
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl

2003

MSc THESIS

Benchmarking Real-Time Network Processing

Yunfei Wu

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2003-01

The latest Internet developments pose two requirements on network
devices: performance and flexibility. Such requirements have sparked
the emergence of the network processor. The advent of network pro-
cessors has significantly contributed to the efficient management of
bandwidth resources, the resolution of latency-related problems, the
processing data at wire-speed and the support of emerging appli-
cations over Internet. A key challenge is to find an adequate way
to evaluate the performance of the heterogeneous collection of net-
work processors when used in a networking environment, such as web
switches, routers, etc. It is important and necessary to create bench-
marks to evaluate the performance of network processors with dif-
ferent architectures. Existing network processing benchmarks have
not covered the processing on real-time (multimedia) data delivery,
which is required by numerous new emerging applications, such as
Voice over IP (VoIP). VoIP becomes a promising technology because
it is inevitable that the convergence of voice and data will play an
important roll in future’s network. It is becoming increasingly more
important to create benchmarks on real-time network processing. In
this thesis, we introduce a benchmark suite that allows the perfor-
mance of real-time network processing to be evaluated. The bench-

mark suite consists of three benchmarks: an RTP Sender benchmark, an RTP Receiver benchmark, and
an RTCP Processing benchmark. For each benchmark, three aspects are specified: function, measurement
and environment. The results on the benchmark suite are presented from performance and architectural
characteristics points of view. The performance results highlight how fast, measured in terms of clock
cycles, the benchmarks are executed. Subsequently, profiling on the benchmarks is performed to deter-
mine time-critical functions. The results on architectural characteristics show that the created benchmarks
focusing on real-time network processing are justified when compared with existing benchmarks, such as
NetBench and MediaBench. The created benchmark suite in this thesis helps to measure and evaluate the
performance of network processors and direct the design of the architectures of future network processors.

Benchmarking Real-Time Network Processing

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Yunfei Wu

born in Suixi, China

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Benchmarking Real-Time Network Processing

by Yunfei Wu

Abstract

T
he latest Internet developments pose two requirements on network devices: performance

and flexibility. Such requirements have sparked the emergence of the network processor.

The advent of network processors has significantly contributed to the efficient manage-

ment of bandwidth resources, the resolution of latency-related problems, the processing data at

wire-speed and the support of emerging applications over Internet. A key challenge is to find

an adequate way to evaluate the performance of the heterogeneous collection of network proces-

sors. Benchmarks are needed to evaluate the performance of network processors with different

architectures. Existing network processing benchmarks have not covered the processing on real-

time delivery, which is required by numerous new emerging applications, such as Voice over IP

(VoIP). It is becoming increasingly more important to create benchmarks on real-time network

processing. In this thesis, we introduce a benchmark suite that allows the performance of real-

time network processing to be evaluated. The benchmark suite consists of three benchmarks:

an RTP Sender benchmark, an RTP Receiver benchmark, and an RTCP Processing benchmark.

For each benchmark, three aspects are specified: function, measurement and environment. The

results on the benchmark suite are presented from performance and architectural characteris-

tics points of view. The performance results highlight how fast, measured in terms of clock

cycles, the benchmarks are executed. Subsequently, profiling on the benchmarks is performed

to determine time-critical functions. The results on architectural characteristics show that the

created benchmarks focusing on real-time network processing are justified when compared with

existing benchmarks, such as NetBench and MediaBench. The created benchmark suite in this

thesis helps to measure and evaluate the network processors performance and direct the design

of architectures of future network processors.

Laboratory : Computer Engineering
Codenumber : CE-MS-2003-01

Committee Members :

Advisor: Stephan Wong, CE, TU Delft

Chairman: Stamatis Vassiliadis, CE, TU Delft

Member: Piet Van Mieghem, NAS, TU Delft

Member: Ben Juurlink, CE, TU Delft

i

ii

To my family for their endless love and support

iii

iv

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Network Processor Implementations . 1

1.2 Open Questions and Methodology of Thesis 3

1.3 Thesis Framework . 4

2 Background 7

2.1 The TCP/IP model . 7

2.2 Network Processing . 10

2.2.1 Underlying Functions . 11

2.2.2 Network Processing Design Alternatives 13

2.3 Benchmarking . 15

2.3.1 A Benchmarking Methodology . 16

2.3.2 Framework for Benchmarking Network Processors 16

2.3.3 Existing Network Processing Benchmarks 18

2.4 The SimpleScalar Tool Set . 18

2.5 Conclusions . 20

3 Benchmarking 23

3.1 Real-Time Delivery . 23

3.1.1 Real-Time Transport Protocol (RTP) 24

3.1.2 RTP Control Protocol (RTCP) . 27

3.2 Benchmarking RTP/RTCP Processing . 29

3.2.1 RTP Sender . 30

3.2.2 RTP Receiver . 32

3.2.3 RTCP Processing . 37

3.2.4 Measurement and Simulation Environment 39

3.3 Conclusions . 41

4 Benchmarks Results 43

4.1 Assumptions . 43

4.2 The RTP Sender Benchmark Results . 45

4.3 The RTP Receiver Benchmark Results . 47

4.4 The RTCP Processing Benchmark Results 51

4.5 Conclusions . 52

v

5 Conclusions 55
5.1 Summary . 56
5.2 Main Contributions . 58
5.3 Future Research Directions . 58

Bibliography 62

vi

List of Figures

2.1 The four layers of the TCP/IP protocol suite. 8
2.2 Illustration of data transmission from computer A to computer B. 8
2.3 Processing tasks in data plane and control plane. 11
2.4 The space of system implementations [21]. 14
2.5 A reference platform for application-level benchmarks [15]. 17
2.6 The SimpleScalar tool set overview. 19
2.7 The SimpleScalar architecture instruction formats. 19
2.8 Pipeline for the sim-outorder simulator. 20

3.1 Effect of jitter and out-of-sequence in voice transmission. 24
3.2 The RTP protocol handles jitter and out-of-sequence in voice transmission. 25
3.3 The format of an RTP packet. 27
3.4 The format of an RTCP Receiver Report (RR) packet. 28
3.5 The structure used to write RTP packets to the hard disk. 32
3.6 Issues for sequence number processing. 34
3.7 The queue structure. 36

4.1 The RTP Sender benchmark results . 46
4.2 The RTP Receiver benchmark results with the input function. 49
4.3 The RTP Receiver benchmark results without the input function. 50
4.4 The RTCP Processing benchmark results. 52

vii

viii

List of Tables

2.1 Comparing data plane processing with control plane processing. 13

4.1 The architectural characteristics for the RTP Sender benchmark. 47
4.2 The architectural characteristics for the RTP Receiver benchmark. 51
4.3 The architectural characteristics for the RTCP Processing benchmark. . . 53
4.4 Comparison in the architectural characteristics between RTP/RTCP

benchmarks with NetBench and MediaBench. 53

ix

x

Acknowledgements

I
feel most fortunate to have had the opportunity to study in the Delft University of
Technology (TU Delft) and to do my Master’s thesis at the Computer Engineering
(CE) Laboratory. I would like to express my sincere gratitude to all who gave me

the possibility to complete this thesis. Without them, it would have been much harder
to finish this thesis.

First and foremost, I am highly indebted to my advisor Prof. Stephan Wong whose
help, stimulating suggestions and encouragement helped me in all the time of this
thesis. He guided me not to get lost during the development of this thesis. He provided
a motivating and enthusiastic atmosphere during the many discussions we had. He was
so patient and devoting in correcting my draft, which took him many weekends and
holidays. It was a great pleasure to do this thesis under his supervision.

I am deeply grateful to Prof. Stamatis Vassiliadis, a nice person, an excellent teacher
and a well-credited scientist, who gave me the opportunity to work on this thesis in the
CE group, encouraged me to keep going with my thesis, and gave me a lot of valuable
suggestions for this thesis.

I want to say that I really enjoy the company of wonderful people I have met in the CE
group, especially in the Room HB15.090. I want to thank Robbert and David for their
help on Linux, latex, and, of course, Dutch study.

I want to thank all my friends, especially my special boys and girls in China. I really
enjoy the memory of four-year time with them and of their youth and energetic spirit,
which kept me “tian tian xiang shang” during the past two years’ study in TU Delft.

Finally, my special thanks go to Zhengfei Guan for his long support. The most valuable
thing I have acquired from the two years’ study in TU Delft is an increased confidence in
myself, and an additional faith in my ability to achieve. Nothing would have ever been
achieved without his continuous support and encouragement.

Yunfei Wu
Delft, The Netherlands
July, 2003

xi

xii

Introduction 1
I

n today’s high-speed networked world, bandwidth is quickly becoming a critical
resource. Due to an explosive growth of Internet usage, a demand arose for network
processing both with low latency and at high throughput in order to eliminate network

bottlenecks. The advent of network processors has significantly contributed to the
efficient management of bandwidth resources, the resolution of many latency-related
problems in a broad range of applications, the processing of data at wire-speed, and the
support of emerging applications over the Internet. Since there is no generally accepted
common implementation of a network processor, many different network processors
with different architectures exist. Additionally, each network processor meets varying
requirements posed by the wide field of network processing. Therefore, a key challenge is
to find an adequate way to evaluate the performance of the heterogeneous collection of
network processors (both current and possibly future ones). Similar to the performance
evaluation of general-purpose processors, benchmarking is a viable approach to evaluate
network processing performance. This approach is not new and several benchmark
suites already exist. However, there is still a need for a new set of benchmarks in
order to more accurately reflect the constantly evolving field of network processing.
More specifically, we introduce a benchmark suite that covers and is tightly related to
real-time network processing, which has not been introduced in the existing benchmarks.
Next to the obvious performance evaluation purpose, two secondary goals exist for the
newly created benchmarks on the real-time network processing. First, the profiling of
the newly created benchmarks will provide valuable information to help direct further
investigations into acceleration of operations on specialized hardware to be utilized in
future network processors. Second, the architectural characteristics of the benchmarks
will provide valuable information to understand the features of the real-time network
processing, which can be utilized in the design of future network processor architectures.

This chapter is organized as follows. Section 1.1 presents the current situation of network
processing together with the observation that real-time delivery services is required by
many emerging applications. Section 1.2 introduces the objectives of this thesis by posing
some related questions and the methodology described in this thesis. Section 1.3 defines
the framework of this thesis.

1.1 Network Processor Implementations

In recent years, we have been witnessing three phenomena of the Internet: a fast-paced
growth of the Internet, an explosive increase in network bandwidths, and a dramatic
increase of Internet-based applications. Moreover, the witnessed phenomena do not
show signs of decline. First, the fast-paced growth of the Internet is driven by the

1

2 CHAPTER 1. INTRODUCTION

general popularity of the Internet, the growing need for remote access to information,
and emerging applications. Second, the explosive increase of network bandwidths is
driven by technological advances in for example fiber optics. Currently, 10Gbps links
are well-established and soon broader bandwidth links of 40Gbps or higher will be
available. Third, the dramatic increase of Internet-based applications is driven by
people putting increasingly more types of data on the Internet with each type requiring
different applications to handle them.

The latest Internet developments give rise to two requirements posed on network
devices: performance and flexibility. Performance is needed because network devices are
expected to process at wire-speed in order to eliminate network bottlenecks. Flexibility
is needed because network devices are expected to be easily adaptable in order to
support emerging applications. In designing network devices for flexibility, an obvious
choice would be to utilize general-purpose processors (GPPs). The programmable GPPs
have the flexibility to be adapted to rapidly changing network protocols. However,
they usually lack in performance to handle data at wire-speed. Traditionally, indeed
GPPs were used to design network devices. As the performance became increasingly
more important, application-specific integrated circuits (ASICs) were introduced.
However, ASICs lack the flexibility to be easily updated in order to support new
features. Consequently, a new kind of processor is needed to meet the two requirements
at the same time. Such a need has sparked the emergence of the network processor (NP).

Generally, a network processor is a programmable device incorporating specialized
hardware designed specifically to process data at wire-speed. Network processors
can provide speed through architectural improvements, such as parallel distributed
processing and pipeline processing designs. The programmability of network processors
can enable easier migration to new protocols and technologies. While network processors
are designed having both flexibility and performance in mind, there is still a broad
spectrum of trade-offs between these two requirements. The advantage is that it
allows network processor vendors to distinguish their products from others by targeting
slightly different application areas. The main disadvantage is that the existence of many
architectures and implementations of network processors makes it difficult to compare
them in terms of performance. Consequently, benchmarks are needed to measure the
performance of network processors. Simply put, a benchmark is a standard for judging
system performance in a target application. Currently, several network processing
benchmarks have been introduced. Although some network processing benchmarks
exist, there is still headroom for benchmarking network processing due to the two facts.
First, existing benchmarks do not cover all applications in the networking domain. It is
necessary for benchmarks to cover some of the untargeted applications. Moreover, with
new applications emerging , no benchmark exists to evaluate the performance of network
processors on these new applications. Second, existing benchmarks mainly cover lower
layer1 functionalities while there is a certain trend that higher layer functionalities must
also be supported, for example, real-time delivery of multimedia data.

1Communication models (e.g., the TCP/IP model or the OSI model) are usually layered in order to
describe and implement a complex task that is communication between computers.

1.2. OPEN QUESTIONS AND METHODOLOGY OF THESIS 3

In this thesis, we describe the implementation of a new benchmark suite that specifically
incorporates higher layer functionalities. Two additional benefits arise from the created
benchmarks. The first benefit is to perform profiling on these benchmarks in order to
gain more insight in such higher layer functionalities. Such insight can be utilized to
implement specialized hardware in the design of future network processors. The second
benefit is to investigate architectural characteristics on such higher layer functionalities
in order to understand the features of these functionalities and their performance. These
characteristics can be taken into consideration in designing the architectures of future
network processors. The next section discusses in detail the questions investigated in
this thesis and the methodology described in this thesis.

1.2 Open Questions and Methodology of Thesis

This study is driven by two trends that have been identified in network processing.
The first trend is that the shift in supporting NP functionalities is from lower layers
to higher layers of the TCP/IP model. It is becoming increasingly more important
to create benchmarks that allow the investigation of higher layer functionalities. The
second trend is in the emergence of applications that require real-time delivery. One of
such applications is Voice over IP (VoIP). As the need of multimedia services grows,
it is inevitable that the convergence of voice and data will play an important roll in
future’s network. Therefore, VoIP is becoming a promising technology. However, there
are some challenges in utilizing the IP network to transfer voice data with real-time
characteristics. In order to ensure real-time delivery, specific processing is needed.

Considering the two trends together with the fact that previously introduced network
processing benchmark suites mainly focus on the lower layer functionalities, we believe
there is a need for a new set of benchmarks that incorporate higher layer functionalities.
The first question investigated in this thesis is that:

1. How can we create benchmarks that allow the investigation of real-time
network processing?

As mentioned, the newly created benchmarks incorporates many functionalities related
to real-time delivery. This opens up the opportunity to perform profiling on the newly
created benchmarks in order to find the time-critical functions. By implementing these
time-critical functions on specialized hardware, performance gains can be achieved. The
second question investigated in this thesis is that:

2. Which functions in the newly created benchmarks on real-time network
processing are time-critical?

The created benchmarks also allow us to investigate architectural characteristics in the
real-time delivery processing that may be utilized in the design of future network proces-
sor architectures. The investigation entails the following four characteristics: instruction
level parallelism, branch prediction accuracy, instruction distribution, and cache be-
havior. First, a high instruction level parallelism means that it can be and should be

4 CHAPTER 1. INTRODUCTION

exploited in the processor design. Second, a high branch prediction accuracy means that
less exotic complex branch predictors can be utilized, e.g., to keep the processor pipeline
filled with useful instructions. Third, depending on the instruction distributions, design
decisions can be made whether to include certain functional units or not. Fourth, since
both the instruction cache and the data cache can have a profound effect on perfor-
mance, it is important to understand their behavior. The third question investigated in
this thesis is that:

3. What are the main architectural characteristics of real-time network processing?

The answer to the third question can also highlight the main differences between the
characteristics of real-time network processing with other processing or other network
processing. This thesis will mainly focus on the investigation on these three questions
posed above and achieve the final answers to these three questions.

The methodology that has been used in order to achieve the answers to the three men-
tioned questions is briefly described as follows:

• The benchmarks are implemented by taking the existing C code and modifying
it. It is not the intention of the MSc project to develop new applications or appli-
cation codes in that matter. Since we focus on real-time network processing, we
have chosen to focus on both the Real-Time Transport Protocol (RTP) and the
Real-Time Transport Control Protocol (RTCP). In implementing the benchmarks,
we specify three aspects: function, measurement and environment (interfaces and
simulation).

• The time-critical functions are determined by the profiling information of the
benchmarks. The profiling is performed by running the benchmarks in a simulation
environment that allows performance metrics (e.g., clock cycles) to be measured.

• The architectural characteristics are performed by again running the bench-
marks in a simulation environment. Furthermore, the determined characteristics
are compared to results from other benchmarks, such as NetBench and Media-
Bench.

It must be noted that the work described in this thesis does not entail any actual
hardware design. The work solely focuses on obtaining software benchmarks, profil-
ing information, and architectural characteristics by utilizing an appropriate simulation
environment.

1.3 Thesis Framework

This section discusses the framework of this thesis that consists of the following chapters:

Chapter 2 reviews the background of this thesis from three aspects. First, it discusses
the 4-layer TCP/IP model, presents the different responsibilities and some key charac-
teristics of each layer, highlights the underlying functions in network processing, and

1.3. THESIS FRAMEWORK 5

proposes a number of solutions to design embedded processors in networks. Second,
it discusses a benchmark methodology for network processing and highlights some
existing network processing benchmarks. Third, it presents a general overview of the
SimpleScalar tool set used in order to obtain simulation results.

Chapter 3 analyzes the differences between real-time delivery and non-real-time
delivery, describes RTP/RTCP, i.e, the protocols used for providing real-time delivery,
and introduces the implementation on the benchmarks for RTP/RTCP processing.
The created benchmarks are described from three aspects: function, measurement and
environment.

Chapter 4 discusses the simulation results on the benchmarks for RTP/RTCP processing.
The benchmarks are performed on the sim-outorder simulator from the SimpleScalar
tool set (version 3.0). The results are analyzed from two aspects. First, profiling results
based on the clock cycles are performed in order to find the time-critical functions in
the benchmarks. Second, the architectural characteristics results are presented and
compared with NetBench and MediaBench.

Chapter 5 presents the conclusions of this thesis, describes the main contributions of this
thesis and highlights several future research directions.

6 CHAPTER 1. INTRODUCTION

Background 2
T

he advent of network processors (NPs) made a significant contribution to max-
imizing the utilization of bandwidth and support of emerging internet-based
applications. NPs can provide intelligent network processing with low latency and

high throughput at wire-speed. One cannot appreciate the technical details of underlying
functions in network processing without understanding the TCP/IP model1. It is the
fundamental model on which the current Internet is based.

This chapter is organized as follows. Section 2.1 briefly reviews the TCP/IP model, ex-
plains major protocols used in this model, and highlights characteristics of the Internet.
Section 2.2 presents several underlying functions in network processing and possible ar-
chitectures for network processing. Section 2.3 poses the question why benchmarking is
needed, analyzes the characteristics of a benchmark, presents a benchmarking method-
ology for network processing, and lists some existing network processing benchmarks.
Section 2.4 briefly reviews the SimpleScalar tool set, which includes several simulators
for evaluating system performance. Section 2.5 presents the conclusions of this chapter.

2.1 The TCP/IP model

A protocol is a set of rules that governs data communication between devices. It defines
what is communicated, how it is communicated and when it is communicated. Due to
the complexity of communication between two different devices, network protocols are
normally developed in layers, with each layer responsible for a different facet of the
communication. Two important benefits result from decomposition into layers. First,
the different layers can be designed more or less independently, and therefore greatly
simplifying network design. Second, compatibility is derived from the independent
inner-working of each layer in the sense that each layer can be regarded as a black
box with its own defined inputs and outputs. TCP/IP is normally considered to be a
4-layer system, as depicted in Figure 2.1 [23]. Figure 2.2 depicts the layered principle
in the TCP/IP model which entails that layer n at the destination receives the same
object sent by layer n at the source. Figure 2.2 also illustrates how data are sent from
computer A to computer B. As the data travel from computer A to computer B, it
may pass through many intermediate nodes, such as routers and switches. These nodes
usually involve only the first two lower layers of the TCP/IP model. The transmission
first starts at the application layer in computer A and then moves down through the
layers of computer A. At each layer n, a header Hn is added to the data unit received
from the next higher layer, e.g., H4 is the header added at the layer 4. At the layer 1,

1The TCP/IP model is a protocol suite which combine different protocols in various layers.

7

8 CHAPTER 2. BACKGROUND

Application

Transport

Network

Link

Layer 2

Layer 3

Layer 4 FTP, email, etc

TCP, UDP

IP, ICMP, IGMP

device driver and interface cardLayer 1

Figure 2.1: The four layers of the TCP/IP protocol suite.

Computer A Computer B

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Physical
network1

Physical
network2

Identical message

Identical packet

Identical datagram Identical datagram

Identical
frame

Identical
frame

User data

User dataH4

User dataH4H3

User dataH4H3H2

User dataH4H3H2H1 T1

User data

User dataH4

User dataH4H3

User dataH4H3H2

User dataH4H3H2H1 T1

0101010100000100111001111100101001011 0101010100000100111001111100101001011

Intermediate
node

Ethernet frame

IP datagram

Ethernet frame

IP datagram

TCP
segment TCP

segment

Figure 2.2: Illustration of data transmission from computer A to computer B.

a trailer T1 is added as well. Finally, when the formatted data unit passes through the
physical network, a stream of bits are sent out. Upon reaching the destination, the data
then move upwards through the layers of computer B. At each layer, the previously
attached headers and trailers are removed.

The different responsibilities and some key characteristics of each layer are discussed as
follows:

1. The link layer, also called the data-link layer or the network interface layer, nor-
mally includes the device driver in the operating system and the corresponding

2.1. THE TCP/IP MODEL 9

network interface card in the computer. The network interface is assigned a unique
physical address, e.g., 48-bit physical address for an Ethernet card, by which the
computer is recognized. This layer is responsible for sending and receiving data
from the network layer, communicating with the network interface in transferring
data, and handling all the hardware details of physical interface. TCP/IP supports
many different link layers, depending on the type of networking hardware being
used: Ethernet, Token ring, Fiber Distributed Data Interface (FDDI), and the like.
The data unit generated at the link layer is called a frame by adding a header and a
trailer information - Cyclic Redundancy Check (CRC) - to the data received from
the network layer. The maximum length of the frame is Maximum Transmission
Unit (MTU) which limits the number of bytes of data that can be transferred. For
Ethernet, its MTU is 1500 bytes. In this layer, two main protocols are defined: the
Address Resolution Protocol (ARP) and the Reverse Address Resolution Protocol
(RARP). ARP maps an IP address to a physical address while RARP performs
the reverse operation.

2. The network layer, also called the internet layer, is responsible for packaging,
addressing, and routing functions. The core protocol of this layer is the Internet
Protocol (IP), which is one of the major protocols of the TCP/IP protocol suite
(TCP being the other). The basic data object in this layer is the IP datagram,
which is a variable-length packet consisting of two parts: a header and a data
unit. The header can be from 20 to 60 bytes and contains information, e.g., IP
address that is essential to routing and delivery. The most fundamental service
provided by IP is a packet delivery. However, this service is unreliable, best-
effort, connectionless. The term unreliable means that packet may be delayed
or duplicated at the destination. Or, the packet may be lost and cannot reach
the destination. Best-effort means that IP delivers the packets without detecting
problems or informing the sender or receiver about the problems. Connectionless
means that IP treats each datagram as an independent entity unrelated to any
other datagrams. In other words, IP datagrams can go through different paths to
the destination. Therefore, out of order delivery is possible.

The network layer also contains two other protocols, Internet Control Message
Protocol (ICMP) and Internet Group Management Protocol (IGMP). ICMP is
responsible for exchanging error messages and other vital information with the
network layer in another host or route. IGMP is responsible for multicasting:
sending a UDP datagram to multiple hosts.

3. The transport layer provides communication from one application on computer A
to another on computer B, which is called end-to-end communication. This layer
contains two main protocols: Transport Control Protocol (TCP) [13] and User
Datagram Protocol (UDP) [14]. Both TCP and UDP provides a port number to
higher layer for applications to identify the endpoints of the communication. The
data unit that TCP sends to IP is called a TCP segment. The one that UDP sends
to IP is called a UDP datagram.

TCP provides a one-to-one, connection-oriented, reliable communication service.

10 CHAPTER 2. BACKGROUND

The term connection-oriented means the application using TCP must establish
a TCP connection between the two end systems before they can exchange data.
TCP uses positive acknowledgment (ACK) with retransmission in order to provide
a reliable service. Positive ACK means that the receiver will send back an ACK
message to the sender when it receives the data. If the ACK is not received by the
sender within a timeout interval, the data is retransmitted. At the receiver, the
sequence number in the TCP header is used to correctly order the segments that
may have been received out of order and to eliminate duplication. Packet damage
is handled by adding a checksum to each transmitted TCP segment, checking it at
the receiver and discarding it if it is damaged.

UDP provides a one-to-one or one-to-many, connectionless, unreliable communica-
tion service. UDP is much simpler than TCP for three reasons. First, UDP does
not use acknowledgements to ensure packet delivery. Secondly, it does not provide
feedback to control the rate at which information flows between the two end sys-
tems. Thirdly, it does not order incoming data. Therefore, UDP datagrams can
be lost, duplicated or arrive out of order. Furthermore, packets can arrive faster
than the receiver can process them. Normally, an application program that utilizes
UDP takes full responsibility for reliable packet delivery, which includes message
loss, duplication, delay and out-of-order delivery. The header length of UDP is also
much smaller than TCP header length. Therefore, UDP is often utilized when the
amount of data to be transferred is small (such as the data that would fit into a
single packet), when the overhead of establishing a TCP connection is not desired
or when the applications or upper layer protocols provide reliable delivery.

4. The application layer, the highest layer, contains application programs that pro-
vide services across a TCP/IP network. The applications includes File Transfer
Protocol (FTP), email, Voice over IP (VoIP), video conferencing, etc. An appli-
cation interacts with one of the transport layer protocols to send and/or receive
data.

In conclusion, the TCP/IP model is used and tested extensively in the Internet. it
contains many protocols, each of which provides a specific functionality. Moreover,
newer protocols are emerging in this model in order to meet the need of the potential
applications.

2.2 Network Processing

Generally, one cannot design a system without understanding the requirements of the
application that the system targets. Therefore, it is not possible to design the network
processing architectures without understanding its underlying functions. This section
discusses the most important underlying functions in network processing first, and sub-
sequently describes possible architectures for network processing.

2.2. NETWORK PROCESSING 11

Policy application

Network management

Media access control

Control

plane

Data

plane
1 & 2

Layers

Layers

3 & 4 Signalling

Queuing / Scheduling

Data transform

Classification

Data parsing

Topology management

Figure 2.3: Processing tasks in data plane and control plane.

2.2.1 Underlying Functions

The main underlying functions in network processing focus on two planes: the data
plane and the control plane. Both planes are depicted in Figure 2.3 [11]. In relation
to the TCP/IP model, processing in the data plane focuses on layers 1 and 2, while
processing in the control plane focuses on layers 3 and 4.

Network processing in the data plane concerns analyzing and modifying each in-
coming packet, managing an input/output queue, scheduling packets in the queue, and
forwarding the packets towards their destinations. Packets must be processed at wire-
speed. The underlying functions in the data plane (Figure 2.3) are discussed as follows:

• Media Access Control (MAC) [4] is a general reference to the low-level hardware
protocols used to access a particular network . The term MAC address is often used
as a synonym for physical address. Normally, the hosts and routers are recognized
by their own physical addresses. However, physical addresses are not adequate
in an inter-networking environment where different networks can have different
address formats. A universal addressing system in which each host can be identified
uniquely, regardless of the underlying physical network, is needed. The IP address
is designed for this purpose. This means that delivery of a packet to a host requires
both two types of addressing: a physical address and an IP address. Therefore, the
mapping between an IP address and a physical address and vice versa are needed,
which is done by ARP and RARP, respectively.

• Data parsing and classification look at a packet header and classify the packet
based on a set of rules. Both functions can be found in all layers. For example,
in the web server application, a packet to this server is classified by two rules: the
destination port in the TCP header must be 80 and the protocol in the IP header
must be 6. All packets that do not match the two rules cannot reach the web sever.

• Data transformation entails many different operations: changing the content of a

12 CHAPTER 2. BACKGROUND

packet by adding additional information to the packet, modifying the packet when
passing through different networks and segmenting, fragmenting and reassembling
the packet. These operations differ significantly in complexity. For example, a
packet may be encrypted by using some encryption algorithms for security pur-
poses. Or, a packet may be encapsulated as a payload in a new packet with a new
header when the packet passes from an IP network to an ATM network.

• Queuing and scheduling manage an input buffer and an output buffer, make the
decision on how to insert packets to queues and dequeue packets, and schedule
packets for different applications. The packets are scheduled by many different
policies and their priorities.

Network processing in the control plane controls and manages device operations,
updates routing table, executes routing algorithms, and processes some exception packets
passed from the data plane. Unlike processing in the data plane, processing in the control
plane will not process all packets. Therefore, it is less time-critical. The underlying
functions in control plane are discussed as follows:

• Topology management and network management consist of the following operations:
monitoring network activity, distributing a database, generating real-time graphical
views of the network topology, and updating a dynamic routing table. A routing
table is used to forward a packet to the destination or to the next hop. It has to be
updated as soon as there is a change in the Internet. For example, when a router
is connected to the Internet for the first time, the routing tables of all routers on
the Internet need to be updated by using routing protocols, such as the Routing
Information Protocol (RIP) or the Open Shortest Path First (OSPF) protocol.

• Signalling ensures quality of services since the IP-based network only provides
“best-effort” services. Two groups have proposed signalling standards for IP tele-
phony. The International Telecommunication Union (ITU) has defined a suite
of protocols known as H.323, and the Internet Engineering Task Force (IETF)
has proposed a signalling protocol known as the Session Initiation Protocol (SIP).
Some other signalling protocols, such as Resource ReserVation Protocol (RSVP)
and Multi-Protocol Label Switching (MPLS), are also utilized in IP networks.

• Policy application is a set of rules which are used to execute routing algorithms
and to update routing table. Considering a packet forwarding example, IP will
perform a table lookup in order to determine the next hop where the packet should
be forward.

A comparison between data plane processing and control plane processing is presented
in Table 2.1 [11] [6]. There are five main differences between data plane processing and
control plane processing. Because three differences out of five (in the first three rows of
Table 2.1) are already discussed above, only the remaining two differences are discussed
here. First, the difference in the software is that normally data plane processing is im-
plemented in specific hardware written in VHDL language while control plane processing
is implemented in software written in C or C++. Second, the difference in execution is

2.2. NETWORK PROCESSING 13

Data plane Control plane

Main functions Packet forwarding Routing and Signalling

Layer In layer 1-2 In layer 3-4

Performance Real-time processing Less time-critical

Software

Fewer than 1500 lines of
code and typically written in

VHDL or low-level
microcode

Millions of lines of code
and written in C/C++

Execution
On a special processor

accelerated for maximum
performance

On a general-purpose
CPU

Table 2.1: Comparing data plane processing with control plane processing.

that the data plane processing is launched on a special processor in order to achieve high
performance while the control plane processing is launched on a general-purpose proces-
sor in order to achieve flexibility. With the increased demand for complex processing,
the boundaries between the data plane and the control plane processing have become
blurred.

2.2.2 Network Processing Design Alternatives

A complete design methodology [24] - a design process - for embedded computing
systems tells us that we need to consider the major goals of the design when creating
a product, which may include functionality, performance, power consumption and
manufacturing cost. Functionality provides a more detailed description of what the
product does; Performance means the processing speed of the product, which may
be a combination of soft deadlines such as approximate time to perform a user-level
function and hard deadlines by which a particular operation must be completed. Power
consumption gives a rough idea of how much power the product can consume. And
manufacturing cost primarily defines the cost of the hardware components. Beyond
this, we must also consider some other important requirements in system design:
time-to-market, design cost and quality.

In designing network devices, the latest developments in the Internet give rise two re-
quirements: performance and flexibility. Traditional network processing mainly focuses
on forwarding packet at high speed in order to eliminate the network bottlenecks. Net-
work devices are expected to perform at high speed with low latency. However, as the
Internet Protocol keeps maturing, newer protocols have been emerging and will emerge
in the future. Such newer protocols include security, signalling, and various network
managements, etc.. Network devices are also expected to flexibly support these newer
protocols and applications with high performance. In general, there are a number of
techniques for designing network processors:

• General-purpose processor (GPP) - A programmable processor for general-purpose

14 CHAPTER 2. BACKGROUND

ASIP

FPGA

Co−processor

ASIC

GPP

Flexibility

Performance

Figure 2.4: The space of system implementations [21].

computing.

• Application-specific integrated circuit (ASIC) - An accelerator with specific function
units. It interacts with the CPU through the programming model interface. It does
not execute instructions.

• Co-processor - A separate chip connected to the internals of the CPU or the same
chip nowadays. It implements additional instructions, which are not supported by
the main processor to which it is attached to.

• Application-specific instruction processor (ASIP) - A CPU whose instruction set
has been optimized for a particular set of applications.

• Field-programmable gate array (FPGA) - A programmable logic chip that can
be quickly customized to a particular function. FPGAs come in two basic vari-
eties: one-time-programmable devices which can be programmed once and repro-
grammable devices which can be programmed many times with new logic designs.

In order to examine which technique can meet the two requirements, Figure 2.4 maps
these categories on two axes: flexibility and performance. In Figure 2.4, We can see
that GPP is the most flexible at the cost of the performance and ASIC provides the
best performance with the worst flexibility.

Earlier network devices, such as routers and switches, employ GPPs for network
processing. The best advantage of this approach is that it enables flexible support new
features required by the new applications since GPP is a programmable processor for
general purpose computing. However, the drawback of this approach is its limited ability
to scale the performance in order to support the demands for higher bandwidths. With
bandwidth increasing from OC-3 (155Mbps) to OC-192 (10Gbps) and up to OC-768
(40Gbps) or higher in the future, design priority shifts from flexibility to speed. GPPs
can not have enough performance to process data at wire-speed. Therefore, the market

2.3. BENCHMARKING 15

turned to high-performance ASICs for packet processing. An ASIC does accommodate
the increasing demand for speed when performing the required packet processing.
However, it is restricted by its inherent inflexibility. Nowadays, as mentioned before,
since security, QoS and multimedia applications become the new networking concerns,
ASICs are limited to these functionalities and can not support new features.

In conclusion, the flexible combinations of the data plane and the control plane processing
with high performance are not possible with either ASIC or GPP solutions alone. Today,
the market is turning to a new solution, network processors (NPs): high-performance,
programmable devices designed to efficiently execute communications workloads [6]. A
network processor is an ASIP for the networking application domain. Figure 2.4 also
depicts that ASIP is the best flexibility-versus-performance trade-off for networking sys-
tem implementations. Currently, there are a number of network processors available in
the market, such as PayloadPlus network processor from Agere, Toaster2 from Cisco,
PowerNP network processor from IBM, and IXP2400 network processor from Intel and
so on. More details about the architecture of each network processor can be found in
[21] and [6].

2.3 Benchmarking

Before we discuss benchmarking in relation to network processing, we present its general
definition. A benchmark2 is:

1. something that serves as a standard by which others may be measured or judged.

2. a standardized problem or test that serves as a basis for evaluation or comparison
(as of computer system performance).

Generally, a good benchmark helps to measure system performance in a deterministic
and reproducible manner. From a marketing point of view, we know that reliable perfor-
mance equates to excellent customer services, while excellent customer services equate
to maximized profits. Therefore, it is important for benchmarks to evaluate the per-
formance of network processors. When referring to more general-purpose processors,
an immediate term comes into mind, namely SPEC that stands for Standard Perfor-
mance Evaluation Corporation [22]. Its mission is to establish, maintain, and endorse a
standardized set of relevant benchmarks and metrics for performance evaluation of mod-
ern computer systems. However, The benchmarks defined in SPEC are not suitable for
benchmarking network processors since network processors target to specific applications
related to networking. This section presents a literature study in benchmarking network
processors: a benchmarking methodology for network processor, a framework for bench-
marking network processor and an overview of currently existing several benchmarks for
network processors.

2The definition is taken from www.m-w.com.

16 CHAPTER 2. BACKGROUND

2.3.1 A Benchmarking Methodology

According to [6], a good benchmark must possess three characteristics: accuracy,
scalability, and representativeness. First, benchmarks must accurately reflect real-world
applications. Additionally, they can accurately measures system performance in a
target application. Second, benchmarks must be able to test different data sets
without requiring major changes. In addition. they must be comparable across system
implementations. Third, benchmarks must accurately represent a system-under-test,
cover most functionalities of one domain, and provide results that correlate to real-world
performance.

In [17], [12], [18] and [7], several benchmarking methodologies in the networking domain
are discussed in detail. Due to the heterogeneity of network processor architectures,
it is necessary to separate benchmarking concerns to ensure comparability of results.
[6] defines the benchmarking methodology for network processors from three separate
specifications:

• Functional specification defines the requirements and constrains of a benchmark
, such as the minimum allowable routing table size supported by the implementa-
tion and so on. It describes the core algorithmic behaviors of the benchmark.

• Measurement specification defines the performance metrics for evaluating the
benchmark performance, such as latency, throughput, and packet loss ratio. It
also specifies the format in which to present the results and the procedures used
to measure the metrics.

• Environment specification specifies the network interface and the control inter-
face. It defines the test configuration used to obtain the metrics, and input/output
behaviors being benchmarked.

These three specifications present the precise specifications of a benchmark and allow to
produce the benchmark results with accuracy, scalability and representativeness. This
methodology allows to measure the performance of network processors with different
architectures.

2.3.2 Framework for Benchmarking Network Processors

As mentioned before, network processing performs a variety of tasks, some in the data
plane and some in the control plane. Until now there are a number of network processors
available from different vendors with different architectures. This makes benchmarking
network processors more complex. In order to cover different network processor archi-
tectures, to measure the complete network processing space, and to meet the needs of
different users, [6] and [15] categorize benchmarking into 4 levels:

• System level Benchmarks at this level are used to measure the performance of
complete systems, such as firewalls, multi-service switches, etc. Both the data plane
processing and the control plane processing are evaluated. A set of system-level

2.3. BENCHMARKING 17

Network
Processors Co−processors

Memory

Media

Interfaces
Fabric

Interface

Control Interface

Figure 2.5: A reference platform for application-level benchmarks [15].

benchmarks has already been defined by the IFEFT and Internet Service Provider
(ISP).

• Function level Benchmarks at this level are used to measure the performance
of individual network processing functionalities only in data plane, such as IP
forwarding [18], L2 switching [12] and Network Address Translation (NAT). The
Network Processing Forum (NPF) has defined a typical reference model depicted in
Figure 2.5 for test configuration the benchmarks in this level. This reference model
includes one or more network processors, and external data and control interfaces.
One or more media interfaces are used through which network data is injected. A
control interface is used for control plane operations. A fabric interface is used to
forward network data out.

• Micro level Benchmarks at this level are intended to measure elementary, stand-
alone functions which is not easily decomposed into other functions, such as check-
sum calculation for error detecting, table lookups used for routing and encryption
for security.

• Hardware level Benchmarks at this level are focused on the measurement of
latencies and throughputs for accessing different hardware resources within net-
work processor, such as memory, input/output interfaces, and other computation
elements. Hardware-level benchmarks are architecture specific, that is to say, they
can only be defined in terms of a given architecture.

Benchmark suites developed at these four levels have a hierarchical relationship with
each other. Typically, a system-level benchmark may include one or more function-level
benchmarks; A function-level benchmark may include one or more micro-level bench-
marks. For example, a firewall includes IP forwarding, NAT application and some other
applications. While IP forwarding includes table lookups, checksum calculation and
some other functions.

18 CHAPTER 2. BACKGROUND

2.3.3 Existing Network Processing Benchmarks

Recently some benchmarks for network processors [9], [1], [8], [15] and [16] have been
discussed.

• NetBench [9] presents a set of nine representative applications in network process-
ing domain. It categorizes these applications into three levels: micro level, IP level
and application level. Netbench applications take an IP header trace as the input,
simulate the processing on 10000 IP packets by the SimpleScalar simulator, and
compare the results with MediaBench, a benchmark for evaluating and synthesiz-
ing multimedia and communications systems [3]. NetBench experimental results
include instruction level parallelism (ILP), branch prediction accuracy (BPA), in-
struction distribution (ID) and cache behavior (CB). It also performs these simu-
lations using Inter IPX simulator and compares the performance of IXP2000 with
a general-purpose processor.

• CommBench [1] focuses on operations that are performed at the network layer,
and includes eight applications which are divided into two groups: header pro-
cessing applications (HPA) and payload processing applications (PPA). Finally, it
compares the results with those of SPECs on code and kernel sizes, computational
complexity, instruction frequency and cache performance.

• Embedded Microprocessor Benchmark Consortium (EEMBC) [8] defines three ap-
plication benchmarks in the network processing domain: routing protocol, Open
Shortest Path First (OSPF) based on the Dijkstra algorithm, route lookup and
packet management.

• Network Processing Forum (NPF) [15] defines a framework for benchmarking net-
work processors. It categorizes applications in the network processing domain into
three levels, which are same with Section 2.3.2 without the hardware level, and
mainly focuses applications on the function level.

• Intel Corporation [16] focuses on benchmarking the Intel IXP1200 network proces-
sor. The methods for performance measurement and the consideration of interface
issue are specific to the IXP1200. They provide some results for IPv4 forwarding
on the IXP1200.

These benchmarks mentioned above mainly focus on some specific network processing.
They do not cover all applications in the network processing domain. with new appli-
cations emerging, there are still no benchmarks to evaluate the performance of the new
applications.

2.4 The SimpleScalar Tool Set

This section briefly reviews the SimpleScalar tool set [2] which consists of a compiler, an
assembler, a linker, a simulator, and visualization tools for the SimpleScalar architecture.
Subsequently, a general overview of the SimpleScalar architecture is presented. Finally,

2.4. THE SIMPLESCALAR TOOL SET 19

GCC
Simplescalar

SS libc.a

F2C

benchmark code
FORTRAN

source
C benchmark

(e.g., sim−outorder.c)
Simulator source

Host C compliler

Simulator Results

Precompiled SS
Binaries (test, SPEC95)executables

Simplescalar

GLD
Simplescalar

Object files

GAS
Simplescalar

Simplescalar assembly

SS libm.a

SS libF77.a

Figure 2.6: The SimpleScalar tool set overview.

16−opcode16−annote 8−rs 8−rt 8−rd 8−ru/shamt

63 32 31 0

Register format

16−annote 16−opcode

63 32 31 0

16−annote 16−opcode 8−rs 8−rt 16−imm

8−unused 24−target

63 32 31 0

Immediate format

Jump format

Figure 2.7: The SimpleScalar architecture instruction formats.

some characteristics of the sim-outorder simulator are discussed, which is utilized for
simulating the benchmarks defined in the next chapter.

Figure 2.6 depicts a graphical overview of the SimpleScalar tool set. A C benchmark
before being simulated must be compiled using the SimpleScalar GCC (current version
2.7.2.3), which generates the SimpleScalar assembly. By using the SimpleScalar
assembler, linker and related libraries included in the tool-set, a SimpleScalar executable
is generated and can be fed directly into one of the provided simulator, for example,
sim-outorder.

The SimpleScalar architecture is derived from the MIPS IV architecture. All Instruc-
tions in the SimpleScalar are extended to 64 bits and three instruction encodings are
used (depicted in Figure 2.7). The register format is used to computational instructions.
The immediate format supports the inclusion of a 16-bit constant. The jump format
supports specification of 24-bit jump targets. The 16-bit annotate is used to synthesize
new instructions and annotations without changing and recompiling the assembler.

20 CHAPTER 2. BACKGROUND

Fetch Dispatch
Register

Scheduler
Memory

Scheduler

Exec

Mem

Writeback Commit

I−TLBI−Cache
(IL1) D−TLB

Virtual Memory

I−Cache
(IL2)

D−Cache
(DL2)

D−Cache
(DL1)

Figure 2.8: Pipeline for the sim-outorder simulator.

The most complicated and detailed simulator in the SimpleScalar package is the sim-
outorder simulator. It keeps track of the timings of events, simulates everything that
happens in a superscalar processor pipeline, including out-of-order instruction issue, the
latency of the different execution units, the effects of using a branch predictor, etc.
Figure 2.8 depicts the 6-stage pipeline of sim-outorder. First, the fetch stage takes
the program counter, the predictor state and mis-prediction detection from the branch
execution units as inputs. It fetches instructions and sends them to the instruction fetch
queue. Second, the dispatch stage takes as many instructions as possible from the fetch
queue and sends them to the scheduler queue. It updates the register update unit (RUU)
and load/store queue (LSQ), and renames registers. Third, the scheduler stage locates
instructions with all register inputs ready, and locates loads with all memory inputs
ready. Instructions will be issued to the functional units and its state is updated. Forth,
the execute stage takes instructions ready to execute, functional unit state and D-cache
state as inputs. It schedules writeback events, and updates functional unit and D-cache
state. Subsequently, the Writeback stage gets finished instructions specified by the event
queue, and walks the dependence chain of instruction outputs to mark instructions that
are dependent on the completed instruction. It also detects branch mis-predictions to
the fetch stage. Finally, the commit stage models in-order retirement of instructions,
stores commits to the D-cache, and handles D-TLB miss.

2.5 Conclusions

This chapter provided four backgrounds on four topics of this thesis. First, the back-
ground on the TCP/IP model discussed the model and main protocols in this model,
and presented characteristics of the Internet. Second, the background on the network
processing categorized the network processing into two planes, the data plane and the
control plane, and described the different processing in these two planes. With the in-
crease of network bandwidth and of network applications, network processing with high
performance and flexibility is becoming an important concern. The background on the

2.5. CONCLUSIONS 21

network processing presented possible architectures for network processing. Third, the
background on benchmarking discussed what, why and how aspects are related to the
benchmarking, and listed some existing network processing benchmarks. Finally, the
background on the SimpleScalar tool set provided an overview of the tool set, discussed
its architecture, and presented the sim-outorder simulator.

22 CHAPTER 2. BACKGROUND

Benchmarking 3
P

revious chapters reviewed the TCP/IP model and the main underlying functions
in network processing. It was argued in the previous chapters that it is important
for benchmarks to evaluate the performance of network processors. Furthermore,

there is a certain trend that functionalities supported by network processors are shifting
from lower layers to higher layers. Therefore, it is more important to benchmarking
network processing in higher layers. Currently, Voice over IP (VoIP) has been viewed as
an attractive and effective technology. VoIP entails transferring voice data over an IP
network. Its popularity stems from two facts. First, as the need for multimedia services
grow, the need for Internet to transfer voice together with data becomes inevitable.
Second, the IP protocol and associated protocols discussed in Chapter 2 have been
universally existed in user and network equipment. The universal presence of IP makes
it a very convenient platform from which to launch multimedia data. However, IP only
provides “best-effort” services causing the variable delays, packet duplicates, and packet
losses. This is usually not a big problem for data applications. While voice packet
delivery is a kind of real-time service, which means voice packets have to be delivered
timely to eliminate packet delays and provide QoS.

This chapter focuses on the delivery of real-time data over an IP network. This chapter
is organized as follows. Section 3.1 discusses the protocols used to deliver real-time
data. Section 3.2 examines the detailed implementation on benchmarks for the protocols.
Section 3.3 presents the conclusions of this chapter.

3.1 Real-Time Delivery

As mentioned in Chapter 2, IP was developed to forward non-real-time data. However,
VoIP is classified as a real-time service, because it requires timely delivery of voice data.
There are two differences between real-time delivery and non-real-time delivery.

• Tolerance for errors Real-time delivery exhibits a high tolerance for errors while
non-real-time delivery has a low tolerance for errors. For example, if some data
packets constituting an email are lost, the email might lose important information
rendering its uselessness. However, if some packets constituting a voice conversa-
tion are distorted, the fidelity of the voice reproduction is not severely affected.

• Tolerance for delays Non-real-time delivery exhibits a high tolerance for delay
while real-time delivery has a low tolerance for delay. If some data packets con-
stituting the email are delayed, they are still useful as long as they are delivered
to the destination. For emails, the difference between 10 seconds and 1 minute

23

24 CHAPTER 3. BENCHMARKING

The Internet

howareyou

time0 1 2 3

0 3 4 5

you how are

6 7 8 9 time...

Receiver

Sender
 you…how…are

 how are you

Figure 3.1: Effect of jitter and out-of-sequence in voice transmission.

in delivering the email is not significant. However, real-time delivery services are
delay sensitive. If the information they carry cannot be delivered to the destination
within a time limit, either the information becomes no longer useful to the receiver
or the service quality drops dramatically.

There are two issues in real-time delivery when the sender transmits a continuous
stream of voice packets over the Internet. Both issues are highlighted in Figure 3.1.
In Figure 3.1, “how-are-you”, in a consecutive sequence order, labelled with 1, 2 and
3 for each word in the packets. The first issue is related to the order in which packets
arrive at their destination. The three packets arrive at the destination in a different
order from the original one becoming “you-how-are” in this case. The second issue is
jitter, which means the delay between successive voice packets differs significantly in
the destination. The continuous stream of voice is fragmented and the playback does
not occur at correct time compared to the original voice packets.

In conclusion, there are two aspects of real-time delivery that protocol software is required
to handle:

• Order Data in an out-of-order sequence in the receiver must be processed in the
same order in which they were sent before playback.

• Time The receiver must obtain time information from the sender to know at what
time the data in the packet should be played back.

It has been argued above that there are two problems for real-time delivery. In the next
sections, it will describe how Real-Time Transport Protocol (RTP) is used to handle
these two problems.

3.1.1 Real-Time Transport Protocol (RTP)

The RTP protocol is designed to support real-time delivery and to handle the out-
of-order problem and timing problem. To cope with these problems, the protocol
assigns a sequence number and a timestamp to the packet header. In Figure 3.2, the
sequence number is denoted by SN , the timestamp is denoted by T . The sequence
number enables the receiver to process the packets in the same order as they were sent.

3.1. REAL-TIME DELIVERY 25

The Internet

howareyou

time0 1 2 3 Receiver

Sender

0 3 4 5

you how are

6 7 8 9 time...

SN:2

T:1

SN:3

T:2

SN:1

T:0

SN:1

T:0

SN:3

T:2

SN:2

T:1

 how are you

 how are you

Figure 3.2: The RTP protocol handles jitter and out-of-sequence in voice transmission.

The sequence number also allows the receiver to detect packet losses. Once ordered,
the original timing relationship of the real-time data can be recovered by reading the
timestamp. In the case of encoded audio, timestamps inform the receiver when to play
the audio through the speaker. Therefore, delay jitter is compensated. To monitor
the data delivery and provide minimal control and identification functionality, the
Real-Time Transport Control Protocol (RTCP) is utilized in conjunction with RTP.
The discussion of RTCP packet format will be given in Section 3.1.2.

Before discussing the RTP packet format, some definitions, taken from [19] are presented
as follows:

• RTP payload: The data transported by RTP in a packet, for example, audio
samples or compressed video data.

• RTP packet: A data packet consisting of the fixed RTP header, a possible list of
Contributing source (CSRC) identifiers, a possible RTP header extension and RTP
payload.

• RTCP packet: A control packet consisting a fixed header part similar to that of
RTP data packets, followed by structured elements that vary depending upon the
RTCP packet type.

• Port: The abstraction that transport protocols use to distinguish among multiple
destinations within a given host computer.

• Transport address: The combination of a network address and port that identifies
a transport-level endpoint, for example, an IP address and a UDP port.

• RTP session: The association among a set of participants communicating with
RTP. For each participant, the session is defined by a particular pair of destination
transport address (one network address plus a port pair for RTP and RTCP).

• End system: An application that generates the content to be sent in RTP packets
and/or consumes the content of received RTP packets.

Figure 3.3 depicts the structure of an RTP packet. The first twelve bytes must be
presented in every RTP packet, while the CSRC list and RTP header extension are

26 CHAPTER 3. BENCHMARKING

optional. Specific details regarding the use of these header fields, RTP and its profiles
are given in [19] and [20]. A short description of each RTP packet field is described as
follows:

• Version (V: 2 bits) identifies the version of RTP. The current version is 2.

• Padding (P: 1 bit) identifies whether the packet contains one or more additional
padding. For example, if P is 0, no padding is performed.

• Extension (X: 1 bit) identifies whether the fixed header is followed by exactly one
header extension. For example, if X is 1, a header extension is added to the fixed
RTP header.

• CSRC count (CC: 4 bits) contains the number of CSRC identifiers that follow
the fixed header. Since CC is four bits, the maximum number of CSRC is 15.

• Marker (M: 1 bit) is used to allow significant events such as frame boundaries to
be marked in the packet stream. For example, during a voice conversation, first
packet is distinguished by setting the marker bit into 1 and other packets are set
to zero.

• Payload type (PT: 7 bits) specifies the RTP payload type. For example, one
audio encoding (PCM) uses a PT as 0.

• Sequence number (16 bits) denotes the sequence in which each RTP packet is
sent. This is done by incrementing the sequence number by one while sending
subsequent packets. The sequence number may be used by the receiver to detect
packet loss and to restore packet sequence. The initial value of the sequence number
is chosen at random, which increases security by making it difficult for attackers
to guess the sequence information.

• Timestamp (32 bits) denotes the time at which the first byte of data in the packet
was sampled. More importantly, a sender is required to increment its timestamp
clock continuously, even if no signal is detected and no data is sent. Therefore, a
sender does not have to generate useless packets when no data need to be sent.
A receiver can determine from the timestamp how long the gap is. RTP specifies
that the initial timestamp must be chosen at random, as for the sequence number.

• Synchronization source (SSRC) identifier (32 bits) identifies the source of an
RTP packets stream. All packets from a synchronization source belong to the
same timing and sequence number space allowing a receiver to group packets by
synchronization source for playback. Examples of synchronization sources include
the sender of a packet stream derived from a signal source such as a microphone
or a camera. The SSRC identifier is chosen randomly, with the intent that no
two synchronization source within the same RTP session will have the same SSRC
identifier.

• CSRC list (0 to 15 items, 32 bits each) identifies the contributing sources for the
payload contained in the packet. It is produced by an RTP mixer, an intermediate

3.1. REAL-TIME DELIVERY 27

Header extension
. . .

Defined by profile

MV

R
T

P
he

ad
er

C
C

R
C

lis

ts
(o

pt
io

na
l)

H
ea

de
r

E
xt

en
si

on
(o

pt
io

na
l)

R
T

P
pa

yl
oa

d
(f

ix
ed

)

P X CC PT Sequence number

Timestamp

Contributing source (CCRC) identifier

Synchronization source (SSRC) identifier

. . .

Length

Data

Figure 3.3: The format of an RTP packet.

system that receives RTP packets from one or more sources. The mixer inserts
a list of the SSRC identifiers of the sources that contributed to the generation
of a particular packet into the RTP header of that RTP packet. The number of
identifiers is given by the CC field. If there are more than 15 contributing sources,
only 15 can be identified.

• RTP header extension (variable length) is provided to allow individual imple-
mentations to experiment with new functions that require additional information
to be carried in the RTP header.

Although RTP provides information that a receiver needs to recreate real-time output,
the RTP header does not contain any information for endpoints to monitor the quality
of data delivery.

3.1.2 RTP Control Protocol (RTCP)

The RTCP protocol is designed for the purpose of providing the feedback to the sender
and monitoring the quality of data delivery by working in conjunction with RTP.
Considering the following example. The sender has access to a broad-band network
and a receiver only has access to a narrow-band network. At the beginning of the
transmission, data packets transferred from the sender have been delayed at the receiver.
Before the data packets are played out, new packets have been coming into the receiver.
Hence, it causes link congestion and packet loss. However, it would be avoided if the
receiver could provide timely feedbacks to the sender about its network situation and
current packet loss by utilizing the RTCP protocol so that the sender can adjust the
packet delivery speed.

The RTCP protocol is used to transmit periodically control packets to all participants in
the session. The primary control packets for RTCP are the RTCP Sender and Receiver
Report (SR and RR) [19], which are two basic RTCP packet types. Each RTCP packet
begins with an 8-byte fixed header similar to that of RTP packet, followed by structured

28 CHAPTER 3. BENCHMARKING

Sequence numberPTRCPV

profile−specific extensions

SSRC_2 (SSRC of second source)

delay since last SR (DLSR)

last SR (LSR)

interarrival jitter

extended highest sequence number received

cumulative number of packets lostfraction lost

SSRC_1 (SSRC of first source)

SSRC of packet sender
header

report

block

 1

report
block

2

Figure 3.4: The format of an RTCP Receiver Report (RR) packet.

elements that are determined by the type field in the header.

Figure 3.4 depicts the format of an RTCP Receiver Report (RR) packet. It mainly
consists of two sections, possibly followed by a third profile-specific extension section if
defined. The first section (header) is 8-byte long. The second section contains zero or
more reception report blocks depending on the number of other sources heard by this
sender. Each reception report block conveys statistics on the reception of RTP packets
from a single synchronization source. The fields in the RTCP RR packet are briefly
discussed as follows:

• Version (V: 2 bits) identifies the version of RTP. The current value is 2.

• Padding (P: 1 bit) identifies if the packet contains one or more additional padding.

• Reception report count (RC: 5 bits) is the number of reception report blocks
contained in the packet.

• Packet Type (PT: 8 bits) contains the constant 201 to identify this as an RTCP
RR packet.

• Length (16 bits) is the length of the RTCP packet in 32-bit words minus one,
including the header and any padding.

• SSRC of sender (32 bits) is the SSRC identifier for the originator of the RR
packet.

• SSRC n (32 bits) is the SSRC identifier of the source to which the information
in the RR block pertains. Here, n can be 0, 1 until the number defined in the RC
field.

3.2. BENCHMARKING RTP/RTCP PROCESSING 29

• Fraction lost (8 bits) is the fraction of RTP packets from source SSRC n lost since
the previous of RR packet was sent. This fraction is defined to be the number of
packets lost divided by the number of packets expected.

• Cumulative number of packets lost (24 bits) is the total number of RTP
packets from source SSRC n that have been lost since the beginning of reception.
This number is defined to be the number of packets expected less the number of
packets actually received, where the number of packets received includes any which
are late or duplicates.

• Extended highest sequence number received (32 bits) extends the sequence
number from SSRC n with the count of sequence number cycles. The least sig-
nificant 16 bits contain the highest sequence number received in an RTP packet
from source SSRC n, and the most significant 16 bits contain the count of sequence
number cycles. The idea behind this is as follows. As mentioned above, the field of
the sequence number in an RTP packet is 16 bits, hence the maximum of sequence
number is 65535. If the sender would send the 65536th RTP packet or more, the
sequence number in the header of RTP packet will start counting from 0 in another
cycle.

• Interarrival jitter (32 bits) is an estimate of the statistical variance of the RTP
packet interarrival time, measured in timestamp units and expressed as an unsigned
integer.

• Last SR timestamp (LSR: 32 bits) is the middle 32 bits out of 64 in the Network
Time Protocol (NTP) timestamp received as part of the most recent RTCP SR
packet from source SSRC n.

• Delay since last SR (DLSR: 32 bits) is the delay expressed in units of 1/65536
seconds, between receiving the last SR packet from source SSRC n and sending
this RR block.

Receiver reports are important for two reasons. First, they allow all receivers participat-
ing in a session as well as a sender to exchange information on reception conditions of
other receivers. Second, they allow receivers to adapt their reporting rates to avoid using
excessive bandwidth and overwhelming the sender. It is suggested that the fraction of
the bandwidth allocated to the RTCP traffic calculated by the bandwidth for all RTCP
traffic over the overall bandwidth for this session be fixed at 5% and that receiver reports
generate less than 75% of total RTCP traffic [19].

3.2 Benchmarking RTP/RTCP Processing

The RTP/RTCP protocols have been used for delivering real-time (multimedia) data
over the IP network since they provides functionalities suited for carrying real-time
data, e.g., timestamps and control mechanisms for synchronizing different streams with
timing properties. Therefore, an RTP/RTCP benchmark plays an important role in

30 CHAPTER 3. BENCHMARKING

investigating real-time network processing in the higher layer .

The RTP protocol is responsible for sending and receiving RTP packets, and the
RTCP protocol is responsible for providing control information for RTCP packets.
Therefore, the benchmarking suite for RTP and RTCP consists of an RTP Sender
benchmark, an RTP Receiver benchmark and an RTCP Processing benchmark. The
implementation of the benchmarks are based on existing software codes [10], [5] and
[19]. We use the methodology described in Chapter 2 for this benchmarking suite.
Detailed implementations on the benchmarks are specified from three aspects: function,
measurement and environment. First, the function aspect specifies the core algorithms
used in the benchmarks, possible functions to be realized in each benchmark, and
the manner to implement these functions. Second, the measurement aspect specifies
the metrics for evaluating performance of the benchmarks and the key architectural
characteristics of the benchmarks. The measurement aspect also verifies the correctness
of the benchmarks. Third, the environment aspect specifies simulation environment
and the interface (input/output) of the benchmarks. In all these three specifications,
measurement specification and environment specification on simulation environment are
the same for all created benchmarks in this thesis.

This section is organized as follows. Section 3.2.1 specifies the function and interface
environment aspects of the RTP Sender benchmark. Section 3.2.2 specifies the function
and interface environment aspects of the RTP Receiver benchmark. Section 3.2.3 speci-
fies the function and interface environment aspects of the RTCP Processing benchmark.
Section 3.2.4 presents the common measurement and simulation environment aspects for
all benchmarks.

3.2.1 RTP Sender

After session connection1 between the end systems, every particular packetization
interval mediadata, e.g., 20ms recommended by RFC 1889 [19], can be sent out after it
is encapsulated into an RTP packet with preceded by an RTP header.

Function specification: Three functions are included in the RTP Sender benchmark,
reading data from input, generating RTP packets and writing the RTP packets to the
output.

• Reading data from input is to obtain a stream of voice data as an RTP payload
and to allocate an buffer to the stream. The PCMU encoded audio data stream
are read from a file and taken as the RTP payload. The sampling rate for the
audio data is 8000HZ and PCMU specifies audio data are encoded as 8 bits per
sample. If the time interval for the audio data is 20 ms, the input buffer is set into
160 bytes, which derives from the following equation:

20ms ÷ 103 × 8000(persample/s) × 8bits/persample = 1280bits

1Session connection is out of discussion in this thesis.

3.2. BENCHMARKING RTP/RTCP PROCESSING 31

1280bits = 1280bits ÷ 8bits/perbyte = 160bytes

• Generating an RTP packet consists of building an RTP header, prepending
the RTP header to the RTP payload to be an RTP packet, and increasing the
timestamp and sequence number for the next RTP packet.

Building an RTP header possibly consists of building three parts: a fixed RTP
header, a possible RTP CSRC lists and a possible RTP extension. First, in the
fixed RTP header, the initial values of sequence number, timestamp and SSRC
identifier are generated randomly by using the algorithm defined in [19]; The field
of PT is set into 0 since PCMU audio data is used [20]; The field of M for the first
RTP packet is set to 1 to indicate the beginning of the voice conversation, and the
M for other RTP packets are set into 0; The field of CC is set into 0 if the CSRC
lists are NULL; Otherwise, it is set into the number of the CSRC lists if it is less
than 15 or set into 15 if it is larger than 15. Second, building an RTP CSRC lists
means coping the CSRC lists in the memory to the RTP header structure. Once the
session is set up, each participant holds a table where the SSRC identifiers for all
participants the CSRC identifiers for all contributors are stored. Therefore, if there
is no information for CSRC in the memory, the CSRC lists in the RTP packet are
empty. Third, building the RTP extension means coping the extension information
in the memory to the RTP packet structure if the information is available. If the
information is not available in the memory, the header extension is not necessary
to generate. This is similar with the CSRC lists.

Each RTP packet has its own RTP header, some fields of which can be the same
with the one of other packets, some not, Such as sequence number, and timestamp.
As mentioned before, the sequence number increments by one for each RTP packet.
While timestamp computation is different for different payload types. For audio,
the timestamp is incremented by the packetization interval times the sampling
rate. In our case that audio packets contain 20ms of audio sampled at 8000HZ, the
timestamp for each block of audio is increased by 160, even if the block is not sent
due to silence suppression. For video, the timestamps generated depend on frame
rate, which is out of discussion in this thesis.

• Writing the RTP packet is done in two ways, writing packets to the memory or
to the hard disk. Writing packets to the hard disk is necessary because the written
file will be used as the input of the RTP Receiver benchmark.

When writing to the memory, an enough memory space should be allocated. The
length of an RTP packet is not fixed since the length for the header of the RTP
packet is not fixed. Therefore, a long enough buffer for saving the RTP packet has
to be allocated. It would be not necessary for generating an RTP header if the
buffer length is not long enough to save the RTP packet. Therefore, first calculation
about the true length of the RTP packet and comparison it with the buffer length
are processed.

When writing to the hard disk, two issues have to be considered. First, in order
to be convenient to read RTP packets from the hard disk, the length of each RTP

32 CHAPTER 3. BENCHMARKING

L1 L2 Ln

Length
of P1
(L1)

Packet 1
(P1)

Length
of P1
(L1)

Packet 1
(P1)

Length
of Pn
(Ln)

Packet n
(Pn)

... ...

Figure 3.5: The structure used to write RTP packets to the hard disk.

packet has to be provided before reading the RTP packet. Figure 3.52 depicts the
structure used to store RTP packet. Before P1 is written to the hard disk, L1
has to be written first. So do all other RTP packets. Second, in network traffic
the sequence number of an RTP packet, from P1 to Pn, may be in order or out
of order. In-order sequence gives the correct order of P1 to Pn incremented by
one. While out-of-order sequence gives incorrect order where the sequence number
of P1 may be larger than the sequence number of, for example, P2 or P3, which
represents packet delay. In-order sequence writing is straightforward. Whenever
an RTP packet is generated, it is immediately written to the hard disk, because
generating an RTP packet ensures that the sequence number for each RTP packet
increases by one. Out-of-order sequence writing is more complex. The difference
between sequence number of two neighboring RTP packets can be relatively small,
say, 5, or considerably large, say, 40, which represents a short delay or a long delay,
respectively. Writing out-of-order packets uses the following algorithm. First a
buffer is defined into an array of N elements, each element of which consists of the
structure depicted in Figure 3.5. Every generated RTP packet together with its
length are stored into the buffer until the buffer is full or the packet generation is
finished. In the first case that the buffer is full, the i-th element and the (N/2+ i)-
th element3 are written to the hard disk in that order until the writing loop is
finished. In the second case that the packet generation is finished while the buffer
is not full, the number of elements stored in the buffer is calculated first, and then
written to the hard disk.

Environment specification - interfaces: The RTP Sender benchmark takes an audio
file as input, the size of which is 4MB. Every 20 ms, that is, 160 bytes voice data are read
and used to generate RTP packets until the end of the file. Therefore, the input buffer
is set into 160 bytes for 20 ms voice. Since it is not necessary for RTP to have a fixed
packetization interval, in another words, 20 ms is not fixed number for voice interval,
implementation can choose any reasonable value. In that case, input buffer needs to be
set into its corresponding size. Every generated RTP packet is written to the memory or
to the hard disk as output. The output buffer is set into 10000 bytes for an RTP packet.

3.2.2 RTP Receiver

Comparing with the RTP Sender benchmark, the RTP Receiver benchmark is more
complex. It has to handle the main problems for real-time delivery: out-of-sequence

2L1 denotes the length of the first packet (P1), L2 denotes the length of the second packet (P2), and
so on.

3N denotes the maximum elements in the array and i is increased from 0 till N/2− 1 by 1.

3.2. BENCHMARKING RTP/RTCP PROCESSING 33

and jitter. In addition, it has to update statistic information which will be used for
generating RTCP RR packets.

Function specification: The RTP Receiver benchmark consists of four functions: an
input buffer management, data parsing, statistics updating and queue management,
which are discussed as follows.

• Input buffer management Incoming packets must be placed into the buffer
for further processing. The input buffer is not designed to accommodate one RTP
packet, but about 200 packets4, which can hold voice data for about 4 seconds.
The reason behind this is that every packet is not played out immediately when
it is coming. In order to manage the buffer conveniently, a pointer is arranged to
point the place where a packet starts to be saved. When a packet is coming, the
function first checks if the left space of the buffer is big enough for the packet. If
the space is sufficient, the packet will be put into the buffer followed with the last
packet and the pointer is arranged to the next position of the end of the packet
for the next packet. If the space is not sufficient, the packet is located to the
beginning of the buffer. Therefore, it will be happened that a new packet is put
into the beginning of the buffer while the original packet in that position is not
played out. In this case, the original packet is taken as discarded.

• Data parsing A packet is received as a format of a string which represents
an RTP packet. As mentioned before, an RTP packet is composed of an RTP
fixed header, a possible CSRC list, a possible RTP header extension and an RTP
payload. Therefore, the string has to be converted into the rtp packet structure
(Figure 3.3) defined for an RTP packet. The rtp packet structure provides access
to every field of the RTP packet and has four parts. The first is a pointer to a
fixed RTP header structure and a CSRC list with a variable length. The second is
a pointer to an RTP header extension structure. The third is a pointer to an RTP
payload. The final part is the length of the RTP payload.

The function of the data parsing does this conversion. It takes a pointer to an
individual string saved in the input buffer, allocates a pointer to a right place
where the RTP header, the possible RTP extension and the RTP payload are, cal-
culates the right length of the RTP payload and returns a pointer to the rtp packet
structure. In the conversion, two issues should be considered. First, 16-bit and
32-bit quantities must be converted from network byte order to host byte order
for further processing, e.g., the sequence number field in the RTP header. Second,
it makes the pointer to an RTP payload complex that an RTP header extension
is not presented in every RTP packets and the length of CSRC lists is variable.
The length of CSRC lists is calculated by multiplying the CC field in the RTP
header by four. A possible RTP header extension is checked by the X field in the
RTP header to ensure if it is presented. If X is equal to 1, it is presented. Then,
the 16-bit length field in the RTP header extension also has to be converted from

4The number of RTP packets in the input buffer can not be fixed since the length for each coming
RTP packet is not fixed.

34 CHAPTER 3. BENCHMARKING

n

Time

Sequence
number

n
n+1

oo

mm

n+1

t1 t2 t3 t4

Probation
period

S s

S1

S2

Valid
range

65530 s

ta

4 4

tb

Wrapping
around

zz

Figure 3.6: Issues for sequence number processing.

network byte order to host byte order. Otherwise, the pointer to the RTP payload
could be allocated to the wrong place.

Besides the conversion, the function of the data parsing also verifies every received
packet as an RTP packet. It is checked by two criteria. The first is that the RTP
version field must equal to 2. The second is that the payload type of the RTP
packet must equal to 0 since the PCMU encoded voice data is used as a source.
A packet that can not meet the requirements is not precessed further and a new
iteration to receive a packet from the input is begun.

• Statistics updating As mentioned above, RTCP performs all statistics collection
and generates a receiver report periodically. To do so, RTCP needs information
about the most recently received packet and the jitter. The function of statistics
updating is designed for this purpose. It consists of two aspects: processing the
sequence number of each coming RTP packet and estimating the interarrival jitter.

The RTP receiver analyzes the sequence number of each coming RTP packet and
checks its validity. Three issues have to be considered for the implementation
(depicted in Figure 3.6).

– When an RTP receiver receives an RTP packet from a sender for the first time,
the receiver takes the packet as invalidity and ignores it since the receiver does
not have the information of the SSRC identifier for the sender. If the sender
continues sending RTP packets to the receiver, the receiver should not ignore
all, otherwise, the connection can not be set up. Therefore, a probation period
is designed to ensure that the sender is not valid until MIN SEQUENTIAL,

3.2. BENCHMARKING RTP/RTCP PROCESSING 35

say 2, packets with sequential sequence numbers have been received. The
initial probation variable is set into MIN SEQUENTIAL. When the first
packet with sequence number n is received, the number n is saved as a current
maximum value of the sequence number received, the probation variable is
decreased by 1, and a state of a bad packet is returned by the function. When
a packet with sequence o or m is received, the packet is discarded and a state
of a bad packet is returned because either m or o is not the next number of
n. When a packet with sequence number n + 1, the packet is taken as the
first valid packet, the current maximum value of the sequence number is set
into n + 1, and the probation period ends. The validity check can be made
stronger requiring more than two packets in sequence. The disadvantages are
that a larger number of initial packets will be discarded and that high packet
loss rates could prevent validation.

– This function must handle the case where the sequence numbers wrap around.
The idea behind this is because the number of bits of the sequence number field
in an RTP header is 16. Therefore the largest value for the sequence number
is 65535. If a receiver receives a last RTP packet with the sequence number
65535, the current RTP packet with the sequence number 0 received should be
a valid packet with wrapping around once. To do this, the function first checks
to determine whether the sequence number in the coming packet is within a
fixed distance of the expected sequence ([19] suggests that the sequence num-
ber is considered valid if it is no more than MAX DROPOUT ahead of
the current maximum sequence number nor more than MAX MISORDER
behind.). If the new sequence number is valid and it is less than the cur-
rent maximum sequence number, wrapping around happens and the count
of sequence number cycles is incremented by 1. In Figure 3.6, if the current
maximum sequence number is s, the sequence number within s1 and s2 are
considered valid where s1 is equal to (s − MAX MISORDER) and s2 is
equal to (s+MAX DROPOUT). If the current maximum sequence number
is 65530, the new sequence number with 4 is coming. Because it is ahead of
65530 modulo 65536 and it is smaller than 65530, it is valid and the function
wraps around by 1.

– The function must handle the issue that the sequence number makes a so
large jump that the sequence number is out of valid range. Suppose that
the current maximum sequence number is s and a packet with the sequence
number z is coming, the packet is discarded because it is out of valid range of
the sequence s. If another new packet with the sequence number x is coming,
two issues rises because x can be in the valid range of s or not. For the first
case, x is taken as normal. For the second case, if x is equal to z + 1, the
function takes it as the first packet, like the probation period; if x is not equal
to z + 1, it will be discarded and a state of a bad packet is returned.

Besides the sequence processing in the function of statistics updating, the function
also estimates the interarrival jitter which RTCP needs to generate a receiver re-
port. The interarrival jitter is defined to be the mean deviation of the difference

36 CHAPTER 3. BENCHMARKING

... ... P1P2P3Pn

queue
tail q_next header

queue

q_prev

Threshold K

data
out

data
in

Figure 3.7: The queue structure.

D in packet spacing at the receiver compared to the sender for a pair of packets
([19]). Therefore, two steps need to recursively calculate the interarrival jitter:
estimation the jitter for a packet and calculation the mean of the jitter. The first
step is calculated by the following equation:

Di = (Ri − Ri−1) − (Si − Si−1) (3.1)

Where Di denotes jitter estimation for the ith packet, Ri and Ri−1 denote the time
of arrival in RTP timestamp units for the ith and (i− 1)th packet, respectively. Si

and Si−1 denote RTP timestamp of the ith and (i− 1)th packet, respectively. The
second step is calculated by the following equation:

Ji = 15/16Ji−1 + 1/16|Di| (3.2)

Where Ji denotes temporal average of the jitter for the ith packet, Ji−1 denotes
for the (i − 1)th packet.

• Queue management Because real-time data is sensitive to delay and jitter is
a common occurrence for real-time delivery, playback can not start immediately
when data first arrives. Otherwise, the playback will be interrupted when the
next packet has not arrived while the last packet is already played out. Instead,
incoming data is ordered by its sequence number and then placed in a buffer,
known as the jitter buffer. Figure 3.7 depicts the structure of the queue. It is a
first-in-first-out queue with a threshold K. When the queue is full, the packets
stored in the queue is played out. Two pointers point to the header and the tail of
the queue respectively. Every packet in the queue, say P2, also has two pointers,
q next and q prev, which point to the packet P1 and P3 respectively. The function
of queue management is to arrange data moving into the queue or out of the queue.
It consists of two procedures [5]: one is to insert every incoming packet into the
queue by the order of the sequence number, and the other is to dequeue the packet
out of the queue.

Dequeuing is simple. Since it is a first-in-first-out queue, the packet always moves
out from the header of the queue if the header of the queue is not NULL. Once the
packet is moved out, the pointer to the header of the queue should be reallocated

3.2. BENCHMARKING RTP/RTCP PROCESSING 37

to the new position, and the q next pointer of the following packet should be set
into NULL. For example in the Figure 3.7, when P1, where the header of the
queue is pointing, is dequeued, the header of the queue will be arranged to point
to P2, and the q next pointer of P2 is set into NULL.

Inserting packets to the queue is more complex than dequeuing because packets
can arrive out of order and packets need to be inserted in the order of the sequence
number. Thus, when a packet is coming in, comparison its sequence number with
sequence numbers of all other packets in the queue is precessed iteratively from the
tail of the queue, a location is arranged where the packet should be inserted and the
pointers for the queue is adjusted to the right location where they should pointed
to. Three possible locations can be arranged for the packet based on its sequence
number. First, it is arranged as a new tail of the queue if its sequence number is
larger than the current tail of the queue. The tail of the queue is reallocated into
the new packet. The pointer q prev of the original tail is pointed to the new tail,
the pointer q next of the new packet is pointed to the original tail, and the pointer
q prev of the new packet is set into NULL. Second, Moving the comparison in
the direction of from the tail to the header continues if it is not larger than the
sequence number of a packet in the queue. It will be arranged somewhere in the
middle of the queue if the moving is stopped before the header. Suppose that
the sequence number of its left packet is larger than the one of its right packet,
pointers adjustment is done as follows: The q prev pointer and q next pointer of
the packet is arranged to point to its left and right neighboring packets respectively
and the pointer q next of its left packet and the pointer q prev of its right packet
is arranged to point the packet. Third, it can be arranged before the header of the
queue as the new header if its sequence number is less than the one of the header.
The header of the queue is reallocated into the new packet. The q next pointer of
the original header is pointed to this packet, its q prev pointer is arranged to point
the original header and its q next pointer is set into NULL.

Environment specification - interfaces: The RTP Receiver benchmark takes RTP
packets stored in a file as the input. The file is the output of the RTP Sender benchmark,
where every RTP packet is stored as the fixed structure depicted in Figure 3.5. To obtain
an RTP packet, two steps are done: first reading a 4-byte stream as a length of a packet,
then reading a stream by the length as an RTP packet. The RTP packet is stored in the
input buffer for further processing, the size of which is set into 64KB. The output of the
benchmark is stored in two places for two different purposes respectively, one is written
to the memory for simulation, the other is written to a file for checking the correctness
of the functions in the benchmark. If the file is the same with the file used as the input
of the RTP Sender benchmark, it means the functions are correct because final result
of the RTP Receiver benchmark is to obtain the same voice signal as the one in the sender.

3.2.3 RTCP Processing

The RTCP protocol mainly focuses on providing RTP control packets, one of which is
the RR packet (Figure 3.4). It contains reception quality reporting, used by senders

38 CHAPTER 3. BENCHMARKING

to adapt their transmission rates or encodings dynamically during a session. However,
if the RR packets from each participant are sent at a constant rate, the control traffic
would grow linearly with the number of the participants. Therefore, the rate must to
scaled down. RTCP has to adjust the interval between reports to achieve scalability to
large group sizes.

Function specification: In RTCP Processing benchmark, two functions are investi-
gated: building the RTCP RR packet and computing the RTCP transmission interval.

• Building the RTCP RR packet consists of two aspects, generating a RTCP
header and building the report block. First, Generating an RTCP header is similar
with generating an RTP header in the RTP Sender benchmark. In the RTCP
header, the V field is set into current value, 2 and the PT field is set into a fixed
number, 201. The P is set into 1 if this RTCP packet contains some additional
padding, or it is set into 0 if there is no padding in this RTCP packet. The RC
filed is set into the number of the report block contained in this RTCP packet. The
length field is calculated by the following equation: length = 1+S×N/4, where S
denotes the size of the report block, N denotes the number of the report block, 4
denotes the length is measured in the unit of 32-bit words. Second, a report block
consists of a number of fields (depicted in Figure 3.4), which are determined by
different computation [19].

– The extended highest sequence number received (es max) field is calculated
by the equation: es max = (cycle >> 16)|max seq, where cycle denotes the
number of wrapping around in the sequence number, and max seq denotes
the current maximum sequence number received.

– The cumulative number of packets lost field is defined to be the number of
packets expected (n expected) less the number of packets actually received
(n received), where n expected can be calculated by the difference between
the highest sequence number, es max, and the first sequence number received,
and n received is simply the count of packets as they arrive.

– The fraction lost(FL) field is calculated from the difference between the
n expected and n received across the interval.

lost interval = (n expectedi−n expectedi−1)− (n receivedi−n receivedi−1)

FL =
lost interval << 8

n expectedi − n expectedi−1

Where n expectedi and n expectedi−1 denote the number of packets expected
when ith and the previous, that is, (i−1)th, reception report is generated, and
n receivedi and n receivedi−1 denote the number of packets actually received
when ith and the previous, that is, (i − 1)th, reception report is generated.

– The interarrival jitter field is calculated by Equation 3.2.

3.2. BENCHMARKING RTP/RTCP PROCESSING 39

– The LSR field is calculated from the NTP timestamp received in the sender
report from the senders. The full resolution NTP timestamp is a 64-bit un-
signed fixed-point number with the integer part in the first 32 bits and the
fraction part in the last 32 bits. The LSR is the middle 32 bits out of it, that
is, the low 16 bits of integer part and the high 16 bits of fraction part.

– The DLSR field is calculated by the time difference between receiving the last
sender report from the senders and sending the reception report block. It is
measured in units of 1/65536 seconds. Because time in the system is stored
as the structure which consists of two elements: tv sec representing as the
number of seconds, tv usec representing as the number of microseconds. This
time structure is changed into corresponding value as an integer by:

t.tv sec × clock + ((int)((double)t.tv usec × .000001 × (double)clock))

Where t is a time with the time structure, and clock is the clock rate, for
example, 65536 for the DLSR calculation.

• Computing the RTCP transmission interval for scalability is calculated by
the following equation:

Td = max(Tmin, CL(t)) (3.3)

Where Tmin is 2.5s for the initial packet, and 5s for all other packets, C is the
average RTCP packet size divided by 5% of the session bandwidth, L(t) represents
the number of users within a multicast group that have been heard from at time
t, and the initial value at time 0, L(0) = 1 when the user joins the group. To
avoid traffic bursts from unintended synchronization with other sites, the actual
interval is then computed as a random number uniformly distributed between 0.5
and 1.5 times Td. Before the calculation Td, the average RTCP packet has to be
updated by the size of the report packet just sent and the number of users has to
be estimated at each time when the report is sent.

Environment specification - interfaces: The RTCP Processing benchmark takes
the same file as the RTP Receiver benchmark as the input. The input buffer for RTCP
packet is set into 100 bytes which can contain one report block in an RTCP RR packet.
the output of the benchmark, every generated RTCP packet, is stored in the memory.
The function of the RTCP transmission interval computation is called after building an
RTCP to calculate the delay until the next should be built.

3.2.4 Measurement and Simulation Environment

This section specifies the common aspects for the created benchmarks mentioned above
on measurement and simulation environment.

Measurement specification: It describes three aspects in measurement. First, verifi-
cation of benchmarks has to be checked before measuring the performance of the bench-
marks. The correctness of the benchmarks are verifies by comparison the input of the

40 CHAPTER 3. BENCHMARKING

RTP Sender benchmark and the output of the RTP Receiver benchmark. If there is
no difference between the input and the output, the correctness of the benchmarks are
ensured since the final results at the receiver are to obtain the same voice signal with the
one at the sender. Second, the performance metric for evaluating the performance of all
benchmarks is the number of clock cycles, which captures how fast the benchmarks are
executed and which functions in the benchmark are time-critical. For the time-critical
functions, it could be implemented in specialized hardware to obtain the performance
gain. Third, the architectural characteristics for the benchmarks are also investigated in
order to understand the features of the benchmarks. These characteristics are as follows:

• Instruction Level Parallelism (ILP) is measured by instruction per cycle (IPC)
which shows us data-level parallelism and dependency of the instructions. IPC
value is high when the dependency of the instruction with a program is low. A
high IPC means that it can be and should be exploited in the processor design
because parallelism is one of the essential performance enhancing techniques for
processing design.

• Branch Prediction Accuracy is measured by branch address-prediction rate (APR)
and branch direction-prediction rate (DPR). A high branch prediction accuracy
means that less exotic/complex branch predictors can be utilized, e.g., to keep the
pipelined field with useful instructions.

• Instruction distribution is measured by the frequency of load instructions, store in-
structions and branch instructions, which is important in determining the features
of the benchmarks. Depending on the instruction distribution, design decisions
can be made whether to include certain functional units or not.

• Cache behavior is measured by the number of cache accesses and miss ratios. Both
data cache and instruction cache are simulated. dl1 stands for first level data cache,
il1 stands for first level instruction cache and il2 stands for second level instruction.
The reason for the investigation on cache behavior is that cache has a profound
effect on performance.

The four architectural characteristics on the created benchmarks mentioned above are
compared with the applications from NetBench and MediaBench to understand the
features of the benchmarks and to highlight the difference between real-time network
processing with other processing.

Environment specification - simulation environment: The sim-outorder simu-
lator from the SimpleScalar tool set (Version 3.0) is utilized for all benchmarks. This
simulator allows to measure the performance of the benchmarks and to determine
the time (in clock cycles) spent in each function in relation to the total time of each
benchmark. The measurement is performed by utilizing instruction annotations in the
sim-outorder simulator. We have introduced a NOP instruction to signify the start of
a function and another NOP to signify the end of the function. More specifically, the
overall simulation clock cycle (called sim cycle) is noted in both cases. By subtracting
the starting sim cycle from the ending sim cycle, the precise number of clock cycles

3.3. CONCLUSIONS 41

spent in executing a given function can be calculated.

Both the benchmark and the simulator need to be modified to support the instruction
annotations and to calculate accurate clock cycles. In the benchmarks, an same an-
notation is added before calling the function and after executing the function. In the
simulator, the sim cycle value has to be recorded once the annotation is read. Therefore,
the sim cycle is recorded twice, one is recorded as cycle1 before calling the function, the
other is as cycle2 after executing the function. Thus, the substraction cycle1 from cycle2
is the number of clock cycles for the function execution. Two more points should be paid
attention to during the modification of the benchmark and the simulator:

• In the benchmark, if a function needs to be simulated, the annotation should
be added where the function is called, not inside the function. It is important
especially when the function has different return statements which could be existed
in the branch of the function. Otherwise, the simulator would not calculate the
accurate clock cycles for the function.

• The modification for the simulator mentioned above is only to calculate the clock
cycles for a function when the function is called once. If a function is called
more than once, and the total cycles for execution the function is required to
generate, the modification can be done as follows. When the simulator identifies
the annotation at an odd time, the clock cycles are recorded as cycle1; When the
simulator identifies the annotation at the next a even time, that is, an odd number
plus 1, the clock cycles are recorded as cycle2. Final cycles for the function is the
summation of every difference between cycle1 and cycle2.

The simulation environment is set to all created benchmarks in this thesis. Once the
clock cycles for each function in a benchmark is known, we can perform profiling to find
time-critical functions in the benchmark.

3.3 Conclusions

This chapter reviewed the real-time delivery over the IP network, which has become
a popular service in recent years. The characteristics of this service was introduced
by comparing real-time delivery and non-real-time delivery. This chapter discussed the
most important protocols which support this service, the RTP/RTCP protocols. Since
the RTP protocol is responsible for sending and receiving RTP packets and the RTCP
protocol is responsible for monitoring network quality by its control packets, the bench-
mark suits consists of three elements, the RTP Sender benchmark, the RTP Receiver
benchmark and the RTCP Processing benchmark. Each benchmark was discussed from
three aspects on its implementation: function, measurement and environment.

42 CHAPTER 3. BENCHMARKING

Benchmarks Results 4
P

revious chapters reviewed major protocols used for the Internet by concentrating
on the RTP/RTCP protocols used for real-time delivery, and presented the
implementations of the RTP and RTCP benchmarks. This chapter describes the

results of the architectural performance analysis by focusing on the following three
benchmarks investigated in RTP and RTCP processing: the RTP Sender benchmark,
the RTP Receiver benchmark, and the RTCP Processing benchmark. Before simulating
these benchmarks, several assumptions have to be made. Subsequently, these benchmarks
are run on the cycle-accurate sim-outorder simulator from the SimpleScalar tool set
(Version 3.0) in order to obtain the results for each benchmark. Specifically, the
results are presented from two aspects. First, profiling results presents the number
of clock cycles for executing each function in each benchmark in comparison to the
total cycles for executing the benchmark. These results highlight the performance of
the benchmarks and allow to easily find the time-critical functions in the benchmarks.
Second, the results on architectural characteristics of the benchmarks are determined
and compared with the results from NetBench and MediaBench by looking at instruction
level parallelism, branch prediction accuracy, instruction distribution and cache behavior.

This chapter is organized as follows. Section 4.1 presents the assumptions we made
in order to simulate the benchmarks. Section 4.2 presents the RTP Sender benchmark
results. Section 4.3 presents the RTP Receiver benchmark results. Section 4.4 presents
the RTCP Processing benchmark results. Section 4.5 presents the conclusions of this
chapter.

4.1 Assumptions

In this section, we discuss the assumptions made prior to running any simulations in our
architectural analysis.

• We utilized the following data set for the benchmarks:

– For the RTP Sender benchmark, we utilized an audio file as input data. The
size of the file is 4MB. This input was chosen to simulate the data what would
have been generated when talking into a microphone. Three different outputs
of stream of packets are generated by this benchmark. The first output data
consists of an in-order packet stream where the sequence numbers of packets
are in the order (called S output1). The second output data consists of an out-
of-order packet stream where the sequence numbers of packets are slightly out-
of-order (called S output2). The third output data reflects the worst network

43

44 CHAPTER 4. BENCHMARKS RESULTS

environment where the sequence numbers of packets are largely out-of-order
(called S output3).

– For the RTP Receiver benchmark, we utilized the output of stream of pack-
ets produced by the RTP Sender benchmark as input data. The input data
consists of an in-order packet stream where the sequence numbers of pack-
ets are in the order (called R input1). In order to better simulate a more
realistic networking environment, in which packets may arrive out of order.
Two additional packet streams were generated based on the previously men-
tioned in-order one. Therefore, the second input consists of an out-of-order
packet stream where the sequence numbers of packets are slightly out of order
(called R input2). The third input data reflect an even more erratic network
environment where the sequence numbers of packets are largely out-of-order
(called R input3).

– For the RTCP Processing benchmark, we have taken the same data set as the
RTP Receiver benchmark.

• We assume the benchmarks work for the voice data delivery in a unicast environ-
ment.

• We have utilized a cycle accurate simulator called sim-outorder from the Sim-
pleScalar tool set (V3). The simulator entails a 2-way superscalar processor with
64 KB of direct-mapped level 1 (L1) data and instruction caches and a 1 MB uni-
fied level 2 (L2) caches. The L1 and L2 cache latencies are set to 1 and 6 cycles,
respectively.

• The base machine comprises the following units: 4 integer ALUs, 1 integer
MULT/DIV unit, 4 floating-point adders, 1 floating-point MULT/DIV unit, and 2
memory ports (Read/Write).

• We compiled the benchmarks utilizing modified GNU binary utilities that specifi-
cally target the MIPS architecture used in the SimpleScalar tool set.

• We utilized the metrics defined in Chapter 3 to evaluate the benchmarks. These
metrics highlight two aspects, namely performance and architectural characteris-
tics:

– Performance is measured by counting the clock cycles spent in each function
in comparison to the total number of clock cycles it takes to execute the
benchmarks.

– The architectural characteristics are determined by looking at instruction level
parallelism, branch prediction accuracy, instruction distribution and cache
behavior.

These assumptions are made for the benchmarks in order to achieve the simulation re-
sults. In the following sections, the results for each benchmark are discussed, respectively.

4.2. THE RTP SENDER BENCHMARK RESULTS 45

4.2 The RTP Sender Benchmark Results

In this section, we discuss the RTP Sender benchmark results. We first present the
performance results in clock cycles. The profiling is performed by determining the
percentage of clock cycles spent by each function in the benchmark compared to
the total clock cycles. Subsequently, the results on architectural characteristics are
presented and compared with the applications from NetBench and MediaBench [9].

Profiling results: The performance results in clock cycles for different output files
are depicted in Figure 4.1. Three output files are written to the hard disk, in-order
writing (S output1 depicted in 4.1(a)), slightly out-of-order writing (S output2 depicted
in 4.1(b)) and largely out-of-order (S output3 depicted in 4.1(c)). The percentage
of the number of cycles for the encapsulation function (encap), which is the main
function of the benchmark, is decreased for the three issues depicted in 4.1(a), 4.1(b)
and 4.1(c), respectively, because the number of total cycles for these three issues are
increased, which are caused by increased the number of cycles for the output function.
As a matter of the fact, the number of cycles for the encapsulation function has not
changed. Because the output function is the post processing of the benchmark, the
result of which is used for the RTP Receiver benchmark and the RTCP Processing
benchmark, it is reasonable that we ignore its cycles in the RTP Sender benchmark.
Figure 4.1(d) depicts the performance result of the RTP Sender benchmark without
the output function. From this figure, we can observe that the number of cycles for the
encapsulation function is more than 70% of the total cycles.

Results on architectural characteristics: Table 4.11 presents the simulation results
on architectural characteristics: Table 4.1(a) presents the results on instruction level
parallelism and branch prediction accuracy, Table 4.1(b) presents the results on instruc-
tion distribution, and Table 4.1(c) presents the results on cache behavior. The results
are generated by simulating the benchmark where the output function is not included.
Comparing with the application from NetBench and MediaBench depicted in the last
two rows of Table 4.12, we can observe:

• Table 4.1(a) shows that the IPC of the RTP Sender is 19.8% and 37.2% higher
than NetBench and MediaBench, respectively. The APR of the RTP Sender is
1.17% and 6.6% higher than NetBench and MediaBench, respectively. The DPR
of the RTP Sender is 0.96% and 5.8% higher than NetBench and MediaBench,
respectively.

• Table 4.1(b) shows that the RTP Sender has a higher load/store instruction fre-
quency than NetBench and MediaBench.

1The abbreviations in Table 4.1 are described in Section 3.2.4 of Chapter 3.
2The results on NetBench and MediaBench are the averages of the results presented in [9] due to

the large mix of different small and big benchmarks. We are able to use the averages over the results,
because there are no significantly big differences between the results, except for the number of cycles
(# of cycles), the number of instructions (# of inst.), and the number of il1 and dl1 accesses (il1 acc.

and dl1 acc.). Therefore, no comparison is made based on these values and they were only shown for
completeness.

46 CHAPTER 4. BENCHMARKS RESULTS

43.5%

38.9%

14.9%

2.7%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

in
pu
t

en
ca
p

ou
tp
ut

ot
he
r

S_output1

(a) The RTP Sender benchmark result for the in-order
writing issue.

38.8%

46.5%

12.4%

2.3%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

in
pu
t

en
ca
p

ou
tp
ut

ot
he
r

S_output2

(b) The RTP Sender benchmark result for the slightly
out-of-order writing issue.

38.4%

46.9%

12.3%

2.3%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

in
pu
t

en
ca
p

ou
tp
ut

ot
he
r

S_output3

(c) The RTP Sender benchmark result for the largely
out-of-order writing issue.

72.8%

3.3%

23.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

in
pu
t

en
ca
p

ot
he
r

RTP Sender

(d) The RTP Sender benchmark result without the
output function.

Figure 4.1: The RTP Sender benchmark results

4.3. THE RTP RECEIVER BENCHMARK RESULTS 47

of cycles (M) IPC APR (%) DPR (%)

RTP Sender 11.4 1.99 95 95.1

NetBench 207 1.66 93.9 94.2
MediaBench 280 1.45 89.1 89.9

(a) IPC and branch prediction values for the
RTP Sender benchmark.

of inst. (M) load (%) store (%)branch (%)

RTP Sender 22.8 31.3 21.9 12

NetBench 359 7.2
MediaBench 408 11.3

27.7
19.8

(b) Instruction distribution for the RTP
Sender benchmark.

il1 acc. (M) il1 miss ratio (%) dl1 acc. (M) dl1 miss ratio (%)l2 miss ratio (%)

RTP Sender 23.9 0.0 11.9 0.0 4.6

NetBench 400 0.05 140 0.8 9.7
MediaBench 519 0.4 86 1.8 14.8

(c) Cache behavior for the RTP Sender benchmark.

Table 4.1: The architectural characteristics for the RTP Sender benchmark.

• Table 4.1(c) shows that the RTP Sender has a better performance in cache behavior
than NetBench and MediaBench because the il1 miss ratio, dl1 miss ratio and l2
miss ratio of the RTP Sender are less than the ones of NetBench and MediaBench.

4.3 The RTP Receiver Benchmark Results

In this section, we discuss the RTP Receiver benchmark results. We first present
the performance results in clock cycles. The profiling is performed by determining
the percentage of clock cycles spent by each function in the benchmark compared to
the total clock cycles. Subsequently, the results on architectural characteristics are
presented and compared with the applications from NetBench and MediaBench.

Profiling results: The performance results in the clock cycles for different input files
are depicted in Figure 4.2. Three input files are used from the hard disk, in-order
(R output1 depicted in 4.2(a)), slightly out-of-order (R output2 depicted in 4.2(b)) and
largely out-of-order (R output3 depicted in 4.2(c)), which are the output of the RTP
Sender benchmark. Figure 4.2(d)3 is the collection of Figure 4.2(a), 4.2(b) and 4.2(c).
From the results presented in Figure 4.2, we can observe:

• The biggest contributor to the total cycles is the input function, which is caused
by reading the data in the hard disk.

• The percentage of the number of cycles for the queueing function is increased from
about 11% to 18% for the three issues presented in Figure 4.2(a), 4.2(b) and 4.2(c),
respectively. The increase is reasonable because the in-order processing is obviously
less than the out-of-order processing and the slightly out-or-order processing is

3Only the biggest value in each function is marked in Figure 4.2(d).

48 CHAPTER 4. BENCHMARKS RESULTS

obviously less than the largely out-of-order processing4. However, the increase
range, 7%, is not the maximum range. As a matter of fact, we can not obtain
such maximum value. This observation signifies that the queueing operation could
largely contribute to the overall processing when the packets come in a largely
out-of-order fashion.

• The percentage of the number of cycles for the three functions, buffer, parsing, and
updating, is slightly decreased between 1% and 2% for the three issues presented
in Figure 4.2(a), 4.2(b) and 4.2(c), respectively. As a matter of fact, the absolute
number of cycles for these three functions in comparison to the total clock cycles
has not changed, while the number of total cycles are increased because the number
of cycles for the queueing function is increased.

Figure 4.3 presents the performance results for three different issues without the input
function in the benchmark. The input function can be ignored, because it is the
preprocessing of the benchmark. Figure 4.3(d) is the collection of Figure 4.3(a), Figure
4.3(b) and Figure 4.3(c). From the results of Figure 4.3, we can observe that the biggest
contributor to the the total cycles is the statistics updating function, averaging about
25%. The second largest contributor is the data parsing function, averaging about 23%.

Results on architectural characteristics: Table 4.2 presents the simulation results
on architectural characteristics: Table 4.2(a) presents the results on instruction level
parallelism and branch prediction accuracy, Table 4.2(b) presents the results on instruc-
tion distribution, and Table 4.2(c) presents the results on cache behavior. In Table 4.2,
R input1 denotes the in-order input file used in the simulation, R input2 denotes the
slightly out-of-order input file used in the simulation, and R output3 denotes the largely
out-of-order input file used in the simulation. Average is the arithmetic mean of the
three issues. Comparing with the NetBench and MediaBench applications depicted in
the last two rows of Table 4.2, we can observe:

• Table 4.2(a) shows that the IPC of the RTP Receiver is 14.5% and 31% higher
than NetBench and MediaBench, respectively. The APR of the RTP Receiver is
3.4% higher than MediaBench. The DPR of the RTP Receiver is 2.6% higher than
MediaBench.

• Table 4.2(b) shows that the RTP Receiver has a higher load/store instruction
frequency than both NetBench and MediaBench.

• Table 4.2(c) shows that the RTP Receiver has a better performance in cache be-
havior than NetBench and MediaBench because the il1 miss ratio, dl1 miss ratio
and l2 miss ratio of the RTP Receiver are less than the ones of NetBench and
MediaBench.

4The algorithm for the queue processing is presented in Chapter 3.

4.3. THE RTP RECEIVER BENCHMARK RESULTS 49

12.1%

16.1%

11.1%

30.5%

18.0%

12.3%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

In
pu
t

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input1

(a) The RTP Receiver benchmark result for the in-
order issue.

11.4%

15.1% 15.5%

28.6%

17.8%

11.6%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

In
pu
t

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input2

(b) The RTP Receiver benchmark result for the
slightly out-of-order issue.

11.0%

14.6%
11.2%

17.4%

27.4%

18.4%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

In
pu
t

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input3

(c) The RTP Receiver benchmark result for the
largely out-of-order issue.

12.1%

16.1%

12.3%

18.0%

30.5%

18.4%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

In
pu
t

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input1

R_input2
R_input3

(d) The combined RTP Receiver benchmark results.

Figure 4.2: The RTP Receiver benchmark results with the input function.

50 CHAPTER 4. BENCHMARKS RESULTS

23.1%

25.9%

17.7%
16.0%

17.4%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input1

(a) The RTP Receiver benchmark results for the in-
order issue.

21.2%

24.9%

16.2%

21.7%

16.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input2

(b) The RTP Receiver benchmark result for the
slightly out-of-order issue.

20.1%

24.0%

15.4%
15.1%

25.4%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input3

(c) The RTP Receiver benchmark result for the
largely out-of-order issue.

23.1%

25.9%

17.4% 17.7%

25.4%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

bu
ff
er

pa
rs
in
g

up
da
ti
ng

qu
eu
ei
ng

ot
he
r

R_input1

R_input2
R_input3

(d) The combined RTP Receiver benchmark results.

Figure 4.3: The RTP Receiver benchmark results without the input function.

4.4. THE RTCP PROCESSING BENCHMARK RESULTS 51

of cycles (M) IPC APR (%) DPR (%)

R. input1 15.7 1.97 92.5 92.5
R. input2 16.6 1.92 91.9 91.9
R. input3 17.2 1.92 92.3 92.3
Average 16.5 1.9 92.2 92.2

NetBench 207 1.66 93.9 94.2
MediaBench 280 1.45 89.1 89.9

(a) IPC and branch prediction values for
the RTP Receiver benchmark.

of inst. (M) load (%) store (%)branch (%)

R. input1 30.8 29.1 18.9 14.1
R. input2 31.9 30 18.8 14.3
R. input3 33 30.9 18.7 14.5
Average 31.9 30.0 18.8 14.3

NetBench 359 7.2
MediaBench 408 11.3

27.7
19.8

(b) Instruction distribution for the RTP Re-
ceiver benchmark.

il1 acc. (M) il1 miss ratio (%) dl1 acc. (M) dl1 miss ratio (%) l2 miss ratio (%)

R. input1 32.4 0.0 14.3 0.4 0.8
R. input2 34.1 0.0 14.9 0.4 0.8
R. input3 35.3 0.0 15.6 0.4 0.8
Average 33.9 0.0 14.9 0.4 0.8

NetBench 400 0.05 140 0.8 9.7
MediaBench 519 0.4 86 1.8 14.8

(c) Cache behavior for the RTP Receiver benchmark.

Table 4.2: The architectural characteristics for the RTP Receiver benchmark.

4.4 The RTCP Processing Benchmark Results

In this section, we discuss the RTCP Processing benchmark results. We first present
the performance results in clock cycles. The profiling is performed by determining
the percentage of clock cycles spent by each function in the benchmark compared to
the total clock cycles. Subsequently, the results on architectural characteristics are
presented and compared with the applications from NetBench and MediaBench.

Profiling results: The performance results in clock cycles are depicted in Figure
4.4. We can observe that the biggest contributor to the total cycles is building RTCP
receiver report (block), which percentage to the total cycles5 is about 55%.

Results on architectural characteristics: Table 4.3 presents the simulation results
on architectural characteristics: Table 4.3(a) presents the results on instruction level
parallelism and branch prediction accuracy, Table 4.3(b) presents the results on instruc-
tion distribution, and Table 4.3(c) presents the results on cache behavior. Comparing
with the NetBench and MediaBench applications depicted in the last two rows of Table
4.3, we can observe:

• Table 4.3(a) shows that the IPC of the RTCP Procesessing is 10.8% and 26.9%
higher than NetBench and MediaBench, respectively. The APR and the DPR of
the RTCP Processing is 4.7% and 3.8% higher than MediaBench, respectively.

5The value of the total clock cycles is not equal to 33M, depicted in Table 4.3(a), which includes
the number of cycles of the RTP Receiver application because the RTCP Processing has to work in
conjunction with the RTP Receiver benchmark.

52 CHAPTER 4. BENCHMARKS RESULTS

38.2%

7.3%

54.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

bl
oc
k

in
te
rv
al

ot
he
r

RTCP

Figure 4.4: The RTCP Processing benchmark results.

• Table 4.3(b) shows that the RTCP Processing has a higher load/store instruction
frequency than NetBench and MediaBench. The RTCP Processing also has a lower
branch instruction frequency than NetBench and MediaBench.

• Table 4.3(c) shows that the RTCP Processing has a better performance in cache
behavior than NetBench and MediaBench because the il1 miss ratio, dl1 miss ratio
and l2 miss ratio of the RTCP Processing are less than the ones of NetBench and
MediaBench.

4.5 Conclusions

The results for the RTP/RTCP benchmarks were evaluated on two aspects: performance
and architectural characteristics. First, the performance results presented the number
of clock cycles for each function in each benchmark in relation to the total number of
clock cycles. This evaluation allowed us to perform profiling in order to determined
the time-critical functions in the benchmarks. Second, the results on the architectural
characteristics presented by looking at instruction level parallelism, branch prediction
accuracy, instruction distribution, and cache behavior. These results were compared
with the applications from NetBench and MediaBench. The four characteristics are
highlighted in Table 4.4: Table 4.4(a) highlights the results on instruction level paral-
lelism and branch prediction accuracy, Table 4.4(b) highlights the results on instruction
distribution, and Table 4.4(c) highlights the results on cache behavior. In Table 4.4, RTP
Receiver is the average value taken from Table 4.2 and Average is the arithmetic mean

4.5. CONCLUSIONS 53

of cycles (M) IPC APR (%) DPR (%)

RTCP 23.6 1.84 93.3 93.3
NetBench 207 1.66 93.9 94.2

MediaBench 280 1.45 89.1 89.9

(a) IPC and branch prediction values for
the RTCP Processing benchmark.

of inst. (M) load (%)store (%)branch (%)

RTCP 43.6 29 17.2 1.3
NetBench 359 7.2

MediaBench 408 11.3
27.7
19.8

(b) Instruction distribution for the RTCP
Processing benchmark.

il1 acc. (M) il1 miss ratio (%) dl1 acc. (M) dl1 miss ratio (%)l2 miss ratio (%)

RTCP 45.1 0.0 19.2 0.3 0.8

NetBench 400 0.05 140 0.8 9.7
MediaBench 519 0.4 86 1.8 14.8

(c) Cache behavior for the RTCP Processing benchmark.

Table 4.3: The architectural characteristics for the RTCP Processing benchmark.

of cycles (M) IPC APR (%) DPR (%)

RTP Sender 11.4 1.99 95 95.1
RTP Receiver 16.5 1.9 92.2 92.2

RTCP 33 1.84 93.3 93.3
Average 20.3 1.9 93.5 93.5

NetBench 207 1.66 93.9 94.2
MediaBench 280 1.45 89.1 89.9

(a) Comparison in IPC and branch pre-
diction values between RTP/RTCP bench-
marks with NetBench and MediaBench.

of inst. (M) load (%) store (%) branch (%)

RTP Sender 22.8 31.3 21.9 12
RTP Receiver 31.9 30.0 18.8 14.3

RTCP 43.6 29 17.2 1.3
Average 32.8 30.1 19.3 9.2

NetBench 359 7.2
MediaBench 408 11.3

27.7
19.8

(b) Comparison in instruction distribution
between RTP/RTCP benchmarks with Net-
Bench and MediaBench.

il1 acc. (M) il1 miss ratio (%) dl1 acc. (M) dl1 miss ratio (%) l2 miss ratio (%)

RTP Sender 23.9 0.0 11.9 0.0 4.6
RTP Receiver 33.9 0.0 14.9 0.4 0.8

RTCP 45.1 0.0 19.2 0.3 0.8
Average 34.3 0.0 15.3 0.2 2.1

NetBench 400 0.05 140 0.8 9.7
MediaBench 519 0.4 86 1.8 14.8

(c) Comparison in cache behavior between RTP/RTCP benchmarks with NetBench and Medi-
aBench.

Table 4.4: Comparison in the architectural characteristics between RTP/RTCP bench-
marks with NetBench and MediaBench.

of the RTP Sender benchmark, the RTP Receiver benchmark and the RTCP Processing
benchmark. The performance analysis results show that:

• The biggest contributor to the total cycles for the RTP Sender benchmark is the
encapsulation function, which is more than 70% of the total cycles. The first two
biggest contributors for the RTP Receiver benchmark are the statistics updating

54 CHAPTER 4. BENCHMARKS RESULTS

function and the data parsing function, which are about 25% and 23% of the total
cycles, respectively. The biggest contributor for the RTCP Processing benchmark is
building RTCP receiver block, which takes about 55% of the total RTCP Processing
cycles.

• The results depicted in Table 4.4(a) show that the average IPC of the RTP/RTCP
benchmarks is 14.5% and 31% higher than NetBench and MediaBench, respec-
tively. The average APR of the RTP/RTCP benchmarks is 4.9% higher than
MediaBench. The average DPR of the RTP/RTCP benchmarks is 4% higher
than MediaBench. The results depicted in Table 4.4(b) show that the average
load/store instruction frequency of the RTP/RTCP benchmarks is higher than
NetBench and MediaBench. The average branch instruction frequency of the
RTP/RTCP benchmarks is lower than MediaBench. The results depicted in Table
4.4(c) show that the RTP/RTCP benchmarks has a better performance in the first
level data/instruction caches and in the second level unified data/instruction cache
than NetBench and MediaBench.

In conclusion, the results on architectural characteristics show us that the RTP/RTCP
processing is significantly different from the media processing (MediaBench), which
means that it is necessary to create benchmarks for network processing. The results
also show us that the RTP/RTCP processing has some common characteristics with
NetBench. It is reasonable since they all focus on the same network processing domain.
However, they are slight different on some characteristics with each other, which means
that the specific benchmarking suite in the RTP/RTCP processing is justified.

Conclusions 5
I

t has been argued in this thesis that the latest developments of the Internet create
two requirements on network devices: performance and flexibility. In order to meet
the two requirements, a new kind of processor has emerged namely the network

processor (NP). It is specifically designed to process data at wire-speed and to be flexible
to support new applications. However, the existence of different architectures in network
processors makes it more difficult to evaluate the performance of the network processors.
Consequently, it is necessary to create benchmarks that allow the performance of network
processors to be evaluated. This thesis has highlighted that benchmarking on real-time
network processing is important since as an example, Voice over IP (VoIP) is becoming
an increasingly promising technology. In order to provide real-time delivery services, the
RTP/RTCP protocols are utilized. To this end, the benchmark suite on the RTP/RTCP
processing has been created and described in this thesis. The benchmark suite consists
of three benchmarks: an RTP Sender benchmark, an RTP Receiver benchmark and
an RTCP Processing benchmark. For each benchmark, three aspects were specified:
function, measure and environment. The function aspect specified the core algorithms
used in each benchmark, all necessary functions realized in the benchmark and the
manner to implement these functions. The measurement aspect specified the verification
of the benchmarks and the metrics used to investigate the benchmarks. The environment
aspect specified the input/output of each benchmark and simulation environment of the
benchmarks. Finally, the results for the benchmarks were evaluated from performance
and architectural characteristics points of view. First, the performance results presented
the clock cycles spent on each function in each benchmark in relation to the total
cycles. Subsequently, profiling on each benchmark was performed in order to find
the time-critical functions in the benchmarks. Second, the results on architectural
characteristics were investigated and compared with the applications from NetBench and
MediaBench in order to understand the features of the benchmarks. The investigated
characteristics are instruction level parallelism, branch prediction accuracy, instruction
distribution, and cache behavior.

This chapter provides some concluding remarks, highlights the main contributions of this
thesis, and presents some possible future research directions. This chapter is organized as
follows. Section 5.1 summarizes the main conclusions of this thesis. Section 5.2 presents
the main contributions of this thesis. Section 5.3 highlight several possible future research
directions.

55

56 CHAPTER 5. CONCLUSIONS

5.1 Summary

Chapter 2 discussed the TCP/IP model, explained the main protocols in the TCP/IP
model and analyzed the underlying functions in network processing. Network processing
consists of a wide range of functions, such as IP routing, encryption, and real-time
delivering. We argued in this chapter that either general-purpose processor or ASICs
alone can hardly possible meet the two requirements: performance and flexibility.
General-purpose processors are more flexible to newer protocols with lower performance
while ASICs have a higher performance for network processing with lower flexibility.
New solutions are called the network processors, which take into account the two
requirements and the trade-off between them. Currently, there are a number of network
processors with different architectures. In order to evaluate the performance of the
different network processors, benchmarks are needed. We discussed some existing
network processing benchmarks and highlighted that these benchmarks do not cover all
applications in the networking domain. Subsequently, it was argued that it is necessary
and important to create benchmarks on some untargeted applications. Finally, we
briefly presented an overview on the SimpleScalar tool set utilized for simulating the
created benchmarks in this thesis.

Chapter 3 compared differences between real-time delivery and non-real-time delivery
and discussed the protocols for supporting real-time delivery: the RTP/RTCP protocols.
We highlighted that the current IP network only provides “best-effort” services in
non-real-time delivery. Packets to the destination may be delayed or out of order, or
packets may be lost before reaching the destination. Real-time delivery, however, is
intolerant to delay and jitter. In order to solve the two problems: jitter and order, the
RTP/RTCP protocols are utilized to ensure real-time delivery.

In this chapter, we discussed the implementation of three benchmarks on RTP/RTCP
processing, an RTP Sender benchmark, an RTP Receiver benchmark, and an RTCP
Processing benchmark. First, the RTP Sender benchmark investigates how RTP
packets are generated at the sender. We discussed the main functions in the RTP
Sender benchmark and defined the input and output of this benchmark. Specifically,
we implemented a special structure utilized for writing the output of this benchmark
into the hard disk in order for the output of the RTP Sender benchmark to be utilized
as the inputs of the other two benchmarks. Second, the RTP Receiver benchmark
investigates how RTP packets are processed at the receive in order to handle the order
and jitter problems. In this benchmark, we designed four functions for processing every
coming RTP packet: input buffer management, data parsing, statistics updating and
queue management. Additionally, we defined the input and output of this benchmark.
Third, the RTCP Processing benchmark generates receiver reports for feedback and
computes the RTCP transmission interval for the receiver to adapt its rate of report-
ing. Similarly, we also defined the input and output of the RTCP Processing benchmark.

The three created benchmarks were presented from three aspects: function, measure-
ment and environment. First, the function aspects specified the main functions and

5.1. SUMMARY 57

their implementations in the benchmarks. Second, the measurement aspect specified the
metrics utilized for evaluating the benchmarks. In order to measure the performance of
the benchmarks, we defined the clock cycles as the performance metric. In addition, we
also defined the architectural characteristics as our metrics in order to understand the
features of the benchmarks. These characteristics include instruction level parallelism,
branch prediction accuracy, instruction distribution, and cache behavior. Third,
the environment aspects specified the interface (input/output) environment of each
benchmark and the simulation environment of the benchmarks. We highlighted that
the same measurement metrics and simulation environment are utilized in the three
benchmarks.

Chapter 4 presented the results after running the RTP/RTCP benchmarks utilizing the
sim-outorder simulator. The results were evaluated from performance and architectural
characteristics points of view. First, the performance results presented the number of
clock cycles for each function in each benchmark in relation to the total number of clock
cycles. The profiling was performed and presented for each benchmark in order to find
the time-critical functions in the benchmarks. Second, the results on the architectural
characteristics presented by looking at instruction level parallelism, branch prediction
accuracy, instruction distribution, and cache behavior. These results were compared
with the applications from NetBench and MediaBench. A brief overview on the results
is presented as follows:

• Profiling results: The biggest contributor to the total cycles for the RTP Sender
benchmark is the encapsulation function, which is more than 70% of the total
cycles. The first two biggest contributors for the RTP Receiver benchmark are the
statistics updating function and the data parsing function, which are about 25%
and 23% of the total cycles, respectively. The biggest contributor for the RTCP
Processing benchmark is building RTCP receiver report block, which takes about
55% of the total RTCP processing cycles.

• Results on architectural characteristics: On instruction level parallelism, on
average, the RTP/RTCP benchmarks have a higher data-level parallelism than Net-
Bench and MediaBench, which is about 14.5% and 31%, respectively. On branch
prediction accuracy, RTP/RTCP benchmarks on average allow a better address
prediction accuracy (4.9% higher) and direction prediction accuracy (4% higher)
than MediaBench. On instruction distribution, RTP/RTCP benchmarks have a
higher load/store frequency than NetBench and MediaBench and a higher branch
instruction frequency than MediaBench. On cache behavior, RTP/RTCP bench-
marks have a better performance in the first level data/instruction caches and the
second level unified data/instruction cache than NetBench and MediaBench.

In conclusion, the profiling results in Chapter 4 highlighted how fast, measured in terms
of clock cycles, the benchmarks are executed and which functions in the benchmarks are
time-critical. The results on architectural characteristics show that the RTP/RTCP pro-
cessing is significantly different from the media processing (MediaBench), which means
that it is necessary to create benchmarks on network processing. At the same time,

58 CHAPTER 5. CONCLUSIONS

these results show that the RTP/RTCP processing is also different from other network
processing (NetBench). Therefore, our benchmarks on real-time network processing are
justified.

5.2 Main Contributions

In this section, we highlight the main contributions of this thesis to the design of network
processors:

• We have created a benchmark suite on real-time network processing that has not
been introduced before in existing benchmarks. This is driven by the trend that
the convergence of voice with data will play an important roll in future networks.
Therefore, we have investigated network processing on delivering voice data with
real-time characteristics, and focused on the functionalities on the real-time net-
work processing. This benchmark suite can be used to evaluate performance of
real-time network processing.

• We have performed profiling on the benchmarks in order to determine which func-
tions in the benchmarks are time-critical. The profiling results provide clear in-
formation that how fast, measured in terms of clock cycles, each functions in each
benchmark are executed, what are the total clock cycles for the execution of the
benchmarks and which functions in the benchmarks are time-critical. For the
time-critical functions, we could achieve the performance gain by implementing on
specialized hardware, which can be utilized in future network processors.

• We have investigated architectural characteristics on real-time network processing
by focussing on instruction level parallelism, branch prediction accuracy, instruc-
tion distribution, and cache behavior. We have shown that these characteristics on
real-time network processing are significantly different from media processing (Me-
diaBench) and slightly different from other network processing (NetBench). The
investigation can be utilized in the design of future network processor architectures.

In conclusion, the created benchmark suite in this thesis helps to measure and evaluate
the performance of network processors and direct the design of future network processor
architectures. The methodology utilized in this thesis can also be used to investigate
benchmarks on some other network processing.

5.3 Future Research Directions

In this section, we present some future research directions in network processing bench-
marking.

• This thesis introduces a benchmark suite on real-time network processing. Al-
though RTP/RTCP is used for real-time delivery over IP networks, RTP/RTCP
itself does not provide any mechanism to ensure timely delivery or provide other
quality-of-service guarantees. To provide quality of service for real-time delivery,

5.3. FUTURE RESEARCH DIRECTIONS 59

signalling, such as SIP, should be used. Benchmarking SIP is a research topic of
key interest.

• In this thesis, the benchmark suite is built in a unicast environment. However,
RTP/RTCP can support real-time delivery to multiple destinations using multicast
distribution. Benchmarking RTP/RTCP processing in the multicast environment
and benchmarking multicast processing are promising topics to work on.

• In this thesis, the benchmark suite on real-time network processing is designed in
software. The performance results indicated that some functions in the benchmarks
take numerous clock cycles to execute. The performance gain can be achieved by
implementing these functions in specialized hardware. Therefore, we believe that
the time-critical functions should be implemented in actual hardware to measure
the real performance gains in realistic scenarios.

60 CHAPTER 5. CONCLUSIONS

Bibliography

[1] Tilman Wolf and Mark Franklin. CommBench - A Telecommunications Benchmark
for Network Processors. http://ccrc.wustl.edu/ wolf/cb/, 1999.

[2] Burger, D. and Austin, Todd M. The Simplescalar Tool Set, Version 2. Technical
report, University of Wisconsin, June 1997.

[3] Chunho Lee and Miodrag Potkonjak and William H. Mangione-Smith. MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Communicatons Systems.
http://www.cs.ucla.edu/ leec/mediabench/.

[4] Comer, Douglas E. Internetworking with TCP/IP (Volumn 1). Prentice Hall, 2000.

[5] Comer, Douglas E. Internetworking with TCP/IP (Volumn 3). Prentice Hall, 2000.

[6] Crowley, Patrick and Franklin, Mark A., editor. Network Processor Design: issues
and proctices (Volumn 1) . Morgan Kaufman Publishers, 2003.

[7] J. Dunn. Methodology for ATM Benchmarking. In RFC 3116, June 2001.

[8] Embedded Microprocessor Benchmark Consortium. http://eembc.org/.

[9] Gokhan Memik, B. Mangione-Smith and W. Hu . NetBench: A Benchmarking
Suite for Network Processors. Technical report, Compiler and Architecture Research
Group (CARES) at University of California, November 2001.

[10] Jonathan Lennox, Jonathan Rosenberg and Dan Rubenstein, editor. RTP Library.
Lucent Technologies, 1998.

[11] W.H. Mangione-Smith. Network Processors Technologies, December 2001.

[12] J. Perser. Benchmarking Methodology for LAN Switching Devices. In RFC 2889,
2000.

[13] Postel, J.B. Transmission Control Protocol. In RFC 793, August 1980.

[14] Postel, J.B. User Datagram Protocol. In RFC 768, August 1980.

[15] Prachant R. Chandra and Seow Yin Lim, editor. Framework for Benchmarking
Network Processor (Revision 1.0). Network Processing Forum, 2002.

[16] The Proceedings of the 2002 Workshop on Network Processors (NP-1). Benchmark-
ing Network Processors, 2002.

[17] S. Bradner. Benchmarking Terminology for Network Interconnection Devices. In
RFC 1242, 1991.

[18] S. Bradner. Benchmarking Methodology for Network Interconnect Devices. In RFC
2544, 1999.

61

62 BIBLIOGRAPHY

[19] Schulzrinne, H. A Tranport Protocol for Real-Time Application. In RFC 1889,
January 1996.

[20] Schulzrinne, H. RTP Profile for Audio and Video Conference with Minimal Control.
In RFC 1890, January 1996.

[21] Niraj Shah. Understanding Network Processors, September 2001.

[22] SPEC. http://www.specbench.org.

[23] W.Richard Stevens. TCP/IP Illustrated (Volumn 1). Prentice Hall, 2000.

[24] Wayne Wolf. Computers as Components: Principles of Embedded Computing System
Design. Morgan Kaufman Publishers, 2001.

Curriculum Vitae

Yunfei Wu was born in Suixi, China on the 12th of June
1974. In 1991, she was admitted into Nanjing University with
exemption of national exams. She received her bachelor degree
in Electronic Science Engineering at Nanjing University in July
1995. From 1995 to 2000, she worked as a teacher in Jiangsu
Post and Telecommunication School (JPTS). After that, she
worked as a switching design engineer in Dalian Ericsson Com-
munication Company Nanjing Branch From 2000 to 2001.

In September 2001, she started her MSc study in Electrical
Engineering at Delft University of Technology (TU Delft), The
Netherlands. In September 2002, she started working on her
MSc thesis at the Computer Engineering (CE) Laboratory un-
der the supervision of Dr. Ir. Stephan Wong. The CE Lab-
oratory is part of the Department of Electrical Engineering,
Faculty of Electrical Engineering, Mathematics and Computer
Science, Delft University of Technology, and is chaired by Prof.
Stamatis Vassiliadis. Her MSc thesis is entitled: ”Benchmark-
ing Real-Time Network Processing”. Her research interests in-
clude: embedded systems design, advanced computer architec-
tures, hardware/software co-design, digital signal processing,
and telecommunication networks.

