processor that contains all low

580 27-1-6

power techniques, except custom circuits and clock gating.
The power estimate was computed using Sequence Design’s
PowerTheater. An FIR filter was chosen for execution as a
worst case internal logic toggle parameter. It ,can be seen that
the Bus Interface Unit (BIU), Clocks (CLK), Instruction
Memory (IMEM), Directory Logic (DIR), Data Memory
(DMEM), and Data Memory Unit (DMU) consume reasona-
bly low percentages of power. The Branch Unit (BRU), Di-
rectory Memory (DIR MEM), Load / Integer Unit (LIU) and
the Vector Processing Unit (VPU) consume the majority of
power.

BIU

As shown in Table 111, column 3, when clock gating is imple-
mented to turn off non-operational units it becomes evident
that the majority of power is consumed by the BRU, DIR
MEM, and even more noticeably the VPU. In 90nm technol-
ogy, as shown in Table 111, column 4, it is evident that the BRU
and VPU are key targets for custom circuit techniques. Clock
gating and scaling from 130nm to 90nm technology each re-
duce average power dissipation by roughly a factor of two.

7% I -0% I -0%

DSP performance vs. Power
(Log Log scale)

~~-

BRU
LIU

m w - 1
- 1

100000

i 2% 15% I 21%
11% 8% I 9%

10000 -I I

VPU
DMU
DMEM
DIR

’00 t w m w

10

1
I 10 m\\r,,r ’00 1000

Figirre 8 DSP Core POM er-Perforniance Clinrncterrstrcs

26% 33% 34%
7% 4% 1%
5% 6% 5 YO
6% 8% 6%

TABLE I I I . PROCESSOR POWER PERCENTAGE RESULTS
1 130nm I 130nm I 90nm I

DIR MEM 12%
IMEM 10%
CLK 4%

15% 6%
4% 4%
7% 13%

Conclusions

We have presented design techniques for minimizing power
dissipation in embedded DSP designs. A key difference be-
tween general purpose designs and embedded designs is a fo-
cus on deterministic behavior and minimizing the worst case
execution time. In our design we use one non-deterministic
technique - instruction caches. The programming advantages of
an instruction cache outweigh the disadvantages.

The net effect of the low power design techniques is not to
make processors that are dramatically more power efficient but
rather to enable the same power efficiency at much higher per-
formance. This reduces the number of processors required in a
system and allows for efficient software implementations of
communications systems.

References

G. Blaauw and F. Brooks Jr., Computer Architecture: Concepts and Evo-
lution, Addison-Wesley, Reading, MA, 1997.
J. Sebot and N. Drach, “SIMD extensions: reducing power consumption
on a superscalar processor for multimedia applications,” presented at
Cool Chips IV, April 2001.
J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudgill, “A software
defined communications baseband design”, IEEE Conmimications
Magazine, vol. 41, no. I , pp. 120-1 28, January, 2003.
K. Jarvinen et al., “GSM enhanced full rate speech codec,” in IEEE
International Conference on Acoirstics. Speech. and Signal Processing.
pp. 77 1-774, 1997.
B. Moyer, “Low-power design for embedded processors,” Proceedings
of the IEEE, vol. 89, no. 1 I , pp. 1576- 1587, Nov 200 I .
T. Mudge, “Power: a first-class architectural design constraint,” IEEE
Cornputer, vol. 34, no. 4, pp. 52-58,2001.
A. Wroblewski, 0. Schumecher, C. V. Schimpfle, and J . A. Nossek,
“Minimizing gate capacitances with transistor sizing,” IEEE Interna-
tional SJvzposiimi on Circirits and Svstenw, vol. 4, pp. 186-1 89, May
2001.
M. Borah , R. M. Owens, and M. J. Irwin, “Transistor sizing for mini-
mizing power consumption of CMOS circuits under delay constraint,”
International Svniposiirm on Low Power Electronics and Design, pp.

S. Kim, J . Kim, and S.-Y. Hwang, “New path balancing algorithm for
glitch power reduction,” IEE Proceedings oii Circirits, Devices and
Si~tetns. vol. 148, no. 3, up. I5 I - 156, June 2001.

167- 172, 1995.

..
(I O) W.-2. Shen; J.-Y. Lin; F.-W. Wang, “Transistor reordering rules for

power reduction in CMOS gates,’’ International Asian and South Pa-
cific Design Automation Conference, pp. 1-6, 1995.

in parallel adders,” IEEE Transactions O N Circuits and Svsteins 11:
Analog and Digiial Signal Processing, vol. 53, no. I O , pp 689-702, Oc-
tober, 1996.

(12) Guyot, B. Hochet, and J . Muller, “A way to build efficient carry-skip
adden,” IEEE Transactions on C017tpirter.s. vol. 36. Oct. 1987.

(13) K. Chirca, M. Schulte, J . Glossner, S. Mamidi, and S. Vassiliadis, “A
Static Low-Power, High-Performance 32-bit Carry Skip Adder”. Pro-
ceedings ofthe Euromicro 2004 Symposium on Digital System Design,
September. 2004 (in press).

(I 1) Nagendra, M. J . Irwin, and R. M. Owens, “Area-time-power tradeoffs

27-1 -7 581

