
Loadingρµ−code: Design Considerations
G.Kuzmanov, G.N. Gaydadjiev, S. Vassiliadis

Computer Engineering Laboratory, Electrical Engineering Dept., EEMCS, TU Delft, The Netherlands
E-mail : {G.Kuzmanov,G.N.Gaydadjiev,S.Vassiliadis }@ET.TUDelft.NL

http://ce.et.tudelft.nl/

Abstract— This article investigates microcode generation, fi-
nalization and loading in MOLEN ρµ processors. In addition,
general solutions for these issues are presented and implementa-
tion for Xilinx Virtex-II Pro platform FPGA is introduced.
Keywords: Reconfigurable architectures, MOLEN, implemen-
tation, loading microcode.

I. I NTRODUCTION

Reconfigurable hardware extensions of general purpose
processors (GPP) have indicated considerable potentials for
speed-ups of computationally demanding algorithms. Numer-
ous design concepts and organizations have been proposed
to support the Custom Computing Machine (CCM) paradigm
from different prospectives [1]–[4]. An example of a detailed
classification of CCMs can be found in [5]. Recently, the
MOLEN ρµ− processors for CCM organizations have been
proposed [6]. The MOLEN concept provides a flexible and
easily extendable framework for hardware/software co-design
of complex computing systems by extending the traditional
microcode. The presented paper addresses some specific issues
related to the microcode design and maintenance within the
MOLEN processors. More specifically, we investigate the
problems related to the generation, memory alignment and
loading of configuration microcodes.

Hereafter, the discussion is organized as follows. Section
II gives a brief background on the MOLEN organization.
Section III introduces the FPGA configuration format for
the targeted Xilinx technology. In Section IV, problems re-
lated to generation, alignment and loading of reconfigurable
microcodes are discussed. Section V proposes solutions to
different problems with respect to efficient hardware imple-
mentations. Finally, the discussion is concluded in Section VI.

II. T HE MOLEN ORGANIZATION

This section presents the MOLENρµ-coded Custom Com-
puting Machine organization, introduced in [6] and illustrated
in Figure 1. The ARBITER performs a partial decoding on the
input instructions flow in order to determine where they should
be issued. The arbiter controls the proper co-processing of the
GPP and the reconfigurable units. Figure 2 depicts a general
design of a MOLEN arbiter. It is closely connected to three
major components of the CCM: the GPP, the memory and the
ρµ-unit. Instructions implemented in fixed hardware are issued
to the core processor (GPP). Instructions for custom execution
are redirected to thereconfigurable unit, referred to asρµ-unit.
The reconfigurable unit consists of a custom computing unit

Main Memory

Instruction

Fetch

Data Load/

Store

ARBITER

DATA

MEMORY

MUX/DEMUX

Reconfigurable Unit

Core

Processor

reconfigurable

microcode

unit

CCU

Register File

Exchange

Registers

Fig. 1. The MOLEN machine organization

Decode
 Controls

Emulation

Instructions

MUX

Control

Arbiter

Instructions from

Memory

Instructions

to the Core Processor

Occupy

Memory
 mc_addr
 Ex/Set
 start_op

end_op

Fig. 2. General view of the Arbiter

(CCU) and theρµ-code unit. An operation, executed by the
reconfigurable unit, is divided into two distinct phases:set
and execute. The set phase is responsible for reconfiguring
the CCU hardware enabling the execution of the operation.
This phase may be divided into two subphases - partial set
(pset) and complete set (cset). In the pset phase the CCU
is partially configured to perform common functions of an
application (or group of applications). Later, thecset sub-
phase only reconfigures those blocks in the CCU, which are
not covered in thepset sub-phase in order tocompletethe
functionality of the CCU.

To perform the actual reconfiguration of the CCU, recon-
figuration microcode is loaded into theρµ-code unit and then
executed. Theexecute phase is responsible for the actual
operation execution on the CCU, performed by running the
execution microcode. It is important to emphasize that both the
set and executephases do not specify a certain operation to
be performed. Instead, thepset, csetandexecuteinstructions

(reconfigurable instructions) directly point to the memory
location where the reconfiguration or execution microcode is
stored. The microcode engine is extended with mechanisms
that allow permanent and pageable reconfiguration and execu-
tion code to coexist.

III. FPGA CONFIGURATION MICROCODE

The reconfiguration files generated after synthesis, contain
random bit patterns and will highly depend on the targeted
FPGA technology. They contain the configuration commands
and configuration data needed to configure the different FPGA
resources, e.g., switch boxes, interconnect resources, look-up
tables and any additional technology dependent information.
Usually a configuration file can be considered as a stream
of bits and is often referred to asconfiguration bitstreamin
the literature. Such bit streams are produced by the FPGA
synthesis tool, e.g. Synopsis, Xilinx, Altera or Lattice. As it
can be assumed, a pre-defined and widely accepted standard
for such binary streams does not exists and different vendors
use the most convenient format for their technology. It is very
important to understand that the same high-level hardware
description file will result in complete different configuration
bitstreams when different technologies are targeted.

The first target for MOLEN implementation is the Virtex-II
Pro [7] FPGA from Xilinx. Virtex II Pro devices incorporate
one up to four PowerPC 405 GPP cores, FPGA reconfigurable
hardware, dedicated RAM blocks and dedicated high-speed
I/O blocks. The FPGA fabric is similar to Virtex II. Although
the Virtex II and Virtex II Pro devices are not bitstream com-
patible, the same considerations hold true for both types and
will be referred to asV2 from now on. V2 devices are orga-
nized in columns corresponding to the column organization of
the FPGA’s logic resources [8]. In other words the V2 configu-
ration memory can be visualized as a rectangular array of bits,
grouped in verticalframesthat are one-bit wide and go from
the top of the array to the bottom. The frame is the atomic unit
of configuration, this is the smallest piece of the configuration
memory that can be written (or read). Such organization allows
partial reconfiguration that can be performed with or without
shutting down the device. The partial reconfiguration is a very
important option, since configuration stream size, and hence
the loading time, strongly depends on the targeted device,
e.g XC2V1000 incorporates 1104 configuration frames, 3392
bits per frame or 3,744,768 configuration bits in total, while
XC2V10000 has 3212 configuration frames, 10432 bits per
frame (33,507,584 bits). It is obvious that full reconfiguration
of XC2V10000 will be ten times longer than XC2V1000 using
identical programming conditions (interface type and clock).
Vitrex II Pro sizes and download times for the parallel slave
mode assuming a programming clock frequency of 50MHz are
depicted in Table I. A full reconfiguration that takes roughly
48 milliseconds (as for XC2VP50) may be prohibitive in many
real-time applications. A reconfiguration of a single frame (a
very likely scenario), however, takes about 18 microseconds
that would be acceptable.

An example configuration bitstream looks as follows:

TABLE I

V IRTEX II PRO SIZES AND PROGRAMMING TIMES (50MHZ PAR. MODE)

Device No. of Frames No. of bits Config. time
XC2VP2 884 1,305,440 3.26 ms
XC2VP7 1,320 4.484,472 11.21 ms
XC2VP20 1,756 8,214,624 20.54 ms
XC2VP50 2,628 19,005,696 47.55 ms

Dummy word FFFF FFFFh
Synchronization word AA99 5566h
Packet Header: Write to CMD register 3000 8001h
Packet Data: RCRC 0000 0007h
Packet Header: Write to FLR register 3001 6001h
Packet Data: Frame Length 0000 00--h
Packet Header: Write to COR 3001 2001h
Packet Data: Configuration options ---- ----h
Packet Header: Write to MASK 3000 C001h
Packet Data: CTL mask 0000 0000h
Packet Header: Write to CMD register 3000 8001h
Packet Data: SWITCH 0000 0009h
Packet Header: Write to FAR register 3000 2001h
Packet Data: Frame address 0000 0000h
Packet Header: Write to CMD register 3000 8001h
Packet Data: WCFG 0000 0001h

In the above example the first set of commands will prepare
the configuration logic for rewriting the memory frames. All
commands are described as 32-bit words, since configuration
data is internally processed from a common 32-bit bus. From
this data sequence, the first dummy word pads the front
of the bitstream to provide the clock cycles necessary for
initialization of the configuration logic. No actual processing
takes place until the synchronization word is loaded. Since the
V2 configuration logic processes data as 32-bit words, but can
be configured from arbitrary data sources, e.g. a serial or 8-bit
source, the synchronization word is used to define the 32-bit
word boundaries. That is, the first bit after the synchronization
word is the first bit of the next 32-bit word. The frame
length indicates how many 32-bit words of configuration data,
depicted as- - - - - - - -h, will be sent from the configuration
controller and will contain ”random” data.

IV. L OADING MICROCODE: PROBLEMS AND SOLUTIONS

In the original MOLEN architectural description, the end
of reconfiguration microcode is marked by anend op mi-
croinstruction. Conceptually, this is correct, however it creates
some implementation drawbacks with respect to whether the
reconfigurable operation isset or execute. That is, whether
the microcode, stored into memory is a sequence of microin-
structions (execute), or a configuration bitstream (set).

Microcode termination. In case ofexecute microcode,
end op instruction at the end of the microcode segment is
sufficient for the proper termination of the reconfigurable
operation, provided the microcode is properly aligned into
memory. This technique, however, would not work in cases
of the set microcode, because the reconfiguration bitstreams
are an arbitrary bit sequence as discussed in Section III. It is
almost impossible to find a unique bit pattern, which can not
be extracted from the reconfiguration bitstreams, thus used
as end op microinstruction. Therefore, it is possible, that a
reconfiguration microcode loading is terminated earlier. Obvi-
ously, other techniques should be utilized for proper microcode
segment termination. Figure 3 depicts three possible solutions

0

0

0

0

0

1
 end_op

microinstruction/ bit pattern
 microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

END
 microcode address

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microinstruction/ bit pattern

microprogram
LENGTH

microinstruction/ bit pattern

a)
 b)
 c)
..............................

start address

end address

Fig. 3. Microcode termination techniques

that can be utilized to solve the pointed problem. On Figure 3a)
a flag bit is utilized, to indicate whether the memory word is
an end op (1), or any other microinstruction/reconfiguration
bit pattern (0). This approach is applicable for bothset and
executemicrocodes, but it is costly in terms of memory space.
Microprogram (resp. reconfigurable bitstream) alignment into
the main memory is also severe, since theend op microcode
should be strictly aligned in the end of the microprogram
segment/block. The examples in Figure 3 b) and c) are
functionally equivalent to each other in terms of memory space
and differ only in the potential hardware implementations. In
both cases, an additional microcode word is aligned at the
starting address of the microprogram segment. This word may
contain either the length of the microprogram (Figure 3 b) or
its final address (Figure 3 c). The latter two techniques are
more efficient in terms of memory space since a single extra
microinstruction word is required.

Microcode finalization. The process of preparing the mi-
crocode for its final alignment into the targeted main memory
is called microcode finalization. In all three cases of microcode
termination, extra termination information should be explicitly
added to the microprogramable configuration code. In the case
of end op attached in the end, additional flag bit fields should
be inserted into the microcode. The expandedset microcode
bit patterns should be properly aligned to fit in the targeted
memory. There is a variety of different design tools that can
potentially be used forset microcode generation, e.g., Xilinx
or Altera. There is also a number of GPPs, which can be
used in the MOLEN organization framework. Therefore, an
automated process that will perform the transformation from
”raw” configuration stream toset microcode is required.

The automated process of microcode finalization for
MOLEN is depicted in Figure 4. This figure shows the place
of the finalization tool in the MOLEN CCU design process.
The CCU algorithm described in any hardware description
language, can be targeted to different FPGA technologies.
This allows technology independent description that can be
synthesized to any particular technology utilized by MOLEN.
The result of the synthesis tool is the binary configuration file
augmented with technology specific commands as discussed
earlier. This file is ready to be loaded into the FPGA via any
of the configuration paths supported, e.g. JTAG or dedicated
configuration controller. The MOLEN paradigm requires the
configuration stream, referred as theset microcode, to be
positioned in the system main memory (similar to the software

Fig. 4. MOLEN Finalization

modules) and be loaded via theρµ unit. The laterρµ unit
should know where is the end of theset microcode as
discussed earlier. In addition theset microcode should ”fit”
nicely in the targeted memory architecture. For example if the
targeted MOLEN organization consists of ARM7 processor
with 16-bit wide external memory and Xilinx Virtex II FPGA
utilizes the CCM part, every configuration word will use two
subsequent address places.

It should be stated that such issues as theset code endianess
are transparent to the proposed approach and do not require
special consideration. All of the above is performed by the Fi-
nalization tool automatically. The configuration file (indicated
asconf) contains information about the MOLEN organization
needed for theset microcode finalization. The product of the
Finalization tool is a binary file ready to be used inside the
MOLEN paradigm, and can be a linkable object, or a high-
level data structure, incorporating the binary information, that
can be included directly in a C project before compilation.

V. L OADING MICROCODE: ρµ-UNIT IMPLEMENTATION

In addition to the finalization process it is required that the
ρµ-coded unit manages the format of theset microcode and
transforms it, to the used hardware configuration channel. The
loading hardware of theset microcodes as described in this
section is the major part of the complete data path between
the main memory and the particular configuration controller.

FPGA implementation. We have designed anρµ-coded
unit utilizing the microcode termination mechanism with the
end microprogram address value stored at the starting mi-
crocode location. A general view of the design is depicted

Load/Execute

control

Sequencer

Control

Store

rC
S

A
R

sl_cs_write

MIR

Data In
mc_addr
start_op
 Data

Address

end_op

CCU

reconfigurable

 microcode unit
status

mc_addr
rm_start_op

Fig. 5. General view of theρµ-code unit

in Figure 5. The load/execute control block is responsible
for loading microprograms from the external memory. It
generates the starting signalrm start op to the sequencer once
the desired microprogram (at addressmc addr) is already
transferred or available in the control store. Thestart op
signal is generated by the Arbiter and initiates a reconfigurable
operation. The load/execute block sequentially generates the
addresses of the microprogram in the main (external) memory
with starting addressmc addr. During this address generation,
the sl cs write signal is active thus, the desired microprogram
is loaded into the control store via the write-only portData In.
Once the desired microprogram is available in the control
store, i.e., the end address of the microprogram in the external
memory is reached, signalrm start op is activated and the
sequencer starts generating the microcode addresses towards
the rCSAR (reconfigurable Control Store Address Register).
The microinstruction to be executed is transferred to the
CCU via the Microinsruction Register (MIR).Statussignals
from the CCU are directed to the sequencer to determine
next microcode address. Once the CCU completes its task,
the sequencer generates signalendop to the arbiter. The
arbiter initiates the execution of the next instruction from the
application program, which can be either a reconfigurable or
a fixed one from the core processor ISA.

We assumed a microcode word length of 32 bits and external
(off-chip) memory segment of 4Mx32-bit (22-bit address)
for microprograms. Virtex II Pro, has been used as a target
reconfigurable technology. The (on-chip) control store has
been designed to handle up-to 8K 32-bit microcode words. As
primary microcode storage units (the control store), we have
used the BRAM blocks of the FPGA fabrics, configured as a
single dual port memory. Each of the ports is unidirectional -
one read-only and one write only. The read-only port is used
to feed the MIR, while the write-only one loads microcodes
from the external memory into the pageable section of the
control store. The VHDL code of theρµ−code unit has been
synthesized with Project Navigator ISE 5.1 S3 of Xilinx. The
target FPGA chip was XC2VP20, speed grade 5. Hardware

TABLE II

SYNTHESIS RESULTS FOR XC2VP20, SPEED -5

Number of Slices 173 out of 10304 1%
Number of Slice Flip Flops 96 out of 20608 < 1%
Number of 4 input LUTs 315 out of 20608 1%
Number of BRAMs: 15 out of 112 13%
Minimum clock period 8.160ns
Maximum Frequency 122.549MHz

costs reported by the synthesis tools are presented in Table II.
In addition, a hardware link to the configuration device pins
(e.g., the byte-parallel controller, of Virtex II Pro) is required.
The configuration bitstream provided by our implementation
in a byte wide fashion is to be routed and transformed if
necessary to the device configuration pins. Since this is a
straightforward implementation issue with a minimal hardware
overhead, it is not covered by this paper. Moreover, different
configuration paths may be utilized, e.g., SelectMAP, serial
(master or slave) or boundary-scan, instead of the parallel path.

VI. CONCLUSIONS

In this paper, we addressed several specific problems related
to the microcodes management in the MOLEN reconfigurable
computing paradigm. More precisely, the generation, mem-
ory alignment and loading of configuration microcodes were
investigated. The microcode termination issue was discussed
in more details and alternative design considerations were
proposed. Some specific features of a new microcode finaliza-
tion tool were outlined after a detailed description of theset
microcode finalization process. An analysis of several possible
solutions of the discussed problems with respect to optimal
hardware complexity and memory usage were presented. The
described design considerations had been taken into account
for an FPGA implementation of theρµ-unit, presented in the
end. Synthesis results indicate a very low hardware resources
utilization of the targeted reconfigurable technology, selected
to be Virtex II Pro of Xilinx (XC2VP20 device).

REFERENCES

[1] M.Wazlowski, L.Agarwal, T.Lee, A.Smith, E.Lam, H.Silverman, and
S.Ghosh, “PRISM-II Compiler and Architecture,” inProc.IEEE Workshop
on FPGAs for Custom Computing Machines, Napa Valley,CA, April 5-7,
1993, pp. 9–16.

[2] R.W.Hartenstein, R.Kress, and H.Reining, “A new FPGA Architecture
for Word-Oriented Datapaths,” in4th International Workshop on Field
Programmable Logic and Applications:Architectures, Synthesis and Ap-
plications, September 1994, pp. 144–155.

[3] S.M.Trimberger,Reprogramable Instruction Set Accelerator.
[4] S. C. Goldstein, H. Schmit, M. Moe, M. Bidiu, S. Cadambi, R. Taylor, and

R. Laufer, “PipeRench: A coprocessor for Streaming Multimedia Accel-
eration,” The 26-th International Symposium on Computer Architecture,
pp. 28–39, May 1999.

[5] M. Sima, S. Vassiliadis, S.Cotofana, J. van Eijndhoven, and K. Vissers,
“Field-Programmable Custom Computing Machines - A Taxonomy,”
in 12th International Conference on Field Programmable Logic and
Applications (FPL), Montpellier, France, Sep 2002, pp. 79–88.

[6] S. Vassiliadis, S. Wong, and S. Cotofana, “The MOLENρµ-Coded
Processor,” in11th International Conference on Field Programmable
Logic and Applications (FPL), vol. 2147. Belfast, UK: Springer-Verlag
Lecture Notes in Computer Science (LNCS), Aug 2001, pp. 275–285.

[7] Virtex-II Pro Platform FPGA handbook v1.0, Xilinx Corporation, 2002.
[8] “Virtex Series Configuration Architecture User Guide,” no. XAPP151,

Sept. 2000.

