
The Molen Programming Paradigm
Stamatis Vassiliadis, Georgi Gaydadjiev, Koen Bertels, Elena Moscu Panainte

Computer Engineering Laboratory,
Electrical Engineering Department, EEMCS

TU Delft
E-mail : {stamatis, georgi, koen, elena}@ce.et.tudelft.nl

http://ce.et.tudelft.nl

Abstract— In this paper we present the Molen programming
paradigm, which is a sequential consistency paradigm for pro-
gramming Custom Computing Machines (CCM). The program-
ming paradigm allows for modularity and provides mechanisms
for explicit parallel execution. Furthermore it requires only few
instructions to be added in an architectural instruction set while
allowing an almost arbitrary number of op-codes per user to
be used in a CCM. A number of programming examples and
discussion is provided in order to clarify the operation, sequence
control and parallelism of the proposed programming paradigm.

I. I NTRODUCTION

Since the mid ninetiesReconfigurable Computing(RC) is
becoming increasingly popular computing paradigm which
refers to the ability of the software to transform the hardware
platform underneath on a per-application basis. Computing
systems built according to theCustom Computing Machines
paradigm usually consist of aGeneral Purpose Processor
(GPP) and reconfigurable unit(s) possibly implemented in
an FPGA technology. The software and architectural support
needed for CCM remains problematic. Programming CCMs
usually implies the introduction in the software design flow
of detailed knowledge about the reconfigurable hardware. The
compiler plays a significant role in the software design flow
as it has to integrate most of this information. Computational-
intensive operations are usually implemented on the recon-
figurable hardware provided by different vendors and the
challenge is to integrate them - whenever possible - in new or
existing applications. Such integration is only possible when
application developers as well as hardware providers adopt a
common programming paradigm.

In this paper we present such a programming paradigm. The
main contributions of the paper are:

• The presentation of a programming model for reconfig-
urable computing that allows modularity, general ”func-
tion like” code execution and parallelism in a sequential
consistency computational model,

• The definition of a minimal ISA extension to support
the programming paradigm. Such an extension allows the
mapping of an arbitrary function on the reconfigurable
hardware with no additional instruction requirements,

• The introduction of a mechanism allowing multiple op-
erations to be loaded and executed in parallel on the
reconfigurable hardware,

• Support for the application portability to multiple recon-
figurable platforms.

This paper is organized as follows: in Section II the
shortcomings of the existing reconfigurable programming
paradigms are highlighted. Section III introduces the Molen
programming paradigm and shows how the indicated short-
comings are addressed. Section IV discusses the sequence
control of the programming paradigm. The discussion is
supported by a wide range of examples. Section V concludes
the discussion.

II. PROBLEMS WITH EXISTING RC PROGRAMMING

PARADIGMS

In the last decade, many different approaches have been
proposed for programming FPGA / GPP combinations. The
architecture of a computer, reconfigurable or not, is the min-
imal behavioral specification-behavioralso that the software
can be written,minimal so that the widest possible range of
excellence criteria can be chosen for implementations [1].
It is the conceptual structure and functional behavior as
seen by the user (usually the programmer). The conceptual
structure, e.g. instruction set, is determined mainly by the
system functional requirements. In addition many other system
requirements, e.g. power consumption, can have impact on the
computer architecture. As in the case of traditional computer
architecture, theReconfigurable Computing(RC) paradigm
strongly relies on the compilation process. The compiler plays
an important role in code generation and needs to be extended
with the knowledge about the RC extension architecture. In
order to introduce the CCM to the instruction set architecture,
the opcode space is extended. This is done by introducing new
”super instructions” to operate the CCM from the software. It
is obvious that those new instructions will utilize the ”not-
used” opcode space of the targeted ISA.

Four major shortcomings of existing RC programming
approaches are indicated by the following:

1) Opcode space explosion: a common approach (e.g. [2],
[3], [4]) is to introduce a new instruction for each portion
of application mapped into the FPGA. The consequence
is the limitation of the number of operations imple-
mented into the FPGA, due to the limitation of the
opcode space. More specifically stated, for a specific
application domain intended to be implemented in the
FPGA, the designer and compiler are restricted by the
unused opcode space.

Fig. 1. The Molen machine organization

2) Limitation of the number of parameters: In a number
of approaches, the operations mapped on an FPGA can
only have a small number of input and output parameters
([5], [6]). For example, in the architecture presented in
[5], due to the encoding limits, the fragments mapped
into the FPGA have at most 4 inputs and 2 outputs; also,
in Chimaera [6], the maximum number of input registers
is 9 and it has one output register.

3) No support for parallel execution on the FPGA of
sequential operations: an important and powerful feature
of FPGA’s can be the parallel execution of sequential
operations when they have no data dependency. Many
architectures (see for examples in [7]) do not take
into account this issue and their mechanism for FPGA
integration cannot be extended to support parallelism.

4) No modularity : each approach has a specific definition
and implementation bounded for a specific reconfig-
urable technology and design. Consequently, the ap-
plications cannot be (easily) ported to a new recon-
figurable platform. Further there are no mechanisms
allowing reconfigurable implementation to be developed
separately and ported transparently. This implies that a
reconfigurable implementation developed by a vendor
A can not be included without substantial effort by
the compiler developed for an FPGA implementation
provided by a vendor B.

Due to these limitations, the implementation of the same
operation on the same type of FPGA is different for each spe-
cific approach. Moreover, some reconfigurable architectures
may not include a particular operation in the reconfigurable
hardware due to some specific restrictions.

III. T HE MOLEN PROGRAMMING PARADIGM

In this section first the Molen machine organization [8]
is briefly introduced. Consequently the Molen programming
paradigm is described and it is shown how it addresses the
major shortcomings of the RC paradigms as indicated in
Section II. To clarify the discussion, a variety of examples
will be supplemented.

The main Molen components as depicted in Figure 1 are:
the Core Processor - which is a GPP, and theReconfigurable
Unit (RU) - implemented in the FPGA. The Arbiter performs

Fig. 2. Molen interface

a partial decoding of the instructions fetched from the main
memory and issues them to the corresponding execution
unit (GPP or RU). The division in hardware and software
part is directly mappable to the two units. The hardware
targeted pieces are executed by the RU which is composed
usually by three part low grain reconfigurable fabric, while
the software (remaining) modules are executed on the GPP.
The Custom Computing Unit(CCU) is the RU part that
performs the hardware execution. It should be noted that a
CCU can incorporate complex multiple hardware ”functions”.
The conceptual idea of how a Molen application looks like
is presented in Figure 2. First, there are clear boundaries
between the software execution and the RU noted byinput
and output. One should think of predefined parameters (or
pointers to parameters) to be passed to and back from the
hardware CCU engine. Second the CCU configuration file is
to be loaded into the configuration memory in order to prepare
the hardware (the CCU part on Figure 1). Since different
CCU engines will have different content and length of their
configuration files a general approach is provided for loading
arbitrary configuration to the reconfigurable part of RU. This
is denoted by the SET phase (initiated by a SET instruction).
The SET instruction requires single parameter - the begin-
ning address of theconfiguration microcode. When a SET
instruction is detected, the Arbiter will read every sequential
memory address until the termination condition is met, e.g.
end op microinstruction is detected. Theρµ code unit will
then ensure that the data fetched from memory is redirected
to the reconfiguration support unit, e.g. FPGA configuration
memory. For an implementation see [9]. After completion
of the SET phase, the hardware is ready to be used in the
context of the targeted CCU functionality. This is done in
the EXECUTE phase initiated by the EXECUTE instruction.
This instruction also utilizes a single parameter being the
address of theexecution microcode. The execution microcode
performs the real CCU operations, this is the hardware engine
initialization, reading the input parameters, performing the
targeted computation and writing the results to the output
registers. The majority of the CCUs will additionally access
the system memory while running (depicted with horizontal
arrow in Figure 2). The input/output and SET/EXECUTE
parameters (and information about the memory segments used
by the CCU) are made available to the compiler through
a CCU description file. This description file and the binary
images of the configuration and the execution microcode are

sufficient for the compiler / linker to create adequate Molen
binaries.

The above two generic phases SET/EXECUTE are emulated
as an instruction is substituted by a sequence of micro-
operations using an extension of microcode (referred also as
reconfigurable microcode). In addition, Exchange Registers
(XR) are used for passing operation parameters to and from
the reconfigurable hardware at the beginning and the end of the
operation execution. The XRs can receive their data directly
from the GPP register bank. Therefore, the corresponding
move instructions have to be provided. The number of XRs is
implementation dependent.

The Molen programming paradigm is a sequential consis-
tency paradigm for programming CCMs (reconfigurable pro-
cessors) possibly including a general purpose computational
engine(s). The paradigm allows for parallel and concurrent
hardware execution and it is intended (currently) for single
program execution. It requires only a one-time architectural
extension of few instructions to provide a large user recon-
figurable operation space. The complete list of eight required
instructions is as follows:

• Six instructions are required for controlling the reconfig-
urable hardware, namely:

– Two SET< address > instructions: at a particular
location the hardware configuration logic is defined.
This operation will actually perform the hardware
configuration as stored in memory from the referred
address location. The information about the con-
figuration microcode length is embedded inside the
microcode itself. This operation can be additionally
split into two sub-phases (accounting for the two set
instructions):

∗ partial SET (P-SET) to cover common and often
used functions of an application or set of applica-
tions and to diminish time expensive reconfigura-
tions, and

∗ complete SET (C-SET) to deal with the remaining
blocks (not covered by the p-set sub-phase) in or-
der tocompletethe CCU functionality by enabling
it to perform the less frequent functions.

– EXECUTE < address >: for controlling the ex-
ecutions of the operations on the reconfigurable
hardware. The address sequence referred by this
instruction contains the microcode to be executed
on the CCU configured in the SET phase. The mi-
crocode sequence is terminated by anend op micro
operation.

– BREAK: this instruction may be needed in imple-
menting explicit parallel execution between GPP and
CCU if it is found to gain substantial performance
with simultaneous execution. This operation is used
for synchronization to indicate the parallel execution
and setting boundaries. In addition BREAK can be
used to express parallelism between two or more
concurrent CCU units.

– SET PREFETCH< address >: In implementations
with a reconfigurable hardware of limited size, this

instruction can be used by the compiler to pre fetch
the SET microcode from main memory to a local
(much faster) on chip cache or theρµ control store
in order to minimize the reconfiguration time penalty.

– EXECUTE PREFETCH< address >: the same
reasoning as for the SET PREFETCH holding for
the EXECUTE microcode.

• Two move instructions for passing of values to and from
the GPP register file and the reconfigurable hardware.
More specially:

– MOVTX XRa ← Rb: (move to X-REG) used to
move the content of general purpose register Rb to
XRa.

– MOVFX Ra ← XRb: (move from X-REG) used to
move the content of exchange register XRb to GPP
register Ra.

Code fragments constituting of contiguous statements (as
they are represented in high-level programming languages) can
be isolated as generally implementable functions (that is code
with multiple identifiable input/output values). The parameters
are passed via the Exchange Registers as introduced earlier.
In order to maintain the correct program semantics, the code
is annotated and CCU description files provide the compiler
with implementation specific information such as the addresses
where the SET and EXECUTE code are to be stored, the
number of exchange registers, etc. The physical number of
XRs, imposed by a specific implementation, is a limitation for
the number of parameters that can be passed by value. This
limitation can be avoided by applying passing by reference,
a method that will be demonstrated later. It should be noted
that this programming paradigm allows modularity, meaning
that if the interfaces to the compiler are respected and if the
instruction set extension (as described above) is supported,
then:

• custom computing hardware provided by multiple ven-
dors can be incorporated by the compiler for the execu-
tion of the same application.

• the application can be ported to multiple platforms with
mere recompilation.

• the designer is given the freedom to explore among sev-
eral custom computing hardware designs implementing
the same function and select the best one based on design
constraints, e.g. speed or size.

• the design process can be speeded up by having different
design teams work in parallel of the different parts of
the system under development, e.g. various software and
hardware pieces can be designed in parallel.

Finally, it is noted that every user is provided with at least
2(n−op) directly addressable functions, wheren represents the
instruction length andop the opcode length. The number of
functions can be easily augmented to an arbitrary number by
reserving opcode for indirect opcode accessing. From the pre-
vious discussion, it is obvious that the programming paradigm
and the architectural extensions resolve the aforementioned
problems as follows:

• There is only a one-time architectural extension of a
few new instructions to include an arbitrary number of

configurations.
• The programming paradigm allows for an arbitrary (only

hardware real estate design restricted) number of I/O
parameter values to be passed to/from the reconfigurable
hardware. It is only restricted by the implemented hard-
ware as any given technology can (and will) allow only
a limited hardware.

• Parallelism is allowed as long as the sequential memory
consistency model can be guaranteed.

• Assuming that the interfaces are observed, modularity
is guaranteed because the paradigm allows freedom of
operation implementation.

IV. SEQUENCECONTROL

There are basically three distinctive cases with respect to
the Molen instructions introduced earlier - theminimal, the
preferredand thecomplete case. In more details they are as
follows:

• the minimal case: This is essentially the smallest set
of Molen instructions needed to provide a working sce-
nario that supports execution of an arbitrary application
(providing there is no shortage of hardware resources).
The four basic instructions needed are SET, EXECUTE,
MOVTX and MOVFX. By implementing the first two
instructions (SET/EXECUTE) any suitable CCU can be
loaded and executed in the reconfigurable unit. The
MOVTX and MOVFX instructions are needed to provide
the input/output interface between the Software (GPP
code) and the Hardware (CCU engine) parts of the
application. It should be noted that this case does not
introduce any restrictions on parallel hardware execution.
There can be more than one CCUs configured or running
concurrently. The only difference is that in such cases the
GPP will be stalled for the time needed for the ”slowest”
CCU to complete its operation. An example is presented
in Figure 3(b) where the block of EXECUTE instructions
which can be processed in parallel contains the first three
consecutive EXECUTE instructions and it is delimited
by a GPP instruction. The situation when a block of
EXECUTE-instructions can be executed in parallel on
the RU while the GPP is stalled, will most likely be
the case for reconfigured ”complex” code and GPP code
with numerous data dependencies. In addition, it should
be noted that the above reasoning holds for the segments
consiting of SET instructions or mixture of independent
SET and EXECUTE instructions.

• the preferred case: The minimal case provides the
basic support but may suffer from the time consuming
reconfiguration times that can become prohibitive for
some real-time applications. In order to address this issue
the two additional SET sub-phases (P-SET) and (C-SET)
are introduced for distinction among very often and least
often used CCU functions. More specifically in the P-
phase the CCU is partially configured to perform the
common functions of an application, while the C-phase
takes care only of the remaining (much smaller) set of less
frequent functions. This allows the compiler to ”hide” the

synchronization

in parallel
EXECUTE op1
EXECUTE op2
EXECUTE op3

EXECUTE op4
GPP Instructions

GPP Instruction

synchronizationBreak

work in parallel
a) synchronization when GPP and FPGA

EXECUTE instructions are performed
b) synchronization when consecutive

in parallel and GPP is stalled

EXECUTE op2
EXECUTE op3
GPP Instructions

EXECUTE op1
GPP instruction

in parallel

Fig. 3. Models of synchronization

time consuming reconfiguration operations better. In addi-
tion, for the cases when the P-set and C-set improvements
are not sufficient, the two prefetch instructions (SET and
EXECUTE PREFETCH) are provided to allow additional
freedom to the compiler instruction scheduler and further
reduce the reconfiguration penalty.

• the complete case:In addition when it is found that
there is a substantial performance to be gained by parallel
execution between GPP and RU, then the GPP and the
EXECUTE-instructions can be issued and executed in
parallel. Since the GPP instructions (for the pertinent
discussion see parallelism control discussed later) can
not be used for synchronization any longer, the ad-
ditional BREAK instruction is required. The sequence
of instructions performed in parallel is initiated by an
EXECUTE instruction. The end of the parallel execution
is marked by the BREAK instruction. It indicates where
the parallel execution stops (see Figure 3 (a)). The SET
instructions are executed in parallel according to the
same rules. It is clear that in case of an organization
utilizing single GPP, the GPP instructions, present in
the parallel areas, can not be executed in parallel. This
is the most general Molen case that allows the highest
instruction level parallelism (the fastest execution). On
the other hand this approach is the most complicated in
terms of covering issues such as asynchronous interrupts
handling and memory management. These all are the
Molen implementor responsibility to address and solve
properly.

Compilation: The compiler [10] currently relies on the
Stanford SUIF2 (Stanford University Intermediate Format) and
the Harvard Machine SUIF back-end framework. The x86
processor has been considered as the GPP in the evaluated
Molen organization in [10]. An example of the code gener-
ated by the extended compiler for the Molen programming
paradigm is presented in Figure 4. In the left column, the
original C program is shown. The function implemented in
reconfigurable hardware is annotated with a pragma directive
namedcall fpga. It has incorporated the operation name:op1
as specified in the CCU description file. In the central part of
the picture, the code generated by the original compiler for
the C program is depicted. The pragma annotation is ignored
and a standard function call is included. The right column
of the picture presents the code generated by the compiler
extended for the Molen programming paradigm; the function
call is replaced with the appropriate instructions for sending
parameters to the reconfigurable hardware in XRs, hardware
reconfiguration, preparing the fix XR for the microcode of

mov main.x <− $vr8.s32
movfx $vr8.s32 <− $vr5.s32(XR)

movtx $vr7.s32(XR) <− vr6.s32

exec address_op1_EXEC

ldc $vr6.s32(XR) <− 0

c=0;

for(i=0; i<b; i++)

 c = c + a<<i + i;

c = c>>b;

return c;

}

void main(){
int x,z;

z=5;

}

x= ; f(z, 7)

#pragma call_fpga op1

int c,i;

int f(int a, int b){
movtx $vr1.s32(XR) <− $vr2.s32

mrk 2, 14

mov $vr2.s32 <− main.z

ldc $vr4.s32 <− 7

set address_op1_SET

movtx $vr3.s32(XR) <− $vr4.s32

main:

mov main.x <− $vr1.s32

.text_end main

mrk 2,13

ldc $vr0.s32 <− 5

mov main.z <− $vr0.s32

mrk 2, 14

ldc $vr2.s32 <− 7

mrk 2, 15

ldc $vr3.s32 <− 0

ret $vr3.s32

C code Original MIR code
instructions for FPGA
MIR code extended with

cal $vr1.s32 <− f(main.z, $vr2.s32)

Fig. 4. Molen Code Generation

Fig. 5. SET PREFETCH instructions flow

the EXECUTE instruction, execution of the operation and the
transfer of the result back to the GPP. The presented code
is at MIR level and the register allocation pass has not been
applied. The information about the target architecture such
as microcode address of SET and EXECUTE instructions for
each operation implemented in the reconfigurable hardware,
the number of XR, the fix XR associated with each operation,
etc needed by the compiler is available in a CCU’s description
file.

Prefetching: The SET PREFETCH instructions behavior is
illustrated in Figure 5. The arrow (1) represents the prefetching
of microcodeS3 from memory to theρµ control store and
(2) indicates the actual hardware reconfiguration. The control
store area is used to move the prefetched microcode ”near
by” the reconfigurable hardware long before it is ”needed”.
This instruction allows the compiler to schedule the time
demanding load-from-memory operation. In Figure 6 the first
set prefetch operation will load the microcode positioned
at address&op3 set into the ρµ control store. When the
set &op3 set instruction is processed, theS3 microcode will
be loaded from the control store (instead of the memory)
into the hardware configuration memory, e.g. lookup tables,
switch boxes and interconnect resources. In such a way the
reconfiguration can be preformed faster than in the case when
loading directly from memory. In case no more hardware
resources are available, there should be a replacement strategy
applied by theρµ control store, e.g. the least recently used
(LRU) configuration will be replaced.

The prefetch instructions, as any other Molen instructions
(except of the BREAK) are not limited with respect to concur-
rency. A Molen instruction initiates the code to be executed

Fig. 6. Prefetching example

{

}
..............
void main()
{
 struct nod root;

 f(& root);
}

void f(struct nod * a)void f(struct nod a)
{

}
..............
void main()
{
 struct nod root;

 f(root);
}

struct nod{
 int no;

};
.............
#pragma call_fpga op1

struct nod{
 int no;

};
.............

 char buf[4000]; char buf[4000];

Fig. 7. Passing parameters by reference in Molen

in parallel. As shown in Figure 6, theset prefetch &op4 set
and theS3 execution will be performed in parallel. The first
break instruction is needed to indicate thatset and exec
instructions forS3 cannot be executed in parallel and can be
placed before or after theset prefetch instruction forS4. In
thepreferredMolen case thebreak will be a GPP instruction,
e.g. NOP.

Parameter exchange, Parallelism and Modularity: As
shown earlier, the exchange register bank solves the limita-
tion on the number of parameters as present in other RC
approaches. The Molen XR bank can be used for passing
parameters by value or by reference. When a limited number
of parameters not exceeding the number of XRs is used, a
straight forward passed-by-value strategy is applied. In case
the number of parameters exceeds the XR bank size, the
passing by reference should be used. It is obvious that passing
by reference will allow an arbitrary (limited by the hardware)
number of parameters to be exchanged between the calling
(software) and called (hardware) functions. An example of
how the system designers should modify their code in order
to allow this in Molen programming paradigm is given in
Figure 7.

It should be noted that the original code passes a copy of the
structure to the called function. Since the size of the structure
can exceed the XR bank size, e.g. 8, 16 registers, the pass by
reference to the structure is used. This introduces, however,
an additional feature - this is when the called function (now
performed by the CCU in hardware) changes the structure
contents, such changes will become ”permanent” after the

#pragma call_fpga op1

{

.............

}

#pragma call_fpga op2

int g(int x)

{

...........

}

{

int f(int x, int y)

int h(int a, int b, int c)

h:

 movtx r2 −>XR3

 movtx r1 −>XR2

 mov a −> r1

 mov b −> r2

 mov c −> r3

 movtx r3 −> XR4

 set address_set_op1

 set address_set_op2

 ldc 2 −>r4

 movtx r4 −>XR0

 ldc 4 −>r5

 movtx r5 −>XR1

 execute address_ex_op2

 movfx XR2 −> r6

 mov r6 −> m

 movfx XR4 −> r7

 mov r7 −> n

 int m,n, ...;

}

 n=g(c);

 m=f(a, b);
} no data dependency

 execute address_ex_op1 } in parallel

Fig. 8. Parallel execution in Molen

control is returned back to the GPP. Such behavior will differ
in functionality from the original software implementation.
It is assumed that the system designers utilizing the Molen
architecture will be aware about these side effects and will use
passing by reference with extreme caution. The description
file used as interface between the compiler and the CCU
design should be extended with additional information about
the structure.

The third shortcoming (parallel execution) indicated in
Section II is addressed as follows. In case that two or more
(generalized) functions, appointed for CCU implementation
do not have any true dependencies they can be executed in
parallel. An example of how this can be performed is depicted
in Figure 8. There is always a physical maximum of how
many CCUs can be executed in parallel. This is, however, an
implementation dependent issue, e.g. reconfigurable hardware
size, CCU sizes, XR bank size etc. and can not be considered
as a serious limitation, since it is not limited by the Molen
architecture. The total execution time of the RU unit in the
example of Figure 8 will be the longest execution time of
both CCUs performing the functionsf andg.

In addition to the above it should be emphasized that the
Molen Hardware/Software (HW/SF) division ability is not
limited to functions only. In case the targeted kernel is part of a
function, e.g. a highly computational demanding loop, it can be
isolated before its transformation to hardware implementation.
The only two requirements are: a) to rewrite the kernel as a
separate function, and b) to define a clear set of parameters
as interface and pass them as values (or references) between
the modified ”old” and the new function code. All of the
communication between the two functions should be done via
input/output parameters only since both parts will execute in
different contexts. An example of how such division can be
done is depicted in Figure 9.

The Molen paradigm facilitates the modular system design.
For instance CCM modules designed in a HDL (VHDL,
Verilog or System-c) language are straight forward mappable
to any FPGA technology, e.g. Xilinx or Altera. The only
requirement is to satisfy the Molen SET and EXECUTE
interface. In addition a wide set of functionally similar CCUs
designs (from different providers), e.g. sum of absolute differ-
ences (SAD) or IDCT, can be collected in a database allowing

c=0;
for(i=0; i<b; i++)
 c = c + a<<i + i;
c = c>>b;
return c;
}
void main(){

}
x= ;

#pragma call_fpga op1

int c,i;
int f(int a, int b){

int x, a;
a=5;

 f(a, n)

void main(){

c=0;

 c = c + a<<i + i;

x=c;
}

a=5;
int x, a, c, i;

for(i=0; i<n; i++)

c = c>>n;

int n = 7; int n = 7;

Fig. 9. Partial function exposing for HW implementation in Molen

Fig. 10. Vector code CCU example

easy design space exploration.
Direct CCU Memory operations: Molen organizations are

suitable for performing computation intensive operations in
hardware while the data needed for the operations remains in
main memory. A simple example of this is how vector addition
calculation (c = a + b) can be moved to CCU implementation
is presented in Figure 10. The three vectorsa, b and c are
contiguous vectors with the same length. In the beginning the
original code needs to be restructured as introduced earlier
to a separate function with usage of pointers. This process is
shown by the right block arrow and prepares the input/output
interfaces between the software and the CCU. More precisely
in this case they are: the addresses of the first vector elements
(for each vector), the number of elements to be processed
and possibly the stride. The information on how the memory
locations are accessed and the type of each vector element, e.g.
integer, floating etc. should be taken into consideration in the
CCU design. In essence, in this case, the CCU is an augmented
vector architecture to include what is not performed (e.g.
address generators) in the GPP. It is clear that functionf can
be parallelized in the hardware. Lets assume that the memory
architecture allows access of2 ∗ z locations for read andz
locations for write in parallel. This will allowz elements of the
vector addition to be performed in parallel, hence speeding up
the calculation by at leastN/z. This is presented by the sliding
window shown in Figure 11. It is clear that in this example
the output interface of the CCU is just operation termination
(execution ofend op). The result of the CCU is stored in the
output vectorc and can be used directly by the subsequent
(hardware or software) modules.

For efficiency reasons, some operations that compute more
than one value may require to return the results in the XRs
(instead of memory, which is the straightforward way). These
operations represent contiguous statements (in high-level pro-

Fig. 11. Vector execution CCU example

 a=5;

 b=2;

#include <stdio.h>

int main(){

 int a,b,c,d,e;

 printf(" %d %d %d \n", c,d,e);
}

 c=a+b;

 d=a−b;

 e=a*b;

}

 tip1 x;

 x.c = a+b;

 x.d = a−b;

 x.e = a*b;

 return x;

tip1 f(int a, int b){

typedef struct {int c,d,e; } tip1;

int main()

 printf(" %d %d %d \n", c,d,e);

}

 int a,b,c,d,e;

 tip1 s;

 c=s.c;

 d=s.d;

 e=s.e;

 a=5;

 b=2;

 s= f(a,b);

Fig. 12. Multiple parameters from CCU example

gramming languages) where more variables are modified. In
order to accommodate to the current approach the associated
code has to be isolated in a function. The problem of returning
more parameters from a function in XRs can be solved as
illustrated in Figure 12. The computed values (for variables c,
d, e in Figure 12(a)) are packed in a structure (in Figure 12(b))
in the new function body and unpacked after the new function
call. We have to mention here that the CCU designer must be
aware of the alignment and packed/unpacked conventions for
structures assumed by the compiler.

Interrupts and miscellaneous considerations:In order
to support GPP interrupts properly, the following parts are
essential for any Molen implementation:

1) Hardware to detect interrupts and terminate the exe-
cution before the state of the machine is changed are
assumed to be implemented in both GPP and CCU.

2) Hardware to communicate interrupts to GPP is imple-
mented in CCU.

3) Initialization (via the GPP) of the appropriate routines
for interrupt handling.

The compiler assumption is that the implementor of a reconfig-
urable hardware follows a co-processor type of configuration.
The FPGA co-processor facility can be viewed as an exten-
sion of the GPP architecture. For examples of conventional
architectural extensions that resemble the approach taken here
see [11], [12], [13]. The above is a recommendation to the
FPGA developer. If such an aproach is not followed and no
”clean” architecture is implemented some complications may
arise. Furthermore, the unconstrained memory access of the
CCUs in Molen as in any other architectural or programming
paradigm can lead to memory violation problems. For exam-
ple, a CCU can overwrite memory locations used by other
(software or hardware) modules unintentionally.

V. CONCLUSIONS

In this paper we presented the Molen programming
paradigm that addresses a number of previously unresolved
issues such as parameter passing and parallel execution of
operations into the reconfigurable hardware. As described the
paradigm resolves the opcode space expansion, limitation of
parameters passing and modularity. The proposal incorporates
mechanisms for concurrent and parallel execution and it pro-
vides the user with almost arbitrary number of ”functions”
to be implemented in a CCU. A number of examples have
been reported in order to explain the presented programming
paradigm.

REFERENCES

[1] G. Blaauw and F. Brooks Jr.,Computer Architecture. One Jacob Way:
Addison-Wesley, 1997.

[2] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The Chimaera Recon-
figurable Functional Unit,” inProc. IEEE Symp. on Field-Programmable
Custom Computing Machines, Napa, California, 1997, pp. 87–96.

[3] A. L. Rosa, L. Lavagno, and C. Passerone, “Hardware/Software Design
Space Exploration for a Reconfigurable Processor,” inProc. of the DATE
2003, 2003, pp. 570–575.

[4] M. Gokhale and J. Stone, “Napa C: Compiling for a Hybrid RISC/FPGA
Architecture,” in Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, Napa, California, April 1998, pp. 126–137.

[5] F. Campi, R. Canegallo, and R. Guerrieri, “IP-Reusable 32-Bit VLIW
Risc Core,” inProc. of the 27th European Solid-State Circuits Confer-
ence, Villah, Austria, Sep 2001, pp. 456–459.

[6] Z. Ye, N. Shenoy, and P. Banerjee, “A C Compiler for a Processor
with a Reconfigurable Functional Unit,” inACM/SIGDA Symposium on
FPGAs, Montery, California, USA, 2000, pp. 95–100.

[7] M. Sima, S. Vassiliadis, S.Cotofana, J. van Eijndhoven, and K. Vissers,
“Field-Programmable Custom Computing Machines - A Taxonomy,”
in 12th International Conference on Field Programmable Logic and
Applications (FPL), vol. 2438. Montpellier, France: Springer-Verlag
Lecture Notes in Computer Science (LNCS), Sep 2002, pp. 79–88.

[8] S. Vassiliadis, S. Wong, and S. Cotofana, “The MOLENρµ-Coded
Processor,” in11th International Conference on Field Programmable
Logic and Applications (FPL), vol. 2147. Belfast, UK: Springer-Verlag
Lecture Notes in Computer Science (LNCS), Aug 2001, pp. 275–285.

[9] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “Loadingρµ-code:
Design Considerations,” inInternational Workshop on Systems, Archi-
tecture, Modeling and Simulation (SAMOS), Samos, Greece, Jul 2003.

[10] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Compiling for the
Molen Programming Paradigm,” in13th International Conference on
Field Programmable Logic and Applications (FPL), Lissabon, Portugal,
Sep 2003.

[11] A. Peleg and U. Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro, vol. 16, no. 4, pp. 42–50, August 1996.

[12] A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz, “The IBM Sys-
tem/370 vector architecture: Design considerations,”IEEE Transactions
on Computers, vol. 37, pp. 509–520, 1988.

[13] W. Buchholz, “The IBM System/370 vector architecture,”IBM Systems
Journal, vol. 25, no. 1, pp. 51–62, 1986.

