Test Point Insertion to improve BIST performance,
and to reduce ATPG test time and data volume

Test Point Insertion to improve BIST performance,
and to reduce ATPG test time and data volume

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen

op maandag 19 mei 2003 om 16:00 uur
door

Marc Jeroen GEUZEBROEK

elektrotechnisch ingenieur
geboren te Rotterdam

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. A.J. van de Goor

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft
Prof. dr. ir. A.J. van de Goor, promotor Technische Universiteit Delft
Prof. dr. ir. L.K. Nanver Technische Universiteit Delft
Prof. ir. M.T.M. Segers Technische Universiteit Eindhoven
Prof. dr. H. Corporaal Technische Universiteit Eindhoven
Prof. dr. ir. Th.Krol Universiteit Twente

Dr. ir. H.G. Kerkhoff Universiteit Twente

Dr. ir. H.P.E. Vranken Philips Research, Eindhoven

Prof. dr. C.1.M. Beenakker, reservelid Technische Universiteit Delft

This work has been supported and funded by Philips Semiconductors

Published and distributed by: DUP Science

Delft University Press

P.O. Box 98

2600 MG Delft

The Netherlands

Telephone: +31 15 27 85 678
Telefax: + 31 15 27 85 706
E-mail: info@library.tudelft.nl

ISBN 90-407-2412-1

Keywords: Digital systems testing, ATPG, BIST, TPI

Copyright (© 2003 by Jeroen Geuzebroek

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without writ-

ten permission from the publisher: Delft University Press

Printed in The Netherlands

Contents

Abstract

Preface and acknowledgments

1

Introduction

11
1.2

1.3
1.4

1.5
1.6

Faultmodels.
Testingmethods
1.2.1 Off-chiptesting,
1.2.2 On-chiptesting
1.2.3 Advantages and disadvantages of off-chip and on-chip testing
Test Point Insertion
Industrial circuits
1.4.1 The ’floating’ (Z) and "unknown’ (U) value in three-state circuits
142 Three-stateelements
Open questionsand problems
Overview of this dissertation

Built-In Self-Test

2.1
2.2

2.3
2.4

2.5

Conceptand purpose of BIST
TPGand ORA e
2.2.1 Linear Feedback Shift Register (LFSR)
2.2.2 Multiple Input Shift Register (MISR)
BIST and real-world circuits
BIST implementations
2.4.1 Exhaustive test pattern generator (XTPG)
2.4.2 Pseudo random test pattern generator (PRTPG)
2.4.3 Deterministic test pattern generator (DTPG)
2.4.4 BIST facilitation techniques
BIST facilitation techniques: Modify the test patterns
25.1 ReseedingoftheLFSR
2.5.2 Weighted RandomTPG,
2.5.3 Mapping logic to replace useless patterns

\Y

Vi CONTENTS
2.5.4 Comparison of test pattern mutation techniques 31

2.6 BIST facilitation techniques: Fully embedded deterministic test patterns . 32
2.6.1 The pre-stored test BIST method 32

2.6.2 The LFSROM architecture 34

2.6.3 ThedeterministicLFSR 35

2.7 BIST facilitation techniques: Partially embedded deterministic test patterns 38
2.7.1 Mappinglogic 38

2.7.2 Fixed-biased PRBIST 41

2.7.3 Bit-flippingBIST 44

2.8 BIST facilitation techniques: circuit mutation 47
2.8.1 Circuit mutation: Redesigning the circuit 47

2.8.2 Circuit mutation: Inserting testpoints 47

2.9 Summaryandconclusions 48
3 Test Point Insertion 49
31 Testpoints. 49
3.2 TPltofacilitatetesting 52
3.3 Testpointselection 53
3.4 TPIforindustrial circuits 55
3.5 Controllability/Observability Program (COP) 55
3.5.1 IntroductiontoCOP 55

3.5.2 Calculation of the COP controllability and observability 56

3.5.3 Cost function and the cost gradientvalues 59

3.6 STUMPS . . . 63
3.6.1 Introductionto STUMPS 63

3.6.2 Restrictions and problems of STUMPSBIST 64

3.7 State-of-the-art TPl algorithms 66
3.7.1 The Cost Reduction Factor (CRF) TPl algorithm 66

3.7.2 The Hybrid Cost Reduction Factor (HCRF) TPI algorithm 71
3.7.3 Multi-phase Test Point Insertion 78

3.7.4 Other state-of-the-art TPI algorithm 85

3.8 Overview TPI topics in this dissertation 86
3.8.1 TPltopicsoverview 86

3.8.2 TPlbenchmarkcircuits 87

3.9 Summaryandconclusions 88
4 Test Point Insertion for BIST 89
4.1 Comparison of the CRF, HCRF and MTPI algorithm 89
4.1.1 Comparison of the TPl experimental results 89

4.1.2 Summary of the CRF, HCRF and MTPI algorithms 91

4.1.3 Implications of Z and U valueson TPland BIST 93

4.2 COPforindustrial circuits 94

4.2.1 COP controllabilities in industrial circuits 94

CONTENTS vii

4.2.2 COP observabilities in industrial circuits 96
4.2.3 COP detection probabilities in industrial circuits 98
4.2.4 The cost gradients equations in industrial circuits 98
4.3 Proposed TPI for BIST algorithm for industrial circuits 100
4.3.1 The Hybrid CRF TPI algorithm for industrial circuits 101

4.3.2 Experimental results of the Hybrid CRF TPI algorithm for indus-
trial circuits 104
4.3.3 New cost function for TPI forBIST 107
4.3.4 CPU time reduction: Reduce the number of TP candidates 110
4.4 Summary andconclusions o e 113
5 Test Point Insertion for compact SAF ATPG 115
5.1 Impact of TPI for BIST on ATPG testsetsizes. 116

5.2 Testability analysis measures for detecting specific ATPG/test set size
problems 119
521 SCOAP e 120
522 Testcounts 120
53 Testcountsina TPl costfunction. 124
53.1 TCand COP based cost function 125
5.3.2 Implications of a TC based CF on the TPI algorithm 127
5.3.3 Results of HCRF TPI with TC based cost function 132
5.4 TPl and circuits with large Fan-out Free Regions 135
5.4.1 Four TPI techniques for reducing large FFRs 137
5.4.2 Experimental results of TPI for reducing large FFRs techniques . 138
5.5 Multi-stage TPI with dynamic cost function selection 140
5.5.1 The cost function selection procedure 140
5.5.2 Experimental results of multi-stage TPI 145
56 Summaryandconclusions 148
6 Test Point Insertion for delay fault ATPG 151
6.1 Transition faults and gate-delay fault ATPG 151
6.2 Experimental results of TPI for SAF ATPG on gate-delay fault ATPG . . 153
6.2.1 The impact of TPI for SAF ATPG on GDF ATPG in general . . . 153
6.2.2 The impact of TPI for SAF ATPG on GDF test set sizesonly . . . 157
6.3 Summaryandconclusions 161
7 Summary and conclusions 163
7.1 Majorcontributions 167
7.2 Suggested topics for futureresearch L. 169
A ISCAS "85 and ’89 benchmark circuits 171

B Industrial benchmark circuits 175

viii CONTENTS

C Boolean elements 179
D Three-state elements 181
E Delft Advanced Test (DAT) generation system and AMSAL 187
Glossary 189
Bibliography 193
Samenvatting (Summary in Dutch) 201

Curriculum Vitae 203

Abstract

Test Point Insertion to improve BIST performance,
and to reduce ATPG test time and data volume

The main subject of this dissertation is to facilitate structural testing by means of Test
Point Insertion (TPI) for both on-chip and off-chip tests.

Efficient production testing is frequently hampered because current complex digital
designs require too large test sets, even with powerful ATPG tools that generate compact
test sets. An alternative is Built-In Self-Test (BIST); by embedding the test on-chip, ex-
pensive test equipment costs and test time can be reduced. However, BIST approaches
often suffer from fault coverage problems, due to random pattern resistant faults. These
problems can successfully be reduced, or even eliminated, by means of Test Point Inser-
tion (TPI). In this dissertation we analyze three state-of-the-art TP1 methods on their fault
coverage improvement for BIST and develop a novel TPI algorithm that results in even
better fault coverage improvement. This novel TPI algorithm has not only been developed
to be applicable to Boolean circuits, but also to three-state designs. Results of several IS-
CAS and Philips industrial benchmark circuits show that the proposed TPI algorithm is
applicable to both small Boolean circuits as well as to large complex industrial designs.

TPI for BIST not only improves PR fault coverage; it will be shown that TPI also
results in more compact ATPG test set sizes. In this dissertation new TPl methods are
presented that are aimed at solving ATPG specific testability problems, such that the
ATPG test set sizes and CPU times can be reduced much further. These TPI methods
are not only applicable to SAF ATPG,; it has been demonstrated that also for gate-delay
fault ATPG significant ATPG test set size reduction, ATPG fault coverage improvement
and ATPG CPU time reduction can be achieved.

The new TPI methods have been implemented as part of the Delft Advanced Test
Generation System and AMSAL, and are currently being used within Philips as part of
their logic test tool set.

Abstract

Preface and acknowledgments

This research on facilitating testing started in 1996 during my masters project at the
Computer Engineering (CE) group of the department of Information Technology and Sys-
tems at the Delft University of Technology. Because integrated circuits can contain more
and more transistors and testers become more and more expensive, we wanted to investi-
gate whether the existing on-chip test methods were applicable to large industrial circuits
and if we could integrate them in the test tools developed at Delft University, i.e., integrate
them in the Delft Advanced Test generation system (DAT). At the same time, a Ph.D. po-
sition was made available by Philips Semiconductors at our test group on investigating
ATPG driven BIST. One of the big issues with BIST was low fault coverage or high sil-
icon overhead due to Random Pattern Resistant faults. As Test Point Insertion (TPI) is a
solution for this problem, our first goal was the investigation and implement a TPI algo-
rithm for improving BIST fault coverages.

During the research and the development of a TPI algorithm for BIST, Philips Semi-
conductors Hamburg got involved. They experienced more and more problems with grow-
ing ATPG test set sizes and they wanted to know if TPI could also be used to reduce these
test set sizes. At that moment we shifted our focus on the investigation and development
of TPI for facilitating ATPGs in generating compact test sets. Fortunately we ware able
to reduce these ATPG test sets significantly by developing new TPI techniques aimed at
facilitating ATPG. The results of the research and the development of TPI for BIST and
ATPG are found in this dissertation.

Many people have contributed to this work and | would like to thank all of them. In
particular, I will take the opportunity to thank the following persons for their contribu-
tions: First of all, I want to thank Hans van der Linden and Ad van de Goor for their
support and guidance during both my masters and Ph.D. study and the preparation of this
dissertation, and all the constructive technical discussions Thanks to Mario Konijnenburg
for his support with DAT and the DAT source code. Also many thanks to the people
from Philips who supported me with this research: Rene Segers who directed the project
on Philips side; Friedrich Hapke for directing my research to TPI, in order to facilitate
ATPG, and for providing the industrial circuits for the development, testing and optimiza-
tion of a TPI algorithm for the “real-world”; and Harald Vranken for his support, interest
and the constructive technical discussions on TPI.

Xi

Xii Preface and acknowledgments

I would also like to thank all people of the Computer Engineering group at the Delft
University of Technology, especially thanks to Hans van der Linden, Mario Konijnenburg
and Steven Roos for being fine colleagues with whom | shared the office. Also many
thanks to Bert Meys for providing and maintaining the computer network environment.

Finally, of course, I would like to thank all my friends and my family for their support
during all years of this Ph.D. study.

CHAPTER 1

| ntroduction

During the fabrication of Integrated Circuits (ICs), even the smallest irregularity, like
a dust-particle, can result in a malfunctioning IC. The testing of 1Cs forms an important
step in the process of preventing that these malfunctioning ICs will be delivered to con-
sumers or are used in end-products. It also is an important feedback for optimizing the
manufacturing process. Customers of the IC-manufacturers want a guarantee that the ICs
that are shipped to them are of high quality. They only allow a low number of malfunc-
tioning ICs. The Defect Level (DL) [Wil81] is a measure for the fraction of malfunctioning
ICs that pass all tests and can be calculated with Eq. 1.1,

DL=1-Y1FC (1.1)

inwhich'Y is the process yield, defined as the fraction of manufactured parts that is defect
free, and FC is the Fault Coverage, defined as the ratio of the number of actual detected
faults and the total number of faults in the 1C, whereby the faults are assumed of a par-
ticular Fault Model as described in Section 1.1. The DL is often expressed in the DPM
(Defects Per Million) (defective parts per million shipped instances). In order to reach low
DPM-levels, the manufacturers need high quality tests. E.g., assume for a specific design
a yield of 0.9 (90%) and a DL of 200 DPM (DL=0.0002), the required fault coverage can
be calculated with

log(1—DL)

FC=1 log v

(1.2)
and becomes for this example 99.81%. Hence at least 99.81% of all faults should be
detected otherwise more than 200 out of 1 million parts contain defects.

During the complete design and manufacturing process, different levels of testing are
required:

1. Functional testing:
Verification whether the design/IC meets its functional specification. Does it do
what it is supposed to do?

2 CHAPTER 1. INTRODUCTION

2. Structural testing:
Verification whether the design/IC meets its structural specification. Is the layout
as specified and are there no defects introduced?

3. Application mode testing:
Verification whether the design/IC meets the specifications of the environment in
which it is used.

Testing in this dissertation refers to structural testing; i.e., testing whether the IC has
been manufactured correctly. For example, whether no spot-defects are introduced. Spot-
defects are local conducting (i.e., shorts) or non-conducting (i.e., opens) disturbances in
the IC silicon structures. These disturbances can lead to an adjusted behavior of an IC,
i.e., to incorrect logic functions, to timing problems, to higher power consumption, etc.
The structural test has to detect this adjusted behavior.

An IC usually consists of logic, memory and possibly mixed-signal blocks. Memo-
ries have a very regular structure and can be tested for defects by regular algorithms in
polynomial time; e.g., by march tests [vdG98]. The logic blocks usually do not have a
regular structure and more sophisticated algorithms are necessary to generate tests. Be-
sides digital logic, mixed-signal blocks also contain analog logic. Mixed-signal circuits
are out-of-scope of this dissertation.

Logic circuits are tested by the application of a set of test patterns. A test pattern
consists of a single set of simultaneous applied input values, i.e., stimulus, that is applied
to the circuit, and a set of expected output values, i.e., response, for a defect-free circuit.
Often, when speaking of test patterns, only the stimuli are meant. A defect in a circuit
is detected by a test pattern when after applying the stimulus to the circuit, the response
for that IC differs from the expected response. The complete application of the set of test
patterns; i.e., the test set, to check for defects in the IC is called a test for this IC.

Logic circuits can be divided into combinational circuits, see Fig. 1.1(a) and sequen-
tial circuits, see Fig. 1.1(b):

Combinational circuits: A combinational circuit, see Fig. 1.1(a), consists of an inter-
connected set of gates, containing no feedback loops'[Kon98] with a set of Primary
Inputs (PIs) and a set of Primary Outputs (POs) to interact with the circuit. The
output response of a combinational circuit only depends on the current applied
stimulus.

Sequential circuits: A sequential circuit, see Fig. 1.1(b), consists of a combinational
circuit part and feedback loops containing memory elements, which give the circuit
the capability to memorize information [Kon98]. The output response of a sequen-
tial circuit depends on the current applied stimulus and on the stimuli applied in the

LA feedback loop is adirected path from the output of a gate to an input of that gate.

1.1 FAULT MODELS 3

Combinational
circuit "
(7]
T part g
e b
;—‘? — Combinational — 8_,
w | circuit - 2 - S
= g] FF
= e > 1
> D> : ‘
S & . g FF
= = - E IS om |
T — I 1, memory
() Combinational (b) Sequentia

Figure 1.1: Combinational and sequential logic circuits

past. This information from the past is usually stored in explicit memory; i.e., in
one or more latches or flipflops (FFs).

Most ICs contain sequential circuits, implemented with FFs and/or latches. Testing
combinational circuits is far easier than testing sequential circuits, because the stimuli
applied in the past do not have to be taken into account. A sequential circuit can be tested
as a combinational circuit when the circuit conforms to a full-scan design [Eic77]. In a
full-scan design, shown in Fig. 1.2, all FFs are made scannable by linking them together
to form one or more shift-registers, the scan-chain(s). Bits are shifted in the scan-chain
through the scan-in input, and are shifted out of the scan-chain through the scan-out
output. This way all FF values can be controlled (observed) directly by shifting in (out)
values to (from) the scan-chain. The FFs that form the scan-chain are called scan flipflops
(SFFs). The test-mode signal specifies whether the FFs work in normal application mode
or in scan mode. In this dissertation it is assumed that the designs conform to full-scan
designs.

1.1/ Fault models

As previously mentioned, defects can result in adjusted behavior in different ways.
To model this behavior, various fault models are introduced. In this dissertation we will
focus only on the following two important fault models: the stuck-at fault (SAF) model
and the delay fault model.

Stuck-at fault: The defect results in signal lines in the circuit being stuck-at a fixed

4 CHAPTER 1. INTRODUCTION

Combinational
. . . [72]
£ logic circuit O
o o
part
. L
] I
,"I"""':"‘; - scan—out
! >FF -
| = |
=== |
E FF (<
scan—in . B |'<L scan—chain
test- ———————— /
mode

Figure 1.2: A sequential design with a scan-chain

a
0 o1

b e | 21
07
Fo
x €| 0/1

. g |2 10

1

Figure 1.3: Circuit with a SA1 fault at line e

value, i.e., stuck-at logic 0 (SAQ) or stuck-at logic 1 (SA1). A test pattern for detect-
ing a SAF at a signal line | has to activate the fault, i.e., the applied stimulus should
result in a different value on | in the fault-free case compared to the faulty case, and
it should propagate the fault-effect to an output. Fig. 1.3 illustrates this for a simple
example circuit with four Pls (a to d) and one PO (z) with a SA1 fault at internal
line e. The fault is activated by the 0 on Pl b; i.e., e is O in the fault-free circuit and
1 the faulty circuit, shown as 0/1 in Fig. 1.3. The 0/1 fault-effect at e is propagated
to PO z by the 0 at a and the 1 at d. PO z is 0 in the good case and 1 in the faulty
case (0/1 in Fig. 1.3). The value of PI ¢ does not matter, shown with the don’t-care
value ’x’.

Delay fault: The defect results in malfunctioning of the IC at a given clock-frequency
within the timing specification of the I1C. Delay faults can be divided into two groups
[Smi85]:

1. Path-delay fault: A path is defined faulty if it fails to propagate a transition
from the path input to the path output, within a specified time interval.

1.2. TESTING METHODS 5

2. Gate-delay fault: A gate is defined faulty if its gate defect results in at least
one path-delay fault.

Besides the stuck-at fault and the delay fault, other fault models exist, such as the Ippq
fault, the stuck-open fault and the bridge-fault [Fuj85].

1.2| Testing methods

Testing of a circuit can take place in two different ways:
1. Off-chip testing
2. On-chip testing

Subsection 1.2.1 describes off-chip testing while Subsection 1.2.2 describes on-chip test-
ing. The main advantages and disadvantages are summarized in Subsection 1.2.3.

1.2.1 Off-chip testing

In case the circuit is tested off-chip, external Automated Test Equipment (ATE) (i.e.,
a tester) is used to apply the test stimuli to the Pls and to compare the output responses
of the Circuit-Under-Test (CUT) with the responses of the fault-free circuit. Before the
test patterns can be applied to a circuit, they have to be generated and stored in the tester.
These test patterns are generated by Automatic Test Pattern Generators (ATPGS).

Given a circuit with n inputs (both Pl and SFF inputs), 2" different test patterns are
possible. One can imagine that it is not feasible to apply all possible test patterns to large
circuits (with a large number of inputs). Therefore the ATPG has to generate a subset
of test patterns with which still all possible SAFs can be detected. Nowadays state-of-
the-art ATPGs [vdL 96, Wai90] are capable of generating test sets with a nearly complete
coverage of all detectable SAFs, even for the larger and more complex circuits. But with
the increasing complexity of circuits, the ATPG test set sizes also grow, even with all
state-of-the art techniques [Ake87, Goe81, Tro91, Pom91, Cha92, Kon96c] that aim at
producing a compact test set. This may have a major impact on the test costs for the
semiconductor industry. Increasing test set sizes not only result in longer test times, but
also in increased memory usage on the ATE in order to store the test patterns and the
output responses.

Due to the technological progress, the clock-frequencies on which ICs run are ever
increasing. To be able to detect possible timing-problems, it can be important that the I1C
is tested at-speed, i.e., it is tested at the clock frequency it will run in normal application
mode. As a result, for new ICs often new testers are required which are able to operate at
these high frequencies and which are accurate enough to capture the responses of the ICs.

To cope with this increasing complexity of circuits, faster testers with much more
memory will be required, which will become very expensive.

6 CHAPTER 1. INTRODUCTION

BIST Integrated Circuit |
% controller é_
I= Circuit @]
g Under -
-g PG 7= Test (core) 7= ORA §

Figure 1.4: On-chip testing

1.2.2 On-chip testing

With on-chip testing is meant that the test is embedded on the IC. A circuit with an
on-chip test is often referred to as a circuit with Built-In Self-Test (BIST). The basic idea
of a circuit with BIST is depicted in Fig. 1.4. Both the Test Pattern Generator (TPG),
which applies the test stimuli to the inputs of the core, and the Output Response Analyzer
(ORA), which compares the output responses with the responses of a fault-free circuit, are
embedded on the IC. They are controlled by a BIST controller. The advantage of a circuit
with BIST is that there is no need for expensive external testers to apply the input stimuli
to the circuit and to analyze the output responses. This opens the possibility for massive
parallel testing.

One of the main draw-backs of BIST is the silicon-overhead necessary to implement
the BIST hardware, i.e., the TPG, the ORA and the BIST controller. This overhead de-
pends on the type of TPG that is used. Often a Linear Feedback Shift Register (LFSR),
described in Chapter 2, is used as Pseudo Random (PR) TPG to generate the test patterns.
This is a very low cost implementation, but the fault coverages that can be achieved with
this TPG are often also low. In order to get a higher fault coverage, the PRTPG should
apply a very large number of test patterns, resulting in impractical test application times.

Other BIST solutions embed deterministic (ATPG) test patterns in the TPG. An easy
implementation would be embedding a ROM in which a complete ATPG generated test
set is stored. Although a high fault coverage can be achieved, the silicon overhead for the
ROM can be significant.

Another draw-back of BIST is the possible performance-penalty introduced by the ex-
tra BIST hardware, adding the extra hardware to a design can result in extra development
iterations and increases the development time.

More detailed descriptions of BIST methods are given in Chapter 2.

1.2.3 Advantages and disadvantages of off-chip and on-chip testing
The advantages (+) of off-chip testing are:

+ High fault coverages can be achieved.

+ Relative compact test sets, resulting in relative low test application times.

1.2. TESTING METHODS 7

+ No performance impact on circuit for normal application mode, except for scan-chain
insertion.

while the disadvantages (-) of off-chip testing are:

- Due to ATE limitations, often at-speed testing is not possible.
- Expensive external testers are necessary.

- ATPG can take much CPU-time to generate the test set.
The advantages (+) of on-chip testing are:

+ No expensive external testers are necessary.
+ Often no complex ATPG tool is necessary to generate the test set.

+ At-speed test with a possibility for parallel testing.
and the disadvantages (-) of on-chip testing are:

- Lower fault coverages, and/or
- High silicon overhead.

- Hardware insertion may result in extra development iterations in the design flow; i.e.,
longer development times.

- A possible performance-penalty.

- Fault localization (diagnostics) is difficult.

The ever increasing complexity of designs has a major impact on the test costs. Not
only faster testers are required which still can do accurate measurements, but the increas-
ing ATPG test set sizes result in higher test pattern memory requirements and longer test
application times. The more (tester) time a test takes for an IC, the more expensive the
test becomes. According to the International Technology Roadmap for Semiconductors,
it is even expected that without the necessary solutions, the ATE will not be able to cope
with these high demands within only a few years [Sem01].

BIST would be a solution to decrease the tester demands, but the lower fault coverage
achieved by BIST often does not meet the high quality demands of the semiconductor
industry, or the test time required to reach a high fault coverage is way too long. Also the
silicon area overhead penalty and/or the performance penalty and the diagnostics prob-
lem are known reasons why BIST often is not used as alternative to ATPG/external ATE.
When a test fails with on-chip testing it is also difficult to find the fault location, as it is
in most cases not known which pattern(s) caused the test failure, and hence which faults
are covered by the failing pattern(s). In other words, diagnostics is difficult with on-chip
testing. In this dissertation methods are proposed which can be used to reduce test set
sizes for off-chip testing, and methods which can be used to improve the fault coverages
for on-chip testing without large silicon overhead.

8 CHAPTER 1. INTRODUCTION

1.3 Test Point Insertion

One way to solve test problems is by inserting Test Points (TPs) in the circuit. TPs
provide extra inputs and/or outputs to internal parts of the circuit. TPs are often divided
into Control Points (CPs) and Observation Points (OPs). A CP provides an extra input to
the circuit while an OP provides an extra output. With a CP, internal signal lines can be
set to a specific value such that it becomes easier to activate faults in the fan-out cone of
the CP. An OP provides an extra output. At an OP, internal parts of the circuit can directly
be observed. This way fault-effects from faults in the fan-in cone of the inserted OP do
not have to be propagated further through the CUT, but can be observed directly at the
extra inserted output.

With the extra inputs and outputs of inserted TPs, it becomes easier to detect faults
within the circuit that were hard-to-test before. Test Point Insertion (TPI) can result in
higher fault coverages achievable with on-chip testing and can also reduce ATPG test
generation times and test set sizes for off-chip testing.

However, not every position in the circuit is suitable for a TP. The problem for TPI
is to find the positions in the circuit where TPs will result in the best fault coverage
improvement, or the best test set size or test generation time reduction. There exist several
TPI methods which search the positions in CUTs at which TPs would result in good fault
coverage improvement for on-chip testing. However, most of these methods are designed
for Boolean circuits, while the real-world” industrial circuits also contain non-Boolean
elements and suffer from other restrictions that these TPl methods cannot cope with. TPI
methods for off-chip testing, in order to reduce ATPG test times and data volume, have
not been researched. In this dissertation TPI methods are proposed which can be used to
increase both the fault coverages achievable with on-chip testing and to reduce ATPG test
times and data volume with off-chip testing for industrial circuits.

1.4\ Industrial circuits

Besides the well-known Boolean elements, e.g., AND-gates, OR-gates, inverters, etc.,
in the industry also non-Boolean elements are used. Besides 0 or 1, these elements can
also result in the "high impedance’ state or Z. Industrial circuits also often contain blocks,
like embedded memories, from which it is not always known what the values on its out-
puts are. This results in “unknown’ U (fixed) values on several inputs of the circuit core,
the inputs that are connected with the outputs of that block (memory). In the remaining
part of this dissertation, with Boolean circuits are meant circuits containing only Boolean
gates and no unknown (fixed) circuit inputs. Subsection 1.4.1 describes the occurrence
of Z and U values in three-state circuits, while Subsection 1.4.2 shortly describes several
three-state elements found in industrial circuits. These three-state elements are taken from
[vdL96].

1.4. INDUSTRIAL CIRCUITS 9

control .
-]

data __Fk
a

control, bus
-

data, __FK @z

control ===
controlc

e

u T
a a__D__ z data __!\K data b__>

@A bus (b) A three-state bus driven by (c) Thetwo bus-driversare never
driver three bus-drivers enabled at the sametime

control

Figure 1.5: Examples of three-state logic

1.4.1 The ’floating’ (Z) and unknown’ (U) value in three-state circuits

Often, circuits are designed with Boolean elements only and can be expanded into a
circuit consisting of primitive Boolean elements. These primitive Boolean elements are
listed in Appendix C. They are the AND / NAND, OR / NOR, XOR / NXOR and the
BUF (buffer) / INV (inverter). The output of a Boolean element is 0 or 1, depending on
the input-values.

Besides Boolean logic, industrial designs can also contain non-Boolean logic. The
output of these elements cannot only be 0 or 1, but can also be at high impedance (float-
ing), commonly denoted by signal value Z. These logic elements are called three-state
elements. An example of such an element is the bus-driver, see Fig. 1.5(a). When a bus-
driver is enabled (1 on the control-input), the output of the driver equals the data-input,
when it is disabled (0 on the control-input), the output floats (is Z). Bus-drivers are used
to drive buses; i.e., multiple bus-drivers are used to drive a single node, as depicted in
Fig. 1.5(b). When two or more bus-drivers are enabled and drive the bus with opposite
values, it is not known what the value at the bus-node will be. A bus-conflict occurs and
the value at the bus node will be unknown (U). Besides that the logic value at the bus
cannot be determined, bus-conflicts can also result in IC damage. Connecting two lines
with opposite values can result in a short between power-lines. Therefore bus-conflicts
should be avoided. Often this is accomplished by making sure that the bus-drivers con-
nected to a given bus are never enabled at the same time. Fig. 1.5(c) shows an example
how bus-conflicts can be avoided; the two bus-drivers are never enabled at the same time;
assuming that the inverter operates properly.

10 CHAPTER 1. INTRODUCTION

L
EP| _q r
i
wl dat { }
ata z
EP| _q I —
control z | Z
‘1 _{ i EN_{ EN X
X LV |
dat x_| B E
? a_/ — Z _q E] I _‘\
C_Z 0 0 0
(a) Switch (b) Open (c) Open (d) Tri (e) Tristate
Drain Drain inverter
PFET NFET

Figure 1.6: Three-state elements

1.4.2 Three-state elements

This subsection gives a short description of several three-state elements found and
used in the semiconductor industry. More information on these three-state elements can
be found in Appendix D.

(N)Switch: This element, shown in Fig. 1.6(a) has two inputs. A control and a data
input. When the control input is 1 (0 in case of an NSwitch), the output equals the
value of data, else the output floats and is Z.

(N)Bus-driver: Is the same as (N)Switch except that it cannot propagate Z-values from
the data input to the output. In that case the output becomes unknown.

Three-state bus: The three-state bus, shown in Fig. 1.5(b) is driven by multiple lines
(inputs). When all lines are undriven, i.e., propagate value Z, the output will also be
Z. When only one line is driven, the output equals the value of this line. But when
multiple lines are driven, with one line carrying the value 0 and another the value
1, a bus-conflict occurs and the output becomes unknown.

Wired AND (WAND): This kind of bus can be seen as an AND gate. When all inputs
are undriven, the output will be Z. If none of the inputs carry the value 0 and at least
one input carries a 1, the output becomes 1. A 0 on an input dominates all other
input values and the output becomes 0.

Wired OR (WOR): See Wired AND, except that this bus can be seen as an OR gate; an
input value 1 dominates input value 0.

1.5. OPEN QUESTIONS AND PROBLEMS 11

Pull-down bus: ldentical to the three-state bus except for the case that no lines are
driven, i.e., all are Z. The output does not become Z but is pulled-down to a 0.

Pull-up bus: Identical to the three-state bus except for the case that no lines are driven,
i.e., all are Z. The output is pulled-up to a 1 instead of Z.

Open Drain PFET (ODP): The ODP, shown in Fig. 1.6(b) can be seen as a bus-driver
which output is 1 when the input of this element is 0 and floats when the input is 1.

Open Drain NFET (ODN): The ODN, shown in Fig. 1.6(c) can be seen as a bus-driver
which output is 0 when the input of this element is 1 and floats when the input is 0.

Tri: The Tri, shown in Fig. 1.6(d) is a combination of an ODP and an ODN in which
the outputs are combined. The designer should prevent that both drivers are turned
on at the same time.

Tristate inverter (TRINV): The Tristate inverter, shown in Fig. 1.6(e) is an element
which consists of a bus that is driven by two drivers, an NBus-driver and a Bus-
driver. The data input is used to enable only one of these drivers. This way no
conflict can occur.

1.5/ Open questions and problems

The increasing complexity of 1Cs makes testing of ICs more and more costly. In or-
der to reduce the ATE costs, on-chip testing, i.e., BIST, is a way to embed the test in the
IC chip reducing the need of expensive ATE. However the fault coverages achieved with
BIST are often not high enough to reach an acceptable low DPM level for the semicon-
ductor industry. The open questions that still exist are:

1. What kind of methods exist in literature that can be used to improve fault coverage
with on-chip testing?

2. How well are existing on-chip test methods in achieving both low hardware over-
head and high fault coverage?

3. Are existing on-chip test methods applicable to industrial circuits, i.e., can they
cope with high-impedance and unknown values and are they applicable to very
large designs?

By inserting TPs into a circuit, it becomes easier to detect hard-to-test faults. After TPI,
higher fault coverages can be achieved with BIST. The questions that arise are:

1. Which TPI methods can be used to improve the fault coverage with on-chip testing?

2. Are existing TPl methods applicable to industrial circuits with respect to

12 CHAPTER 1. INTRODUCTION

e the fault coverage achievable after TPI?

e the hardware overhead of TPs? (how many TPs are inserted in order to get
higher fault coverage?)

e the circuit size?
e the element types in CUT, i.e., Boolean and non-Boolean element?

Applying on-chip test, i.e., BIST, is only one way to reduce the ATE costs with re-
spect to test pattern memory requirements and test application & generation times. TPI
also makes it easier for ATPGs to generate test patterns for the faults in the circuit. But
does this also result in significant reduction of test set sizes and so in test pattern mem-
ory requirements and test application generation times? The open question for TPI on
facilitating ATPG are:

1. Can TPI (for BIST) be used to significantly reduce ATPG test set sizes?
2. Which ATPG specific test problems exist that cause large test sets?

3. Which TPI techniques can be used that aim at solving the ATPG specific test prob-
lems that cause large test sets?

4. Does TPI for ATPG, e.g., with TPI techniques that aim at solving the ATPG specific
test problems, result in better test set size reduction compared to TPI for BIST?

Currently it is assumed that TPI is applied to improve the detectability of SAFs in the
circuit. But what is the impact of TPI on other fault models? I.e., can TPI also be used to
reduce ATPG test set sizes for delay faults?

1.6/ Overview of this dissertation

This dissertation is organized as follows: At first, the goal of this research was the
development of ATPG driven BIST. Therefore existing BIST methods have been studied
on their performance with respect to fault coverage, silicon overhead and application to
large industrial designs. During studying these existing methods, we found out that all
of them suffered from low fault coverages and/or high silicon overhead for circuits with
faults that are hard-to-detect by PR patterns. As TPI is a successful technique to im-
prove the testability of circuits, the research was continued on TPI instead of BIST. For
completeness, Chapter 2 provides the research and evaluation of the existing state-of-
the-art BIST methods with respect to the hardware overhead and achieved fault coverage.
Chapter 3 starts with a general description of the concept, purpose and properties of TPI,
followed by descriptions of state-of-the-art TPI algorithms found in literature, which are
mainly aimed at improving the PR fault coverage in a BIST environment. This chapter
also provides an overview of the TPI topics addressed in the remaining part of this dis-
sertation including an overview of the test circuits used to benchmark TPI algorithms.

1.6. OVERVIEW OF THIS DISSERTATION 13

The state-of-the-art TP1 methods often are not suitable for industrial circuits, due to CPU
time consumption, accuracy of the selection of TP positions, and/or support for industrial
circuits with three-state elements and U values. Chapter 4 provides a proposal for a TPI
algorithm that results in higher fault coverage improvements for BIST than the existing
TPI methods and can be applied to industrial circuits. Chapter 5 starts with the impact of
TPI for PR BIST on ATPG test set sizes, followed by a description of the ATPG specific
testability problems that cause large tests. Given these ATPG specific testability prob-
lems, a proposal of a TPI algorithm for ATPG is given, i.e., a TPI algorithm that aims
at reducing ATPG test set sizes. Experimental results will show the effectiveness of the
proposed TPI algorithm for ATPG. Chapter 6 shows the impact of TPl on ATPG test set
sizes for delay faults. The chapter starts with describing the similarities & differences be-
tween SAF ATPG and delay fault ATPG, including the implications of delay fault ATPG
for TPI. It will be shown that TPI for ATPG can be used both for SAFs and for delay
faults. Chapter 7 provides a summary and conclusions of the main contributions of this
dissertation, including suggestions for future work.

Appendices A and B provide details on the ISCAS, respectively the industrial (Philips),
circuits used throughout this dissertation for experimental results. Appendices C and D
provide details on the Boolean, respectively non-Boolean (three-state), elements that are
found in (industrial) circuits. Appendix E provides information on the test tools DAT and
AMSALZ, that have been used. In these tools the algorithms and techniques presented in
this dissertation have been implemented.

2DAT is embedded in AMSAL

14

CHAPTER 1. INTRODUCTION

CHAPTER 2

Built-1n Salf-Test

This chapter gives an overview of Built-In Self-Test (BIST) techniques that can be
used to implement on-chip testing. Although in Section 1.2.2 already a short description
of BIST has been given, Section 2.1 starts with describing the general concept and purpose
of BIST; what is BIST and what can you do with it? Section 2.2 describes the Linear
Feedback Shift Register (LFSR) and the Multiple Input Shift Register (MISR), which are
often found in BIST implementation as TPG, respectively ORA. There are restrictions in
order to be able to implement an industrial circuit with BIST. The restrictions, limitations
and implications of BIST on industrial circuits are summarized in Section 2.3. BIST is
often characterized by its TPG implementation. Section 2.4 starts with describing the
different types of TPGs that are used to implement BIST. It is followed with techniques
that can be used to facilitate the TPG to generate patterns that do detect the hard-to-test
faults. Sections 2.5 to 2.7 describe state-of-the-art BIST methods, based on the different
BIST facilitation techniques listed in Section 2.4; Section 2.5 describes BIST methods
that modify the test patterns generated by the TPG, Section 2.6 describes BIST methods
that fully embed a deterministic test set, and Section 2.7 describes BIST methods that
only embed parts of deterministic test sets or test patterns. Sections 2.8 describes how
the circuit itself itself can be made better testable, instead of using state-of-the-art BIST
methods. Section 2.9 concludes this chapter.

2.1] Concept and purpose of BIST

The purpose of BIST is to embed the test for a circuit on-chip. This way the external
tester requirements, and hence the test costs for the semiconductor industry, can be re-
duced. BIST is accomplished by adding logic to the IC that allows the on-chip testing of
the 1C, hence no stimuli have to be applied by the ATE, neither the CUT responses have
to be captured by the ATE and compared with the responses of a fault-free design. The
general BIST operation is depicted in Fig. 2.1. This is a slightly more detailed version of
the picture shown in Fig. 1.4.

15

16 CHAPTER 2. BUILT-IN SELE-TEST

starttest | [gig7 Integrated Circuit .
controller é.
test—mode | Circuit @)
i >
2 i Under E
c > TPG >m =
> u 4| Test Y n
X
£ - (core) ORA
& has fault

Figure 2.1: Built-In Self-Test

In normal application mode, the input values of the CUT are applied externally through
the Pls. In test mode, entered by setting start test, the BIST controller sets the test-mode
signal and instead of external input values, the TPG applies the stimuli to the CUT. It is
possible that the TPG is initialized by an initial pattern applied externally (through PIs).
In test mode, the ORA captures the output values from the CUT. After all test patterns
are applied to the circuit and all responses have been captured by the ORA, the signal has
fault indicates whether a fault has been detected.

2.2 TPG and ORA

LFSRs are often used in BIST as TPG, while Multiple Input Shift Registers (MISRs)
are often used as ORA in BIST. Therefore, before the descriptions of existing BIST im-
plementations in Sections 2.5-2.7, first the LFSR and MISR are described in Subsections
2.2.1and 2.2.2.

2.2.1 Linear Feedback Shift Register (LFSR)

BIST TPGs are often implemented by means of an LFSR[Bar87]. The general struc-
ture of an LFSR is depicted in Fig. 2.2. An LFSR is composed of R memory cells (cells
Mo t0 Mgr_1 in Fig. 2.2) connected together as a shift register with linear feedbacks (exclu-
sive or (exor) function). The variables h;, with 0 < r < R —1, the feedback coefficients,
indicate whether there exists a feedback connection from the output of memory cell Mg_;
to the input of memory cell M,. These coefficients can be 0 (no feedback connection) or 1
(feedback connection).

The next state of an LFSR is uniquely determined from the previous state by the
feedback network. Given an initial state, or seed, the LFSR will generate a sequence of
different states, as illustrated by the LFSR given in Fig. 2.3. As soon as a state repeats,

2.2. TPGAND ORA 17

' '
h R-1
J;w

[serial output
S MR_ll > (scan—chain)

Mo

>|\/|1 >\JJ’|\/|2l

memory cell
Parallel outputs (PIs)

Figure 2.2: Linear Feedback Shift Register

=

NP
Y

Y

<
o

Y

<
[y

Y
N«

M, M3

OrRrRrRPRRLROO|S
RPOoOORERERR|[S
CoORrRERERO|S

PP RPRRPLOOR

Figure 2.3: A 4-bit LFSR

all following states will also repeat; the sequence of states is periodic. Given the seed of
0110, the 4-bit LFSR in Fig. 2.3 will generate a sequence of six different states. When
the parallel outputs of the LFSR are connected to the Pls of the CUT, this LFSR would
apply 6 of the 16(=2%) possible test patterns to the CUT. LFSRs can also apply PR pat-
terns to scan-chains. In that case the last memory cell is often used as serial input for the
scan-chain.

An LFSR can be characterized by its characteristic polynomial (ChPol). The ChPol
of an R-bit LFSR is given in Eq. 2.1.

ChPol(x) = hg+hy-x+ha-x24 - +hg_g - xR 14 xR (2.1)

A ChPol is called a primitive ChPol when the corresponding R-bit LFSR would gener-
ate a sequence of 2R — 1 different states, given any non-zero seed. This is also called a
maximum length sequence and the corresponding LFSR is called a maximum configured
LFSR. Because an LFSR is linear, an LFSR initialized with the all-zero pattern will al-
ways generate the all-zero pattern.

The next state of the LFSR can be calculated by multiplying the current state of the

18 CHAPTER 2. BUILT-IN SELE-TEST

0 1 O 0
0O 0 1 0
o 0o o0 .. 1
ho hi hy ... hr

Figure 2.4: The characteristic matrix of an LFSR

serial output
(scan chain)

- l Ml - i M2 e NlR_l<—

Parallel outputs (primary inputs)

Figure 2.5: Out-tapping (type-I) Linear Feedback Shift Register

LFSR with the characteristic matrix, T¢, shown in Fig. 2.4. Given the current state X(t),
the next state, X (t + 1) can be calculated with Eq. 2.2.

X(t+1)=X(t) T (2.2)
or given the initial state X (0), the state after t cycles is given by:
X(t) =X(0)-T¢ (2.3)

The ChPol given in Eq. 2.1 can be used to describe both an out-tapping (or type-I)
LFSR and an in-tapping (or type-Il) LFSR. The LFSR depicted in Fig. 2.2 is an in-tapping
LFSR; the XOR taps are within the shift register. The out-tapping LFSR represented by
the same ChPol is depicted in Fig. 2.5. The in-tapping LFSR is more commonly used
than the out-tapping LFSR, but both configurations are found in existing BIST schemes.

2.2.2 Multiple Input Shift Register (MISR)

As ORA often the Multiple Input Shift Register (MISR) [Bar87] is used. The MISR
is depicted in Fig. 2.6. A MISR is quite similar to an in-tapping LFSR, it consists of R
memory cells (Mo...Mg_1) with linear feedbacks from cell Mg_;. However, the MISR is
also fed by the POs of the CUT. Like the LFSR, the MISR can be characterized by the

2.3. BISTAND REAL-WORLD CIRCUITS 19

Connected to POs of the CUT

iy iy |
D= My == M, =D M, — M-

Figure 2.6: A Multiple Input Shift Register

polynomial given in Egq. 2.1. Given the ChPol and the initial state of the MISR, every
cycle the MISR will generate a new state, based on the current state, the ChPol and the
response of the CUT. The state of the MISR is referred to as the signature. Given the
initial state, the ChPol and the set of responses from the CUT to a given test, the signature
of the MISR after the complete test can be determined. This signature is compared to
the signature of a simulated fault-free circuit. When these signatures do not match, the
CUT is not fault-free. However, it is possible that due to aliasing, the signature of the
CUT matches the signature of the fault-free circuit, while not all responses were correct.
In [Bar87] it is shown that the probability on aliasing can be approximated with Eq. 2.4,
where R is the number of stages in the MISR.

. 1
p(aliasing) ~ R (2.4)
Eq. 2.4 shows that the probability on aliasing is independent of the number of test patterns.

As long as the number of MISR cells is large enough; e.g., for Ry sk > 16, the probability
of aliasing is almost negligible (< 0.0015%).

2.3| BIST and real-world circuits

BIST is not straightforwardly suitable for implementation in every circuit. A circuit
must meet several requirements, especially with respect to high impedance and unknown
values, before BIST can successfully be applied.

As described in Section 2.2, MISRs are often used as ORA. In order to get a correct
and known signature in the MISR, no "unknown’ or floating values are allowed to be
shifted in the MISR during test. When such a value is shifted in the MISR, the complete
MISR state becomes unknown and it cannot be checked whether the signature conforms
to a fault-free circuit. Therefore a circuit should satisfy the following requirements for
successful BIST implementation:

1. There are no floating/unknown circuit inputs that can propagate to the MISR.

20 CHAPTER 2. BUILT-IN SELE-TEST

2. POs that can float or be unknown should not be connected directly to the MISR in
order to avoid an unknown MISR signature.

These requirements can be satisfied when:

e Embedded memory inputs, bi-directional inputs and other possibly floating inputs
or inputs with an unknown value are set to a known value by extra test-logic.

e Bus-drivers of three-state buses are never enabled at the same time, regardless of
the circuit’s input values,in order to avoid bus-conflicts and hence buses becoming
unknown.

e POs that can float, e.g., due to floating buses, should be pulled-up or pulled-down
before their value is shifted into the MISR.

e POs that cannot be pulled-up/pulled-down and still can float or can become un-
known should not be connected to the MISR. This has a negative impact on the
achievable fault coverage, because an unknown MISR signature means no fault
coverage at all.

Bus-conflicts should be avoided regardless whether they can result in unknown MISR
signatures because they can cause circuit damage. ATPGs do avoid bus-conflicts by not
generating test patterns that cause bus-conflicts, but PRTPGs do not! Because PRTPGs
are often used in BIST implementations, one should make sure that buses in the circuit
can never become conflicting regardless of the circuit input values.

In Guetal. [Gu 01] techniques are described, to overcome BIST problems e.g., timing
violations and unknown MISR signatures due to unknowns, that can be used to minimize
the designs efforts with respect to BIST implementation in industrial designs.

In general, BIST implementations assume that the circuit confirms to a full-scan de-
sign. In order to be able to reach high enough fault coverages, all memory elements (i.e.,
flipflops, latches) should be made scannable such that their values can be controlled and
observed.

2.4| BIST implementations

In order for BIST to be successful, BIST implementations have to meet the following
requirements:

1. Low hardware overhead
2. Low test application time (i.e., low number of applied test patterns)

3. High enough fault coverage in order to meet the test quality requirements

24. BIST IMPLEMENTATIONS 21

Especially the first two points are hard to achieve at the same time. Several state-of-the-art
BIST methods mainly focus on low hardware overhead [Lis87, Wai89, Hel92, Lem94],
while other methods focus mainly on low test application times [Nag95, Duf91, Duf93,
Vas93]. One of the main differences in all BIST implementations found in literature is the
type of TPG that is used. Basically, TPGs can be divided into the following three groups:

1. Exhaustive TPG (XTPG)
2. Pseudo random TPG (PRTPG)
3. Deterministic TPG (DTPG)

Each of these groups of TPGs have their own advantages/disadvantages with respect to
hardware overhead, test application time and fault coverage. This will be described in
Subsections 2.4.1 to 2.4.3.

2.4.1 Exhaustive test pattern generator (XTPG)

The (theoretical) XTPG generates all possible test patterns. If a circuit has n Pls, the
XTPG will generate 2" patterns®. The XTPG generates all possible patterns and hence
will also detect all possible detectable single SAFs; the fault coverage will be high. How-
ever, one can imagine that this large number of test patterns that have to be generated will
not be feasible for large designs. Consider ISCAS’85 circuit c7552, see Appendix A. This
circuit has 207 inputs (both PI and SFF inputs). An XTPG would have to generate 2297
patterns! Therefore, the XTPG is not practical for nowadays complex industrial designs
as they often have far more than 207 inputs. In general one can say that the XTPG has a

+ low hardware overhead
— very large test application time
+ complete fault coverage (all detectable faults are covered)

The large number of test patterns of the XTPG can be reduced considerably when
a pseudo exhaustive test pattern generator (PXTPG) is used. In this case the circuit is
first partitioned into several independent sub-circuits. Each sub-circuit is tested with an
XTPG. Because the number of Pls for each sub-circuit is much lower than the total num-
ber of Pls, the total number of test patterns that have to be generated can be reduced
considerably.

Fig. 2.7(a) shows an example circuit with 16 Pls. The 16-bit XTPG will generate 216
= 65536 patterns. Fig. 2.7(b) shows the same circuit in case PXTPG-testing is used. The
circuit of Fig. 2.7(a) has been divided into three independent sub-circuits with respec-
tively 4, 7, and 5 Pls. Each of these sub-circuits can be tested with an XTPG. Because the

10r 2" — 1 patterns, because often the all-zero pattern will not be applied

22 CHAPTER 2. BUILT-IN SELE-TEST

— 2 . . —

L > Sub—circuit1l |5

Circuit Ea - e

0) Under - O ;\-»
(a1

= Test e ; < L

_?; > = >| Sub-circuit2 >

£|2 |- $|:2 S |-

2 - —E -

L ——— |

— —

> > Sub-circuit3 >

- — > —

(a) XTPG (b) PXTPG

Figure 2.7: (Pseudo) exhaustive test pattern generators

sub-circuits are independent, they can be tested in parallel by using the same XTPG with
as width the number of inputs of the sub-circuit with the largest number of Pls. In the
example, this sub-circuit has 7 inputs and hence 27 = 128 test patterns will be generated,
significantly less than the initial 65536 test patterns.

Although the number of test patterns that will be generated by a PXTPG is already
reduced enormously, the PXTPG is still not very practical. Partitioning the circuit into
independent sub-circuits is a complex problem by itself (NP complete) and is not always
possible. Even when such sub-circuits are found, they are often still too large to be tested
by a XTPG.

2.4.2 Pseudo random test pattern generator (PRTPG)

A PRTPG generates a set of PR test patterns which are applied to the CUT. These pat-
terns are generated without taking into account any knowledge about the CUT structure.
The patterns generated by a PRTPG are not really random, because they are determined
deterministically by the implementation of the TPG. Although the patterns seem to be
random, the PRTPG will generate the same sequence of patterns given the same initial
pattern. Therefore this TPG is called a pseudo random test pattern generator.

Usually only a small subset of all possible test patterns are generated by the PRTPG.
This way the test application time can be kept low, however at the cost of a lower fault
coverage. Because the patterns are generated without any knowledge of the CUT, it can
not always be guaranteed that all stuck-at faults are covered.

PRTPGs are often implemented by means of an LFSR or Cellular Automaton (CA)
[Hor89]. Although an LFSR has very low hardware overhead, the patterns generated by
the LFSR often fail to detect faults known to be Random Pattern Resistant (RPR). RPR

24. BIST IMPLEMENTATIONS 23

Fault efficiency as function of the number of applied PR test patterns for circuit c7552.

100
99 -
98 [~
96 [~

9% -

90 [~

Fault efficiency (%)

85 -

fault coYerage ——

80 \ J \ \ \ \ | \
64 256 1024 4096 16384 65536 262144 1.0485¢
Number of applied PR test patterns

Figure 2.8: Fault efficiency versus number of applied PR patterns plot

faults are faults which can only be detected by a very small set of test patterns. Most
faults, i.e., non RPR faults, can be detected by a relative large set of different test patterns.
Because it is not feasible (with respect to test application time) to generate all test patterns,
the number of test patterns generated by the PRTPG is often only a very small subset of
all possible test patterns. Still it is likely that this subset contains at least one pattern with
which a non RPR fault can be detected. Because there are only very few patterns which
will detect an RPR fault, it is unlikely that this subset contains a pattern with which an
RPR fault will be detected. Hence, the RPR faults remain undetected, reducing the fault
coverage. Again one could increase the number of generated test patterns, but this will
result in unacceptable long test application times.

Fig. 2.8 shows a plot of a PRTPG run on ISCAS’85 circuit ¢7552. The figure shows
the fault efficiency as function of the number of applied PR test patterns. Note that the
x-axis is in log2-scale! In Chapter 1, the fault coverage has been defined as the ratio of
the number of actual detected faults and the total number of faults in the IC; the fault
efficiency, on the other hand, is defined as the ratio of the number of actual detected faults
and the number of detectable faults in the IC, i.e., the fault efficiency does not take into
account faults that cannot be detected.

Fig. 2.8 shows that less than 200 PR patterns are required to reach 90% fault effi-
ciency. Also 94% fault efficiency has been reached with less than 2000 PR test patterns.

24 CHAPTER 2. BUILT-IN SELE-TEST

But increasing the fault efficiency from 94% to 96% becomes already harder, although
the number of required patterns is still acceptable in most cases; after 15,000 patterns the
96% level has been reached. But the remaining 4% becomes a problem. The 98% fault
efficiency level already requires 180,000 patterns, more than 10 times as much as the 96%
level. And even after applying 1 million PR test patterns, the 99% fault efficiency level
has not been reached. This means that even for such a small circuit as the c7552 (only
3512 gates), over 1% of all detectable faults cannot be detected after applying one million
PR patterns. In general one can say that the PRTPG has a

+ low hardware overhead
- large test application time

- low fault coverage

2.4.3 Deterministic test pattern generator (DTPG)

Both the XTPG and the PRTPG generate a lot of test patterns which are useless, these
test patterns do not detect any *new’ faults that were not already detected by other patterns.
A deterministic TPG generates a set of deterministic test patterns, often generated by an
ATPG tool. These deterministic test patterns do contribute to detecting "new’ faults. By
generating deterministic patterns, often the number of test patterns that have to be applied
is low (short test application times), while still high fault coverages can be reached. The
deterministic test patterns will contain the patterns that detect RPR faults.

However, the deterministic test patterns have to be stored in some way in the TPG. The
state-of-the art deterministic BIST methods [Nag95, Duf91, Duf93] handle this in various
ways as described in the following section. One of the most simple implementations
would be using an embedded Read-Only Memory (ROM). But for a circuit with many
Pls and/or test patterns, the size of the ROM and hence the hardware overhead becomes
unpractical large. For example, ISCAS’85 circuit ¢c7552 with 207 inputs requires 128
ATPG test patterns (see Appendix A) for 100% fault efficiency. Hence a 26496 bits ROM
would be required for a circuit with only 3512 gates, this would be an enormous overhead.
In general one can say that a DTPG has a

— high hardware overhead
+ low test application time

+ high achievable fault coverage

2.4.4 BIST facilitation techniques

Fig. 2.9 shows a schematic test time versus hardware plot for several BIST methods.
The ROM acting as DTPG and the LFSR acting as XTPG are put in this plot as extremes.

24. BIST IMPLEMENTATIONS 25

ROM(DTPG)

State—of-the-art

/o

LFSR(XTPG)
. X_

0 Number of test patterns (test application time) —>

Hardware overhead —>

Figure 2.9: Test time versus hardware overhead plot for BIST

The XTPG has a very low hardware overhead, but an extremely long test application time,
while the ROM with embedded ATPG test patterns has a short test application time, but
at the cost of a significant hardware overhead. The PRTPG has the same low overhead
as the XTPG, both implemented by means of an LFSR, but a much lower test application
time. However the lower fault coverages of the PRTPG often do not meet the test quality
requirements of the semiconductor industry. Basically, the techniques that are used to
reduce the BIST overhead and/or to reduce the test application time and/or to increase the
achievable fault coverages can be divided in techniques that:

1. Modify the test
The CUT remains untouched, while the BIST techniques

a. leave the TPG untouched (i.e., a low overhead LFSR), but modify the test pat-
terns that will be applied to the CUT. Generated test patterns are modified,
such that "useless’ patterns, i.e., patterns that do not detect new faults, become
useful, i.e., they detect new faults. BIST methods based on this technique are
described in Section 2.5.

b. create/design a TPG that generates or embeds a full set of deterministic patterns,
while trying to keep the hardware overhead low. BIST methods based on this
technique are described in Section 2.6.

c. create/design a TPG that does not embed a full set of deterministic test patterns,
but only embeds parts of deterministic test patterns for detecting the hard-to-
detect faults. BIST methods based on this technique are described in Section
2.7.

2. Modify the circuit
The TPG remains untouched but the CUT is adjusted such that it becomes better
(PR) testable. Mutation of the circuit is described in Section 2.8.

26 CHAPTER 2. BUILT-IN SELE-TEST

2.5] BIST facilitation techniques: Modify the test pat-
terns

This section describes three BIST techniques, which modify the test patterns gen-
erated by a PRTPG in such a way that the fault-coverage will be increased. They are
described in Subsections 2.5.1-2.5.3.

2.5.1 Reseeding of the LFSR

The LFSR starts generating patterns, given the seed of the LFSR. An R-bit LFSR
with a primitive ChPol will generate all possible R-bit patterns, hence also the patterns
that detect RPR faults. However, it might take a while before the LFSR generates a test
pattern for a specific RPR fault. But with a right chosen seed, several RPR faults can be
detected with only a few patterns, e.g., using a test pattern as seed that detects very hard
RPR faults.

[Lem94] describes a method based on discrete logarithms [Poh78], which selects the
ChPol and the seed of the LFSR which results in the smallest test sequence, detecting a
given set of RPR faults. However, for circuits with many RPR faults, still a very large test
sequence is necessary to cover most, if not all, RPR faults.

Instead of using one seed, reseeding can be used to make sure that most of the RPR
faults are covered by the test sequence. After a first set of test patterns is generated using
an initial seed, the LFSR is re-initialized with a new seed. This way a sequence of useless
test patterns can be skipped, such that the LFSR will continue generating test patterns that
do detect (RPR) faults.

[Hel92] describes a method which uses a partially reconfigurable LFSR and reseeding

=2 CuUT

83 11—
AN A *—>— Scan—chain ORA(SR)
Poly. Id \

Multiple-polynomial LFSR

Figure 2.10: BIST scheme using Multiple-polynomial LFSR with reseeding

2.5. BIST FACILITATION TECHNIQUES: MODIFY THE TEST PATTERNS 27

O/%Probability O/%Probability
0.5/0.5— 0.1/0.9
0.5/0.5— 0.1/0.9
0.5/0.5— 0.1/0.9
0.5/0.5— 0.1/0.9
05/05— & 01/09— &
0.5/0.5— 0.1/0.9
0.5/0.5— 0.1/0.9
0.5/0.5— 0.1/0.9
0.5/0.5— 0.1/0.9
(a) Uniform 0/1 distribution (b) Non-uniform 0O/1 distribution

Figure 2.11: Impact input-value distribution on testability of a CUT

techniques to reduce the number of test patterns while keeping a high fault coverage.
Partial reconfigurable means that the LFSR embeds multiple primitive ChPols and the
LFSR can operate according to one of these ChPols. This BIST scheme is depicted in Fig.
2.10. Given the used ChPol (by the Polynomial Identifier (Poly. I1d)) and the corresponding
seed, the Decoding Logic enables/disables feedback loops through the AND-gates. The
ChPol and seeds are chosen in such a way that test patterns for hard-to-detect faults will
be generated. The PR bits generated by the out-tapping LFSR are shifted into the scan-
chain of the CUT. The response of the CUT will be shifted out through the scan-chain
into the ORA, implemented as a Signature Register [Bar87]. [Hel92] shows that this
BIST scheme reduces the linear dependences between the bits shifted in the scan-chain.
However, it is also mentioned that applications of this scheme are seen in the area of
PXTPG, which means that the test application times still tend to be large for nowadays
large and complex circuit designs.

2.5.2 Weighted Random TPG

When an LFSR is used as TPG, especially in case the LFSR has a primitive ChPol, the
P1 values will be uniformly distributed, i.e., each input will have a probability of 0.5 to be
assigned a 0 or a 1. However, there are faults in the circuits which require a non-uniform
distribution of 0 and 1 on the Pls in order to have a reasonable high probability to become
detected by a PR pattern. This is illustrated in Fig. 2.11.

If all inputs of the 10-input AND-gate in Fig. 2.11(a) have an equal probability to be
assigned 0 or 1, the probability that a SAO fault at the output of the AND-gate will be

28 CHAPTER 2. BUILT-IN SELE-TEST

05/05 X1 0.1/0.9 X1
05/0.5 X2 N N 0.1/0.9 X2 N N
| & [—1-05/05 | & —1-09709
0.5/0.5 | XN 0.1/0.9 #— XN
— X1 — X1
—1 X2 N N —1 X2 N N
| =21 |-05/1-05 | =1 —o1/1-01
- XN 1 XN
(&) Uniform 0/1 distribution (b) Non-uniform 0/1 distribution

Figure 2.12: Changing input-value distribution has positive impact on several faults and
negative impact on other faults

detected? is very low (0.59). However, when these inputs have a much higher probability
on althanon a0, the probability that the SAO fault at the output will be detected, is much
higher, as illustrated in Fig. 2.11(b).

Such a set of input values with a non-uniform distribution is called a weight set. Sev-
eral faults which are RPR in case of a uniform input distribution, become much more
testable with a certain weight set. However, this weight set can make one set of RPR
faults better testable, but another group of faults worse testable. This is illustrated in Fig.
2.12. By increasing the probability of a 1 on the inputs of the gates, the probability that the
SAO fault at the output of the AND-gate will be detected, increases significantly, however
at the same time, the probability of detecting the SA1 fault at the output of the OR-gate is
reduced.

In order to be able to improve the detectability of all RPR faults in the CUT, multiple
weight sets are required. In this case, the applied test set will be divided into sub test-sets.
The first group of test patterns will be applied using weight set 1, the following group of
test patterns will be applied using weight set 2, etc.. To apply weighted input values to the
CUT, Boolean logic is required which converts uniformly distributed LFSR outputs into
weighted inputs values for the CUT. E.g., in order to get a weight of 0.25 on a 1, a 2-input
AND-gate can be used. The inputs of the AND-gate are connected to the LFSR and will
have a probability of 0.5 on a 1. The output of the AND-gate will have a probability of
0.75 on a 0 and a probability of 0.25 on a 1.

The weighted random methods differ in the way they determine the weights. Several
methods use testability analysis measures and heuristics to determine the weights [Lis87,
Wai89], other methods use the input-value distribution of deterministic, i.e., ATPG, gen-
erated test sets [Mur90, Pom93], and again other methods are a combination of testability

2aSAO0 fault at aline can only be detected, when that lineis 1 in the fault-free case

2.5. BIST FACILITATION TECHNIQUES: MODIFY THE TEST PATTERNS 29

Table 2.1: Weighted random benchmark results of several ISCAS’85 circuits

Circuit | #Wt. sets | #WR pat. || Circuit | #Wt. sets | #WR pat.
c880 |2 1280 c3540 | 4 3840
c1355 | 3 2098 c5315 | 2 2048
c1908 | 6 5376 c6288 | 1 512
c2670 | 8 5888 c7552 | 10 9278

analysis and deterministic test distribution [Ree96].

Table 2.1, taken from [Wai89], shows weighted random benchmark results. Column
Circuit shows the circuit name, Column #wt. sets the number of weight sets that were
necessary to detect all faults in the circuit, and column #WR pat. the number of weighted
random patterns necessary to test all faults. [Wai89] only uses weights 1/16, 1/2 and 15/16
for input values. As could be expected, these results show that circuits which are known
to be RPR, e.g., circuits ¢2670 and c¢7552, require more weight sets than more random
susceptible circuits like the ¢880, c1355, ¢5315 and ¢6288. The number of weight sets
for circuit c2670 and ¢7552 is quite large to be implemented for such small circuits (only
1193, respectively 3512 gates).

Also other weighted random results have shown that often a large number of different
weight sets are required in order to achieve a high enough fault coverage within a reason-
able test length. The logic overhead, necessary to enable the different weight sets, can be
quite large. This overhead can be reduced by decreasing the number of weight sets and by
limiting the number of allowed weights.3. However, this will decrease the fault coverage
and increase the test length.

2.5.3 Mapping logic to replace useless patterns

LFSRs/CAs used as PRTPG generate lots of test patterns that do not detect faults
which were not already detected by previous test patterns. Mapping logic is logic which
converts these ’useless’ patterns into patterns which do detect faults that were not detected
previously. Converting useless test patterns into patterns that detect RPR faults would be
especially interesting. [Tou95] introduces such a method, which is based on cube map-

ping.
Test cube: A w-bit test cube Cu is a test pattern for which not all w bits necessarily have
a specified value, i.e., Cu = (c1,C,...,Cw) € {0,1,x}" with x representing don’t care.

A test pattern A = (ai,ap,...,aw) € {0,1}" is contained in a test cube
Cu = (Co,C1,...,cw) € {0,1,x}VifVj,1 < j<w|(aj =cjorc; =x).

3A weight of 0.231 is much more expensive in logic than aweight of 0.25 (2-input AND-gate)

30 CHAPTER 2. BUILT-IN SELE-TEST

et Mapping Logic a & a b, b, b,
mode_ 000 00O
Qa 97 by = 001 001
e 1 & 9o || © 010>001
Ta & b e 011001
S =1 100 100
5 > 1 b 3 101 101
5 O
2% 110 110
111 111
(a) Cube mapping logic (b) Mapped patterns

Figure 2.13: Cube mapping with source cube sCu={0 1 X} and image cube iCu={X 01}

The Cube Mapping CM : {0,1}V — {0,1}" is defined as follows: Given the source

cube sCu = (sp,S1,...,Sw) and image cube iCu = (ig, i1, ...,iw), then the Cube Mapping
CMgy—icu(A) = B = (bg,b1,...,bw) € {0,1}" where if test pattern A is contained in
sCu, then if i; = x then bj = aj else bj = ij. If test pattern A is not contained in sCu, then

bj = a;Vj. In other words, when pattern A is contained in sCu, pattern A is transformed
into a pattern which is contained in iCu. When A is not contained in sCu, A stays the same.

Given a required fault coverage level and given a maximum test length, the method de-
scribed in [Tou95] tries to determine the mapping logic (based on cube mapping) required
to reach this fault coverage level. The steps applied during this method are:

1. Do fault simulation on the set of test patterns generated by the PRTPG (LFSR).
2. Evaluate the fault coverage and identify the set of undetected faults

3. If the fault coverage is high enough, the process is finished.

4. If not, add a cube mapping.
5

. Compute the transformed pattern set and do fault simulation on this test pattern set
and go to step 2.

Fig. 2.13(a) shows an example of mapping logic based on cube mapping. In normal
application mode (test mode = 0), the values on by 5 3, that will feed the CUT will be
the same as on a3 » 3) applied by the PRTPG. In test mode (test mode = 1), the values
a applied by the PRTPG are mapped according to the cube mapping CMo1x}— {xo1}-
The corresponding mapping logic is shown in Fig. 2.13(a) and the corresponding pattern
mapping is shown in Fig. 2.13(b).

The key problem that this method tries to solve is how to find the right cube mappings.

2.5. BIST FACILITATION TECHNIQUES: MODIFY THE TEST PATTERNS 31

The described method in [Tou95] is based on solving a binate covering problem [Bra89].
Although good heuristics exist, the CPU requirements for solving the NP-complete binate
covering problem still make this method infeasible for large industrial circuits.

2.5.4 Comparison of test pattern mutation techniques

Table 2.2 shows experimental results of weighted random testing and cube mapping.
The table also contains experimental results of the fixed-biased BIST method [Als94],
which is described further on in Subsection 2.7.2. Results are shown for several ISCAS
benchmark circuits [Brg85, Brg89] and are taken from [Tou95].

Column Circuit in Table 2.2 shows the circuit name. Columns Gates and FFs show the
number of gates, respectively the the number of FFs in the circuit; while Column Random
length shows the number of required PR test patterns in order to reach 100% fault cover-
age of all detectable faults, when only an LFSR is used to generate the patterns. Columns
3-Weight, Fixed-biased and Cube mapping show the results for respectively the weighted
random method proposed by Pomeranz and Reddy [Pom93], the fix-biased method pro-
posed by Alshaibi and Kime [Als94], and the cube mapping method proposed by Touba
and McCluskey[Tou95]. For each of these methods, the hardware overhead is shown that
corresponds to reaching 100% fault coverage for the given test length Len. This hardware
overhead is split into added FFs (Column FFs) and Gate Equivalents (Column GEs), using
the method suggested in [Har93]: 4 0.5n GEs for an n-input NAND/NOR, 2.5(n — 1) GEs
for an n-input XOR, and 1.5 GEs for a 2-to-1 multiplexer.

These results show that the extra hardware overhead inserted to reduce the test length
can be enormous and be more than the size of the circuit itself. Using the weighted
random method of Pomeranz, the overhead can be over 100% as for circuit c2670, the

40One GE equals the size of atwo-input NAND gate

Table 2.2: Comparison of Test Length and Required Hardware

Random 3-Weight Fixed-biased Cube mapping
Circuit | Gates | FFs | length Len | FFs [GEs |[[Len | FFs| GEs | Len | FFs | GEs
420 | 196 16 | 1.1M N/A | N/A | N/A 5K 18 >7 500 | O 48
1K 0 31
s641 379 19 1.0M N/A | N/A | N/A 19K 20 > 21 500 | O 23
10K | O 12
s838 | 390 32 >100M N/A | N/A | N/A 86K 19 >14 850 | O 99
10K | O 59
c2670 | 1193 | O 4.6M 19K | 5 1507 || 19K 54 >259 || 1K 0 260
30K | 5 1316 7K 0 114
c7552 | 3512 | 0 >100M 47K | 6 3003 || 191K | 111 | >658 || 10K | O 214
72K | 6 2475 50K | O 183

32 CHAPTER 2. BUILT-IN SELE-TEST

overhead in GEs is 1316 or 1507 GE, depending on the test length, which are both more
than the 1193 gates the circuit itself consists of. In case cube mapping is used, the hard-
ware overhead is much less, but still often over 5%, which is already considered too much
by most manufacturers. 114 GEs for circuit c2670 is still 9.5% overhead.

2.6] BIST facilitation techniques: Fully embedded deter-
ministic test patterns

The following methods modify the TPG/LFSR in such a way that the TPG/LFSR also
generates a full set of deterministic test patterns. The deterministic test set (e.g., generated
by an ATPG) contains also patterns for the RPR faults such that the fault coverages achiev-
able with BIST can be improved. Subsections 2.6.1, 2.6.2 and 2.6.3 describe respectively
the pre-stored test BIST method, the LFSROM BIST architecture and the deterministic
LFSR.

2.6.1 The pre-stored test BIST method

The pre-stored test BIST method [Nag95] uses the response of the CUT to generate
the next test pattern. The TPG is implemented as a Finite-State-Machine (FSM). The TPG
runs through a sequence of states and each state represents a test pattern. The next state
(hence, next test pattern) depends on the response of the CUT. If the CUT has a correct
response, the TPG will come in the next valid state and will apply the pattern to the CUT,
else the TPG will come in a different state and hence will apply a different pattern to the

—= Faulty—free response
""" > Faulty response

Figure 2.14: The state-sequence of the Pre-stored Test BIST method

2.6. BIST FACILITATION TECHNIQUES: FULLY EMBEDDED DETERMINISTIC
TEST PATTERNS 33

Table 2.3: Hardware overhead and Fault coverage of a Pre-stored BIST

Test Fault | Hardware

Circuit | Gates | patterns | coverage | overhead
74283 | 35 11 100% 15%
74181 | 61 17 100% 7%
74280 | 55 11 100% 4%
74885 | 87 48 100% 27%
c432 160 34 99% 11%
c499 | 202 43 100% 18%
c880 | 383 51 99% 9%
c1355 | 546 85 100% 10%
c1908 | 880 119 100% 9%

CUT. A graphical representation of an example FSM is depicted in Fig. 2.14.

If all responses are correct and given that the FSM will start in state so, the FSM will
run through the sequence of states so, S1, ..., S9 to S0. If an error occurs somewhere in
this sequence, the TPG will follow another sequence of states and will return in a different
end state after 9 applied test patterns. The states Fi1...F6 can only be reached when an
error occurred during the test and are considered fault states. So, without errors, the FSM
will end in the state in which it started and one only has to check if this end state equals
the initial state. Nagvajara [Nag95] describes how the FSM should be designed such that
it has a low probability of aliasing. In this case aliasing is the effect that a faulty circuit
ends in state S0, because then it would falsely be considered a fault-free circuit.

Table 2.3 shows experimental results for the pre-stored test, taken from [Nag95]. Only
results for some very small circuits are shown. Columns Circuit and Gates show the name
of the circuit respectively the number of gates in the circuit. Column Test Patterns shows
the number of ATPG test patterns needed to reach the fault coverage shown in Column
Fault Coverage. Column Hardware overhead shows the hardware overhead (percentage) of
the FSM.

The hardware overhead of this BIST system is linear with the number of pre-stored
test patterns and the pattern size. Therefore, this method is only feasible for circuits with
a very compact ATPG test set which can be pre-stored. Otherwise, although often 100%
fault coverage is achieved, the hardware overhead will be far over 5% and will be often
considered too high by IC manufacturers. In Table 2.3 only circuit 74280 results in less
than 5% overhead, all other circuits result in more overhead; up to 27% for circuit 74885.

34 CHAPTER 2. BUILT-IN SELE-TEST

LFSROM
R-bit Shift Register ‘ Asynchronous Counter !
e Mm M. =M - > M ; LAc JL’p\c J"ACL' f
o bof e 2 I S e St W - LR B ot
; . N T l 7
‘ t ow | w-bitwide ‘
OR,Gates Network | b-to-1 Multiplexer
t-yw

Figure 2.15: The LFSROM architecture

2.6.2 The LFSROM architecture

The LFSROM architecture, presented in [Duf93], uses a shift register in combina-
tion with an OR> gates (2-input OR gates) network to store a deterministic test set; the
LFSROM stores a deterministic test set containing T test patterns of w bits width. It is
composed of the following four parts, depicted in Fig. 2.15:

1. A R-bit shift register
The R-bit shift-register shifts through the states from [100- - -0], [010- - -0] to [000. - -1]
with a cyclic period R.

2. An OR; gates network
The R states of the shift register are transformed into R deterministic test patterns
by the OR> gates network. These test patterns are w bits wide.

3. A w-bit wide b-to-1 multiplexer
Instead of generating R test patterns, the test set contains T deterministic test pat-
terns that have to be generated. Multiple subsets of test patterns can be generated
by the OR2 gates network in parallel. The w-bit wide multiplexer can be used to
select one of the b = [T /R] subsets of test patterns.

4. An Asynchronous Counter
An B = [logz(b)] bit asynchronous counter is used control the multiplexer and to
select which of the b subsets of test patterns will be applied to the CUT.

Table 2.4 shows experimental results for the LFSROM architecture, taken from [Duf93].
The overhead of the LFSROM architecture is compared to the overhead of using a ROM
to store the test patterns. Column Circuit shows the circuit name, Columns T and w show
respectively the number of test patterns to store and the width of the test patterns. Col-
umn R shows the length of the R-bit shift register and Column b shows the value for b of
the b-to-1 multiplexer. Columns ROM mm? and LFSROM mn¥ show the silicon-size of the

2.6. BIST FACILITATION TECHNIQUES: FULLY EMBEDDED DETERMINISTIC
TEST PATTERNS 35

Table 2.4: Hardware overhead and Fault coverage of the LFSROM

ROM | LFSROM
Circuit T|w|R|ORy|b| mm? mm?2
20x20 multiplier [41 |49 | 25| 69 |2 | 1.14 0.54
ALU 86 |67 |25| 133 |4 | 162 1.23

ROM, respectively the LFSROM, necessary to store the test for these circuits.

Unfortunately, only the silicon-overhead of the LFSROM compared to a ROM is
shown. The silicon sizes of the structures themselves is not listed. Although the overhead
of the LFSROM is 52% (from 1.14mm? to 0.54mm?) respectively 24% (from 1.62mm? to
1.23mm?) less than that of a ROM, it is still in the same order of magnitude and therefor
probably not feasible for circuits with large deterministic test sets.

2.6.3 The deterministic LFSR

In [Duf91] and [Vas93] a method is described which tries to design a deterministic
LFSR that starts with generating a complete set of deterministic test patterns T, after
which it will generate PR patterns. In order to achieve this, the characteristic matrix
T of Fig. 2.4 is converted into the matrix Ts. This matrix loses the general in-tapping
structure, but still has the same ChPol. So when T has a primitive polynomial, Ts also has
a primitive polynomial and the corresponding LFSR will generate all possible patterns
of length R = w. The ChPol of an LFSR can be calculated using Eq. 2.5, where det is
the determinant and IM is the Identity Matrix. The elements of the main diagonal in the
Identity Matrix are ones, all other elements are zero:

ChPol = det(T¢+ 1M -x) (2.5)

When the LFSR has a general in-tapping structure, the h, values of Eqg. 2.1 can be found
in the last row of matrix T¢. In case of a general in-tapping LFSR, the next state of mem-
ory cell X; only depends on the current state of cells X;_1 and/or Xg_1.

Consider the non-singular RXR matrix A. The pattern X(t) can be mapped into pattern
X’(t) by applying Eq. 2.6.
X'(t) =X(t)-A (2.6)

An RxR matrix is non-singular when the matrix has R independent rows and columns.
The matrix A should be non-singular, otherwise the inverse matrix A~ does not exist.
This inverse matrix is necessary to calculate the matrix Ts. EQ. 2.6 can be rewritten to:

X'(t)-At=X({1)-A-Ate X/(1) AT =X (1) 2.7)

36 CHAPTER 2. BUILT-IN SELE-TEST

Combining Egs. 2.2 and 2.7, we get:

X't+1)-At = X'@t)-AL T,
X'(t+1) = X'(t)-A 1. T.-A

and finally into:
X'(t4+1)=X"(t)- (A1 Te-A) = X(t) - Ts (2.8)

Ts and T are called similar matrices; these matrices possess the same ChPol [Duf91]:
det(Tec+1-x) = det(Ts+1 - x).

The LFSR corresponding to the matrix Ts can be found as follows: The next state
of memory cell X; can be found by taking the exclusive OR of the current states of the
memory cells X; for which element (j,i) (row j and column i) in matrix Ts is 1.

According to [Poh78], when the T¢ is initialized with the state X (0)=[100---0], inde-
pendent of the ChPol, the LFSR will first generate the following state sequence:

X(t=0) = [100---0]
X(t=1) = [010---0]
X(t=2) = [001---0]

X(t=N-—1) = [000---1]

When each of these states X (t) is transformed into X’(t), using Eq. 2.6, it is clear that
each state X’(t = i) equals to row i of matrix A. Hence, if the LFSR with characteristic
matrix Ts is initialized with the first row of A, all following rows of A will be generated.
After all rows of A have been generated, the LFSR continues with the PR states.

So if A would be the test set containing T = R independent deterministic patterns, this
method can be used to design an LFSR which will generate all test patterns of this test
set. However, a drawback of this method is that the LFSR must have the same width (R)
as the test patterns (w). For a circuit with many inputs (Pls and SFF outputs), this can be
enormous. If the test set A is singular, extra bits or patterns have to be added to make it
non-singular; this will make the LFSR even larger!

Fig. 2.16 shows an example of the deterministic LFSR for a deterministic test set
containing 4 patterns. Given the seed 0101, which is the first test pattern in test set A, the
deterministic LFSR first generates the remaining patterns/states of test set A, after which
it will generate two PR states before it will generate state 0101 again. The ChPol found in
the last row of the T¢ given in Fig. 2.16 is not primitive. Tg has the same non-primitive Ch-
Pol and therefore the deterministic LFSR will not generate all 2"~1 = 15 possible states,
but only 6 (4 deterministic, 2 PR) different states, given seed 0101.

[Duf91, Vas93] do not show results with respect to the hardware overhead. It is as-
sumed that all inputs are controlled through (S)FFs and therefore the LFSR memory cells
will not result in much hardware overhead. However, the main hardware overhead con-
sists of the overhead of the necessary XOR gates. In [Geu97a], experimental results for

2.6. BIST FACILITATION TECHNIQUES: FULLY EMBEDDED DETERMINISTIC

TEST PATTERNS 37
Given Given Resulting
Test set A: Tec Ts
0101 0100 0101
1011 0010 __ 4o (0110
1100 0001 0100
0011 1010 1101

Deterministic LFSR correspondingto T 4

N

N AmE i
M > M > M S—=>r M

N 1 2 3

Sequence generated by LFSR, given initial seed 0101
0101>1011 >1100 > 0011 >1001 >1000> 0101

Figure 2.16: Deterministic test set embedded in an LFSR

the ISCAS’85 benchmark circuits [Brg85] are given of the deterministic LFSR, with re-
spect to the number of necessary two-input XOR gates; see Table 2.5.

Column cCircuit shows the circuit name, Column #Patterns shows the number of deter-
ministic test patterns and Columns #inputs and #Gates show respectively the number of

Table 2.5: Hardware overhead of the Deterministic LFSR

Circuit | #Patterns | #Inputs | #Gates | XOR>»
cl7 6 5 6 5
c245 19 14 63 42
c432 45 36 160 306
c499 60 41 202 262
c880 27 60 383 313
c1355 96 41 546 546
c1908 127 33 880 766
c2670 76 233 1193 | 2916
c3540 130 50 1669 | 1226
c5315 129 178 2307 | 3708
c6288 33 32 2416 201
c7552 160 207 3512 | 5405

38 CHAPTER 2. BUILT-IN SELE-TEST

inputs and the number of gates of the circuit. Column XOR;, lists the number of two-input
XOR gates which are necessary to implement a deterministic LFSR which starts with
generating all patterns of the deterministic test set. If necessary, extra patterns and or bits
are added in order to get a non-singular NxN test set.

The experimental results in Table 2.5 show that the hardware overhead with respect to
the number of XOR gates, compared to the number of gates in the circuit, is large; circuits
c432, €399, ¢2670, c5315, 7552 require even more XOR gates than the original number
of gates in the circuit. The remaining circuits, except circuit c6288, require approximately
the same number of XOR gates compared to the number of gates in the circuit itself. This
means that the deterministic LFSR-overhead for these circuits is approximately 100% or
more®. Only circuit c6288 requires a much lower number of XOR gates compared to the
number of gates in the circuit, 201 XOR gates compared to 2416 gates in the circuit itself,
resulting in an overhead of 201/2416*100%=8.2% when only the XOR gate overhead is
taking into account; i.e., ignoring the overhead for the 33 (the number of test patterns;
R = T) memory cells of the deterministic LFSR. Both the number of Pls and the number
of test patterns for circuit c6288 are relatively small compared to the number of gates in
the circuit. As the size of the deterministic LFSR depends both on the number of Pls
and the number of test patterns, the size of the deterministic LFSR is also kept relatively
small.

The deterministic LFSR is only feasible for circuits with only a relative small number
of inputs and a relatively small test set compared to the circuit size. Embedding complete
deterministic test sets, or creating a deterministic LFSR for circuits with a large number
of inputs, can result in an overhead of 100% or more, as shown in Table 2.5.

2.7] BIST facilitation techniques: Partially embedded de-
terministic test patterns

This section describes BIST techniques which do not embed a full set of deterministic
test patterns, but only embed partially specified deterministic patterns for the hard-to-
detect faults. Subsections 2.7.1, 2.7.2 and 2.7.3 describe respectively mapping logic,
fixed-biased PR BIST and bit-flipping BIST.

2.7.1 Mapping logic

In Subsection 2.5.3 it has already been shown that mapping logic can be used to map
"useless’ patterns generated by the PRPG/LFSR into patterns that do detect hard-to-detect
faults. Mapping logic can also be used to take advantage of redundant information that is
present in deterministic test sets in order to reduce the TPG size and/or test length.

51t is assumed that an X OR gate results in the same overhead as an arbitrary gate in the circuit, which is
in general not the case

2.7. BIST FACILITATION TECHNIQUES: PARTIALLY EMBEDDED DETERMIN-
ISTIC TEST PATTERNS 39

In [Kag96] a BIST method is presented which uses a binary counter as TPG, instead
of an LFSR. This TPG generates all test patterns of a given deterministic test set. This test
set is represented as a T x w matrix A, T patterns w bits wide. The counter is initialized
with pattern tjo, and counts until pattern tygn is reached. The patterns oy and thign are
chosen in such way that the cyclic distance between t|qy and thigh is as small as possible,
while still all patterns of A will be generated by the counter. The cyclic distance of A
is the minimum of the straight distance and the wraparound distance of A. The straight
distance of A is defined in Eq. 2.9, where t;, 1 <i < T, are the decimal values of the test
patterns in A.

Straight distance = max{tj} —min{t;} (2.9)

The wraparound distance is given in Eq. 2.10, where t;,tj are consecutive patterns in A,
sorted on decimal value, and t; > t;.

Wraparound distance = 2 — max{t; —t;} (2.10)

The minimum cyclic distance is the minimum number of patterns that the counter has to
generate such that all deterministic patterns of A will be generated.

[Kag96] introduces the following techniques in order to transform matrix A into A/,
with a smaller cyclic distance:

1. Pre-processing operations
These operations reduce the width of the patterns of the test set. This is done by
deleting columns from A. Mapping logic between the counter and the CUT is used
to re-insert the removed bits/columns. These operations consist of:

e Constant column elimination
Columns with only ones or zeros are removed. These columns do not have to
be generated by the counter.

e Identical column merging
Two columns ¢; and c;j are identical if for every row position the value of
column ¢j equals the value of column c;. Only one of these columns has to be
generated by the counter.

e Complementary column merging:
Two columns c; and c; are complementary when for every row position the
value of column ¢; is the opposite of column cj. Only one of these columns has
to be generated by the counter, the other column can be retrieved by inverting
this column.

2. Basic operations
These operations adapt the to be generated patterns into other patterns such that
the distance between these patterns is as low as possible. They do not delete
columns, but adjust the matrix by inverting columns or interchange columns with
other columns. The basic operations consist of:

40 CHAPTER 2. BUILT-IN SELE-TEST

Table 2.6: Test length of Counter-based method compared to weighted random ap-
proaches

Circuit || Org. test set | WR.-1[Mur90] | WR.-2[Maj94] | Counter |

c409 14x41 1,464,030 15,862 22,064
c432 6x36 14,971 1,619 125
€880 11x60 74 61 29
cl1355 || 12x41 6,472,654,940 29,758,994 | 122,544,062
c1908 || 14x33 4,520 2,181 1,169
€3540 || 22x50 4,195,415 18,167 970
€5315 7x178 135,026,106 475,961 62
€6288 || 36x32 2,804,690,838 4,389,665 98,003,134

e Column permutation
It is not necessary that column ¢; has to be connected to PI ¢; of the CUT. The
columns of the matrix can be permuted without any consequences as long as
the output of the right counter cell is connected to the right PI(s) of the CUT.
This is called column permutation.

e Complementary column generation
Instead of the column ¢; itself, the counter can also produce its inverse Tj. This
is very useful when it would result in a shorter cyclic distance. This is called
complementary column generation.

The mapping logic necessary to connect the counter output to the correct CUT inputs
consists only of fan-outs and inverters.

Table 2.6 shows experimental results for eight ISCAS’85 benchmark circuits [Brg85]
taken from [Kag96]. Column Circuit shows the name of the circuit and Column Org. test
set shows the original test set size, i.e., <the number of test patterns> x <test pattern
width>. Columns WR.-1, WR.-2 and Counter show the number of PR patterns, i.e., the test
length, for respectively the weighted random methods presented in [Mur90], [Maj94] and
this counter-based method. For five circuits, i.e., circuits c4432, ¢880, ¢1908, ¢3540 and
c5315, the counter-based method outperforms both weighted random approaches. The
weighted random method of [Mur90] is even outperformed for all eight circuits. How-
ever, the embedded test set sizes are not very large and even for a very small circuit
c1355 (only 546 gates), the test length still exceeds 10 million patterns for all approaches.
[Kag96] also claims that this method becomes impractical when the Txw test set matrix
contains more than 50 patterns, or a pattern width larger than 200. Test sets for nowadays
large VLSI circuits are much larger, therefore this BIST method does not seem to be fea-
sible for large industrial designs.

2.7. BIST FACILITATION TECHNIQUES: PARTIALLY EMBEDDED DETERMIN-

ISTIC TEST PATTERNS 41
2-bit LFSR Test set
X1 x2 X3 x4 X5
10101
O[O " | 01010
ig 17 01111
1 10000
X5 e

Figure 2.17: LFSR input reduction for ISCAS’85 circuit c17

In [Che95a] also techniques are introduced to reduce the width of the LFSR that is
used to drive the Pls of the CUT. In this case no deterministic test patterns will be em-
bedded; the idea is to reduce the width of the LFSR and hence the test length. This
is achieved by shorting Compatible inputs and Inversely compatible inputs. Compatible
inputs are inputs which can be shorted together without introducing untestable faults. In-
versely compatible inputs are inputs that can be shorted together by means of an inverter
without introducing untestable faults. Fig. 2.17 shows the minimal LFSR with which IS-
CAS’85 benchmark circuit c17 [Brg85] can be tested. With only a 2-bit LFSR, all faults
in circuit c17 are detected.

Table 2.7 shows experimental results taken from [Che95a] for several ISCAS’85
[Brg85] and ISCAS’89 [Brg89] circuits. Column Circuit lists the circuit name and Column
#Inputs shows the number of inputs (Pls and SFF outputs). The number of stages of the
LFSR are shown in Column #LFSR stages.

The results listed in Table 2.7 show that the number of LFSR stages can be reduced
with a factor of 2 or even 3. For many circuits, a maximum length pattern sequence can
be generated by the LFSR (2R — 1 patterns, where R is the number of LFSR stages), while
still having a test length below the 1 million patterns (R=20). Only circuits c2670 (R=22),
s838 (R=35) and s15850 (R=31) result in a maximum length sequence exceeding the 1
million patterns. If a maximum length sequence is not considered feasible for a circuit,
e.g., circuits s838 and s15850, still only a part of the LFSR sequence can be applied
during test, just as in the case an LFSR is used without input reduction at the cost of a
lower fault coverage. The input reduction method seems to be rather complex and is CPU
time consuming (no CPU time information available) which can be a bottleneck for large
industrial designs.

2.7.2 Fixed-biased PR BIST

The fixed-biased PR BIST architecture, presented in [Als94] is using a mixture of
fixed bits plus biased PR patterns. In this case biased PR patterns are patterns in which
all bits have the same probability p, 0 < p < 1, of being 1. The basic structure of this

42 CHAPTER 2. BUILT-IN SELE-TEST

Table 2.7: Input reduction results for several ISCAS’85 and ISCAS’89 circuits

ISCAS’85 ISCAS’89
Circuit || #Inputs | #LFSR stages || Circuit | #Inputs | #LFSR stages
cl7 5 2 5420 35 19
c432 36 12 s641 54 17
c1355 41 11 5838 67 35
c1908 33 13 51423 91 13
c2670 233 22 515850 611 31

BIST architecture is depicted in Fig. 2.18.

The Pattern Generation and Control Logic (PGC Logic) drives and controls a scan-
chain, consisting of the input FFs to the CUT. This scan-chain is referred to as the idler
register. The idler register applies test patterns to the CUT in test mode; the response of
the CUT is captured into a MISR and the signature of the MISR and the end of the test
is used to decide whether the circuit is good or not. This BIST method is based on the
following two key ideas [Als94]:

1. Bit-fixing: Assign certain idler register bit positions to hold fixed values during a
period of the test.

2. Biased PR testing: Applying biased PR test patterns to all the idler register bits not
fixed at any given time.

A biased PR pattern is delivered for each shift of the idler register; it is a test-per-clock
approach, which is faster than the more commonly used test-per-scan BIST approach.
In a test-per-clock approach, a test pattern is applied every clock cycle, while in a test-
per-scan approach first the test pattern has to be shifted in the scan-chains, which takes

| Y
PGC > SFN Idler Register SFN
Logic
\ Yy Y
cuT
| Y
= MISR
Yy Y

Figure 2.18: The fixed-biased BIST architecture

2.7. BIST FACILITATION TECHNIQUES: PARTIALLY EMBEDDED DETERMIN-
ISTIC TEST PATTERNS 43

multiple clock-cycles (at least as many as the longest scan-chain). Bit-fixing is accom-
plished by special Scan, Fix and Normal (SFN) scan-cells. These scan-cells can operate
in scan, fixed-scan and normal mode. The scan and normal mode are the same as in a
regular scan-cell. In the fixed-scan mode, the cells stay fixed at 1 or 0, while the value of
the previous cell is passed to the next cell in the chain, bypassing this fixed cell.

[Als94] describes the FBIST algorithm which is used to determine the bits that have to
be fixed, the bias value and the number of different sequences (different fixed bits and/or
different bias values) the test will consist of. The concept of this FBIST algorithm is
summarized as follows:

1. Use PR test patterns to detect the easy-to-detect faults.

2. Use an ATPG tool to generate sparsely assigned test patterns for each of the remain-
ing undetected faults.

3. Use a bit selection algorithm to determine which bits, if any, need to be fixed, given
the set of generated ATPG patterns. Use a bias determination algorithm to calculate
the appropriate bias value, and use fault simulation to evaluate the fault coverage
of these fixed-biased PR test patterns. For the detected faults, remove the ATPG
patterns from the set of sparsely assigned ATPG patterns.

4. If all faults are detected: Stop; Otherwise go to step 3 with the remaining ATPG
patterns.

The bias is determined by the ratio between 1s and 0Os in the sparsely assigned set of test
patterns. A bit is permanently fixed at 1(0) when all of the ATPG patterns have a 1(0) at
that position. A bit is temporary fixed at 1(0) when more than a given percentage of the
ATPG patterns have a 1(0) at that bit position.

The hardware overhead of the fixed-biased method consists of the extra hardware
costs of the SFN cells and the PGC logic. According to [Als94], the SFN cells are ap-
proximately 2.5 times the size of a normal scan-cell. It is therefore important that the
number of bits that will be fixed is kept low. The PGC logic consists of:

e A ROM to store the configure sequences and the control sequences, i.e. the number
of patterns used in a configure, the bias value, the bits to fix, etc.

e APRTPG
e Combinational logic to generate biased PR bits from the PRTPG
e A control PLA and counters which control the test operation.

Table 2.8 shows experimental results of the fixed-biased BIST method with respect to
the required test length to achieve 100% fault coverage, compared to other BIST methods
[Als94]. Column Circuit shows the ISCAS’85 circuit name. Column Random T shows

44 CHAPTER 2. BUILT-IN SELE-TEST

Table 2.8: Comparison of test lengths of the fixed-biased method with other techniques

Random || 3-Weight[Pom93] || Fixed-biased[Als94]
Circuit T T | Fix | Seq T |Fix| Seq
c432 768 1024 | O 1 432 | O 0
c499 1216 2048 | O 2 451 | O 0
c880 7488 8192 | 3 8 | 5280 | O 0
c1355 2816 4096 | 1 4 | 1599 | 0 0
c1908 14K 4096 | 0 4 | 5148 | 1 1
c2670 4M 58K | 170 | 57 || 19K | 37 4
c7552 >64M || 151K | 207 | 37 | 191K | 94 6

the required number of PR test patterns (test length) needed to detect all faults. The
following six columns show respectively the number of patterns T, the number of fixed
bits Fix and the number of different fixed sequences Seq for respectively the 3-Weight PR
BIST method presented in [Pom93] and the fixed-biased method of [Als94].

The first five circuits are random susceptible circuits, all circuits are testable with less
than one million PR patterns. Although the test length can be reduced by the listed BIST
methods, the reductions often do not justify the overhead of the BIST methods. The last
two circuits, i.e., circuits ¢2670 and c7552, are RPR circuits and using one of the listed
BIST methods can be necessary to reduce the test length to a more acceptable level, e.g.,
below 1 million patterns.

The BIST methods of [Pom93] and [Als94] have comparable results with respect to
the test length (T) in Table 2.8. However the number of bits to fix and the number of
sequences is smaller for the method presented by [Als94].

Although the fixed-biased method is not limited to small circuits (note that for larger
circuits the overhead of the PGC logic becomes relatively small), this method does not
seem to be practical for RPR circuits. If a circuit is RPR, often a lot of fixed-bits and
sequences have to be used to reduce the test length. As a result, the overhead of the idler
register due to the SFN cells and the size of the PGC logic, especially the ROM-size
required to store all configurations, becomes unacceptable.

2.7.3 Bit-flipping BIST

In [Kie98] a BIST method is introduced which is based on flipping of bits generated
by the LFSR. This BIST system is based on the following observations [Kie98]:

1. Given a set of PR patterns, deterministic patterns can easily be embedded by modi-
fying just a very small number of bits [Wun96].

2. InaPR test set only a very small number of patterns contribute to the fault coverage

2.7. BIST FACILITATION TECHNIQUES: PARTIALLY EMBEDDED DETERMIN-

ISTIC TEST PATTERNS 45
LFSR
LFSR = Y ¥ -y
Yy Yy - Y = | Sequence Modifying
Sequence g Logic (SML)
Test Generating S | g
Control 7> Logic 8
Uniit g 3 G YY Yy Y
(SGL) = L =1 =1| ==== | =
R YooY y
scan—chains scan—chains
(a) Bit-fipping BIST structure (b) Sequence Generating Logic example

Figure 2.19: The Bit-flipping BIST architecture

and within these patterns only a few bits need to be specified.

3. Very often, deterministic test patterns can be clustered into a few sets such that all
the patterns of a set look very similar [Pat91].

4. Every autonomous BIST method must contain a BIST control unit containing a bit
counter and a pattern counter for generating the shift/capture signal and the “test-
end”-signal.

The system is depicted in Fig. 2.19(a). It consists of an LFSR, the Sequence Generating
Logic (SGL) block and the Test Control Unit. The SGL modifies the bit sequences generated
by the LFSR at several bit positions and applies these modified sequences to the scan-
chains. The structure of the SGL is depicted in Fig. 2.19(b). It consists of the Sequence
Modifying Logic (SML) and XOR (=1) gates. The current state of the LFSR, the bit counter
and the pattern counter of the Test Control Unit serve as input for the SML. There the
SML can overcome dependencies between LFSR outputs, no phase-shifting is required.
Even a single LFSR output can be used to drive the scan-chains. However, for some
circuits this has a negative impact on the fault coverage and still multiple LFSR outputs
should be used to drive the scan-chains.

The SML is constructed iteratively. The main steps of the algorithm are described in
the following text. To reach an efficient implementation of the SML, the logic minimiza-
tion routines EXPAND and REDUCE have been integrated [Bra84].

1. Check whether the current fault coverage is sufficient. If so, stop.
2. Compute the bits in the sequences that should be fixed. These are bits that should

stay fixed because these bits are essential to detect some hard-to-detect faults. These
fixed bits can be bits of deterministic patterns embedded during a previous iteration.

46 CHAPTER 2. BUILT-IN SELE-TEST

Table 2.9: Bit-flipping BIST silicon overhead

FE Core Scan BIST area
Circuit | random || area (um?) area SGL\ Other\ Total

p4210 | 94.47% 113,877 | 12.05% | 12.01% | 10.58% | 22.60%
p4250 | 96.09% 97,110 | 8.53% | 8.92% | 11.95% | 20.87%
p8689 | 88.56% 217,053 | 10.37% | 19.72% | 5.69% | 25.41%
p8873 | 96.40% 289,053 | 7.40% | 6.12% | 4.14% | 10.27%
p13651 | 99.84% 308,727 | 8.48% | 0.27% | 3.91% | 4.18%
p14473 | 86.39% 333,612 | 9.31% | 30.27% | 3.87% | 34.15%
p27530 | 98.23% 542,394 | 3.32% | 13.04% | 2.32% | 15.36%
p44177 | 97.25% || 1,324,980 | 12.38% | 3.47% | 0.95% | 4.42%
p52251 | 99.32% || 1,482,687 | 14.19% | 0.61% | 0.88% | 1.50%
p52922 | 92.66% || 1,889,622 | 9.34% | 7.57% | 0.86% | 8.42%
p64984 | 94.07% || 1,714,725 | 14.71% | 10.45% | 0.70% | 11.26%
p80590 | 99.09% || 2,492,622 | 4.94% | 2.33% | 0.58% | 2.91%

3. REDUCE SML

4. Embed deterministic patterns. An ATPG tool is used to generate a sparsely assigned
test pattern.

5. EXPAND SML

The application of bit-flipping BIST on industrial designs is presented in [Kie00].
Table 2.9, taken from [Kie00] shows bit-flipping BIST results with respect to the silicon
overhead for several Philips industrial designs. These results are obtained in case the goal
was to achieve complete fault coverage with 10,000 PR patterns. Column Circuit shows
the name of the circuit and Column FE random shows the achieved PR fault efficiency
without bit-flipping. Column Core area and Scan area show the silicon area of the core
and the percentage of area required for making the circuit fully scannable. Column BIST
area shows the percentage of silicon area spent on the BIST logic, divided into the area of
the SGL (SGL), the area of the remaining BIST logic, consisting of LFSR/MISR and test
control logic (Other), and the total percentage of silicon area spent on BIST (Total).

The results in Table 2.9 show that the area overhead for making the circuit fully
scannable is in general 5%-15%, except for circuit p27530. The percentage of area spent
on the SGL differs a lot between different circuits. The size of the SGL primarily depends
on the random testability of the circuit, as claimed in [Kie00]; RPR circuits, i.e., circuits
p8689, p14473, p52922, require larger SGL than more random susceptible circuits, i.e.,
circuits p13651, p52251, p80590. As the LFSR, MISR and BIST test logic hardly increase
with circuit size, the percentage of silicon area spent on these logic blocks decreases with
circuit size. For the larger circuits the SGL dominates the BIST silicon overhead, as is

2.8. BIST FACILITATION TECHNIQUES: CIRCUIT MUTATION 47

shown in Column Total in Table 2.9. For circuits that are well random testable, the BIST
overhead is limited, i.e., smaller than 5%, but for RPR circuits, the overhead can become
larger than 10% up to 34% for circuit p14473. This overhead can be reduced by lowering
the required fault coverage or applying more PR patterns, as shown in [Kie00].

2.8] BIST facilitation techniques: circuit mutation

The previous sections have shown that many state-of-the-art BIST methods exist that
improve the BIST fault coverage. However, the hardware overhead of these BIST methods
increases for circuits that are more RPR (except for the BIST methods in Section 2.6, their
hardware overhead depends on the size of the deterministic test set they embed). For large
RPR industrial circuits, the state-of-the-art BIST methods become impractical due to too
much hardware overhead, too low fault coverages and/or too large CPU consumption by
the BIST method’s algorithm. But when the circuits are better PR testable, the state-of-
the-art BIST methods are often more promising in reaching high fault coverages with low
overhead. If the circuits even become very PR testable, they can even be tested with an
LFSR without the necessity of complex BIST implementations. This section describes
how the circuit can become better PR testable by changing the circuit, without changing
its functionality.

There are two ways to make a circuit better testable:

1. Redesigning the circuit (Subsection 2.8.1)

2. Inserting test points (Subsection 2.8.2)

2.8.1 Circuit mutation: Redesigning the circuit

In case the CUT is very poorly PR testable, and all state-of-the-art BIST techniques
cannot improve the PR testability without too much hardware overhead, one can consider
to redesign the CUT such that it becomes better PR testable. Redesigning the circuit
should take place without changing its functionality. Redesigning the circuit impacts
the time-to-market of a CUT, because a large part of the design flow has to be done
again, possibly in multiple iterations; e.g., verification of functionality, synthesis, timing
analysis, ATPG or BIST implementation, etc.. Therefore redesigning the circuit can be
seen as a very last solution in order to improve the testability of a circuit. The necessity
of redesigning a circuit can easily be avoided when circuit designers take into account
Design-for-Test rules [Fuj85], like the BIST restrictions described in Section 2.3.

2.8.2 Circuit mutation: Inserting test points

Another way to make a circuit better testable is by inserting TPs. Instead of redesign-
ing the complete circuit, extra inputs (CPs) and/or outputs (OPs) are added to make in-

48 CHAPTER 2. BUILT-IN SELE-TEST

ternal parts of the circuit better testable, without changing the remaining circuit structure.
Also after TPI, parts of the design flow has to be redone; i.e., the timing analysis (to make
sure that the circuit achieves its required performance), synthesis, ATPG and/or BIST im-
plementation have to be redone, as is described in [Het99, Fei99, Fei01]. However the
impact on the design flow and time-to-market is limited compared to redesigning the com-
plete circuit. As will be shown in the following chapters, TPI results in limited hardware
overhead while offering significant fault coverage improvements for BIST.

2.9] Summary and conclusions

The purpose of BIST is to embed a test of a circuit on-chip in order to reduce exter-
nal ATE requirements. However, due to RPR faults in the circuits, the fault coverages
achievable with BIST are often not high enough to meet the quality requirements of the
semiconductor industry. Also a successful BIST implementation implies several restric-
tions on a circuit, especially with respect to three-state elements.

In order to improve BIST fault coverages, one can modify the test applied and/or mod-
ify the circuit such that it becomes better testable. Several state-of-the-art BIST methods
have been described with which higher fault coverages can be achieved. These state-
of-the-art BIST methods have been divided into methods that modify the test patterns
generated by a PRTPG, methods that embed a full set of deterministic test patterns in the
TPG and methods that embed parts of deterministic test patterns in the TPG.

The BIST methods that modify the generated test patterns are capable of increasing
the fault coverage. However, especially for RPR circuits, reaching higher or even com-
plete fault coverage results in huge hardware overhead. The BIST methods that embed
a full set of deterministic test patterns are capable of reaching complete fault coverage.
Their hardware overhead depends on the size of the deterministic test set they embed.
Only for circuits with a very small deterministic test set, these methods can implement
BIST with affordable hardware overhead. Results on ISCAS circuits have shown that this
overhead can become larger than the circuit itself when the deterministic test set is not
small. The BIST methods that embed parts of deterministic test patterns can also increase
the fault coverages up to complete fault coverage. Like with the methods that modify the
test patterns, their hardware overhead increases for poorer PR-testable circuits.

When the hardware-overhead of the state-of-the-art BIST methods is too high for suc-
cessful BIST implementation, one can consider redesigning the circuit to make it better
testable. A redesign of the circuit has significant impact on the design-process and results
in a delayed time-to-market. Instead of a complete redesign of the circuit, also TPs can be
inserted to improve the testability of internal parts of the circuit. In the next two chapters
it will be shown that with TPI, also high PR fault coverages can be achieved with only
limited hardware overhead.

CHAPTER 3

Test Point I nsertion

This chapter starts with a general description of Test Point Insertion (TPI). What is
TPI, what are its advantages and what are its limitations? Section 3.1 introduces test points
(TPs) and Section 3.2 describes how TPI can facilitate testing. Section 3.3 describes in
general how TPI methods select the positions in the circuit where TPs should be inserted.
Section 3.4 describes the requirements and limitations of TPI with respect to industrial
designs. The testability analysis method COP (Controllability/Observability Program)
[Brg84] is often used in TPI algorithms for determining the PR testability of faults in a
circuit. Also most of the TPI algorithms for improving BIST fault coverage are based
on a STUMPS (Self-Test Using a MISR/parallel SRSG) [Bar87] architecture. Therefore,
before several state-of-the-art TPI algorithms, which mainly focus on improving BIST
fault coverage, are described in Section 3.7, first descriptions of COP and STUMPS are
given in Section 3.5, respectively Section 3.6. In the following chapters, new TPI tech-
niques and algorithms will be proposed. An overview of the TPI topics addressed in the
following chapters, including a description of the TPI benchmark circuits that have been
used to evaluate the proposed techniques and algorithms, is given in Section 3.8. Section
3.9 concludes this chapter.

3.1| Test points

The key idea of TPI is to insert extra logic into the circuit such that internal signal
lines in the circuit will become better controllable and/or observable. This extra logic will
result in better testability of internal parts of the circuit, however it should not influence
the functionality of the circuit in normal operation mode.

Traditionally, test points (TPs) can be categorized into observation points and control
points. An observation point (OP) is an additional primary output which is inserted into
the circuit in order to obtain a better observability for some signal lines in the circuit. The
observability for a signal line | is the “difficulty’ to propagate a value change at line | to
a PO. The exact definition of ’difficulty’ depends on the used testability analysis method.

49

50 CHAPTER 3. TEST POINT INSERTION

Y1— — z,
X, — z,
. L@
T ! g
— -z
pri Npo

Figure 3.1: Region of influence of an observation point at line |

The impact of an OP inserted at an internal line | of a given circuit is shown in Fig. 3.1; it
improves the observability of line | itself and the observabilities of lines in the fan-in cone
of line I. Improves means that it becomes easier, or less difficult, to propagate a value
change to a PO.

A control point (CP) is an additional primary input plus additional logic inserted in
the CUT in order to obtain a better controllability for parts of the circuit. The controlla-
bility of a signal line I in the circuit is the “difficulty’ to set line | to value v. Controllability
can be split into 1-controllability and 0-observability. The 1(0)-controllability of a line |
is the difficulty’ to get a “‘1(0)’ on I.

Unlike an OP, which only affects the observability of a the fan-in cone of the OP, a
CP influences both the controllability and the observability of regions in the CUT. The
observability of a signal line depends on the controllability of other lines. Hence a con-
trollability change will also result in observabilities changes. This is illustrated in Fig.
3.2. A 0/1 discrepancy at signal line x in Fig. 3.2(a) is only observable on output z when
lis 1. When | is O, the value on z is 0, no matter the value of x. By changing the control-
lability of | by the insertion of a CP at I, as illustrated in Fig. 3.2(b), it becomes easier
to geta 1 on | (just put a 1 on input Xcp) and hence it becomes also easier to be able to
observe a 0/1 discrepancy at signal line x on z; the observability of x changes due to the
controllability change of I.

However, a CP also results in reduced observability in the fan-in cone of the inserted
CP. Compared to line | in Fig. 3.2(a), it has become more difficult to observe a 0/1 dis-
crepancy at line I’ on an output. In addition to the requirements without the CP, a 0 is
required on input Xcp in order to propagate a 0/1 discrepancy to an output.

Fig. 3.3 shows the impact of a CP on a circuit. The hatched area (1) of Fig. 3.3
indicates the region of the circuit where the controllabilities of lines change because of
the controllability improvement of line I. The shaded area (I1) sketches the region of the
circuit where observabilities of lines alter as a consequence of the changes in the control-
labilities.

In the IC industry, AND/OR-gate CPs and OPs are controlled and observed by extra
SFFs in the scan-chain. But when these SFFs are necessary anyway, can they be used as

3.1. TEST POINTS 51

;>/l:)—|\l >1 |
| _Z o Z' >/1_ z

N & & —

(a) A part of acircuit (b) OR gate as CP inserted at signal linel

Figure 3.2: Impact of a control point on the observability

Figure 3.3: Regions of influence of a control point at line |

CPs and OPs themselves such that the AND/OR-gates are not necessary any longer? This
is indeed possible, as long as transparent SFFs (TSFFS) are used, which act like buffers
during normal operation and as SFF during test mode.

Fig. 3.4 shows an example of the implementation of a transparent SFF compared to
the traditional AND/OR TPs. Fig. 3.4(a) shows the circuit part without TPs, Fig. 3.4(b)
shows the circuit after the insertion of an OP at | which can be observed on output zop. Fig.
3.4(c) shows the circuit after the insertion of a CP at line | which can be controlled with
input Xcp. Fig. 3.4(d) shows the circuit (in test mode) after the insertion of a transparent
SFF. The output of signal line | is connected with the SFF input such that | becomes fully
observable, increasing the observabilities in the input-cone of I. The output of the SFF is
connected with signal line I’. Signal line I’ becomes controllable, like all Pls.

TSFFs have two properties different from AND/OR TPs:

1. The inserted TSFF will act as a CP and an OP at the same time; you cannot insert a
CP apart from an OP. The TSFF will control the output cone of the line where it is
inserted and will observe the input cone of this line.

2. TSFFs will not (lead to a) decrease (of) the observability in their fan-in cones,
which is the case for AND- and OR-gate CPs. To the contrary, because a SFF TP

52

CHAPTER 3. TEST POINT INSERTION

- T l , Zop
& _l & [
—_— =1 [_ - 7 =1 —_— — —
(a) Circuit before TP (b) OPat linel
o] I | o i SFF data_in
& | I
| o1 | &]
=1 - SFF data_out I

=1

(c) OR-gate asCP at linel (d) Transparent SFF at linel

Figure 3.4: Traditional TPs compared to the transparent SFF

xl_ _Zl
xz— _Zz
I11 i I
I1
X,] _ZNpo
Npi

Figure 3.5: Regions of influence of a TSFF at line |

can observe its input, the line connected to the SFF will become fully observable.

Fig. 3.5 shows the impact of a TSFF on a circuit. Area | of Fig. 3.5 indicates the region
of the circuit where the controllabilities of lines change because of the improvement in
controllability at | due to the SFF. Area Il sketches the region of the circuit where lines
observabilities alter as a consequence of the changes in the controllabilities. Area Il
indicates the region where the observability in the circuit changes due to the observability
improvement at | and (possibly) also due to the controllability changes.

3.2

As already mentioned in Section 1.3, TPI can be used to facilitate testing by solving
testability problems within a design. The main objective of TPI algorithms is to determine

TPI to facilitate testing

3.3. TEST POINT SELECTION 53

which lines in a circuit are the most efficient places for inserting a TP, in order to improve
the testability and to minimize the extra silicon overhead caused by the inserted TPs. TPI
can facilitate testing in different ways. TPI can be used to:

1. facilitate pseudo-random testing:
In case of on-chip testing/BIST, TPI can improve the PR testability of the RPR
faults in a circuit such that higher PR fault coverages can be achieved with fewer
PR patterns. TPI methods targeted at facilitating PR testing, i.e., for BIST, are given
in Chapter 4.

2. facilitate ATPG
In case of using ATPG generated patterns, for off-chip testing or in BIST with
an embedded deterministic test set, TPI can facilitate the generation of ATPG test
patterns for the faults within a circuit. TPl methods to facilitate ATPG are given in
Chapter 5.

TPI is not limited only to facilitate testing of stuck-at faults. In Chapter 6 it will be
shown that TPI also facilitates the generation of patterns for other fault models, e.g., for
gate-delay faults.

3.3| Test point selection

TPI algorithms insert TPs to improve the testability of certain (groups of) faults in the
circuit. As described in [Geu97b], the TPI algorithms can be divided into three categories,
based on the method used to determine the faults which testabilities should be improved:

1. Methods that are based on ATPG
2. Methods that are based on fault simulation
3. Methods that are based on testability analysis

The ATPG based TPI algorithms use ATPG results to determine the faults for which the
testability should be improved. These are the faults for which the ATPG tool had trouble
generating a test pattern or could not even generate a test pattern. The TPl methods based
on fault simulation use the information of fault simulation on a set of (PR) test patterns to
select the set of faults of which testability should be improved.

The testability measures, e.g., COP [Brg84], SCOAP [Gol80] or test counts [Hay74],
found by testability analysis, reflect the testability of a given circuit and its faults. The
TPI methods based on testability analysis use this information to select the set of faults
for which testabilities should be improved. Determining the testability measures is less
CPU-time consuming than fault simulation, but they are less accurate than the fault sim-
ulation results.

o4 CHAPTER 3. TEST POINT INSERTION

ATPG Test st

Fault dependent

TP \i simulation
Testability

analysis

Test set
independent

Figure 3.6: The different possible ways in doing TPI

Two different methods exist to determine the most convenient places to insert a TP.
Test set independent TPI1 methods only use the information of the CUT, no information
is used about the test set which is applied to the CUT. These methods assume that all
inputs of the CUT have an equal probability for a 0 and a 1. With these probabilities, the
detectability estimates of all faults are computed.

However test set dependent TPI methods do use the information of the test set. The
test set can provide the probability for a 0 or a 1. This results in different but more accu-
rate detectability estimates. Also fault simulation of the test patterns in the set can be used
to determine the undetected or hard-to-detect faults for which a TP should be inserted.

Fig. 3.6 shows the different ways TPI can be implemented. Each path represents
a method. The TPI methods based on ATPG use the ATPG test set information in the
TP selection; they are always test set dependent, hence no arrow from ATPG to Test set
independent. The methods based on fault simulation can be both test set dependent and
independent; they depend on a fault simulation run of a pre-defined test set or on a PR test
run. In general, the methods based on testability analysis are not based on a test set and so
are test set independent. However, this is not necessarily true, using the test set informa-
tion for the probabilities for a 1 at the inputs of the circuit to compute the detectabilities
and testability measures, is an example of a test set dependent method based on testability
analysis, therefore the dotted arrow from Testability analysis t0 Test set dependent.

Test set independent TPl methods can be divided further into methods that use:

1. Global optimization
These methods use measures (costs) that reflect the total testability within the cir-
cuit. The TP that is selected to be inserted is the TP that results in the best testability
improvement (cost reduction) in the whole circuit. Although, according to the cost
measures, the selected TP will globally result in the best testability improvement, it
might not solve specific local testability problems.

2. Local optimization
Local optimization solutions only try to solve specific local problems in the circuit,
without taking into account the global impact of the TP.

34. TPl FORINDUSTRIAL CIRCUITS 55

3.4| TPI for industrial circuits

There exist many TPI algorithms [Sav91, Sei91, Che95b, Sch95, Tam96, Tou96, Tsa97],
as will be described in the following sections. However, not all of these algorithms are
capable to cope with industrial circuits. E.g., Seiss [Sei91] uses equations to calculate the
best TP positions, based on the assumption that lines that are not 1, are 0. Because lines
in industrial circuits can also become Z or U, the outcome of the TP selection can result
in selected TPs that do not result in better testability of the circuit. TPI can only be used
in the semiconductor industry when the TPI methods can be used in combination with
industrial circuits.

Another problem with TPI for industrial circuits are possible bus-conflicts after TPI.
Circuits containing buses can be designed in such a way that bus-conflicts will never oc-
cur, to avoid circuit damage and/or to implement the circuit with BIST. When TPs are
inserted at wrong chosen positions, it is possible that after the insertion buses can become
in conflict, resulting in circuit damage or the inability of proper BIST insertion.

Industrial circuits also often contain embedded memories. During test, the values at
the inputs of the circuit from these embedded memories are often unknown. These un-
known values propagate through the circuit resulting in poorer testability of the circuits.
Test circuitry or TPs can be inserted such that these unknown inputs are bypassed and
can be controlled by the test circuitry resulting in an improvement of the testability of the
circuit.

TPs cannot be inserted at every location within an industrial design. Due to the in-
sertion of a TP, the critical path! of a design might increase. As a result, the IC has to
operate on a lower clock frequency and might not reach the performance it was originally
designed for. TPI methods for industrial circuits should be able to exclude lines to be TP
candidate, e.g., to exclude positions that increase the critical path length of the circuit.

3.5| Controllability/Observability Program (COP)

This section describes the controllability / observability program (COP) [Brg84] that
is often used in TPI algorithms [Sav9l, Sei91, Tsa97] to determine the TP positions.
Section 3.5.1 introduces the COP controllability and observability values. In Section
3.5.2 the equations for the controllability and observability for the in- and outputs of the
standard gates are given.

3.5.1 Introduction to COP

COP can be used to estimate the probability that a SAF will be covered by a PR pat-
tern and hence determine which faults are RPR. This testability information can be used

lthe path in the circuit that determines the maximum clock-frequency (performance), i.e., the path with
the longest delay

56 CHAPTER 3. TEST POINT INSERTION

by a TPI algorithm to determine where in the circuit TPs should be inserted, such that the
number of RPR faults decreases and the overall testability of the circuit improves. COP
assumes that the circuit conforms to a full-scan design.

For each signal line I in the circuit, COP provides statistical values for the controllabil-
ity C, and observability W, of that line. In COP, the controllability (or the 1-controllability
(C1))) of a signal line I is defined as the probability that line I is 1. The 0-controllability
(COy) of a signal line 1 is the probability that line | is 0. In case of a Boolean circuit, if a
line is not one, it is zero:

C0,+C1, = 1 (Boolean circuit)
Co = 1-Cj (3.1)

Given a large number of PR patterns, each Pl has an equal probability for a 1 and for
a 0, hence the controllabilities of the Pls of the circuit are initialized at 0.5: Cp; = 0.5.
The controllabilities of the other signal lines are circuit dependent and their calculation is
described in Subsection 3.5.2.

The observability of a signal line I is defined as the probability that a value change on
line | will lead to a value change on at least one PO. The observability of all POs is 1:
Wpo = 1; the observabilities of the other lines depend on the structure of the circuit and
their calculation is given in Subsection 3.5.2.

Compared to the description of controllability and observability as mentioned in Chap-
ter 3, COP defines the difficulty to control a line as the probability the line is 1(0) and
defines the difficulty to observe a line on a PO as the probability that a value discrepancy
on that line is visible on a PO.

A very large controllability of a line |, i.e., very close to 1, indicates that it is hard to
test the SAL fault on I. In that case the probability that | is O (required to test for the SA1
fault), is very small. The opposite is true when the controllability of | is very close to 0
(the O-controllability is very close to 1). In this case it is hard to test the SAQ fault. When
the observability of a line I is close to 0, this means that it is very hard to propagate a
value discrepancy of line | to a PO.

A TP can be inserted to improve the 1-controllability, O-controllability and/or observ-
ability of these lines.

3.5.2 Calculation of the COP controllability and observability

Fig. 3.7 shows a 2-input AND-gate and a 2-input OR-gate. Output z of the AND-
gate is only 1, when both x and y are 1. Hence, The COP controllability of the 2-input
AND-gate becomes:

C,=Cx-Cy (3.2)

Output z of the OR-gate is 1, when at least one of the inputs x and y is 1. Output z is
0, when both x and y are 0. Hence the COP 0-controllability of the 2-input OR-gate

3.5. CONTROLLABILITY/OBSERVABILITY PROGRAM (COP) 57

Figure 3.7: An AND-gate and an OR-gate.

becomes:
C0, = COy-COy
Rewriting in COP 1-controllabilities (assuming Boolean circuit) this results in:
C,=1—(1-Cy)-(1-Cy) (3.3)

A discrepancy on an input x of a gate can only be observed when the other inputs
of the gate have a non-controlling value. A controlling value of a gate is a value which
forces the output of the gate to a specific value, in spite of the values of all other inputs. In
the case of an AND-gate, the controlling value is O, in case of an OR-gate, the controlling
value is 1.

A value discrepancy on input x of the AND-gate in Fig. 3.7 can only be observed when
input y has the non-controlling value 1 and output z is observable. Hence the observability
of x becomes:

Wy =Cy - W, (3.4)

Input x of the OR-gate of Fig. 3.7 can only be observed when input y has the non-
controlling value 0 and output z is observable. Hence the observability of input x becomes:

Wy = COy-W; (3.5)
= (1-Cy)-W, (Boolean circuit)
These equations for COP controllability and observability can be extended for gates with

more than 2 inputs; for an L-input AND-gate the COP controllability and observability
become:

CZ - CXl'CXZ."'.CXL
le - CXZ'CX3""'CX|_'WZ

where X1, X2, ..., X, are the inputs of the L-input gate and z is the output of the gate.
For an L-input OR-gate the controllability and observability become:

CO;, = CO0y, -COy,---COy,

C; = 1-(1-Cy) - (1—-Cy,)---(1—Cy) (Boolean circuit)
Wy, = COy, COx,---COy -W;

Wy, = (1-Cy,)-(1—Cy,)---(1—-Cyx)W, (Boolean circuit)

58 CHAPTER 3. TEST POINT INSERTION

Table 3.1: COP testability measures for standard gate types.

Gate Controllability C, Observability Wy,
AND | Cy, -Cy, Cy, - W,

NAND | 1 —Cy, -Cy, Cx, - W,

OR 1—(1-Cx)(1—-Cy,) (1-Cyx,) -W;
NOR | (1—-Cy,)(1—Cy,) (1-Cy,)-W;

XOR |Cyq+Cx,—2:Cx-Cx, | W,
NXOR | 1—Cy, —Cx,+2-Cy, -Cxy | Wy
BUF | Cy, W,
INV |1-Cy W,

fanout stem

i —

2

7 .

fanout branches

Cp=Cp=--=Cy =Cy (3.6)
Wi=1—(1-Wz) (1 -Wz,) -+ (1—W,) (3.7)

Figure 3.8: The COP measures for a fan-out stem

Table 3.1 shows the COP testability measures for standard gate elements. x1 and xo
are the gate inputs and z is the gate output. The equations in Table 3.1 are only exact when
the values on the gate inputs are independent. This is not the case when a line fans out
and reconverges further on in the circuit. This will lead to a small error in the calculations
of the COP controllabilities and observabilities.

But what does happen on a fan-out node? From the signal line, there exist multiple
paths to the POs, see Fig. 3.8. The controllabilities of the fan-out branches are equal to
the controllability of the fan-out stem. A fault on x can be observed when the fault can be
observed on at least one of the fan-out branches z1 - - -z, and thus is only not observable
when none of the fan-outs can be observed. The observability of the lines on the fan-out
stem is the OR function of the observabilities of all fan-out branches.

The COP controllabilities and observabilities in the circuit are calculated as follows:

1. Initialize the COP controllabilities of all Pls (and SFF-outputs) to 0.5.

3.5. CONTROLLABILITY/OBSERVABILITY PROGRAM (COP) 59

2. Propagate the controllabilities from the Pls forward to the POs using the equations
given in the Column Controllability C, in Table 3.1.

3. Initialize the COP observabilities of all Pls (and SFF-inputs) to 1.

4. Propagate the observabilities from the POs backward to the PIs using the equations
given in the Column Observability Wy in Table 3.1.

The COP controllabilities and observabilities can be combined to find the COP detec-
tion probability for a given fault. The COP detection probability of SAF f on a line | is the
probability that f will be detected on a PO. A SAL fault on a line | can only be detected
when | is 0 in the fault-free circuit and | is observable. The detection probability estimate
of a SAL1 fault can be calculated with Eq. 3.8.

Pdi/saa = CO-W, (3.8)
= (1-Cy)-W (Boolean circuit)

A SAQ fault on line | can only be detected when I is 1 in the fault-free circuit and line |
is observable on a PO. The detection probability estimate of a SAO fault can be calculated
with Eqg. 3.9.

Pd/sa0 =Ci-W, (3.9)

Obviously, the larger the detection probability of a fault, the easier it is to detect this fault
with a PR pattern. The difficult faults for PR testing are the faults with a very low detection
probability. The faults with a large detection probability will probably be detected with
only a few PR test patterns, while the RPR faults, with a low detection probability, require
a very large number of PR patterns in order to have a reasonable probability that the fault
will be covered by a test pattern.

3.5.3 Cost function and the cost gradient values

The goal of TPI for BIST is to obtain a maximal improvement in the PR testability of
a circuit with as few TPs as possible. During the selection of the TP positions, it is not
advisable to exclusively rely on the COP controllabilities and observabilities, since due
to their local nature, they are lacking the capability to analyze and describe the circuit’s
testability problems from a more global point of view. For example given that line | in
Fig. 3.3 has a small controllability C;. Increasing C; will not necessarily lead to an im-
provement of the circuit’s overall testability. This change may deteriorate the detection
probabilities of several faults in the shaded area of Fig. 3.3 and may thus have a negative
impact on the RPR testability of the circuit.

In [Lis87], a cost function (CF) is introduced, which represents the global testability
of the circuit and the testability of individual faults. It is defined as the summation of the
inverses of all COP detection probabilities. When a fault is easy to detect, its detection

60 CHAPTER 3. TEST POINT INSERTION

probability is large and the inverse is small, which means that the impact of this fault on
the cost is minimal. On the contrary, a fault with a very small detection probability has a
large inverse and thus a high impact on the cost.

The equation for the CF given in [Lis87] is:

1 F
K = E 3 ki (3.10)

Ki = 5 df (3.11)
where K is the global cost function of the CUT, F is the number of stuck-at faults, K+
is the cost contribution of fault f, and Pd; is the detection probability of a fault f in
the CUT. A large circuit, with many faults, is not necessarily harder to test than a small
circuit, with fewer faults. To compensate the CF for the number of faults in the CUT, the
CFis multiplied with 1 . However, many TPI algorithms that use this CF [Sei91, Tsa97]
ignore the factor and use Eq. 3.12.

F
K=Y K 3.12
Zl f (3.12)

For every signal line | in the CUT, two SAFs exist, e.g., the SA0 and SA1 fault.
Therefore Eq. 3.10 can also be written as Eq. 3.13.

1
K = Z KI/SAO + KI/SAl) (3.13)

L
S 5]
2L = PdI/SAO Pd|/SA1

where L is the total number of signal lines in the CUT and I/SAQ and I/SA1 represent line
I SAOQ, respectively SAL. Ignoring the 2—1|_ factor, EQ. 3.13 becomes:

K = (Ki/sa0+ Kijsaz) (3.14)

1
(PdI/SAO Pd|/SA1>

[Lis87] also introduces the cost gradient values. They are used to estimate the impact
of controllability and observability changes of a Iine line on the rest of the circuit. For
each line, two gradient values are defined, namely C K and dv*\(,[They are the derivatives
of the CF K with respect to the 1-controllability, respectlvely the observability, of line |

5
>

3.5. CONTROLLABILITY/OBSERVABILITY PROGRAM (COP) 61

and are called the controllability gradient and the observability gradient of line .

Both gradient values are still not very good indicators of the global testability impact
after the insertion of a TP, because they represent the change rate of K to C; and W,
respectively due to an infinitely small change of C; and W, whereas the insertion of a TP
may cause C; or W, to change drastically. Although the gradients are not very accurate
themselves, they still can be useful in determining good TP positions, as will be shown in
Section 3.7. How to calculate the gradient values is described in the following text.

Calculation of the gradient values

Changing a line’s observability only affects the detection probabilities of its predeces-
sors, see Fig. 3.1. Therefore a change in the observability of PI x affects only the detection
probability of the input itself and so only two terms of the global cost function; the term
with respect to the SAO fault, respectively the SA1 fault, on input x. The derivative of the
CF with respect to a change in PI observability of input x becomes:

dK dKysao N dKy/sa1

= A1
dWy dWy dWy (3.15)
In case Eq. 3.11 is used for the cost contribution for a fault, Eq. 3.15 becomes:
1 1

d_K _ d(de/SAO) n d(de/SAl) _ d(ﬁ) n d((l—Clx)V\&)
dWy dWy dWy dWy dWy

—Cx Cx—1 —Cx Cx—1

(CeWi)? (1-C) W) PdZgyy P2

Given a gate with X inputs and one output, changing the observability on the gate output
z also results in observability changes on the gate inputs, because the observabilities on
the gate inputs depend on the observability at the gate output (see Column Observability
Wy in Table 3.1). Thus the CF will not only change by the two terms with respect to
the SAO and SA1 fault of output z, but also by the observability changes on the X gate
inputs. Since it is known how the cost changes with respect to the observability on these
gate inputs, it is possible to apply a chain-rule to compute the derivative with respect
to observability changes on the gate output z. The derivative of the CF with respect to
observability changes on the gate output z is given in Eq. 3.17, where X; represents the ith
input of the gate.

dK _dKz/SAO dKz/SAl X dK dWy

= 3.17
dWZ dWZ dWZ i= dWXi dWZ ()
In case Eq. 3.11 is used as cost contribution for a fault, Eq. 3.17 can be written as:
K — —1) X dK dwy
d _ 2CZ (sz) dK dWy (3.18)
dw; Pd Pd L dWy, dW;

z/SA0 z/SA1 |

62 CHAPTER 3. TEST POINT INSERTION

The first two terms of Eq. 3.17 are due to the observability changes on output z itself,
and the summation is due to the observability changes on the X inputs of the gate. The
quantities dWy, /dW, depend on the gate type and represent a transfer function that dictates
how a gate’s input observability will change, given a change in output observability. They
can be calculated from the gate observability equations given in Table 3.1.

After the computation of dK/dW for all signal lines in the CUT, the dK/dC values,
which depend on dK/dW, can be determined. Because changing a gate’s input controlla-
bility affects both the output controllability and the observability of the other gate inputs
(see Fig. 3.3), the chain-rule equation for dK/dC is slightly more complicated than for the
dK/dw forward propagation. However, changing the controllability on a PO only influ-
ences the cost contribution for the SAO and SAL1 faults on that PO. The derivative of the
CF K with respect to a controllability change on PO z is:

dK dKysao N dKz/sa1

i A
dC; dC; dC; (319)
And using Eg. 3.11 as cost contribution for a fault, Eq. 3.19 becomes:
1 1
dK . d(sz/SAO) n d(PdZ/SAl) . —-W; W, (3.20)
dc, dC, dc, sz/SAO szz/sm '

The two terms in Eq. 3.20 represent the cost change caused by the the SA0 and SAl
detectabilities changes on PO z. Propagation of dK/dC proceeds in backward direction,
beginning with initialized POs, according to the following equation:

dK _dej/SAo de/SAl X dK Wy & dK dC,

dC, dCy dcy, ,;&] dW, dCy, chzkdcxj

(3.21)

where X are the number of inputs of the gate, Z the number of outputs, x; and x; are the
gate inputs and zy are the gate outputs. Using Eq. 3.11 as cost contribution for a fault, Eq.
3.21 becomes:

dK - —W . I dK dwy & dK dC
— Xj 2XJ + Z X z % (322)
dC Pd} X} /SAO de (/SAL i=1T#] Wy dCx &, dC dCx

The first two terms calculate the cost impact of controllability changes at line x; itself.
The third term, the summation over all other inputs of the gate, gives the cost impact of
the observability changes on these other inputs due to the controllability change on input
Xj. The last term, the summation over all outputs, gives the cost impact of the control-
lability changes on the gate outputs due to the controllability changes on input xj. The
dWy /dCy; and dC, /dCy; values, which represent the observability change at input x;, re-
spectively controllability change on output zy given the controllability change on x;, can

3.6. STUMPS 63

Algorithm 3.1 COP gradients calculation
Input: CUT, C and W for all lines in CUT
Output: COP gradients for all lines in CUT

for all PIs € CUT do
Initialize dK/dW with Eqg. 3.16.

for all Lines € CUT from Pls to POs do
Compute dK/dW for all other lines by applying Eq. 3.18 to all gates in the circuit a
single forward pass.

for all POs € CUT do
Initialize dK/dC with Eqg. 3.20.

for all Lines € CUT from POs down to Pls do
Compute dK/dC for all other lines by applying Eq. 3.22 to all gates in a single
backward pass.

be derived from the equations listed in Table 3.1.

The complete gradients calculation procedure is given in Algorithm 3.1. This pro-
cedure is linear in the number of gates in the CUT, since the equations are applied on a
gate-by-gate basis.

3.6 STUMPS

In this dissertation, it is assumed that the circuit uses the popular STUMPS approach
in case of PR BIST. STUMPS is an abbreviation for Self-Test Using MISR / Parallel
SRSG; where SRSG stands for Shift Register Sequence Generator, see [Bar87]. Origi-
nally, STUMPS was a BIST architecture for an LSSD (Level Sensitive Scan Design)-based
multi-chip system, in which each Field Replaceable Unit (FRU) contains a large number
of logic chips. But the STUMPS model can also be used in a single chip design, it is
just a different scale; the circuit represents the FRU and the different scan-chains in the
circuit represent the large number of logic chips. This section describes the properties of
STUMPS and how it can be adapted for PR BIST.

3.6.1 Introduction to STUMPS

The STUMPS architecture often used in PR BIST is depicted in Fig. 3.9. STUMPS
BIST is a full-scan BIST method. It is assumed that the FFs of the circuit core are con-
nected into multiple scan-chains (scan-chain). The PRTPG (implemented by means of an
LFSR or CA) applies PR test patterns to the core by shifting the scan-chains. While the
new patterns are shifted into the chains by the LFSR/CA, the output of the scan-chains

64 CHAPTER 3. TEST POINT INSERTION

BIST PRTPG (LFSR/CA)
controller v v v
phase shifter

Yy

POs

Pls
surround

scan—chain
scan—chain

c
[5+]
<
T
c
[
[&]
(%]

|

Circuit [compactor

with Yoy
BIST ORA (MISR)

Figure 3.9: The STUMPS architecture for PR BIST

are captured by the MISR. After a pattern has been shifted in, the CUT is clocked once
such that all FFs contain the new state of the CUT. The state caught in the chains is shifted
out into the MISR and meanwhile the new input pattern is shifted in. Often the Pls and
POs are also connected into a surrounding scan-chain (surround), such that they can be
controlled and be observed by the LFSR, respectively MISR, just like the FFs.

After all patterns have been applied, the state of the MISR is compared to the state of a
MISR of the fault-free circuit, and the BIST controller returns a signal to inform whether
the core is fault-free.

In Fig. 3.9 also a phase-shifter and a compactor are shown. A phase-shifter can be
added to reduce the correlation between the bits shifted into the scan-chains, see Sub-
section 3.6.2. The compactor can be added to reduce the number of bits shifted into the
MISR and hence reduce the size of the MISR.

In Fig. 3.9 it is assumed that the Pls and POs are connected in surrounding scan-chains
or boundary scan-chains such that they can be controlled or observed in a similar way as
the internal scan-chains. It is also possible that the Pls are controlled by a separate LFSR
and the PO results are captured into a separate MISR.

3.6.2 Restrictions and problems of STUMPS BIST

The advantage of STUMPS BIST, using an LFSR/CA to apply test patterns and using
a MISR to capture the responses, is the low hardware overhead. But STUMPS BIST also
introduces several problems and restrictions for the CUT. In the following text the prob-

3.6. STUMPS 65

lems for STUMPS BIST are briefly discussed and possible solutions are mentioned.

The problems in a STUMPS BIST environment are:

1. Lower fault coverage caused by RPR faults.
LFSRs and CAs often fail to detect the RPR faults. Therefore, the fault coverages
that can be obtained with STUMPS BIST are often low for circuits which suffer
from many RPR faults.

The fault coverage can be increased by applying more PR test patterns, but more
test patterns means longer test times and, given a reasonable number of test pat-
terns/test time, the obtained fault coverages are still too low. However, the insertion
of TPs to improve the PR detectabilities in the circuit will result in an increased
fault coverage.

2. Lower fault coverage caused by correlation between the patterns shifted into the
different scan-chains
LFSRs which feed multiple scan chains in parallel can result in lower fault cov-
erages due to structural dependencies introduced by the TPG [Raj99]. When the
scan-chains are fed directly from adjacent stages in the LFSR, the chains will con-
tain highly correlated patterns; the difference between the patterns is that they are
only shifted one bit. For example, the first chain will contain the pattern 10011001
while the second one contains pattern 00110010.

This problem can be solved by adding a Phase Shifter [Raj99] (or XOR cloud)

between the LFSR/CA and the scan-chains.

3. Unknown MISR states caused by unknown/fixed input values

It is possible that several inputs of the CUT have an unknown/fixed value, e.g.,
inputs from an embedded memory. These unknown values result in paths with
unknowns in the CUT and can finally propagate to one or several outputs (the prop-
agation of unknowns is also called X-path propagation). When an unknown value
is captured into a MISR, the complete state of the MISR cannot be determined and
with an unknown MISR state, it cannot be checked whether a CUT is fault-free or
not.

This problem can be solved by the insertion of additional logic/TPs such that,
in test mode, these unknown values are replaced by known, fixed or PR values.
Another solution is to insert additional logic at the outputs which capture unknown
states and map them to known states.

4. Possible circuit damage and unknown MISR states caused by bus-conflicts
With ATPG one can avoid bus-conflicts. The ATPG just generates patterns such
that all buses are only driven by at most one driver. But this is not the case for PR
patterns; it is possible that some buses are driven by multiple drivers. This results
in bus-conflicts that can damage the circuit. These conflicts also result in unknown
values that can propagate into the MISR, corrupting the MISR state.

66 CHAPTER 3. TEST POINT INSERTION

There are three general solutions for this problem:

(@) Insert additional logic in the circuit such that for all patterns, no bus is driven
by multiple drivers at the same time.

(b) Insert additional logic between the PRTPG and the original circuit such that
only patterns are shifted into the scan-chains that will not result in bus-conflicts.

(c) Do not prevent the bus-conflicts (can result in circuit-damage), but insert ad-
ditional logic between the outputs of the circuit and the MISR such that all
possible unknowns are mapped into known values such that the MISR state is
known for the fault-free case.

3.7| State-of-the-art TPI algorithms

In this section, several state-of-the-art TPI algorithms will be described. Subsection
3.7.1 describes the Cost Reduction Factor (CRF) algorithm. This algorithm calculates
for each TP candidate an estimate for the reduction in the global test cost of the circuit.
Subsection 3.7.2 describes an algorithm which calculates a more accurate estimate for
the reduction in cost for each TP candidate; the Hybrid Cost Reduction Factor (HCRF).
Subsection 3.7.3 describes a TPI algorithm that splits the test into multiple phases. In each
phase a different set of TPs will be enabled. Subsection 3.7.4 gives a short description of
several other TPI algorithms found in literature.

3.7.1 The Cost Reduction Factor (CRF) TPI algorithm

In [Sei91], an O(n) algorithm is described which calculates an estimate for the reduc-
tion in cost that a TP candidate would cause. This estimate is called the Cost Reduction
Factor (CRF). The CRF for a given signal line that will be TP candidate, is calculated by
using only local testability information of that line, i.e., the COP controllability, observ-
ability and gradient values. Therefore the CRF for all TP candidates can be calculated
very fast, while the calculation of the Actual Cost Reduction Factor (ACRF) for all TP
candidates would be very CPU-consuming. The ACRF of a TP candidate is obtained by
temporarily inserting the TP into the circuit, re-evaluating the CF and determining the
ACRF value by subtracting the new cost value from the old one. This is an O(n?) algo-
rithm, i.e., for each n TP candidates (assuming all lines in the circuit can be TP candidate)
in the circuit, a TP is inserted after which for all n lines in the circuit the cost is recalcu-
lated.

In Seiss et al. [Sei91], the CRFs for AND-gate CPs, OR-gate CPs and OPs are de-
rived. The CRFs for a CP at line | for an AND respectively and OR gate are given in Egs.
3.23 and 3.24.

1-C dK 2

CRFANP === .¢.— —
! 2—C ! dC C-(1-C)-W

(3.23)

3.7. STATE-OF-THE-ART TPI ALGORITHMS 67

C -1 dK 2
RER=="_-.¢,.— — 24
CRA C+1 G ¢ C-(1-C)-W (3.24)

The CRF for an OP at line I, derived in [Sei91], is given in Eq. 3.25:

dK
CREP = W —1)-W-—
| (Wi —1) W,
if line | represents a fan-out stem in the original circuit
dK 1 1
CRF® = W-1) W — —(—4-——
| (Wi = 1) W G (c|+1—c.)
otherwise (3.25)

The distinction between line | representing a fan-out stem or not can be explained by con-
sidering Fig. 3.4.a and 3.4.b. In the case that line | is not a fan-out stem in the original
circuit, the introduction of the additional fan-out branch, which is required to implement
the OP, causes line | to become a fan-out stem in the modified circuit. As a consequence,
two new faults have to be modeled, which are the SAO0 and SA1 faults for the newly cre-
ated fan-out stem. Since these two faults are observable on the new PO with observability
1, their contribution to the cost and CRF,O'C’S is given by 1/C; + 1/(1-C;). When | already
denotes a fan-out stem in the original circuit, no new faults have to be modeled.

The CRFs, however, could differ significantly from the ACRFs, for the following
reasons:

1. The observability changes due to a CP are completely ignored. This means that the
observability changes of lines in the fan-in cone of POs, reachable from the CP, are
completely neglected.

2. Certain circuit structures and fault sets were assumed during the derivation of the
CRF equations. By assuming that CUTs contain these types of structures, a con-
trollability value C; can be factored out such that the rest of the terms in K are
completely independent to C,. This assumption is not generally true.

The CRF TPI algorithm of Seiss et al. [Sei91] is listed in Algorithm 3.2. In each
iteration of the outermost while loop, the algorithm inserts exactly one CP or OP into the
circuit. TPs are inserted until the cost K of the circuit reaches a desired cost (Kgesred),
or the number of inserted TPs (#TPs) has reached the maximum number of TPS (#TP yax)
that are allowed to be inserted. Because the controllability, observability, controllability
and observability gradients, and the CRFs may have changed due to the insertion of the
TP, these values have to be updated at the beginning of each iteration. Subsequently, the
algorithm selects a set of candidate lines for TPI by exploiting the CRFs as a guidance.
The CRFs are not very accurate and as described in [Tsa97], the inaccuracy of the CRFs
becomes more significant when a high fault coverage is reached. Therefore, the CRF is
only used to pre-select a small number of possible TPs in the CRF TPI algorithm. The
ACRFs are only calculated for the pre-selected lines. This saves a lot of time because

68 CHAPTER 3. TEST POINT INSERTION

Algorithm 3.2 CRF Test Point Insertion
Input: CUT, desired cost (Kgesred), T Pmax
Output: CUT with TPs

while (K > Kgesred) and (#T Ps < #T Pyax) do
for all lines | € CUT do
Evaluate controllability C; and observability W
Compute the gradients dK/dW, and dK/dC,
Compute CRF P
if (dK/dC, < 0) then
Compute CRF PR
else
Compute CRF{™NP
Determine CRFCPrx with v,y (CRF{™>/ 9% <= CRFCPmx)
Determine CRF 9P« with v, _c 7 (CRFP” <= CRF)
Determine the set SLcp of all lines | € CUT with
SLcp = {I | CRF"P/OR > 0 1. CRFCPm}
Determine the set SLop of all lines | € CUT with
SLop = {I | CRFPP > 0.1-CRF OFmx}
NR=1
for all lines | € SLcp do
if (dK/dC; < 0) then
Simulation of an OR type CP at line |
else
Simulation of an AND type CP at line |
Evaluation of cost function K™ for the modified CUT
cost[NR] =K™
NR=NR+1
for all lines | € SLop do
Simulation of an OP at line |
Evaluation of cost function K™ for the modified CUT
cost[NR] =K™
NR=NR+1
Select line I+p with Vo) -—nr(cOst[l]) >= cost[l1p])
if (Itp € SLcp) then
if (dK/dCy, < 0) then
Insert an OR type CP at line I1p
else
Insert an AND type CP at line ltp
else
Insert an OP at line I1p

3.7. STATE-OF-THE-ART TPI ALGORITHMS 69

calculation of the more accurate ACRFs is very CPU time-consuming and therefore not
practical for current large & complex circuits, e.g., calculating the ACRFs for all TP
candidate lines in circuit c7552 takes 625 seconds on a 700 MHz AMD Athlon, while
calculating the CRFs takes only 0.01 seconds. Therefore only lines with CRFs that are
at least 10% (the 0.1 factor in Algorithm 3.2) of the highest CRF found in the circuit
are considered TP candidate. Each TP candidate is temporarily inserted to determine the
CORP testability measures and the value of the CF K, for the modified circuit such that the
ACREF can be determined. Once all candidates have been examined, the candidate CP or
OP which leads to the largest cost reduction, is actually inserted in the circuit.

The 10% factor can be considered as a parameter with which the algorithm can be
tuned. A higher percentage than 10% means that there will be fewer TP candidates,
speeding up the algorithm. However, this might also result in a less accurate TPI; good
TP positions are not considered TP candidate due to their inaccurate low CRF values.
A lower percentage means more TP candidates, resulting in reduced performance but
possibly more accurate TPl because more TPs candidates are evaluated, including good
TP positions with an inaccurate low CRF value.

Experimental results of the CRF TPI Algorithm

[Sei91] gives experimental results of the CRF TPI algorithm for several ISCAS bench-
mark circuits [Brg85][Brg89], and industrial circuits, which are known to be highly RPR.
They are shown in Table 3.2. Column Circuit gives the name of the circuit and Column
#Gates lists the number of gates in the circuit. Columns FC before TPI and FC after TPI
show the fault coverages achieved after the simulation of 32,000 PR patterns for the circuit
without TPs, respectively after TPI. All redundant faults have been identified in advance
and are excluded from the fault list. Therefore, all fault coverages refer to non-redundant
faults only. Column #TP shows the number of inserted TPs and Column #CP/#OP shows
how the inserted TPs are divided between CPs and OPs. Column Est. area overhead Shows
an estimation of the overhead of the TPs compared to the circuit itself.

The results from Table 3.2 show that the insertion of a small number of TPs leads to

Table 3.2: Results of the CRF TPI algorithm upon RPR circuits

FC FC #CP/ | Est. area
Circuit | #Gates | before TPI | after TPl | #TP #OP | overhead
s838 422 87.51% | 100.00% | 3 3/0 1.54 %
€2670 | 1193 88.21 % | 100.00% | 10 3/7 1.21%
c7552 | 3512 96.11% | 100.00% | 20 18/2 1.26 %
BNR_A | 16143 96.86 % 99.40% | 10 9/1 0.15%
BNR_B | 13019 92.86 % 98.14% | 20 13/7 0.39%
BNR_C | 20900 90.35 % 99.41% | 20 20/0 0.27 %

70

CHAPTER 3. TEST POINT INSERTION

Table 3.3: Estimated detection probabilities of the hardest-to-detect faults end the test

length required to achieve 99% fault coverage, before and after TPI.

Pds hardest- Pd+ hardest- Test length | Test length

Circuit | to-detect faults | to-detect faults 99 % FC 99 % FC
before TPI after TPI before TPI after TPI

s838 3.36-10~ 11 2.57.107% | > 10 000 000 2 000
c2670 3.47.10~% 2.38.10°% 420000 1 200
c7552 1.42.10713 4.26-107% 8900000 1 800
BNR_A 6.03.10~11 1.33.1079% > 10000000 21 000
BNR_B 1.86-10~%° 5.27.10~% 6 400000 36 000
BNR_C 2.16.10°1° 2.48-107% | > 10000000 7 300

a significant increase of the fault coverage achievable with 32,000 random patterns, e.g.,
by inserting only 3 TPs in circuit s838, the fault coverage has increased with 13% from
87% to 100%. For the remaining circuits, the increase in fault coverage ranges from 4% to
12%, after the insertion of only 10 to 20 TPs. The results also show that the estimated area
overhead is in the order of 1% for all circuits, and even smaller for the larger, industrial
circuits. The area-overhead estimates do take in account the additional SFFs, which have
to be inserted in the scan-chain in order to feed the CPs and to capture the test responses
at the OPs.

Because they are good indicators for the random pattern testability of a circuit, the
detection probabilities of the hardest-to-detect faults for the circuits listed in Table 3.2 are
given in Table 3.3. Another criterion characterizing the random pattern testability of a cir-
cuit consists of the test length required to achieve a certain fault coverage. Table 3.3 also
lists the test length which is necessary to achieve a fault coverage of 99%. Columns Pd¢
hardest-to-detect faults before TPI, respectively after TPI, show the lowest detection proba-
bility found in the circuit before TPI, respectively after TPI. Columns Test length 99% FC
before TPI, respectively after TPI, show the number PR patterns that are applied until the
99% fault coverage level has been reached before TPs, respectively after TPs, have been
inserted. The results show that the detection probability of the hardest-to-detect faults in
the modified circuits are improved by several orders of magnitude, compared to the ones
of the original circuits; e.g., the detection probability of the hardest-to-detect fault in cir-
cuit c7552 has been improved by 8 orders of magnitude from 1.42-1013to 4.26-10~°.
In circuit BNR_C the improvement even is 13 orders of magnitude, from 2.16-10-1° to
2.48-1075,

Before TPI, all circuits listed in Table 3.3 require far more than 32,000 PR patterns
before the 99% fault coverage level is reached, ranging from 420,000 patterns for circuit
€2670 to more than 10 million patterns for circuits s838, BNR_A and BNR _C. After TPI,
all circuits can be tested with less than 32,000 PR patterns, except circuit BNR_B which

3.7. STATE-OF-THE-ART TPI ALGORITHMS 71

requires 36,000 PR patterns. But even the test length for circuit BNR_B after TPI is only
36,000/6,400,000=0.56% of the test length required without TPs. The test time is propor-
tional with the test length, hence the same reduction in test time is achieved by the TPI.

That the CRF TPI algorithm can be used in combination with a BIST method, i.e.,
bit-flipping BIST [Kie98] described in Subsection 2.7.3, to facilitate the BIST method in
reaching higher fault coverages with less silicon overhead, is shown in [Vra02].

CRF TPI derived algorithms

In Cheng et al. [Che95b], the CRF TPI algorithm has been adjusted such that it can
also be applied to partial-scan circuits, i.e., circuits that contain both scannable as non-
scannable flipflops. The CRF based TPI algorithm of [Che95b] also takes into account
timing information, such that TPs are not inserted at critical paths.

In Nakao et al. [Nak99], also a CRF based TPI algorithm for BIST is presented. In
order to reduce the delay of the TPI, TPs (CPs) are only inserted at inverters and buffer
positions. Buffers/inverters are replaced by AND/OR gates controlled by SFFs which
must provide a non-controlling value during normal application mode. Also the OPs are
implemented by means of SFFs. If possible, SFFs that control or observe the TPs, are
shared in order to minimize the hardware overhead.

3.7.2 The Hybrid Cost Reduction Factor (HCRF) TPI algorithm

This section describes a TPI algorithm presented by Tsai et al. [Tsa97]. It uses the
Hybrid Cost Reduction Factor (HCRF) for estimating the Actual Cost Reduction Factor.
The key idea of the HCRF TPI algorithm is that an event-driven mechanism is used to
propagate the testability changes due to a TP. Once the changes become small, the gradi-
ents (see Section 3.5.3) can be used to estimate the testability changes of all other lines to
avoid high computational complexity of recalculating the testabilities for the entire circuit.

The CRFs can deviate significantly from the ACRFs, especially when the circuit has a
high fault coverage [Tsa97]. Therefore, the CRF Test Point Selection algorithm presented
in the previous section only uses the CRF values as a guidance to select the best TP to
insert. However, the ACRF values still have to be calculated for the limited set of possible
TPs, which remains after the pre-selection based on the highest CRF values. When the
set of candidate TPs is too small, the number of calculations and the CPU time necessary
is limited, but it is very well possible that several good TPs are excluded because their
CRF values are not accurate. On the other hand, a larger set of candidate TPs means more
calculations and possibly impractical CPU consumption.

With the HCRF TPI algorithm, it is not necessary to do a pre-selection on all TP can-
didates and to calculate the ACRF for all pre-selected candidates, by temporarily inserting
the TP. Only the HCRF estimates from all TP candidates are used to select the TP that

72 CHAPTER 3. TEST POINT INSERTION

will be inserted. Before the HCRF calculation, and the TPI algorithm based on the HCRF,
are explained, first the relation between the ACRF and the HCRF is given.

Given a fault set F, the ACRF for a TP can be expressed by:

ACRF = K(©9 _gm

1 1
_ _ 3.26
%: (pdf(C)rg) Pds (m)> (3.26)
1 1 1 1
= — _|_ _
erl (pdf(OFQ) pdf(m)> fGZz (Pdf(Org) pdf(m)>
the difference is large the difference is small

where K(©9), KM are the cost values, and Pd;(©"9), Pd; (™ the detection probabilities of
fault f, before, respectively after, the modification of the circuit by the inserted TP (can-
didate). The fault set F can be divided into two subsets, F1 and F». For each fault in F1,

l 1 - - - - -
Pd, O~ pg, ™ is large and therefore the gradient approximation is not accurate. On the
1 1

other hand, for every fault in F», the difference of pd, OF 3,

that the gradients can accurately enough estimate their impact on K, see Subsection 3.5.3.
Typically, the size of F1 is much smaller than that of F», because the test only influ-

- - l 1 - .
ences a small part of the circuit. Therefore, pa, Od ~ pg,m Can be calculated explicitly
1

for faults in F1 (by computing W) and the gradients can be used to evaluate the sec-
f

ond term of Eq. 3.26. An event-driven mechanism is used to propagate the controlla-
bility/observability changes caused by the TP candidate until the changes drop below a
threshold. Whether an event at line I, is scheduled for further propagation is determined
by the ratio of dK/dWi - AW, to K%org)_ The change in observability of line Ig, is rep-
resented by AW, . The region of lines processed to identify set Fy is relatively very small
for a large design, therefore the complexity for calculating the first term of Eq. 3.26 is
low. In addition, gradients can provide a very good estimate for the second term of Eq.
3.26, because the assumptions of the gradients are not violated for faults in Fo. How to
calculate the HCRF for OPs, respectively CPs, is given in the following text.

and 5 is small enough such

Calculation of the HCRF for OPs

The propagation of the explicit recalculation of the COP observability changes of fault
set F; starts from the OP | backward to the Pls, shown in Fig. 3.10. For each gate output
Zgate inside Region |, the gradient approximation, i.e., the ratio of dK/dWg,, - AWz, to

K(©9) s larger than a given (user-defined) threshold. As a result, the event-driven mech-
anism continues with the explicit recalculation of the COP observabilities of the gate
inputs. Propagation of the explicit recalculation stops when the gradient approximation
becomes below the user-defined threshold, illustrated in Fig. 3.10 by the Boundary line.

3.7. STATE-OF-THE-ART TPI ALGORITHMS 73

Observation point

Boundary line

Noo

X
Npy

Figure 3.10: Computing HCRF for an OP

At the Boundary line, the gradient approximation is used to estimate the cost impact of
the observability changes of the faults in Region II.

The HCRF for an OP comprises three parts:

1 1 - - - . gy
1. 5¢ Pd, O P, for every fault f inside Region I; the new observabilities and

therefore the new Pd;’s are computed explicitly.

2. For all faults inside Region 11, 3, d\Md—K AW, ngr Where lpgung’s are the lines
bound
on the boundary in Fig. 3.10, is used to estimate their contribution to the ACRF.

3. If the OP | is not a fan-out stem in the original circuit, the contribution of the new
fan-out branch faults (s+— and s<+—) are added.
Pd, /sa1 Pd, /sao

The equation to compute the HCRF for an OP becomes:

1 1 dK
HCRFOP = - - (-AW|)
feR%onl (Pdf(org) Pdf(m)) IbeBc%ndary dW'b °

when line | is a fan-out stem (3.27)

1 1 dK
HCRFOP = < —) — <—-AW|)
feR%on 1 \ Pds (Crg) Pd¢ (m) Ibeandary dwi,, °

(o, 1
Pdi/sao Pd)/sa1

when line | is not a fan-out stem (3.28)

The cost contribution estimate for the lines in Region 11 can be viewed as adding a set of
pseudo-OPs (with a delta change in observability) on the boundary simultaneously. The
second term of Eq. 3.27 simply represents the superposition of the effects of all these
pseudo-OPs. Because the change is small, the assumption of the gradients holds and
therefore the accuracy of this term will be high enough.

74 CHAPTER 3. TEST POINT INSERTION

Control point

Boundary B Boundéry A

Figure 3.11: Computing HCRF for an AND/OR CP

Calculation of the HCRF for CPs

Computing the HCRF for a CP is more complicated than for an OP. A CP does not only
change the controllabilities, but also the observabilities in the circuit. The propagation of
the altered COP values has to proceed in both forward and backward directions. Starting
from the CP, the propagation of the new controllabilities proceeds forward to the POs
shown as Region | in Fig. 3.11. During the processing of each gate input Xgae, the
ratio of dK/dCy,, - ACxy,, t0 K(Or9) js compared with a given user-defined threshold to
decide whether the controllabilities of the gate outputs should be recalculated or that the
controllability gradient can be used to estimate the impact on the cost.

Once the forward propagation ends, a set of lines is obtained; indicated as Boundary
A'in Fig. 3.11. The direction of propagations is then changed to backward to the Pls. The
lines on Boundary A are used as starting points for this backward propagation, similar
to the HCRF for OP calculation. Again, when the ratio of dK/dW ., - AWz, to K(O'9
becomes small, the backward propagations stop, and a set of lines indicated as Boundary
B in Fig. 3.11 is identified.

The HCRF of a CP contains four terms:

1 1

09 ~ pg, (M is computed explic-

1. Forevery fault f inside Regions I and II, § ¢ o

itly. New controllabilities and observabilities and therefore Pd¢’s are computed by
the above mentioned event-driven procedures.

dK : H 1 1
2. ZIbAeboundary A(dcIbA ’ACIbA) is used to estimate ZfeRegion Il (Pdf(Org) - Pd (M)

dK : : 1 1
3. zlbgeboundary B(d\Mb_B 'AWIbB) is used to estimate ZfeRegion IV(Pdf(Org) - Pd; (M)

4. The contribution of the new faults introduced by the inserted gate are added:
and L These are the SAO (SAL1) faults on the extra input and
Pd) /sao(sa1) Pd; /sao(sa1)

the output of the added OR(AND) gate.

3.7. STATE-OF-THE-ART TPI ALGORITHMS 75

The equations to compute the HCRF for OR-type and AND-type CPs become:

1 1 dK
HCRFOR = - - (e)
feReg%lsl&ll (Pdf(org) Pdf(m)> IbAebo%daryA dCle »

dK 1 1
- AW, >— + (3.29)
Ibgeboédary B <dW|bB > <PdI/SAO I:)dt/SAO>
1 1 dK
HCRRANP = (- > - (-AC)
feRegglsl&ll Pd¢ (99 pd¢(m |bAebo;daryA dC,, ™
dK 1 1
- — AW,)— + (3.30)
IbBebo%dary B (dwle - (PdI/SAl Pd; /5«1)
Every line lI,g on Boundary B can be viewed as a pseudo-OP such that the superpo-
sition zle(dW AW, ;) can be used to estimate 3 ¢ < OF) for faults in-

side Region IV. Slmllarly, every line Ipp on Boundary A can be viewed as a pseudo-
CP and z|bA(dC -ACy,,) is used to estimate the contribution for faults inside Region

1. A CP however affects the testabilities of both its fan-ins and fan-outs. Inserting a
set of CPs on Boundary A should have effects on all faults in Regions I-1V. This means
ZleeboundaryA(dq -ACy,,) also contains contrlbutlons from Region I, 1l and V. Because
the contribution from Region Il usually dominates d AC|bA, the error by this approx-

imation is negligible.
Furthermore, unlike OPs which always reduce K when they are inserted simultane-
ously, the effects of CPs can cancel one another if they are added at the same time. For

1 1
these reasons, using ZleeboundaryA(AC.bA) to estimate ¢ (o Pdf<m>> for

the faults f is just a heuristic.

The Hybrid CRF TPI Algorithm

The Hybrid CRF TPI1 Algorithm is listed in Algorithm 3.3. Instead of pre-selecting a
set of TP candidates that is further analyzed by calculating their ACRFs, for all lines the
HCRF for a CP and the HCRF for an OP are calculated. Given all L lines in the circuit,
the line Icp with the highest HCRF for AND/OR CPs is selected. Also the line Iop with
the highest HCRF for OPs is selected. When the highest HCRF for CPs is larger than the
highest HCRF for OPs, a CP is inserted at line Icp, otherwise an OP is inserted at line lop.

In the Hybrid CRF TPI algorithm it is assumed that for all lines in the circuit the
HCRFs are calculated. There are of course lines in the circuit which can be excluded as
TP candidate in advance. All inputs (PIs/POs and SFF in/outputs) can be excluded as
TP candidate. When timing information is available, i.e., critical paths in the circuit are
known, also the lines at which a TP would result in a performance degradation, i.e., would
increase the critical path length, can be excluded as TP candidate.

76 CHAPTER 3. TEST POINT INSERTION

Algorithm 3.3 Hybrid CRF Test Point Insertion
Input: CUT, desired cost (Kgesired), T Pmax
Output: CUT with TPs

while (K > Kgegreq) and (#T Ps < #T Pyax) do
for all lines | € CUT do
Evaluate controllability C; and observability W
Compute the gradients dK/dW, and dK/dC,
Compute HCRF PP
if (dK/dC; < 0) then
Compute HCRF R
else
Compute HCRF{\NP

Select line Icp with ¥, oy (HCRF["?/OR <— HCRFCPm)
Select line lop with ¥, .oy (HCRFPP <= HCRF ©Fmx)

if (HCRF“Prex > — HCRF ©Fm) then
if (dK/dCy, < 0) then
Insert an OR type CP at line Icp
else
Insert an AND type CP at line Icp
else
Insert an OP at line lop

Experimental results of the Hybrid TPI algorithm

Tables 3.4 and 3.5 show figures, taken from [Tsa97], representing the quality of the
TPs selected by the Hybrid TPI algorithm, respectively the CRF TPI algorithm described
in Subsection 3.7.1. Twenty TPs are selected sequentially for the ISCAS’85 circuits c2670
and c7552. At each iteration, the ACRFs for all possible TPs are computed explicitly and
sorted in a descending order. Then the ranks of the TPs selected by the Hybrid TPI al-
gorithm and by the CRF TPI algorithm are checked. The columns in Tables 3.4 and 3.5
show the rank of the TPs selected by the HCRF, respectively CRF TPI algorithm, for each
iteration.

The results show that the TPs selected by the Hybrid TPI algorithm are almost iden-
tical to the ones with the highest ACRFs. Except for the nineteenth iteration, the HCRF
selects the TP with the highest ACRF for circuit c2670. At the nineteenth iteration it
still selects the second best. During the first nine iterations for circuit c7552, the HCRF
selects the TP candidate with the highest ACRF, at the tenth iteration, the 7th best ACRF
candidate is chosen and between iterations 11 and 20 all TP candidates are in the top 3.

The rank of the TPs selected by the CRF TPI algorithm is sometimes quite off the
highest ranked ACRF candidate, especially for circuit c2670. Between the tenth and
twentieth iteration, the rank of the CRF TP is between 1991 and 1925 of approximately

3.7. STATE-OF-THE-ART TPI ALGORITHMS i

Table 3.4: Rankings of TPs selected by the Hybrid TPI algorithm

Iteration

Circuit 1St 2nd 3rd 4th 5th 6th 7th 8th gth 10th
c2670 1 1 1 1 1 1 1 1 1 1
c7552 1 1 1 1 1 1 1 1 1 7

Circuit || 11th | 12th | 13th | 14th | 15th | 16th | 170 | 18th | 19th | 20th
c2670 1 1 1 1 1 1 1 1 2 1
c7552 1 1 1 2 2 1 3 2 1 1

Table 3.5: Rankings of TPs selected by the CRF TPI algorithm

Iteration

Circuit 18*. an 3I‘d 4th 5th 6th 7th 8th 9th 1oth
c2670 106 8 4 6 1 3 1 1 1 1881
c7552 1 1 11 1 1 1 1 1 1 29

Circuit || 12th | 12th | 13th | 14th | 15th | 16th | 17th [18th | 19th | 20th
c2670 || 1881 | 1885 | 1895 | 11 | 1901 [1901 | 1911 | 1 | 1925 | 1925
c7552 1 1 3 2 1 1 1 2 1 1

2670 TP candidates. The CRF TP ranks for circuit c7552 are not so far off and except for
iterations three and ten, all ranks are in the top 3.

Whether the more accurate TP selection of the Hybrid TPI algorithm also results in
higher fault coverages is shown in Table 3.6. This table shows results taken from [Tsa97]
of the Hybrid TPI algorithm and the CRF TPI algorithm on eight, RPR, ISCAS’85 and
ISCAS’89 benchmark circuits. The circuits have been first optimized for performance
using Berkeley SIS synthesis system [Sen92] and are mapped into Lucent 0.9 micron
CMOS cell library. In this experiment, the threshold of scheduling an event for propaga-
tion or using the gradients to estimate the impact on the cost, is set to 0.1% for HCRF©BS,
for HCRFOR and for HCRFANP, The fault coverages shown are computed after applying
32,000 PR patterns. For both TPI algorithms, the same number of TPs are inserted, listed
in Column #TP. The fault coverages and CPU times are shown in Columns FC(%) and
cPuU time for respectively the Hybrid TPI algorithm and the CRF TPI algorithm. Column
CPU time ratio(%) shows the ratio of the CPU time of the Hybrid TPI algorithm to that of
the CRF TPI algorithm. The CPU time is measured on a SUN SPARCstation 5.

The results show that indeed the Hybrid TPI algorithm results in the same (circuits
€2670, s3384) or higher fault coverages (the other six listed circuits) than the CRF TPI

78 CHAPTER 3. TEST POINT INSERTION

Table 3.6: Comparison between the Hybrid and the CRF TPI algorithm

Hybrid CRF CPU time

Circuit | #TP || FC(%) | CPU time || FC(%) | CPU time ratio(%)
c2670 5 98.31 78.0 sec. 98.31 | 264.0 sec. 30
c7552 | 10 98.23 3.4 min. || 97.92 22.0 min. 15
s3330 | 13 99.92 4.9 min. || 99.39 29.0 min. 17
$3384 9 99.78 | 128.0 sec. 99.78 | 659.0 sec. 19
$4863 2 99.64 61.0 sec. 99.61 | 201.0 sec. 30
s9234 | 19 96.10 12.3 min || 94.79 75.0 min. 16
s15850 | 34 97.41 34.4 min. || 97.08 7.7 hr. 7
s38417 | 46 99.19 1.7 hr. 98.84 92.1 hr. 2
S 138 || 98.49 2.7 hr. 98.08 | 102.2 hr. 3

algorithm. The last line in Table 3.6 shows the average fault coverages achieved after TPI
for both algorithms. These averages are calculated taking into account the circuit size.
The CRF TPI algorithm reaches an average of 98% fault coverage. 2% of all faults are
not covered by the 32,000 PR patterns. On average, the Hybrid TPI algorithm only misses
1.5% of the faults and covers 98.5%.

The CPU time ratio figures show that the Hybrid TPI algorithm runs faster than the
CRF TPI algorithm. Only 2% (for circuit s38417) up to 30% (for circuits c2670 and
s4863) of the time that the CRF TPI algorithm takes, is spent by the Hybrid CRF algo-
rithm. The last line shows the total time spent on TPI for both algorithms. The Hybrid TPI
algorithm only takes 3% of the time that the CRF TPI algorithm consumes. Especially
the TPI runs on the two largest of the eight circuits (s15850, s38417) are much faster with
the Hybrid TPI algorithm and cause this large speed difference. These results show that
the Hybrid TPI algorithm is more feasible on larger designs than the CRF TPI algorithm.
This large reduction of the CPU time for the Hybrid TPI algorithm mainly comes from the
elimination of the second step in the CRF TPI algorithm, the calculation of the ACRFs.

3.7.3 Multi-phase Test Point Insertion

The Multi-phase TPI (MTPI) algorithm [Tam96] is based on a constructive methodol-
ogy. A divide and conquer technique is used to partition the entire PR test set into multiple
phases. In each phase a group of TPs (both CPs and OPs), targeting a specific set of faults,
is selected. Within a particular phase of the test, one group of CPs is enabled and the other
CPs are disabled. This remains the same during the whole phase, i.e., during a particu-
lar phase the CPs are controlled by fixed values. On the other hand, the CPs selected
by the (H)CRF TPI algorithm are driven by independent, equi-probable signals instead
of fixed ones, and test application is performed in a single session by enabling all CPs

3.7. STATE-OF-THE-ART TPI ALGORITHMS 79

100 %

Fault coverage

Figure 3.12: FC plot of a circuit which test is divided into 4 phases

(equi-probable) and OPs simultaneously. Because CPs can be enabled simultaneously,
it is possible that they have conflicting values such that some faults remain undetected.
With MTPI this can be avoided by enabling possible conflicting CPs in different phases.

An example of the division into phases is given in Fig. 3.12. As is shown, each
phase contributes to the results achieved so far, moving the solution closer to complete
fault coverage. The design of each phase, i.e., the selection of CPs and OPs, is guided by
progressively reducing the set of undetected faults. Within each phase, CPs are identified
which maximally contribute to the fault coverage achieved so far. A probabilistic fault
simulation technique is used to compute the impact of a new CP in the presence of the
CPs selected so far.

The MTPI BIST scheme and methodology

Fig. 3.13 illustrates the main components of the MTPI BIST scheme, which uses the
STUMPS approach.? The BIST controller contains a Pattern counter and a Phase decoder.
The phase decoder plays a key role in the MTPI BIST scheme. The pattern counter is
used as input for the phase decoder to know in which phase the test is. The outputs of the
phase decoder are used to enable the group of CPs belonging to the current phase.

In Fig. 3.13, the test T has been divided into four phases, €.g., @...@3. The corre-
sponding phase decoder output values during the test are shown in Fig. 3.14. In the first
phase @, the first quarter of the test, all CPs are disabled: a’ = a and b’ = b. During phase
@ (¢ =1, @ = @3 = 0), the AND-type CP CP;, is enabled, forcing line a’ to 0, while
the OR-type CP CPy is disabled; the value of line b’ equals the value b. During phase ¢,
both CPs CP, and CPy, are enabled, forcing line a’ to 0 and line b’ to 1. Finally, in phase
@z only CP CPy is enabled, line b’ is forced to 1 while the value of line a is propagated
unchanged to line a’.

2The scan-chains, including the surrounding scan-chains are still present in MTPI BIST, however not
shown to keep Fig. 3.13 clear.

80 CHAPTER 3. TEST POINT INSERTION

=~/ BIST PRTPG (LFSRICA)

controller Y y oo Y
Pattern (" scan—chains inputs
counter

V¢
1

A

CORE

Ro
|

Phase N 1o_|->
decoder ¢, E ” CE, s
o
— 2 >/1_L>C€’ b
. A
K%i - b
~ Circuit scan—chains outputs
with Yy y oo Y
BIST ORA (MISR)
Figure 3.13: MTPI BIST scheme
g ¢0 a/ b/
'g ¢14l—\ (po . b
& P, [P oo
g ?, — P.lo o
= (Z)g a b
| | | |

VAT 12T 34T T
test patterns

Figure 3.14: Impact MTPI phase decoder outputs on CPs

The MTPI BIST scheme will be described using the MTPI algorithm listed in Algo-
rithm 3.4. Given as inputs the CUT, the test length (number of PR patterns), the target
fault coverage, the maximum number of CPs and OPS (CPax, OPmax), the number of
phases (@) and the minimum-benefit-per-cost (MBPC) parameter, the objective of the al-
gorithm is to perform circuit modification such that the target fault coverage is met within
the specified test length, while satisfying the constraints on the number of CPs/OPs, with
a minimum number of phases. The MBPC value is a parameter which can be used to tune
the algorithm and will be described further on.

In each phase, a collection of CPs and OPs are inserted iteratively by assessing their

3.7. STATE-OF-THE-ART TPI ALGORITHMS 81

Algorithm 3.4 MTPI BIST

Input: CUT, number of PR patterns (T), Target fault coverage (FCiarget), CPmax,
OP1ax, Nnumber of phases (®), Minimum-benefit-per-cost (MBPC)

Output: CUT with TPs that reaches FCiarget

Perform fault simulation on T patterns
if (fault coverage >= FCiarget) then
exit
for Phase 0 to @-1 do
Get the list of undetected faults

{ CPs selection }
while (#CPs < CPyax) do
Perform probabilistic fault simulation
List the set of CP candidates
Evaluate the set of CP candidates
Select the best OP candidate: CPpeg
if (CPpegy meets MBPC criterion) then
Insert CP CPpegt
else
break

{ OPs selection }
Perform probabilistic fault simulation
while (#OPs < OP) do
List the set of OP candidates
Evaluate the set of OP candidates
Select the best OP candidate: OPpeg
if (OPpeg meets MBPC criterion) then
Insert OP OPpey
else
break

Perform fault simulation on T patterns
if (fault coverage >= FCiarget) then
exit

impact on the fault coverage. The consequences of inserting a CP/OP at a circuit line
are determined by means of a technique called probabilistic fault simulation (PFS) . The
PFS technique [Tam96] computes detection probabilities for the set of undetected faults
at different lines in the circuit, using analytical methods. This information, along with the
detection threshold, is then used to guide the selection of TPs. The value of the detection
threshold needs to be determined by considering factors like the phase duration (number
of patterns in a phase) and the desired detection confidence. This detection threshold can

82 CHAPTER 3. TEST POINT INSERTION

be varied across different phases.

The design of a particular phase is concluded when it is determined that the expected
benefit of a CP/OP does not justify the associated cost of implementation. The user-
defined threshold minimum-benefit-per-cost (MBPC) is used for this purpose. The final
step is to fault simulate the phase so that the list of undetected faults required for the
design of a subsequent phase is determined.

OP Selection

The purpose of this step is to identify a pre-specified number of lines that enable the
detection of a maximum number of faults. The objective is to select the lines such that
the detection probability of a maximum number of faults meets a user specified threshold
DTh. A three steps process is followed to achieve this objective.

First, probabilistic fault simulation is performed to determine the propagation profile.
This information is represented as a sparse matrix TM g, with the L collected lines as
rows, the F undetected faults as columns, and the probability of detecting a fault f on line
| as entry TM, ¢. In order to reduce the memory requirements, faults that propagate to a
line with a probability less than a certain minimum threshold are dropped. In addition,
lines that carry less than a minimum number of faults, as determined by the minimum-
benefit-per-cost (MBPC (see Algorithm 3.4) criterion, are eliminated. The problem of
selecting a pre-specified number of OPs, becomes equivalent to that of selecting the set of
rows which maximizes the number of columns satisfying the detection probability DTh.
This is an NP-complete problem, for which [Tam96] shows a greedy heuristic selection
method to solve it.

CP Selection

The RPR problem cannot be entirely solved by inserting OPs alone, CPs are needed as
well. In the MTPI scheme, CPs are driven by fixed values and are aimed at improving the
excitation probability and propagation of specific faults. The insertion of CPs is divided
into three steps:

1. Probabilistic fault simulation is performed to determine the propagation profile.
2. The set of candidate positions for CP insertion is determined.

3. The best CP candidate is selected, by determining the benefit of each candidate
through incremental probabilistic fault simulation.

These steps are explained below:

The CP selection aims at quickly identifying the set of CP candidate lines. It is neces-
sary to eliminate ineffective lines early on so that time spent in the subsequent selection
step is reduced. However, good candidates must not be missed; they are determined by an

3.7. STATE-OF-THE-ART TPI ALGORITHMS 83

estimation technique that computes two estimates, Eg and E1 for various lines in the cir-
cuit. These measures give an indication of the number of faults that could potentially be
detected by placing an AND/OR-type CP respectively. Lines for which Eq or E; exceeds
a minimum acceptable value are retained for subsequent evaluation.

The computation of Eg and E1 utilizes the propagation profile information and is
driven by three pre-specified parameters:

1. Minimum Probability Threshold MPTh which specifies the minimum acceptable
value for 0(1) probability at a line in the circuit.

2. Low Threshold LTh
3. High Threshold HTh

A line for which the 0-probability(1-probability) falls below MPTh is called a O-failing (1-
failing) line. For each 0-failing (1-failing) line in the circuit, a constant 0-value (1-value)
is injected at that line and the consequent signal probability changes are determined. The
values LTh and HTh are used to record changes in signal probability of lines due to the
insertion of a CP. A line for which the 0 or 1 probability changes from a value below LTh
to a value above HTh after the insertion of a CP is said to facilitate the excitation and
propagation of certain faults. For the purpose of estimation, such faults are considered
to be detected. Hence, the estimation procedure predicts the number of faults that could
be detected by a CP by reasoning about the impact of signal probability changes on the
faults.

Starting from the CP candidate location, the probability changes are computed in a
levelized, selective-trace manner. For each gate that is affected, new signal probabili-
ties are obtained. Fan-outs of the affected gate are scheduled for evaluation only if the
new signal probabilities deviate from the original signal probabilities by more than a pre-
specified threshold. The signal probability changes, along with the threshold LTh and
HTh, are then used to compute the estimates Eg and Ej.

The rank of each CP candidate is defined as the number of additional faults that propa-
gate to POs or OPs. The candidate with the highest rank is then selected for CP insertion.

Experimental results of the MTPI algorithm

Table 3.7 shows experimental results [Tam96], of the MTPI algorithm on the IS-
CAS’85 benchmark circuits ¢2670 and c¢7552 and five ISCAS’89 benchmark circuits.
For each circuit first the redundant faults have been eliminated. The objective of the
experiment is to achieve (near) complete fault coverage with 32,000 PR patterns, and a
minimum of phases.

Before the TPI algorithm is run, the number of phases (®), the duration and the
number of CPs and OPs, have to be determined. @ is chosen to be an arbitrary value, and
the entire test length among these phases is evenly distributed. Fault simulation for phase
Qo is then performed using a fast fault simulator. The set of undetected faults is used to

84 CHAPTER 3. TEST POINT INSERTION

Table 3.7: MTPI experimental results

No TPI Two-phase MTPI Multi-phase MTPI

Circuit || Average | Max. #CP/ | Average | Max. @ | #CP/ | Average | Max.

FC(%) | FC(%) || #OP | FC(%) | FC(%) #OP | FC(%) | FC(%)
c2670 88.12 88.82 1/5 | 100.0 100.0 - - - -
c7552 96.73 97.06 | 18/2 99.39 99.60 || 6 | 18/2 | 100.0 100.0
s3330 87.95 88.99 14 99.97 | 100.0 - - - -
s3384 96.06 96.30 0/5 | 100.0 100.0 - - - -
4863 97.66 98.12 6/4 99.78 99.83 || 4 6/4 99.96 | 100.0
9234 93.13 93.79 8/10 | 99.80 99.85 || 3 8/10 | 99.97 | 100.0
s15850 95.72 95.99 || 15/17 | 99.16 99.21 || 4 | 15/17 | 99.67 99.71
s38417 95.40 95.64 || 18/30 | 99.79 99.82 || 3 | 18/30 | 99.81 99.85

insert OPs. No CPs are inserted during phase @p. The design of each of the subsequent
phases @ to @p_1 IS then carried out iteratively. In each phase a fixed number of CPs,
targeting the set of undetected faults inherited from the previous phase, have been inserted
with the knowledge of already inserted TPs. All OPs are inserted during phase @g and the
total number of CPs are distributed equally among the phases @1 to @o_1. The detection
probability threshold DTh has been set to ﬁ, where Dy, is the test length of phase @, and

the MBPC parameter has been set to 10.

The Column Circuit in Table 3.7 shows the name of the circuit, Columns No TPI, Two-
phase MTPI and Multi-phase MTPI TPI show experimental results for the circuits in case no
TPs are inserted, respectively an MTPI run of two phases or an MTPI run with more than
two phases took place. In order to reduce the random effect, the average fault coverage
(Average FC) and maximum fault coverage (Max. FC) of ten fault simulation experiments
are presented. In case of TPI, Column #CP/#OP shows the number of inserted CPs and
OPs. For the multi-phase TPI runs, also the number of phases is shown in Column .

The two-phase experiment results shows that all circuits achieve an average fault cov-
erage greater than 99%, while without TPI, none of the circuits reach the 99% fault cov-
erage level. Circuits c2670, s3330 and s3384 even reach complete (=100%) SAF fault
coverage after TPI.

The goal of the experiment was to reach (near-) complete fault coverage for all listed
circuits. For the circuits which did not result in complete fault coverage with the two-
phase experiment, multi-phase TPl experiments (with ® > 2) are conducted. The results
in Column Multi-phase TPI show that the number of phases that are necessary to achieve
(near-) complete fault coverage is small, with a maximum of six phases for circuit c7552.
This shows that only a few combinations of enabled/disabled CPs are necessary. For
circuits s15850 and s38417 also no complete fault coverage has been achieved with the
multi-phase experiment, at least not with the given number of inserted CPs and OPs.

The MTPI BIST architecture is commercially available and [Het99, Fei0l, Gu 01]

3.7. STATE-OF-THE-ART TPI ALGORITHMS 85

Vdd Vdd

X. T
p i X.
in network F)? 1 q
out p
n
etwork i%{ network
out
_ n ﬁ
X ; { network }7 Xi

Vss Vss

(a) A 1-controllable gate (b) A O-controllable gate

Figure 3.15: AND/OR TP alternatives

provide case studies of the MTPI algorithm on industrial designs. They show that MTPI
BIST is applicable to industrial circuits as long as the circuits are BIST & TPI ready, or
can be made BIST & TPI ready, i.e., meet the requirements for BIST & TPI implementa-
tion as given in Sections 2.3 and 3.4.

3.7.4 Other state-of-the-art TPI algorithm

In Schotten et al. [Sch95], a TPI algorithm is presented for an area efficient BIST. Like
the adjusted CRF TPI algorithm presented in [Che95b], the TPI algorithm in [Sch95] does
not require a full-scan circuit. Like the (H)CRF TPI algorithms, [Sch95] uses controllabil-
ities, observabilities and a cost function to determine the best TP positions in the circuit,
although different controllability, observability and cost equations are used than the COP
equation on which the (H)CRF TPI algorithms are based. [Sch95] claims that their algo-
rithm is inefficient in case of large circuits with poor controllability, therefore we have not
looked further into this method.

In [Tou96] a test set dependent TPI method is presented, which is based on path trac-
ing. Fault simulation is used to identify faults that are not detected by a given set of test
patterns, e.g., a set of ATPG patterns. For each undetected fault, a path tracing procedure
is used to identify the set of TPs that will enable the fault to be detected. This set is the
set of TP solutions for the fault. Given the set of TP solutions for each undetected fault,
a minimal set of TP is selected to achieve the desired fault-coverage, using a set cover-
ing procedure. The set covering procedure is an NP-complete problem. Although good
heuristics exist [Chr75], this can result in very large CPU times for larger circuits with
many undetected faults.

In [Sav91] and [You93] alternatives for AND/OR TPs are presented. Instead of AND
and OR gate, the solution given in Fig. 3.15 is used. This is called the Force-Observe

86 CHAPTER 3. TEST POINT INSERTION

(F-O) approach. When the X; input of Fig. 3.15(a) is set to 0, the output (OUT) is forced
to 1. Similarly, when the X; input in Fig. 3.15(b) is set to 1, the output is forced to 0.
Thus, when a value of a node is needed to control to one, the gate driving it is replaced by
the controllable element of Fig. 3.15(a). If a node has to be controlled to zero, the gate
driving it is replaced by the element of Fig. 3.15(b). Simulations [You93] have shown
that the speed degradations observed with the F-O approach are generally smaller than
those introduced by the classical AND/OR TPs. The F-O TPs are useful to achieve a
good controllability at the cost of a minimal speed degradation. With highly loaded nodes
however, classical AND/OR TPs offer a better performance and they should preferably
be used.

3.8| Overview TPI topics in this dissertation

Subsection 3.8.1 provides an overview of the TPI topics that are addressed in the
remaining part of the dissertation. In order to test and compare the TPI algorithms and
techniques that are proposed in the following chapters, several TPI benchmark circuits
have been used. These circuits are described in Subsection 3.8.2

3.8.1 TPI topics overview

In the following three chapters, the application of TPI on improving BIST fault cov-
erage, respectively on facilitating stuck-at fault ATPG, and on facilitating gate-delay fault
ATPG, are addressed. In all cases, the HCRF TPI algorithm is used as a base for further
development, as will be explained in Chapter 4. COP, that is used in the CRF and HCRF
TPI algorithms, can only cope with Boolean values. Therefore COP will be extended in
Chapter 4 such that the HCRF TPI algorithm becomes applicable to industrial circuits,
i.e., circuits containing three-state elements and unknown values. In Chapter 4 a new
cost function will be proposed with which better PR fault coverage improvements can be
achieved. Also a technique is proposed that reduces the number of TP candidates in the
circuit, without impacting the quality of the TP selection.

In Chapter 5 it will be shown that the HCRF TPI algorithm is not only able to improve
BIST fault coverages, but is also able to reduce stuck-at fault test set sized generated by
a compact ATPG tool. The HCRF TPI algorithm is not aimed on reducing the compact
ATPG test set sizes. Therefore, in Chapter 5, new cost functions and techniques are intro-
duced that are aimed on reducing stuck-at fault ATPG test set sizes, such that better test
set size reductions can be achieved.

In Chapter 6 it will be shown what the impact is of TPI for stuck-at fault ATPG on the
ATPG test set sizes for gate-delay faults. It will be shown that TPI significantly reduces
gate-delay fault test set sizes as well.

3.8. OVERVIEW TPl TOPICSIN THIS DISSERTATION 87

3.8.2 TPI benchmark circuits

In order to evaluate the various TPl methods and techniques, several TPI benchmark
circuits have been used in this dissertation. These benchmark circuits consist of circuits
that are commonly used in literature for benchmarking test related algorithms, i.e., the
ISCAS circuits [Brg85, Brg89, Kis89] and circuit (cores) that were actually used in com-
mercial industrial products.

The properties of the ISCAS benchmark circuits used throughout this dissertation are
described in Appendix A and consist of the following three groups of circuits:

1. ISCAS’85
Eight of the ISCAS’85 benchmark circuits [Brg85] have been used in this disserta-
tion for benchmarking TP, i.e., circuits ¢880, c1355, ¢1908, c2670, c3540, c5315,
€6288 and c7552. These ISCAS’85 circuits are all Boolean combinational logic
circuits not containing any memory elements. The number in the name gives an
indication of the number of signal lines in the circuit.

2. ISCAS’89
In 1989 a new set of ISCAS benchmark circuits has been introduced by Brglez
[Brg89] that consists of Boolean sequential circuits, circuits containing memory
elements, i.e., flipflops. Eleven of these circuits have been benchmarked through-
out this dissertation, i.e., circuits s1196, s1423, s1488, s1492, s5378, s9234.1,
s13207.1, s15850.1, 35932, 38417 and $38584.1.

3. ISCAS’89a
Also in 1989 a set of addendum circuits [Kis89] has been added to the original set
of ISCAS’89 circuits. Ten of these ISCAS’89 addendum circuits have been used for
benchmarking, i.e., circuits s499a, s635a, s938a, s1269a, s1512a, s3271a, s3330a,
$3384a, s4863a and s6669a.

The industrial designs used for benchmarking TPI are all Philips industrial circuits. Prop-
erties of these industrial circuits are found in Appendix B. These industrial benchmark
circuits consist of the following groups of circuits:

1. Philips Boolean designs

Fifteen Boolean Philips designs have been used for benchmarking TPI, i.e., cir-
cuits p5973, p7653, p13138, p14148, p27811, p31025, p34592, p36503, p43282,
p43663, p72767, p73133, p73257, p75344 and p162057. Like for the ISCAS cir-
cuits, the number in the name is an indication of the number of signal lines in the
circuit. All of these listed circuits are cores/parts of commercial industrial 1Cs. Al-
though being industrial designs, these circuits do not contain three-state elements.
Only circuit p162057 contains fixed unknown inputs.

2. Philips three-state designs
Besides Boolean circuits, also fourteen industrial designs containing three-state

88 CHAPTER 3. TEST POINT INSERTION

elements and/or fixed unknown inputs are used for benchmarking, i.e., circuits
p32118, p37021, p66171, p71553, p93140, p104649, p114605, p137498, p481470,
p596922, p598004, p705050, p824184 and p854266. Circuits p71553 and p93140
are designed only for test purposes, the remaining circuits are parts of commercial
designs.

3.9/ Summary and conclusions

The purpose of test point insertion (TPI) is to insert extra logic, i.e., test points (TPs),
into the circuit to improve the testability of the circuit. TPs consist of control points (CPs)
and observation points (OPs). CPs are inserted to improve the controllability of lines and
OPs to improve the observability of lines. Traditionally, CPs consist of an extra input
connected to an extra inserted AND/OR gate at a line in the circuit. With the extra in-
put, the output of the AND(OR) gate can be forced to 0(1), bypassing the logic in the
fan-in cone of the line where the CP is inserted. OPs consist of extra inserted outputs. In
scan-designs, CPs and OPs are often controlled and observed by extra SFFs. These SFFs
themselves can also be used as TPs, at least when they are transparent during normal ap-
plication mode.

TPI can be used to facilitate testing in different ways, e.g., it can be used to improve
PR fault coverage or to facilitate the generation of ATPG patterns. TPI algorithms can be
categorized, depending on the method they use to determine the faults which testability
should be improved, into: ATPG, fault simulation, and testability analysis based methods.
TPI methods can also be divided into methods that do take into account the test set that
will be applied to the circuit, i.e., test set dependent methods, and TPI methods that do
not take this information in account, i.e., test set independent methods.

In case of industrial circuits, TPI algorithms should be able to cope with three-state
circuits and avoid bus-conflicts. Also TPs at the critical paths should be avoided to pre-
vent performance loss.

Several TPI algorithms, e.g.,the CRF TPI algorithm [Sei91], the Hybrid CRF (HCRF)
TPI algorithm [Tsa97] and the Multi-phase TPI (MTPI) algorithm [Tam96] have been de-
scribed which improve the fault coverages. Both the CRF and HCRF TPI algorithm use a
cost function, based on COP testability analysis measures, to select the best positions in
the circuit to insert TPs. Therefore first descriptions of COP, the cost function and cost
gradients have been given. Because most TPI algorithms for BIST assume a STUMPS
architecture, also a description of the STUMPS architecture has been given.

Several sets of circuits have been described, i.e., ISCAS and Philips benchmark cir-
cuits, that are used in this dissertation to benchmark TPI. In the following three chapters
TPI methods are described to facilitate BIST, facilitate ATPG, respectively facilitate gate-
delay fault ATPG.

CHAPTER 4

Test Point Insertion for BIST

Section 4.1 starts with a comparison of the CRF, HCRF and MTPI algorithms de-
scribed in Chapter 3 and summarizes their advantages and disadvantages. Also will be
explained why the HCRF TPI algorithm is chosen as a base for further TPI development.
Section 4.2 describes how COP can be extended such that it is also applicable to industrial
circuits. Section 4.3 describes our proposed TPI algorithm for BIST. It includes experi-
mental results that show that our proposed TPI algorithm results in significant PR fault
coverage improvement and is applicable to complex large industrial circuits containing
three-state elements. Also included in this section is a technique to speed-up the TPI al-
gorithm without impacting the quality of TPI. Section 4.4 summarizes and concludes this
chapter.

4.1] Comparison of the CRF, HCRF and MTPI algorithm

This section starts with comparing experimental results of the CRF, HCRF and MTPI
algorithms for BIST in Subsection 4.1.1, followed by a summary and conclusions in Sub-
section 4.1.2. One of the main drawbacks of most TPI algorithms is that they do not
support industrial circuits, i.e., circuits that contain lines that can become Z or U. The
implications of industrial circuits on TPI and BIST are described in Subsection 4.1.3.

4.1.1 Comparison of the TPI experimental results

Table 4.1, taken from [Tsa97], shows a comparison of the TPI algorithms described in
Section 3.7. The circuits, listed in Column Circuit have first been optimized by removing
redundant faults from the fault list. Experimental results are shown for the CRF algo-
rithm, respectively Hybrid CRF algorithm and MTPI algorithm. For the Hybrid CRF and
MTPI algorithms, the number of CPs and number of OPs (Column #CP/#wP) are listed.
No detailed information of the number of CPs and OPs is given for the CRF algorithm,
therefore only the number of inserted TPs (Column #TP) is listed. The fault coverages

89

90 CHAPTER 4. TEST POINT INSERTION FOR BIST

Table 4.1: Comparison between the CRF, Hybrid CRF and MTPI TPI algorithms

CRF Hybrid CRF MTPI
Circuit || #TP | FC(%) || #CP/ #OP | FC(%) || #CPl #OP | ® | FC(%) | ® | FC(%)
2670 5 | 100.00 4/1 100.00 1/5 2110000 | -] -
c7552 || 10| 99.66 3/7 99.98 | 18/2 2| 99.49 | 6 | 100.00
$3330 || 92| 99.39 716 99.13 1/4 2| 997 | -| -
3384 9| 99.78 08 100.00 0/5 210000 -| -
4863 2 | 99.99 11 100.00 6/4 2| 9978 | 4| 99.96
9324 | 19| 9851 15/3 99.88 8/10 2| 9980 | 3| 99.97
s15850 | 34| 9882 | 238 99.16 | 15/17 2| 9916 | 4| 99.67
38417 | 46| 99.43 || 28/20 99.79 || 18/30 2| 9979 | 3| 99.81

after TPI and applying 32,000 PR patterns are shown in the Columns FC. For MTPI the
fault coverages are shown for a two two-phase MTPI run and, for circuits c7552, s4862,
$9234, 51585, and s38417, also for a multi-phase (more than two phases) MTPI run.

The CRF algorithm inserts more TPs than the Hybrid CRF and MTPI algorithms,
while this does not result in higher fault coverages. Only for circuit s3330 a higher fault
coverage is achieved by the CRF algorithm than by the Hybrid CRF algorithm. But the
CRF algorithm inserts -7 times the number of TPs inserted by the Hybrid CRF algorithm
(92 versus 13) resulting in a =7 times higher silicon overhead.

The Hybrid CRF and 2-phase MTPI results are almost the same, except for circuits
€7552, s3330 and s4863. The Hybrid CRF inserts fewer TPs, while achieving higher fault
coverages for circuit c7552 and s4863. But for circuit s3330, 2-phase MTPI inserts fewer
TPs while achieving a higher fault coverage. For the remaining circuits, the number of
inserted test points and the achieved fault coverage are the same, although the ratio be-
tween CPs and OPs differs.

Increasing the number of phases, see Column MTPI, during MTPI, results in higher
fault coverages. Compared to the Hybrid CRF algorithm, multi-phase MTPI is able to
reach higher fault coverages for circuit c7552, $9234, s15850 and s38417. However,
MTPI inserts ten TPs more in circuit c7552 than the Hybrid CRF algorithm and the dif-
ference in fault coverage for circuit s38417 is only 0.02%. Multi-phase MTPI is still not
able to reach the same fault coverage for circuit s4863 as the Hybrid CRF algorithm. It
is possible that circuit s3330 needs a number of CPs to be enabled at the same time to
have effect, or, to avoid conflicting values of two CPs, needs two CPs not to be enabled
at the same time. On the other hand, it is possible that the COP based CRF and HCRF
algorithms result in better TPI for circuit s4863 than PFS.

4.1. COMPARISON OF THE CRF, HCRF AND MTPI ALGORITHM 91

4.1.2 Summary of the CRF, HCRF and MTPI algorithms

CRF TPI: For each possible TP position in the CUT, the Cost Reduction Factor (CRF)
is calculated. The CRF is an estimate for the cost reduction achieved by the TP
and is calculated using local testability analysis (TA) information of a signal line,
namely the COP controllability, observability and gradient values, no TA measures
of surrounding lines are taken into account. The gradients of a line reflect the impact
of a controllability/observability change on that line on the entire circuit. The CRFs
are not accurate enough for selecting a good TP position. For this reason, a set of
TP candidates is selected for which the Actual Cost Reduction Factor (ACRF) is
calculated. The ACREF is calculated by temporarily inserting the TP candidate in
the CUT, recalculating the cost and taking the difference between the original cost
and the cost after TPI. The TP that results in the largest ACRF will be implemented.

Advantage: The computation of the CRFs and gradient values are linear with the
number of faults. They can be calculated fast.

Disadvantage: The CRFs are not accurate enough for TPI and calculating the
ACREF for every TP candidate is too time-consuming. The ACRF is only cal-
culated for a limited set of TP candidates; it is possible that good TPs are
excluded because they are not included in the limited set of TP candidates.

Hybrid TPI: The Hybrid CRF algorithm uses the Hybrid Cost Reduction Factor (HCRF)
as estimate for the ACRF. The HCREF is calculated by explicitly calculating the
changes in detectability probabilities of a line when the changes in controllability
or observability are too large, and using the gradients when the changes are small.
The calculation of the HCRF happens in an event-driven procedure. Starting from
the TP, the observability and controllability changes are propagated toward Pls and
POs until the impact of the changes on the cost becomes below a given threshold.
The HCRF values are more accurate than the CRFs and no ACRF calculation is
needed to find a good TP position.

Advantage: The HCRFs are more accurate than the CRFs. All TP candidates are
taken into account.

Disadvantage: Calculating an HCRF is slightly more time-consuming compared
to the CRF. However, the CRF algorithm requires ACRF calculation which is
not required for HCRFs. This algorithm is still based on TA estimates and does
not take into account special information on the test set that will be applied to
the circuit during test.

Multi-phase TPI: The COP based algorithms enable their CPs independently and equi-
probably during the entire test. In the Multi-phase TPl (MTPI) algorithm, during
any phase only one set of CPs is enabled and the other CPs are not. During the
next phase, another set of CPs is enabled. The same CPs can be in multiple sets
and so be enabled during multiple phases. This algorithm first uses fault simulation

92 CHAPTER 4. TEST POINT INSERTION FOR BIST

to find the controllabilities of all lines and to get a list of undetected faults. Prob-
abilistic Fault Simulation (PFS) is used to determine the propagation profile of the
faults. Estimates are used which reflect the number of undetected faults that will be
detected by inserting a TP. These estimates are calculated with the data found with
PFS. TPs which lead to the largest number of faults to become detected during a
phase, are selected.

Advantage: CPs that have a conflict when they are enabled at the same time can
be put in different phases such that they will never by enabled simultaneously.
The results of (P)FS are more accurate than those of COP, because (P)FS takes
advantage of the test set that is used during test.

Disadvantage: This algorithm is much slower compared to the COP algorithms,
because fault simulation and PFS are both more CPU time-consuming than
the controllability/observability and cost calculations of COP. The lack of ran-
domness in enabling CPs sometimes has a negative impact on the fault cover-
age.

The CRF/Hybrid CRF algorithms are based on TA. This is faster and easier than us-
ing (probabilistic) fault simulation as MTPI does. TA does not only give estimates for
the controllability and observability, but it also introduces a way to estimate the impact
of a TP on the CUT. Fault simulation can result in better estimates for controllability and
observability, because the information of the test set used for testing can be taken into
account, but how to estimate the impact of a TP on the CUT is harder.

The Hybrid CRF algorithm outperforms the CRF algorithm; it is faster (taking into
account that for the CRF, also the ACRF values have to be calculated) and does result
in higher fault coverages. The MTPI and Hybrid CRF algorithm have comparable re-
sults. The structure of a CUT has a large influence on determining which TPI algorithm
is better. There are circuits for which conflicting CPs results in reduced fault coverage
improvement; these circuits benefit from the MTPI approach. For other circuits, the equi-
probable CP enabling method used in the Hybrid CRF TPI algorithm outperforms the
fixed enabling method used in the MTPI algorithm.

Case studies presented in [Het99, Fei01, Gu 01] have shown that the MTPI algorithm
is also applicable to industrial designs. However, the MTPI TPI algorithm should be used
in combination with the multi-phase BIST scheme depicted in Figure 3.13; it cannot be
used in combination with other BIST models. As the MTPI algorithm is integrated in the
MTPI BIST scheme, it is not applicable for other purposes than BIST, e.g., it is not appli-
cable to facilitate ATPG. The CRF and HCRF TPI algorithms are not integrated in a BIST
model and therefore are not limited to a single BIST model, or even to BIST. They can
also be used to facilitate ATPG as will be shown in the following chapters. On the other
hand, they assume to be applied to Boolean circuits only. They do not take into account
any implications with respect to industrial circuits. The following subsection shows the

4.1. COMPARISON OF THE CRF, HCRF AND MTPI ALGORITHM 93

problems that a TPI algorithm for BIST has to solve in order to be able to be applied to
industrial circuits.

Because the HCRF TPI algorithm outperforms the CRF TPI algorithm, and the MTPI
algorithm is only applicable to one single BIST scheme, i.e., the MTPI BIST scheme, the
HCRF TPI algorithm is chosen as a base for further TPI development. The Hybrid CRF
TPI algorithm is fast; the results given in Subsections 3.7.2 and 4.1.1, show that it can
result in high fault coverages with only a few TPs; it is not very complex to implement,
and because it is based on COP, it can be extended for industrial circuits as will be shown
in the following sections. Although the COP controllability and observability estimates
are not too accurate themselves, the event-driven mechanism of propagating the changes
from the TP candidate, results in fast and good TP selection (see Tables 3.4 and 3.6). This
event-driven mechanism can be seen as a basic method of determining the impact of TP
candidates on a circuit. Even with TA measures other than COP, this event-driven mech-
anism with CFs is very useful as will be shown further on in this thesis. The algorithm is
not limited to be used only for improving PR fault coverage in a BIST environment. For
this reason, The Hybrid CRF algorithm is chosen as base for a new proposed TPI algo-
rithm for industrial circuits, which can cope with large and complex industrial, including
three-state elements.

4.1.3 Implications of Z and U values on TPl and BIST

Besides 0 and 1 values, also Z and U values occur in industrial designs. Floating
values and unknown values can occur in case the circuit contains three-state elements,
e.g., buses, switches, etc., or unknown fixed inputs, e.g., inputs from embedded memo-
ries. These Z and U values impact the TPI process as this does have an impact on the
calculation of the COP TA measures and on PFS. Eq. 3.1 does not hold for lines that also
have a probability on floating or unknown values. As a result, the COP equations given
in Table 3.1 are not applicable to circuits that can contain these values. These circuits
require extended COP equations which take into account probabilities on Z and U values.
The same applies to PFS, also PFS has to take into account the probabilities on Z and U
values in the circuit.

Another problem of TPI for BIST in industrial circuits, is the handling of buses. As
described in Section 2.3, conflicting buses should be avoided during a BIST test run. Be-
sides damaging the CUT, conflicting buses cause unknown values that could be captured
by the MISR, making the complete MISR state unknown such that it cannot be checked
whether the state of the MISR complies to a fault-free circuit. Inserting a TP nearby a
bus, might enable a bus to come in a conflicting state during PR BIST. This is depicted in
Fig. 4.1. The line select in Fig. 4.1(a) enables switch SW5 or switch SWy, (when X4 = 0)
but never at the same time. However, due to the TP inserted before the control input of

94 CHAPTER 4. TEST POINT INSERTION FOR BIST

select select
x, x,
Y SW, ia q SW,
z cp z
2) CP

X — X —

b S\Nb b S\Nb

(a) Circuit with non-conficting bus (b) After TPI, abus-confict can occur

Figure 4.1: TPI on a circuit with buses can result in bus-conflicts

switch SWy, a bus-conflict occurs when lines a and b drive opposite values, select = 1,
Xd = 0 and xcp = 0. When a TPI algorithm is used for facilitating ATPG, see Chapter 5,
this possibility of a bus-conflict is not a problem. The ATPG algorithm has to avoid that
the combination select = 1, x4 = 0 and xcp = 0 occurs, which should not be a problem.
However, in a PR BIST environment, it is not known in advance what the values will be
for these signal lines, the combination select = 1, xq = 0 and X¢p = 0 is possible, resulting
in the nasty bus-conflict. Therefore a TPI for BIST algorithm should make sure that no
TPs are inserted in lines that might result in extra bus-conflicts during PR test.

The TPI algorithm proposed in Section 4.3 is be able to cope with industrial circuits.

4.2) COP for industrial circuits

In order to be able to use COP, or the COP based HCRF TPI algorithm, with cir-
cuits that can contain Z or U values, we have extended COP to support probabilities on
Z and U values. Subsection 4.2.1 shows how COP is extended with Z-controllability and
U-controllability in order to deal with industrial circuits. Subsection 4.2.2 shows new
observabilities for industrial circuits and Subsection 4.2.3 shows the COP detection prob-
ability equations for industrial circuits. The implications of the new COP TA measures
for industrial circuits on the cost gradients are described in Subsection 4.2.4.

4.2.1 COP controllabilities in industrial circuits

In industrial circuits there are lines which do not only have a probability on being 0 or
1, but also on floating (Z) or being unknown (U). Therefore Eq. 3.1 does not hold for these

4.2. COPFORINDUSTRIAL CIRCUITS 95

circuits because it does not take into account these probabilities. Still the probabilities on
all possible values for a signal line in an industrial circuit should add up to 1. Given
this, Eq. 3.1 can been adjusted to Eq. 4.1, which does take into account float/unknown
probabilities.

Co+CL+CZ+CY =1
Co = 1-C1-Cz —-cCy (4.1)

InEq. 4.1, CZ is the COP probability on floating for line | and CUj is the COP probability
on an unknown value. The controllability equations listed in Table 3.1 are based on Eq.
3.1 and are therefore not valid for industrial circuits. Still, the output of an OR gate is only
0 when all the input values are 0, hence the 0-controllability of OR gate output z (C0O;),
can be found by multiplying the 0-controllabilities of all inputs (COy,). In case of Boolean
circuits, if the output is not 0, it is 1 and C1, of the OR gate is found by 1 —CO0,. This
is not valid in industrial circuits. However, it is still true that the output of an OR gate is
only not 1 when none of the X inputs of the OR gate are 1. Hence C1, of the output of the
OR gate is 1 minus the probability that none of the inputs are 1. The probability that an
input x; is not 1, is 1 —C1y,. Now C1; can be calculated with Eq. 4.2.

Cl,=1— _ﬁ(l —Cly) (4.2)

The COP controllability equations of the other Boolean elements have been found in a
similar way and are listed in Appendix C.

The outputs of Boolean gates cannot be at high impedance, therefore the Z-controllability
of an output z (CZ;) of a Boolean gate is always 0. Outputs of Boolean gates can be un-
known if there are inputs with unknown or floating values, therefore CU; of a Boolean
gate can be non-zero. Because CZ, = 0 for Boolean gates, CZ can be determined with Eq.
4.3.

CU;=1-C1,-CO0, (4.3)

The controllabilities for the three-state elements can be determined in a similar way
as for the Boolean elements. A three-state bus results in a 0 when one or more inputs
are 0 and the remaining inputs are floating (Z). The probability that an input x; is 0 or
Z is found with COy, +CZy,. The probability that all lines are 0 or Z can be found by
multiplying (COy, +CZy) over all inputs. However, the bus only results in a 0, when at
least one input is 0, therefore the probability that all inputs are Z should be excluded,
hence the equation for calculating CO, for a three-state bus becomes:

X X

CO, = _|‘l(coN +CZy)— _H(CZXi) (4.4)

1= 1=
C1; of the three-state bus is found in the same way and is given by:
X X

Cl, = _r!((nyq. +CZy)— _r!(Cin) (4.5)

96 CHAPTER 4. TEST POINT INSERTION FOR BIST

0—]

data _ | —

Z/0

1/0
SA0 1 Zpo

Figure 4.2: A Z—0 discrepancy leading to a 01 discrepancy on a PO.

The three-state bus only floats when all its input are floating, therefore CZ, can be found
by multiplying the probability that each input is floating or:

X

CZ, = _H(CZXi) (4.6)

The COP controllability equations for other three-state elements are found in a similar
way and are listed in Appendix D.

4.2.2 COP observabilities in industrial circuits

In Subsection 3.5.1, the COP observability of a line | has been defined as the probabil-
ity that a value change on line | will lead to a value change on at least one PO. In Boolean
circuits, only the values 0 and 1 occur, therefore a value change on line | automatically
means a 0«1 change on |. But in industrial circuits, a value change does not automati-
cally mean a 0«1 change. A Z<0 or a Z«1 change on line | can also result in a 0«1
change on a PO, only with other probabilities.® Fig. 4.2 shows an example of a Z«<0
value change which leads to a 01 change on PO zpg. Without the SAO fault, the pull-up
bus would pull the undriven bus to 1. In case there is a SAO fault, the bus is driven to 0.

From the primitive three-state elements listed in Appendix D, only the wired AND,
wired OR, pull-down bus and pull-up bus have the ability to convert a Z—0 or a Z<1
change into a Boolean 01 change that can be detected on a PO.

A U value will neither lead to detectable value changes on gate outputs nor on POs
(see the truth tables in Appendices C and D), therefore there exist no U«—0/1/Z observ-
abilities. Because of the introduction of the Z value, not only the 0«1 observability
exists, but also the Z«—0 and Z«1 observability:

W,: The original COP observability, the probability that a 0«1 change on line | results
in a 0<1 change on a PO.

WZP: The probability that a Z«0 value change on line | results in a 01 change on a
PO.

11t is assumed that only 01 value changes are detectably on a PO. Therefore the observabilities of all
other value changes that can occur on a PO are 0.

4.2. COPFORINDUSTRIAL CIRCUITS 97

WZ,l: The probability that a Z«1 value change on line I results in a 0«1 change on a
PO.

Boolean gates cannot propagate Z values, a Z on an input will result in an U on the
output, therefore the WZ° and WZ? observabilities for all Boolean gates are 0. The W-
observability equations for the Boolean gates remain the same as given in Table 3.1 except
for the (N)XOR gate. An input of the (N)XOR gate is only observable when the inputs
are not Z or U and therefore the observability of an (N)XOR gate with inputs X;, Xj and
output z becomes:

Wy; =W+ (COx +Cly) 4.7

An overview of the COP observability equations for Boolean gates can be found in Ap-
pendix C.

Several of the three-state elements listed in Appendix D are able to propagate Z values

from inputs to output. These elements have a non-zero WZ° and Wz*. How the observ-
abilities equations for three-state elements are determined, is shown for an X input wired
OR gate. The observability equations for the other three-state elements have been ex-
tracted in a similar way and are given in Appendix D.
A 0 < 1 change on an input x; of a wired OR can only be observed on the output when
the other inputs carry the value 0 or are floating. In this case, when x; carries a 0, the
output becomes 0, when xj carries a 1, the output becomes 1. If one of the other inputs
would be U, and xj carries a 0, the output is also U, therefore the other inputs should only
be 0 or Z. The Wy, observability equation becomes:

X

Wy, =W |'| (COx, +CZy) (4.8)
i=1,i%#]

A Z+0 change on input x; of the wired OR results in a value change on the output when

all other inputs are floating (see the truth-table for the wired OR given in Appendix D).

In this case, the output will be 0 when x; =0 and will be Z when xj =Z. Therefore, the

Z«~0 on input x; is only observable when also a Z«<0 change on the bus output can be

observed. The WZJQ observability equation becomes:

X
Wz9 =Wz T] (CZy) ®9)
i=1i%#]

A Z+1 change on input x; of the wired OR results in a value change on the output when
all other inputs carry a value 0 or are floating. If at least one input carries a 0, the output of
the wired OR will be 0 when xj =Z and 1 when x; =1. When all other inputs are floating,
the output will be Z when x; =Z and 1 when xj =1. As a result the WZJ1 observability

equation becomes:

X X
WZg =Wz- [(COx+CZy)+(WZ; W) [(CZx) (4.10)
i=1i#] i=L1i#]

98 CHAPTER 4. TEST POINT INSERTION FOR BIST

4.2.3 COP detection probabilities in industrial circuits

The possibility of floating lines in the circuit also impacts the COP detection proba-
bility equations. Not only can a SAO fault on a line | be detected when a 0 is put on line
and a 0—1 change on | can be observed on a PO, but also when line | floats and a Z—0
change on | can be observed on a PO. The COP detection probability estimates for the
SAO0 and SA1 faults on line | become:

Pdi/sno = C1;-W+CZ Wz} (4.11)
Pdsai = CO-W +CZ -WZ} (4.12)

4.2.4 The cost gradients equations in industrial circuits

There are multiple types of COP controllabilities and COP observabilities in industrial
circuits, and for each controllability/observability there exists a gradient with respect to
the CF, namely dK/dCO0 , dK/dC1, dK/dCZ, dK/dwW, dK/dW Z° and dK/dw Z?.

Changing the observability of a P1 x still only influences the COP detection probabil-
ities of PI x and hence also only influences the cost contribution of the SA0 and SA1 on
X. Therefore, Eq. 3.15 can still be used for industrial circuits to get the dK/dWy gradient
for a P1. However, the detection probabilities for lines in industrial circuits differ from the
ones in Boolean circuits. Eq. 3.16 has to be changed into Eq. 4.13, given that Eq. 3.11 is
used as cost contribution for a fault.

dK —C1x —CO0x

= 4.13

A change in Z—0-observability on a Pl only affects the term of the CF with respect to the
SAOQ fault on the PI. Given Eq. 3.11 as cost contribution for a fault, the dK/dW Z° gradient
at Pl x becomes:

1
dK dr, 9(mdg) —CZy .14
dwz0 dwz0Q dwzQ (Clyx-Wy+CZy-WZ9)2 '
The dK/dW z* gradient on PI x can be found in a similar way and becomes:
d(i)
K K O —CZ
d dK LTS C&x (4.15)

dWZI ~ dWZzZl ~ dWZl ~ (COyx-Wy+CZy-WZL)2

In most cases, only zeros and ones are assigned to PlIs. In that case, CZx will be 0 and all
dK/dw zQ and dK/dW Z; gradients are 0.

When a gate is connected to Pls, changing the observability of the output z of the gate
also results in observability changes on its inputs. Thus the CF will not only change by

4.2. COPFORINDUSTRIAL CIRCUITS 99

the terms with respect to the SA0 and SA1 fault on line z, but also by the observability
changes on the inputs of the gate. Since it is known how the cost changes with respect
to observability changes on the inputs (e.g., PIs), it is possible to apply a chain-rule to
compute the dK/dW, dK/dw z° and dK/dW Z1 values of gate output z and the observability
gradients for internal nodes in the CUT become:

dK dK;

= (4.16)
X [dK dw, dK dwzQ = dK dwZzi
+Z D s
2.\ dw, dw, T dwz0 dw, | dwzl aw,
dK dK,
awze ~ dwzo (4.17)
+X dK dwy, dK olwzQi+ dK dWZg
2\ aw, awz9 " awzg awz " awzl awzo
dK dK,
awzl ~ dawzl (4.18)

+X dK dwy, dK dwzQi+ dK dwWZg
2\ aw, awzi T awz awz! T awzi awz

A change in C0O on a PO z only affects the cost term with respect to the SA1 fault on PO
z (it is assumed that C1 and CZ remain the same). Similarly, a change in C1 only affects
the cost term with respect to the SAQ fault. On POs, a change in CZ has no influence on
the SAQ or SAL1 fault detectabilities and hence no influence on the cost contribution of the
SAO0 and SA1 faults on PO z. Because we assume that a Z value cannot be observed on a
PO, Egs. 4.11 and 4.12 on PO z reduce to:

Pd;/sa1 = C0z- W, (4.19)
Pd,/sa0 = C1z-W; (4.20)

Using these detection probability equations, the dK/dC0, dK/dC1 and dK/dCZ gradi-
ent values on PO z become:

1
dK . dKz/SAl . d(sz/SAl) W (4.21)
dCo, dCO0, dCO, (CO;-W,)2 '
1
daKk dKz/SAO_d(sz/sc\o)_ —W; (4.22)
dCl, = dC1, dCl, (Cl,-W,)? '
dK
icz, 0 (4.23)

A controllability change on input x; of gate a does not only influence the detection prob-
ability of that input, but possibly also all the observabilities of the other inputs and the

100 CHAPTER 4. TEST POINT INSERTION FOR BIST

controllabilities on the output(s) of the gate and thus influences the detection probabilities
ant the cost contribution of the faults on the inputs and inputs of the gate. Therefore the
gradient equations become:

dK _ dKysm (4.24)
dCOx, dCOx, |
% <dK dwy, | dK dWZP dK dwz;g>
_£r,; \ dWy dCO, dWZg dCO ' dWZ] dCOy,
Z
+Z(dK_dCO, dK dCl, dK dczzk>
£, \dC0y, dCOy, ' dC1, dCOx, '~ dCZy dCO,
dK _ dKy/so0 (4.25)
dC1, dC1y |
. % <dK dwy, | dK dWZP dK dwz;>
_£r.; \ AWy dCL " dWZg dCly, dWZ dCly
z
+Z(dK dC0, , dK dCl, dK dczzk>
£, \dC0, dCl, ' dCl, dCly, ' dCZy dCly,
dK dej/SAo+dej/SA1 (4.26)
dCZy, dCz, = dCZ |

- +
i:%;«éj dWy dCZy, dWZQ dCZ, = dWZi dCZy

Z / dK <1|(:0szr dK olc:lZk+ dK dCz,
dCO,4 dCZy, = dCl, dCZy, =~ dCZy dCZy,

X (dK dwy, dK dwz? dK dWZ)}i>

k=1

The first part (the first line of each equation) represent the change with respect to the
detection probabilities on line xj. The second part of the equations (the second line)
represents the change in the cost with respect to all possible observability changes on the
other inputs due to the controllability change on line xj. The third part (the last line)
represents the change in the cost with respect to all possible controllability changes on
the outputs due to the controllability change on line x;.

4.3] Proposed TPI for BIST algorithm for industrial cir-
cuits

As described in Subsection 4.1.2, the HCRF TPI algorithm has been chosen as a base
for further TPI development. In Chapter 3, it has been described that in the IC industry
(extra) SFFs are used to control and observe the TPs. Using transparent SFFs (TSFF) as
TPs removes the necessity of using extra AND/OR gates for CPs. TSFFs also have the

4.3. PROPOSED TPl FOR BIST ALGORITHM FOR INDUSTRIAL CIRCUITS 101

TSFFTP

Boundary B Boundéry A

Figure 4.3: Computing HCRF for a TSFF TP

advantage over AND/OR CPs that they do not degrade the observability in the fan-in cone
of the line at which the CP is inserted. For these reasons, the TSFF has been chosen as the
TP type that will be inserted by the proposed Hybrid TPI based algorithms and proposed
TPI techniques in the remaining part of this dissertation.

Subsection 4.3.1 describes the adjustments to the Hybrid CRF TPI algorithm in order
to be able to apply the TPI algorithm to industrial circuits with TSFFs. Subsection 4.3.2
shows experimental results of the proposed TPI algorithm. Subsection 4.3.3 introduces a
new CF that is used for determining the best TP positions. Subsection 4.3.4 introduces a
technique that can be used to speed-up the TPI algorithm without impacting the quality
of the TP selection.

4.3.1 The Hybrid CRF TPI algorithm for industrial circuits

The event driven mechanism of the Hybrid CRF TPI algorithm does not change for
industrial circuits. However, the calculation of the Hybrid Cost Reduction Factor (HCRF)
has to be adjusted due to the different CF and cost gradients, described in Subsection
4.2.4, and due to the usage of TSFFs.

Calculation of the HCRF for TSFF TPs in industrial circuits

Fig. 4.3 illustrates the calculation of the HCRF for a TSFF TP. Fig. 4.3 is similar to
Fig. 3.11 for an AND/OR CP and also the calculation of the HCRF for a TSFF TP is quite
similar to the HCRF for an AND/OR CP.

A TSFF TP changes both controllabilities (CO, C1 and CZ) and observabilities (W,
WZ° and WZz1) in the circuit. The propagation of the altered COP values due to the TP
has to proceed in both forward and backward directions. Starting from the TP I, the
propagation of the new controllabilities calculation proceeds forward to the POs shown
as Region | in Fig. 4.3. Because in industrial circuits also Z-controllabilities can occur,
which influence the CF, not only the impact of CO and C1 have to be taken into account,

102 CHAPTER 4. TEST POINT INSERTION FOR BIST

but also the impact of CZ on the cost. During the processing of each gate input Xgate, the
ratio of dK/AC0y, - ACOx,, + AK/ACLy,, - ACLy,, + AK/ACZyy,, - ACZyy,, to KO s
compared with a given user-defined threshold to decide whether the controllabilities in
its fan-out cone should be calculated or that the controllability gradients can be used to
estimate the impact on the cost. ACOxy,e, ACLxy,, and ACZy,,. represent the change in
zero controllability, respectively one controllability and Z controllability, of input Xgate
due to the TP.

After the forward propagation, a set of lines is obtained indicated as Boundary A in
Fig. 4.3. These lines are used as starting points for the backward propagation of the ob-
servability changes to the Pls, similar to the calculation of the HCRF for OPs. This set
of boundary lines can be seen as a set of pseudo-OPs. Line | is also added to this set of
pseudo-OPs, because the observabilities on | are changed due to the inserted TSFF TP,
which is both a CP and an OP.

In industrial circuits not only the 0«1 observability changes (AW) impact the CF, but
also the Z—0 and Z«1 observability changes (AW Z°) and AW Z1). Therefore the ratio
of dK/dWy - AWy+dK/dW 20 - AW ZQ + dK/dW ZL - AW ZL to K(O'9) for each pseudo-OP is
checked with a user-defined threshold to determine whether the explicit observability cal-
culations (and hence detectability probability and cost calculations) have to be propagated
backward any further. The backward calculation stops when this ratio becomes below this
user-defined threshold. The set of lines where the backward calculation stops is indicated
as Boundary B in Fig. 4.3 The observability gradients of the lines on Boundary B are
used to estimate the cost impact on the remaining part of the circuit.

Given Eq. 3.11, the HCRF for a TSFF on line | comprises the following four parts:

1. 5¢ ((o) Pdf1<m)) for every fault f inside Regions | and II.

The new controllabilities (CO, C1 and CZ) and observabilities (W, WZ° and WZ?1)
of the lines corresponding to the faults in Regions | and Il and therefore the new
detection probabilities and cost contributions of the faults are computed explicitly.
They are computed using the above mentioned event-driven procedures.

2. ¥ |,acBoundary A (dco o -ACOy,, + d01 -ACLy,, + dCZ ACZ|bA) for every fault in

Region I11.
The controllability gradients of the lines Ipa on Boundary A are used to estimate

_ |
2 feRegion 111 Pd;©9 pd;M

3. YlyscBoundary B (dVVi AW, + dWZO AWZI?)B dWZl AWZlb) for every fault
in Region V.
The observability gradients of the lines lpg on Boundary B are used to estimate

] 1 1
ZfeReglon v Pd;©9 pg;m

4.3. PROPOSED TPl FOR BIST ALGORITHM FOR INDUSTRIAL CIRCUITS 103

4. The contribution of the new faults introduced by the inserted TSFF TP are added:
sq-— and sy=—. These are the SA0/SAL faults on the TSFF output, see Fig.
I/ /SAO I/ /SAL

3.4.d.

The equations to compute the HCRF for TSFF TPs become:

1 1 1 1
HCRR = - - (+) 4.27
feReg%m&u (Pdf(org> Pdf<m)> Pdi/sao Pdirjsar (4.21)

dK dK dK
— -ACO,, + —— -ACL, , + —— - ACZ >
I,a€Boundary A (dCO| bA 7 dCy bA ®dcz, bA o

dK dK

- .AW + —
IbBeBO%dary B <d\MbB b8 dWZlct))B

The Hybrid CRF TPI algorithm for industrial circuits consists of the following seven
steps:

dK)
e .sz|b8>

P!

AWZ) +

Step 1: TP candidate lines determination
There are lines in the circuit which should be excluded as TP candidate, i.e. no TPs
should be inserted at lines which can and should be able to float. TPs at such lines
could result in bus-conflicts. Also neither TPs should be inserted at the control lines
for bus-drivers nor at user-defined paths, e.g., critical paths or other “don’t touch”
paths.

Step 2: Fault-set determination
Before TPI, the fault set that will define the CF and will impact the TPI process has
to be determined; all untestable and collapsed faults are removed from the fault set.

Step 3: Determine COP TA values, cost and cost gradients
The COP TA measures and gradients for each line, and cost values for each fault in
the circuit are calculated. Only faults which are in the fault set that contribute to the
CF, as determined in Step 2, will get a non-zero cost contribution.

Step 4: Determine whether a TP should be inserted
The TPI process will only insert TPs when the cost is larger than a user-defined
desired maximum cost and the number of already inserted TPs is smaller than the
maximum number of TPs that are allowed to be inserted into the circuit.

Step 5: Calculate HCRF values
For each TP candidate line, the HCRFs for TSFF TPs are calculated.

Step 6: Insert a TP at the line with the highest HCRF value
Insert a TSFF at the line with the highest HCRF value when the highest HCRF value
in the circuit is larger than the minimum required cost reduction for the insertion of
aTP

104 CHAPTER 4. TEST POINT INSERTION FOR BIST

Step 7: Insert next TP or stop
If a TP has been inserted, go back to Step 3 and insert more TPs, when necessary.
If no TP has been inserted, the Hybrid CRF TPI for industrial circuits is finished,
and the current circuit is returned.

In Step 4, the cost is compared with a user-defined desired cost. When the cost becomes
below the desired cost, it is assumed that the fault coverage will be high enough. Instead
of using this value, also a fault simulation run can be applied to the circuit with TPs
to check whether the fault coverage is high enough. Although this is far more accurate
than checking if the cost is below a desired cost, a fault simulation run can be very time
consuming and therefore, massively repeating fault simulation is not always applicable
for large industrial designs due to CPU time limitations.

4.3.2 Experimental results of the Hybrid CRF TPI algorithm for in-
dustrial circuits

Tables A.5 and A.6 in Appendix A show the fault coverage and fault efficiency of sev-
eral ISCAS’85 respectively ISCAS’89 circuits after the application of 32,000 PR patterns.
Table 4.2 shows the fault coverages and efficiencies for these circuits after the application
of 32,000 PR patterns when TSFF TPs have been inserted with the proposed Hybrid CRF
TPI algorithm for industrial circuits [Geu97b, Geu03]. TPs only have been inserted into
the circuits that did not reach the 99% fault efficiency level without TPs. The experiments
were performed on a AMD Athlon XP 1600+ machine, with 512MB DDR RAM memory
running RedHat Linux 7.3.

Column Circuit lists the circuits name. Column without TPs shows the number of ap-
plied PR patterns (T), the fault coverage (FC(%)) and the fault efficiency (FE(%)) for the
listed circuits before TPI. Column TPI shows the number of inserted TSFF TPs (TSFF)
in the circuit and the CPU time spent on TPI (CPU). Column with TPs shows the number
of applied PR patterns (T), the fault coverage (FC(%)) and fault efficiency (FE(%)) for the
circuit with TPs. The rows Subtotal show the subtotals for the ISCAS’85, respectively
ISCAS’89 and ISCAS’89 addendum circuits. The fault coverages and efficiencies listed
in these rows are weighted for the circuit size (ratio of the number of connections in the
circuit to the total number of connections in all circuits). The row Total shows the overall
results for the listed circuits.

Although the ISCAS benchmark do not contain three-state elements or fixed un-
known input values, the Hybrid CRF TPI algorithm for industrial circuits is also applica-
ble to these circuits. The TPI algorithm inserts TSFFs instead of AND/OR gates. Com-
pared to the results given in Table 4.1, in general fewer TSFFs are inserted than CPs and
OPs with the CRF TPI algorithm, the original Hybrid CRF TPI algorithm, or the MTPI
algorithm, while reaching the same or higher fault efficiencies. The proposed Hybrid
CRF algorithm for industrial circuits only has to insert one single TSFF TP in order to
reach 100% fault efficiency for circuit c2670, while the other algorithms require at least

4.3. PROPOSED TPl FOR BIST ALGORITHM FOR INDUSTRIAL CIRCUITS 105

Table 4.2: PR Fault simulation results of ISCAS circuits using adjusted Hybrid CRF TPI

with TSFF TPs
Without TPs TPI With TPs
Circuit T | FC(%) | FE(%) || TSFF | CPU T | FC(%) | FE(%)
c2670 32000 | 84.82 | 89.08 1]021s | 16064 | 95.74 | 100.00
c7552 32000 | 95.30 | 97.03 18 | 456s 7872 | 99.12 | 100.00

Subtotal 64000 | 9256 | 94.96 19 | 477s || 23936 | 98.24 | 100.00
$9234.1 32000 | 87.05 | 9349 18 | 719s || 32000 | 94.03 | 99.76
s13207.1 || 32000 | 97.05 | 98.58 28 | 181s || 32000 | 98.80 | 99.99
s15850.1 || 32000 | 92.83 | 96.14 31| 13.8s || 32000 | 97.68 | 99.89
s38417 32000 | 9442 | 94.95 48 | 39.1s || 32000 | 9951 | 99.98
Subtotal || 128000 | 93.65 | 95.65 125 | 78.2s || 128000 | 98.35 | 99.94

s499a 32000 | 41.85 | 4185 4019s | 20608 | 100.00 | 100.00
6352 32000 | 7357 | 7357 6| 024s| 6304 | 100.00 | 100.00
s938a 32000 | 6498 | 64.98 | 11 |055s| 15136 | 100.00 | 100.00
si512a | 32000 | 9528 | 95.28 4]024s| 6368 | 100.00 | 100.00
s3330a | 32000 | 8697 | 86.97 8 |08Ls| 25408 | 100.00 | 100.00
s3384a | 32000 | 96.18 | 96.18 5|026s| 5120 | 100.00 | 100.00
s4863a | 32000 | 97.57 | 97.57 7| 142s|| 19488 | 100.00 | 100.00
Subtotal || 224000 | 89.87 | 89.87 | 45| 3.71s | 98432 [100.00 | 100.00
[Tota || 416000 | 92.99 | 9472 [189 | 86.6s || 250368 | 9858 | 99.95 |

5 TPs. For all circuits, a fault efficiency of at least 99.7% has been reached with the pro-
posed algorithm. 100% fault efficiency is achieved for all listed ISCAS’85 and ISCAS’89
addendum circuits and an average fault efficiency of 99.94% for the larger ISCAS’89 cir-
cuits. In total, an average fault efficiency of 99.95% has been reached.

After TPI, the circuits that reach 100% fault efficiency do not need to be tested with
32,000 PR patterns, but already reach this level with a much lower number of PR patterns.
Circuit s3384 already reaches 100% fault efficiency after applying only 2624 PR patterns.
The total insertion of 189 TPs in all circuits takes less than one and a half minutes (86.6
seconds).

Tables B.5 and B.6 in Appendix B show the fault coverages and efficiencies after
the application of 32,000 PR patterns for respectively several Boolean, and three-state
Philips industrial benchmark circuits. PR fault simulation has only been applied to the
three-state circuits that do not suffer from possible bus-conflicts during the application
of PR patterns. Table 4.3 shows the fault coverages and efficiencies for the industrial
circuits after the insertion of TSFF TPs with the proposed Hybrid CRF TPI algorithm for
three-state circuits [Geu97b, Geu03]. Again, TPs are only inserted into the circuits which
do not reach 99% fault coverage without TPs. Except for circuit p73257, all Boolean
industrial circuits, the first ten circuits in Table 4.3, reach 99% ore more fault efficiency

106 CHAPTER 4. TEST POINT INSERTION FOR BIST

Table 4.3: PR Fault simulation results of industrial circuits using adjusted Hybrid CRF
TPI with TSFF TPs

Without TPs TPI With TPs

Circuit T | FC(%) | FE(%) || TSFF | CPU T | FC(%) | FE(%)
p14148 32000 | 94.27 | 94.29 15[820s || 32000 | 99.26 | 99.27
p27811 32000 | 91.90 | 96.29 38 | 20.0s| 32000 | 9532 | 99.70
p31025 32000 | 95.15 | 97.09 25| 159s| 32000 | 9817 | 99.41
p34592 32000 | 94.79 | 94.82 34 | 432s| 32000 | 99.89 | 99.92
p36503 32000 | 89.03 | 94.89 107 | 144s || 15488 | 94.22 | 100.00
p43282 32000 | 93.27 | 95.29 49 | 101s| 32000 | 9751 | 99.52
p72767 32000 | 91.73 | 95.19 50 | 387s| 32000 | 96.58 | 99.39
p73133 32000 | 92.13 | 9552 50 | 413s| 32000 | 96.41 | 99.39
p73257 32000 | 59.14 | 6153 73| 246s| 32000 | 78.09 | 80.44
p162057 || 32000 | 96.11 | 97.17 162 | 622s || 32000 | 98.74 | 99.80
Subtotal || 320000 | 89.22 | 91.56 || 603 | 2146s || 303488 | 95.01 | 97.16
p32118 32000 | 84.07 | 90.61 32| 253s | 32000 | 9248 | 98.95
p37021 32000 | 67.95 | 91.78 37 | 283s| 32000 | 7570 | 98.99
p114605 || 32000 | 89.22 | 90.47 80 | 415s| 32000 | 96.59 | 97.66
p137498 || 32000 | 93.79 | 95.49 137 | 323s|| 32000 | 98.17 | 99.55
p481470 || 32000 | 82.82 | 83.73 185 | 2361s || 32000 | 91.72 | 9257
p596922 || 32000 | 86.16 | 89.57 || 317 | 2886s | 32000 | 93.10 | 96.44
Subtotal || 192000 | 85.48 | 88.30 || 788 | 6040s || 192000 | 92.94 | 95.64

[Tota [512000 | 86.56 | 89.24 || 1391 | 8186 || 495488 | 9353 | 96.08 |

after TPI. Circuit p73257 seems to be a very RPR circuit. Although the fault efficiency
increases with 19% (from 61% to 80%) after the insertion of 73 TPs, this is still far
from the 99% level and far from an acceptable PR fault efficiency for the semiconductor
industry. Overall, after the insertion of 603 TPs, the fault efficiency increases with 5.6%,
from 91.5% to 97.1%. Inserting 603 TPs in the ten Boolean industrial circuits takes 2146
seconds, from which 622 seconds are spent on circuit p162057. The CPU time spent on
TPI both increases with increasing number of TPs and increasing circuit size.

The last six circuits in Table 4.3 are three-state circuits that do not have conflicting
buses with PR patterns. After TPI, still no buses should be able to become in conflict
with PR patterns to avoid circuit damage and MISR problems within a BIST environment.
Therefore, all connections that can be at high impedance state and all connections at which
a TP can result in a bus-conflict are excluded as TP candidate. The PR fault coverages and
efficiencies for the three-state circuits are lower than for the Boolean circuits. This is still
the case after TPI. Only for circuit p137498 the 99% fault efficiency is reached (although
circuits p32118 and p37021 have fault efficiencies very close to 99%). Still TPI results in
significant increase in PR fault efficiency. The overall results of the three-state industrial
circuits, show an increase of the fault efficiency from 88.3% to 95.6%. The overall results

4.3. PROPOSED TPl FOR BIST ALGORITHM FOR INDUSTRIAL CIRCUITS 107

of all industrial benchmark circuits show an increase in fault efficiency of almost 7%,
from 89.2% to 96.1%. 96% fault efficiency will results in a much lower DPM level than
89.2%, see Eq. 1.1 and is a far more acceptable fault coverage for the semiconductor
industry than 89%.

4.3.3 New cost function for TPI for BIST

The CF used in the proposed Hybrid CRF algorithm has one disadvantage: it only
focuses on improving the detection probability of the hardest-to-test faults, while also
faults with a low detection probability, but not as low as the hardest-to-test faults, are
ignored completely. For example, given a circuit with one fault f having a detection
probability of 10712 and ten other faults with a detection probability of 108, All faults
have a very low probability of being detected by a set of PR patterns. However the cost
contribution of fault f is 10,000 times the cost contribution of the other ten faults. The TPI
algorithm will only focus on improving the detection probability of fault f and ignores
the other ten faults while their detection probability should also be increased.

In [Geu97b, Geu03] we proposed a new CF; it will take into account all faults with a
low detection probability. With this CF even better fault coverages can be achieved using
the same number of inserted TSFF TPs. This CF is based on the probability of a fault
to be detected after NPAT independent PR patterns. The probability that a fault is not
detected by a single PR pattern is:

P(f not detected) = 1 — Pd¢ (4.28)
The probability that after NPAT independent PR patterns fault f is still not detected is:
P(f not detected after NPAT patterns) = (1 — Pd)NPAT (4.29)

This probability can also be used as a CF for a fault in the circuit. Faults with a low
detection probability, i.e., that have a very low probability on being detected after NPAT
patterns, will contribute to the cost with a contribution near 1, while faults with a relative
high detection probability will have a cost contribution of almost 0. The cost contribution
of a fault f becomes:

K = (1—Pd)NPAT (4.30)

Hence the cost contribution of the SAF on line | becomes:
K = (1= Pdy500)"™" + (1= Pdly jga0) VA (4.31)

and finally the global CF for the circuit becomes:

F
K = ((1 - Pdf)NPAT) (4.32)
=1

L
Al (1—Pd| 50)VPAT + (1 — P /SAl)NPAT) (4.33)
|=

[

108 CHAPTER 4. TEST POINT INSERTION FOR BIST

A new CF results in new cost gradients. The chain-rules do not change, but the equations
with respect to the impact of the controllability/observability change on the cost contribu-
tion of line | do. Given Eq. 4.31 the following equations are derived that should be used
in the cost gradient Eqs. 4.16-4.17 and 4.24-4.26:

% = —NPAT -Cl;- (1 Pd,gao) VT2 (4.34)
z

~NPAT -CO0, - (1 — Pdgar)NPAT 2
dK; NPAT -1
W " —NPAT -CZ;- (1— Pdy/sa1) (4.35)
dK, NPAT—1
W " —NPAT -CZ;- (1 — Pdy/sap) (4.36)
dCOy, | /
O NPAT W - (1— Pdy) VPAT 1 (4.38)
dCly, i /
W Npar WZ2 - (1—Pdy jea0)NPAT L (4.39)
dCZy, % i/

—NPAT -WZj; - (1 —Pdy)"
As a result, also the HCRF equation changes and becomes:

HCRE = (1— Pngrg))NPAT . Pdf(m))NPAT) (4.40)
feRegions | &11
— (1= Pdyr/ga0)"™T + (1= Pdys)N
dK dK dK

—~o— "OCO, + ———ACL,, + ———-ACZ)
IbAeBoundaryA<dC0|bA o dcy,, bA dcz,, bA

dK dK dK
— MW+ —— - AWZD +— . AWZE
IbBeBoédary B <d\MbB > dWZI?JB " dwzlle v

Tables 4.4 and 4.5 show for several ISCAS, respectively industrial circuits, a comparison
of the PR fault coverages achieved after TPI with the original CF of Tsai et al.[Tsa97]
and TPI with the new NPAT CF, the NPAT TPI algorithm [Geu97b, Geu03]. The value of
NPAT in CF 4.32 has been set to 32,000, the number of PR patterns that will be applied.
In the Column Original cost function the number of applied PR patterns (NPAT), the PR fault
coverages (FC (%)) and efficiencies (FE (%)) are shown in case the original CF is used. In
the Column TPI with NPAT cost function, the number of inserted TPs (TSFF), the CPU time
spent on TPI (cPU) and the number of applied PR patterns (NPAT), the PR fault coverages
(FC (%)) and efficiencies (FE (%)) are shown for the NPAT TPI algorithm. The number of
TPs inserted with the NPAT CF is the same as with the original CF.

The original CF already resulted in very good fault efficiencies for the ISCAS bench-
mark circuits as shown in Table 4.2. Except for the ISCAS’89 circuits, for all circuits

4.3. PROPOSED TPl FOR BIST ALGORITHM FOR INDUSTRIAL CIRCUITS 109

Table 4.4: Comparison of TPI with original and NPAT cost function for ISCAS circuits

Original cost function TPI with NPAT cost function
Circuit T \ FC(%)] FE(%) | TSFF \ CPU H T] FC(%) \ FE(%)
c2670 16064 | 95.74 | 100.00 1]025s| 16064 | 95.74 | 100.00
c7552 7872 | 99.12 | 100.00 18 | 29%4s 5280 | 99.17 | 100.00

Subtotal 23936 | 98.24 | 100.00 19 | 319s || 21344 | 98.27 | 100.00
s9234.1 32000 | 94.03 | 99.76 18 | 6.65s || 32000 | 94.08 | 99.83
s13207.1 || 32000 | 98.80 | 99.99 28 | 208s || 32000 | 98.76 | 99.98
s15850.1 || 32000 | 97.68 | 99.89 31| 155s || 32000 | 97.72 | 99.92
s38417 32000 | 99.51 | 99.98 48 | 40.7s || 32000 | 99.51 | 99.98
Subtotal || 128000 | 98.35 | 99.94 125 | 83.7s || 128000 | 98.36 | 99.95

s499a 20608 | 100.00 | 100.00 4 018s| 15104 | 100.00 | 100.00
s635a 6304 | 100.00 | 100.00 6| 0.30s|| 3456 | 100.00 | 100.00
s938a 15136 | 100.00 | 100.00 | 11 | 0.39s|| 5440 | 100.00 | 100.00
s1512a 6368 | 100.00 | 100.00 4| 029s | 24576 | 100.00 | 100.00
s3330a || 25408 | 100.00 | 100.00 8 | 0.60s || 25408 | 100.00 | 100.00
s3384a 5120 | 100.00 | 100.00 5|03Lls| 2624 | 100.00 | 100.00
s4863a || 19488 | 100.00 | 100.00 7| 0.48s || 19488 | 100.00 | 100.00
Subtotal || 98432 | 100.00 | 100.00 | 45 | 2555 || 96096 | 100.00 | 100.00
[Tota || 250368 | 9858 | 99.95 | 189 | 89.4s || 245440 | 9859 | 99.96 |

100% fault efficiency has been achieved. This does not change in case the NPAT CF is
used. The fault coverage for circuit 7552 is higher with the NPAT CF than with the orig-
inal CF while the fault efficiencies are 100% for both CFs. Hence the TPs inserted with
NPAT TPI result in more untestable faults becoming testable after TPI than with the orig-
inal CF for circuit c7552. Overall, the fault coverage and efficiency increases with 0.01%
to 98.59% respectively 99.96% compared to the original circuit, while 5000 fewer PR
patterns need to by applied to the circuit. The CPU time spent on TPI has increased with
3 seconds from 86 seconds to 89 seconds. Overall, the differences between the two CFs
are almost negligible for the ISCAS circuits.

The results for the industrial circuits given in Table 4.5 show more significant im-
provement with the NPAT TPI algorithm. For the Boolean industrial circuits, the fault
efficiencies increase overall from 97.16% to 97.38% and the fault coverages from 95.01%
t0 95.22%. For 6 of the 11 Boolean circuits, the fault efficiencies are lower with the NPAT
CF, but the differences are very very small, less than 0.1%. However the problem circuit
within the Boolean industrial circuits, circuit p73257, clearly benefits from the NPAT CF.
The fault efficiency increases with more than 2% which can be considered as a signif-
icant improvement. Also the three-state industrial circuits clearly profit from this new
CF, the fault efficiency increment is 1.16%, from 95.64 to 96.80%. Especially the larger
three-state circuits, p481470 and p596922, show significant improvement. These were the

110 CHAPTER 4. TEST POINT INSERTION FOR BIST

Table 4.5: Comparison of TPI with original and NPAT cost function for industrial circuits

Original cost function TPl with NPAT cost function

Circuit T \ FC(%) \ FE(%) || TSFF \ CPU H T \ FC(%)] FE(%)
p14148 32000 | 99.26 | 99.27 15| 9.08s | 32000 | 98.80 | 98.81
p27811 32000 | 95.32 | 99.70 38| 21.0s|| 32000 | 95.40 | 99.78
p31025 32000 | 98.17 | 99.41 25| 197s|| 32000 | 97.75 | 99.07
p34592 32000 | 99.89 | 99.92 34| 287s || 32000 | 99.94 | 99.95
p36503 15488 | 94.22 | 100.00 107 | 135s|| 32000 | 94.22 | 99.99
p43282 32000 | 97.51 | 99.52 49 | 114s || 32000 | 9752 | 99.51
p72767 32000 | 96.58 | 99.39 50 | 448s|| 32000 | 96.43 | 99.41
p73133 32000 | 96.41 | 99.39 50 | 472s|| 32000 | 96.46 | 99.37
p73257 32000 | 78.09 | 80.44 73| 159s|| 32000 | 80.36 | 82.64
p162057 32000 | 98.74 | 99.80 162 | 865s || 32000 | 98.61 | 99.67
Subtotal || 303488 | 95.01 | 97.16 603 | 2453 s || 320000 | 95.22 | 97.38
p32118 32000 | 92.48 | 98.95 32| 334s|| 32000 | 92.10 | 98.59
p37021 32000 | 75.70 | 98.99 37| 338s|| 32000 | 75.48 | 98.76
p114605 32000 | 96.59 | 97.66 80| 404s| 32000 | 96.92 | 98.01
p137498 32000 | 98.17 | 99.55 137 | 365s || 32000 | 98.21 | 99.63
p481470 32000 | 91.72 | 9257 185 | 2265s || 32000 | 9352 | 94.10
p596922 32000 | 93.10 | 96.44 317 | 3291s || 32000 | 9455 | 97.87
Subtotal || 192000 | 92.94 | 95.64 788 | 6394 s || 192000 | 94.19 | 96.80

[Tota [495488 | 9353 | 96.08 || 1391 | 8848s || 512000 | 94.49 | 96.97 |

circuits with lower fault efficiencies than the other three-state circuits, so it is more impor-
tant that their fault efficiencies were improved in order to be able to reach a high enough
test quality with PR testing. Overall the fault efficiencies have been increased with almost
1% from 96.08% to 96.97%. Especially the circuits with lower fault efficiencies (< 98%)
with the original CF benefit more from the new CF than the circuit that already reach a
high fault coverage(> 98%) with the original CF.

These results show that the NPAT CF seems to be more useful for three-state circuits
than the original CF. The NPAT CF for a fault, Eq. 4.30, is slightly more CPU time con-
suming than the original CF, Eq. 3.11. This can be seen in the CPU time spent on TPI.
With the NPAT CF this increases from 8186 seconds to 8848 seconds.

4.3.4 CPU time reduction: Reduce the number of TP candidates

Not all lines in a circuit have to be considered as TP candidates. In Step 1 of the NPAT
TPI algorithm, given in Subsection 4.3.1, already all Pls, POs, and internal three-state
lines are excluded as TP candidate. However, there are more lines that can be excluded in
order to reduce CPU time.

4.3. PROPOSED TPl FOR BIST ALGORITHM FOR INDUSTRIAL CIRCUITS 111

Table 4.6: Comparison results of TP candidates reduction for ISCAS circuits

No candidates reduction Candidates reduction
Circuit TSFF || FC(%)] FE(%) \ CPU || FC(%) \ FE(%) \ CPU

c2670 1] 9574 [10000 [0.25s || 95.74 | 100.00 | 0.22's
C7552 18 || 99.17 | 100.00 | 294s | 99.17 | 100.00 | 2.38
Subtotal | 19 || 9827 | 100.00 | 3.19s | 98.27 | 100.00 | 260
$9234.1 18| 9408 | 9983 | 665s| 9403 | 99.77 | 42Ls
s13207.1 | 28| 9876 | 99.98 | 208s|| 9876 | 99.98 | 124s
s15850.1 | 31| 97.72| 99.92 | 155s|| 97.73 | 99.94 | 10.2s
$38417 48 || 9951 | 99.98 | 40.7s|| 9951 | 99.98 | 30.9s
Subtotdl | 125 || 9836 | 99.95| 837s | 9835 | 99.95|57.7s
s499% 4| 100.00 | 100.00 | 0.18's || 100.00 | 100.00 | 0.15'S
6352 6 || 100.00 | 100.00 | 0.30s || 100.00 | 100.00 | 0.19's
s938a 11 || 100.00 | 100.00 | 0.39's || 100.00 | 100.00 | 0.32s
s1512a 4 | 100,00 | 100.00 | 0.29s || 100.00 | 100.00 | 0.23s
$3330a 8 || 100.00 | 100.00 | 0.60s || 100.00 | 100.00 | 052
s3384a 5 || 100.00 | 100.00 | 0.31s || 100.00 | 100.00 | 0.30's
s4863a 7 || 100.00 | 100.00 | 0.48s || 100.00 | 100.00 | 0.46 s
Subtotal | 45 || 100.00 | 100.00 | 255 || 100.00 | 100.00 | 217s
[Tota | 189 9859 99.96 | 89.4s| 9859 | 99.96 | 6245 |

It is not necessary to take into account both the input and the output of an inverter/buffer
as TP candidate. The observabilities, controllabilities and detectabilities are the same
at the inverter/buffer output as at the inverter/buffer input (except for the CO «— C1 and
Pdsap <—Pdsa1 swap in case of an inverter). When the output of the inverter/buffer is
testable, the input is testable too. It is enough to only consider the output of an in-
verter/buffer as TP candidate.

Besides not taking into account inverter/buffer inputs as TP candidate, we have also
experimented in [Geu02a] with not taking into account fan-out branches as TP candidate.
Only the fan-out stem will be considered TP candidate. This results in a significant reduc-
tion of the number of TP candidates and hence in a reduction of the CPU time spent on
TPI. However, excluding the fan-out branches can also impact the quality of TP selection
because no TPs are taken into account for faults that benefit from changed controllabili-
ties of a single fan-out branch due to a TP at that fan-out branch.

Tables 4.6 and 4.7 show for the ISCAS circuits, respectively industrial circuits, the
impact of the TP candidates reduction on the fault coverages and CPU time spent on TPI
[Geu02a]. Columns Circuit and TSFF show the name of the circuit, respectively the num-
ber of inserted TSFFs TPs. Columns No candidates reduction and Candidates reduction Show
the fault coverages (FC(%)), the fault efficiencies (FE(%)), and CPU time (CPU) spent on

112 CHAPTER 4. TEST POINT INSERTION FOR BIST

Table 4.7: Comparison results of TP candidates reduction for industrial circuits

No candidates reduction Candidates reduction
Circuit TSFF || FC(%)] FE(%)] CPU FC(%) \ FE(%)] CPU

p14148 15| 9880 | 9881 | 9.08s| 9878 | 98.79 | 6.96s
p27811 38| 9540 | 99.78 | 21.0s || 9540 | 99.78 | 16.7s
p31025 25| 97.75| 9907 | 197s| 98.06 | 99.25| 114s
p34592 34| 9994 | 9995 | 287s || 9993 | 9995 | 204s
p36503 107 || 9422 | 99.99 | 135s|| 9420 | 9996 | 94.7s
p43282 49 || 9752 | 9951 | 114s || 9754 | 9953 | 77.2s
p72767 50 || 96.43 | 9941 | 448s|| 9649 | 9946 | 280s
p73133 50 || 96.46 | 99.37 | 472s || 9647 | 9938 | 295s
p73257 73| 80.36 | 8264 | 159s| 8038 | 8266 | 119s

p162057 162 || 98.61 | 99.67 | 865s || 9861 | 99.68 | 634s
Subtotal 603 || 9522 | 97.38 | 2453s || 9525 | 97.40 | 1660 s
p32118 32 || 9210 | 9859 | 334s || 9216 | 98.64 | 23.7s
p37021 37| 7548 | 98.76 | 338s|| 7545 | 9874 | 258s
p114605 80 || 9692 | 98.01 | 404s| 9706 | 9815 | 278s
p137498 137 || 9821 | 99.63 | 365s| 9825 | 99.63 | 302s
p481470 185 || 9352 | 9410 | 2265s || 9358 | 94.16 | 1695s
p596922 317 || 9455 | 97.87 | 3291s || 9456 | 97.89 | 2579s
Subtotal 788 || 9419 | 96.80 | 6394 s || 9423 | 96.84 | 4905s

Total | 1301 || 94.49 | 96.97 | 88485 || 94.52 | 97.00 | 65665 |

TPI in case no TP candidates reduction, respectively TP candidates reduction takes place.

The results in Table 4.6 show for the ISCAS circuits that there is almost no impact on
the fault coverage when TP candidates reduction has been used. Only for circuit s9234.1,
the fault coverage and fault efficiency is 0.05%, respectively 0.06% less than without TP
candidates reduction. On the other hand, for circuit s15850.1 the fault coverage and fault
efficiency slightly increase with 0.01%, respectively 0.02%. For the other circuits, there
is no visible impact on the fault coverage.

Although the impact on the fault coverage is hardly visible, the impact on the CPU
time spent on TPI is significant. The CPU time spent on TPI for the ISCAS circuits has
been reduced from 89.4s to 62.4s; which means a 30% reduction. The CPU time reduction
is less for the smaller ISCAS circuits, i.e., the ISCAS’85 (19%) and ISCAS’89 addendum
(15%) circuits, than for the larger ISCAS circuits, i.e., ISCAS’89 circuits (31%). Espe-
cially for circuit s15850.1 a large reduction of 40% has been achieved.

The results of the industrial circuits given in Table 4.7 also show that there is not
much impact on the fault coverage with TP candidates reduction. Overall, the fault cov-
erage and fault efficiency do not reduce; they even increase with TP candidates reduction.
Overall, the fault coverage and efficiency increase with 0.03%, the fault coverage from
94.49% to 94.52% and the fault efficiency 96.97% to 97.00%. Again, although the impact

4.4. SUMMARY AND CONCLUSIONS 113

of TP candidates reduction is small on the PR fault coverage for the industrial circuits, the
impact on the CPU time spent on TPI is much more significant. The CPU time has been
reduced with 26% from 8848s to 6566s.

Hence the results of both the ISCAS and industrial circuits show that TP candidates
reduction has no negative impact on the quality of the TP selection, there is no structural
fault coverage reduction when TP candidates reduction is used. TP candidates reduction
can impact the fault coverage, both positive (improve) as negative(reduction) but the dif-
ference is very small (in almost all cases less than 0.1%). On the other hand, the reduction
in CPU time spent on TPI is substantial. CPU time reductions of +-30% can be achieved
without impacting the quality of the TP selection.

4.4 Summary and conclusions

The MTPI BIST algorithm is commercially available and case studies have shown that
the MTPI algorithm is applicable to industrial designs. But the MTPI algorithm has been
designed to be used within the MTPI BIST scheme, depicted in Figure 3.13. Therefore
it cannot be used in combination with other BIST models and is only applicable for PR
fault coverage for BIST. The CRF and HCRF TPI algorithm are not restricted to a single
BIST model or even to BIST, but they assume Boolean circuits and do not take into
account any implications with respect to Z and U values in industrial circuits. Because
the HCRF TPI algorithm is fast, outperforms the CRF TPI algorithm, and results in good
PR fault coverage improvements after TPI, it has been chosen as a base for a new TPI
algorithm that can cope with industrial circuits and results in even better PR fault coverage
improvement after TPI. Extensions for COP TA measures, the CF and cost gradients
have been proposed such that the improved HCRF TPI algorithm can cope with industrial
circuits, containing possible Z and U values. SFFs are often used to drive CPs and observe
OP outputs in (full-)scan circuits. Therefore the improved HCRF TPI algorithm inserts
TSFFs such that the necessity of extra AND/OR gates for CPs is removed.

Experimental results of the HCRF TPI algorithm for industrial circuits, show that
good PR fault coverage improvements can be achieved on both Boolean and three-state
circuits and is applicable to both small and large complex industrial designs.

A new CF has been proposed for the TPI algorithm. The proposed improved Hybrid
CRF algorithm for industrial circuits with the new CF, called NPAT TPI algorithm results
in even better PR fault coverage than the original CF of Tsai, especially for the industrial
three-state benchmark circuits.

In order to reduce the CPU time spent on NPAT TPI, a method has been introduced
that reduces the number of TP candidates in the circuits without impacting the quality of
the TP selection. Experimental results show that with this technique a 30% reduction in
CPU time can be achieved, while keeping the same PR fault coverage improvement (after
TPI) as without TP candidates reduction.

114 CHAPTER 4. TEST POINT INSERTION FOR BIST

CHAPTER 5

Test Point Insertion for compact SAF
ATPG

The increasing complexity of integrated circuits has a major impact on testing. The
demands on the ATE become higher and higher, due to higher clock-frequencies and pin
counts. This increasing complexity also results in larger ATPG test sets, resulting in
higher ATE vector memory requirements and longer test application times; both resulting
in increasing test and ATE costs. In order to cope with the increasing complexity of
circuits, faster testers with much more vector memory will be required, which will become
very expensive. In the international technology road-map from the SIA [Sem01], it is even
expected that without the necessary solutions, the ATE will not be able to cope with the
demands within only a few years.

An alternative to off-chip testing, using ATE, is on-chip testing; i.e., BIST, as de-
scribed in Chapter 2. In many BIST implementations, a PRTPG is used to generate a
large number of PR patterns that will be applied to the circuit. But such PRTPGs fail to
detect the RPR faults, resulting in lower achievable fault coverages; reducing the quality
of the test. In Chapter 4 it has been shown that the RPR problem can be solved by the
insertion of TPs. The inserted TPs improve the PR testability of the RPR faults within the
circuit.

TPI results in a reduction of the number of circuit inputs that have to be assigned in
order to test the (RPR) faults with PR patterns. But the same holds for ATPG; after the
insertion of a TP, also ATPG may have to assign fewer circuit inputs to find a pattern for
the (RPR) faults. Because fewer assigned inputs are required to detect faults in the circuit
after TPI, it becomes easier to combine patterns for different faults into one compact test
pattern. When more tests for faults can be combined into one test pattern, overall, a more
compact test set can be obtained.

In this chapter it will be shown that TPI, even if only targeted at solving the RPR
problem (TPI for BIST), indeed results in more compact test sets for ATPG. However,
sometimes a circuit is easily PR testable, while ATPG still does not result in a compact
test set. Therefore also new TPI techniques will be described that lead to even smaller test

115

116 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

sets than when using TPI for BIST for compact ATPG, and moreover, more consistently
results in a significant reduction of test set sizes.

Section 5.1 shows the impact of TPI for BIST on ATPG test set sizes. Section 5.2
shows other TA measures that indicate if there are ATPG specific testability problems
with respect to compact ATPG test sets in a circuit. Section 5.3 introduces the CF we
proposed in [Geu00] that takes into account these new TA measures in order to get even
better test set size reduction than with TPI for BIST. Although better test set size reduction
has been achieved with the CF proposed in Section 5.3, several circuits still suffer from
large test sets. They suffer from large fan-out free regions (FFRs). In Section 5.4, four
techniques are described to reduce the sizes of large FFRs and hence, the ATPG test
set sizes. Section 5.5 introduces a TPI pre-process that analyzes the TA measures of a
circuit to find its specific testability problems. Given the results of the analysis, a CF will
be selected that is targeted at solving the hardest testability problem within that circuit.
Experimental results in Section 5.5 will show that with the TPI pre-process, better ATPG
test set sizes can be achieved. Section 5.6 summarizes and concludes this chapter.

5.1/ Impact of TPI for BIST on ATPG test set sizes

This section shows that even TPI for BIST, which is only targeted at improving the PR
fault coverage of a circuit, can already result in significant ATPG test set size reduction.

Tables A.3 and A.4 in Appendix A show ATPG test set size information for the 1S-
CAS’85, respectively ISCAS’89, circuits without TPs. Tables B.3 and B.4 in Appendix
B show ATPG test set size information for the Boolean industrial, respectively three-state
industrial, benchmark circuits without TPs. The listed ATPG results in Appendices A
and B are compact ATPG results. This means that the ATPG already applies ATPG tech-
niques [Kon96a] to get a very small ATPG test set. In the remainder of this dissertation,
with ATPG is meant compact ATPG. TPI will only be performed on circuits that have an
ATPG test set size of more than 100 patterns. Circuits with smaller ATPG test set sizes
are not candidate for TPI, because we consider their test set size to be small enough.

Tables 5.1 and 5.2 show experimental results of TPI for BIST (NPAT TPI) [Geu00]

on compact ATPG test set sizes and ATPG generation times for several ISCAS and in-
dustrial benchmark circuits. In case of TPI for PR BIST, the number of PR patterns that
will be applied during test is normally known and this value is used in the NPAT TPI
algorithm as value for NPAT . In case of TPI for ATPG, the number of ATPG patterns in
the test after TPI is not known in advance, so what value of NPAT should be used? The
goal is to get a very small test set. Therefore we have set the value of NPAT to 256, to
signal the NPAT TPI algorithm that the used test set is small and that the probability that
faults are detected pseudo-randomly is low, because of the small test set.

Column ATPG without TPs shows the ATPG results for the circuits listed in Column
Circuit without TPs; the ATPG test set size (T), the ATPG fault coverage (FC(%)) and the
CPU time spent on ATPG (cpu) are listed. Column TPI shows the number of inserted

5.1. IMPACT OF TPl FOR BIST ON ATPG TEST SET SIZES 117

Table 5.1: Compact ATPG results of ISCAS circuits using NPAT TPI

ATPG without TPs TPI ATPG after TPI
Circuit T [FC(%)| CPU|TSFF| CPU|| T |FC(%)]| CPU
c1908 114 9971 132s] 25|103s| 36| 99.92] 0.46s
c3540 119 | 9638 |259s| 25|300s| 75| 97.80 | L74s
C7552 128 | 9855|60ls| 40 |6.06s|| 60| 99.47 | 3165
Subtotal || 361 | 9813 992s|| 90 |10.1s| 171 99.08 | 5365
s1196 13310000 | 052s| 20 | 058s|| 45 |100.00 | 0.30s
51488 115 | 100.00 | 0.53s | 20 | 0.92s| 90 | 100.00 | 0.48's
51494 117 | 99.46 | 052s| 20 |09ls|| 89| 99.87 | 0.49s
$5378 117 | 98.87 |28ls| 30|217s| 57| 9893 | 156s

s9234.1 135 | 9395 | 200s 50 | 6.77s 53| 94.85 | 4.46s
s13207.1 || 272 | 98.87 | 155s 50 | 7.72s || 223 | 99.22 | 119s
s15850.1 128 | 9751 | 139s 50 | 9.13s 98 | 9830 | 10.1s
s38584.1 123 | 9557 | 449s 50 | 224s || 122 | 9733 | 39.7s
Subtotal || 1140 | 96.66 | 98.8 s 290 | 50.6s || 777 | 97.76 | 68.9s
s499a 104 | 100.00 | 0.28s 8|016s 31 | 100.00 | 0.19s
s938a 145 | 100.00 | 0.45s 12 | 042s 40 | 100.00 | 0.25s
s3330a 163 | 100.00 | 2.20s 32 | 1.65s 61 | 100.00 | 0.99s
Subtotal 412 | 100.00 | 2.93s 52 | 223s || 132 | 100.00 | 1.42s

Tota || 1913 97.00 | 111s| 432 | 630s] 1080 | 98.03] 75.7s |

TSFF TPs (TSFF) and the CPU time spent on TPI (CPU). Column ATPG after TPI Shows
the ATPG results for the circuit after NPAT TPI; the ATPG test set size (T), the ATPG
fault coverage (FC(%)) and the CPU time spent on ATPG (cPu) are listed for the circuits
after TPI.

The experimental results given in Table 5.1 show that NPAT TPI is already capable of
reducing the compact ATPG test set sizes of the ISCAS circuits from 1913 patterns down
to 1080 patterns; a 43.5% (123-1080 . 100% = 43.5%) reduction. The variation in test
set size reduction is large between the various circuits. For circuits 1908, s1196, s5378,
$9234.1, and the ISCAS’89 addendum circuits reductions of over 40% are achieved (for
circuit 1908 the test set size is reduced from 114 to 36 patterns; i.e., a 68% reduction),
while for circuits s13207.1, and s38584.1 there are only reductions of 18% (from 272 to
223) and 0.8% (from 123 to 122).

These results show that the NPAT TPI algorithm is capable of reducing the compact
ATPG test set sizes for most circuits, however the results for circuits s13207.1 and espe-
cially s38584.1 indicate that these circuits suffer from other testability problems than only
poor PR random testability, because TPI for improving PR fault coverage is not enough
to reduce the test set size for these circuits significantly. In Section 5.2 several other testa-

118 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

Table 5.2: Compact ATPG results of industrial circuits using NPAT TPI

ATPG without TPs TPl ATPG after TP
Circuit T [FC(%) | CPU|TSFF| CPU| T |FC(%)| CPU
p7653 334 9948 149s| 15| 285s| 153 | 9963 | 825s
pl4148 || 385| 9999 | 300s| 15| 348s| 21810000 | 17.4s
p27811 | 200 | 9521 | 428s| 38| 128s| 168| 9529 | 327s
p31025 || 714 | 9790 | 307s| 25| 166s| 449 | 9867 | 129s
p34502 | 243 | 99.88| 142s| 34| 170s| 162| 99.98 | 56.1s
P36503 175 | 9720 | 713s| 30| 144s| 110| 9722 | 37.1s
p43282 | 382 | 9766 | 207s| 49| 280s| 207| 9770 | 123s
P43663 194 | 9923 | 588s| 50| 219s| 98| 99.25| 360s
p72767 | 438 | 96.31| 1527s| 50| 57.7s| 311| 9665 | 409s
p73133 | 407 | 9637 | 1492s| 50| 59.2s| 301| 9673 | 405s
p73257 || 2097 | 98.06 | 1030s| 73| 718s| 2132 | 9806 | 1030s
p75344 | 273 | 9918 | 153s| 55| 459s| 196| 99.25 | 114s

p162057 || 2055 | 98.51 926 s 162 290s 556 | 98.78 330s
Subtotal 7897 | 97.95 6005 s 646 641s | 5061 | 98.15 | 273ls

p32118 570 | 93.50 131s 32 135s 263 | 93.53 39.8s
p37021 531 | 76.89 56.1s 37 164s 136 | 77.28 213s
p66171 2042 | 96.79 576s 66 102s || 1792 | 96.79 580s
p71553 138 | 96.69 295s 71 69.6s 76 | 96.61 395s
p93140 511 | 9381 1139s 93 107 s 367 | 94.25 616 s

p104649 1031 | 98.96 847 s 104 126s 785 | 99.37 394 s
p114605 689 | 98.44 827s 80 127s 513 | 98.64 520s
p137498 446 | 98.66 308s 137 205s 276 | 98.82 199s
p481470 1679 | 99.23 | 16560s 185 942s || 1671 | 99.25 | 12400 s
p596922 || 2038 | 96.87 8887 s 317 | 1895s | 2100 | 96.89 | 9475s
pS98004 || 2129 | 98.70 5051s 100 633s || 1942 | 98.77 | 3006 s
p705050 655 | 76.76 8463 s 250 | 1749s 530 | 9147 | 4942s
p824184 || 2066 | 96.54 | 130153 s 300 | 2470s || 1114 | 96.73 | 24468 s
p854266 565 | 97.54 6881 s 300 | 2613s 359 | 9762 | 5741s
Subtotal || 15090 | 94.29 | 180180s || 2072 | 11073 s || 11924 | 96.58 | 62803 s

Total || 22987 | 94.76 | 1861855 || 2718 | 117155 || 16985 | 96.78 | 655355 |

bility problems that cause large test sets will be described, including a description of how
TPI can help reducing these testability problems.

The overall ATPG fault coverage for the ISCAS circuits has been increased from
97% without TPs, to 98% with TPs. This can be considered as a significant improve-
ment; 33% of the faults that were first not detected by the ATPG patterns become de-

tected after TPI ((1 — %) -100% = 33%). Also after TPI, the CPU time spent

on ATPG has decreased significantly; in total over all ISCAS circuits: from 111 sec-

52 TESTABILITY ANALYSIS MEASURES FOR DETECTING SPECIFIC
ATPG/TEST SET SIZE PROBLEMS 119

onds circuits without TPs to 75.7 seconds with TPs. This means a reduction of 31.8%
(% -100% = 31.8%). Hence, TPI for BIST on the ISCAS circuits results in a
significant ATPG test set size reduction, fault coverage improvement and CPU time re-

duction.

The experimental results of Table 5.2 also show that significant test set size reductions
can been achieved with NPAT TPI for the industrial benchmark circuits. The total number
of compact ATPG test patterns for the Boolean industrial circuits is reduced from 7897
patterns to 5061, a 35.9% reduction (Z85-2%1.100% = 35.9%). The total number of
compact ATPG test patterns for the three-state circuits is reduced from 15090 to 11924
patterns, or 21.0% reduction. The reduction for circuit p598004 is relatively small, only
187 patterns or 8.7%, while the number of patterns for circuit p596992 even increase.
NPAT TPI for ATPG test set size reduction does not work very well on these circuits. The
reason for this is explained in the following sections. In total over all industrial bench-
mark circuits, the number of ATPG patterns is reduced from 22987 to 16985, or 26.1%
reduction.

The fault coverage for the Boolean circuits only slightly increases with 0.20% from
97.95% to 98.15%, while for the three-state circuits, there is a very significant fault cov-
erage improvement from 94.29% to 96.58%. This means that 40% of the faults that were
not covered for the three-state circuits without TPs become covered by ATPG patterns

after TPI ((1— %) -100% = 40%). For all industrial benchmark circuits, the
ATPG fault coverage improves from 94.76% without TPs to 96.78% with TPs, or 38.5%
of the faults that were not dectected by ATPG patterns without TPs become detected after
TPI.

The CPU time spent on compact ATPG is also significantly reduced after TPI. In case
of the Boolean industrial circuits, the CPU time is reduced from 6005 seconds to 2731
seconds or 54.5% reduction. For the three-state circuits, the reduction even is 65.1%,
from 180180 seconds to 62803 seconds. Especially the reduction for circuit p824184 is
remarkable. For this circuit the CPU time spent on ATPG is reduced with 81.2%. Overall

industrial benchmark circuits, the CPU time reduction is 64.8%.

5.2| Testability analysis measures for detecting specific
ATPG/test set size problems

Besides COP, other TA measures exist that can help to indicate if there are testability
problems in the circuit that can cause a large test set. The TA measures SCOAP [Gol80]
and test counts (TCs) [Hay74] can also be used to find testability problems. These TA
measures are described in Subsections 5.2.1 and 5.2.2.

120 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

5.2.1 SCOAP

Sandia Controllability/Observability Analysis Program (SCOAP) is a TA measure that
is used by commercial ATPG tools, i.e., used in AMSAL (Appendix E). Similar to COP,
SCOAP divides the measures in controllability and observability measures. The SCOAP
controllability of a signal line is an estimate for the number of inputs that have to be
assigned in order to get a 0(1) on the line. The SCOAP observability of a line is an
estimate for the number of inputs that have to be set to propagate a fault-effect from that
line to an output. Besides the number of inputs that have to be set, SCOAP also takes into
account how ’deep’(level) the line is in the circuit and the number of fan-out branches that
will also be assigned due to the input assignments.

ATPGs try to choose the paths with the smallest SCOAP values to activate faults and
to propagate fault effects to POs, because the SCOAP values suggest that these paths
require the fewest number of input assignments. When TPI is used to reduce the SCOAP
values for lines, the ATPG can generate test patterns with fewer assigned inputs for the
faults corresponding to these lines. More test patterns can be compacted into one single
test pattern, resulting in a better test set size reduction. Because SCOAP values also take
into account the level of signal lines and the number of fan-out branches, they are often
far from exact with respect to the necessary input assignments in order to activate faults or
propagate fault-effect. However, they give a good indication how difficult it is to control
a signal line or to make it observable compared to other signal lines.

5.2.2 Test counts

In [Hay74] and [Kri87], a method is presented to find a lower bound on the test set
size for a circuit such that all SAFs can be detected. In order to get this lower bound, the
TA measures test counts (TCs) are calculated for each line in the circuit. They consist of
the following two types of values:

1. The essential zeros (ones), EO(E1):
The minimum number of times a line must become 0(1) (during the application of
a test set) and be observable on an output, such that all corresponding faults in its
fan-in cone can be covered..

2. The total zeros (ones), TO(T1):
The minimum total number of times a line must become 0(1) (during the application
of a test set) and either be observable or making other lines observable..

Because for each line I, a minimum of TO,+T 1, patterns are necessary (T 0, patterns for
the minimum total number of times | must be 0 and T1, patterns for the minimum total
number of times | must be 1), Eq. 5.1 can be used to calculate a lower bound on the
minimum test set size, Ty Necessary for achieving complete fault coverage, in which L
represents the number of lines in the circuit.

Trin > maxt_,(TO, +T1)) (5.1)

52 TESTABILITY ANALYSIS MEASURES FOR DETECTING SPECIFIC

ATPG/TEST SET SIZE PROBLEMS 121
2 (1L1,1,2) (E0,E1,T0,T1)
o | @13
b (11,1,2) T
EE— (2222 z
c (1,1,31) » 1

Figure 5.1: Example of test counts (TCs) in a small (fan-out free) circuit

Fig. 5.1 shows a small given circuit. For each line in this circuit, the TCs, i.e., essential
zeros, essential ones, total zeros and total ones, are already listed. How these TCs are
obtained is explained in the following text.

Input lines do not have a fan-in cone, therefore these lines, i.e., lines a, b, and c only
have to be 1 & observable and 0 & observable once to cover for the SAO and SA1 faults
at these lines; EOyqpc1=1 and Elap =1

An essential zero at an input of an N-input AND gate is only observable when all
other inputs carry the non-dominating value 1. Given the input of the AND gate being 0
& observable, the output of the AND gate will also be 0 & observable. Because all other
inputs should carry the non-dominating value 1 in order for an input to be essential zero,
the different inputs of the AND gate cannot be essential zero (0 & observable) at the same
time. Therefore the essential zero count for the output of an N-input AND gate is the sum
of all input essential zeros, see Eq. 5.2,

N
E0, = _Zl(Equ.) AND gate (5.2)

in which EO; represents the essential zero counts for the output of the N-input AND gate,
and EOy, represents the essential zero count for the it input of the N-input AND gate.
Given the AND gate in Fig. 5.1, the essential zero count of line d is 2, i.e., EO5 + EQp =
1+1 =2,

An input of an N-input AND gate is only 1 & observable when all other inputs of the
AND gate carry the non-dominating value 1. Because the input itself is essential one and
all other inputs are also 1, the output of the N-input gate will also be 1 & observable.
Because the other inputs should already be 1 in order for an input to be essential one, the
N inputs of the AND gate can be essential one at the same time. The essential one count
of the output of the N-input AND gate is equal to the largest essential one count found at
the inputs of the N-input AND gate, see Eq. 5.3,

El,=max ,(Ely) AND gate (5.3)

in which E1; represents the essential one counts for the output of the N-input AND gate,
and E1ly represents the essential one count for the it" input of the N-input AND gate.

122 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

Given the AND gate in Fig. 5.1, the essential one count of line d is 1, i.e., max(Ela, Elp)
=max(1,1) = 1.

The the essential zero counts and essential one counts equations for an N-input OR
gate are derived in a similar way as for the AND gate and become:

E0, = max;(EOy) OR gate (5.4)
N

El, = Z(Elxi) OR gate (5.5)
i=

Given Egs. 5.4 and 5.5, the following essential counts for line z are obtained:
EO0, = max(EQO¢,EOq) = max(2,1) =2; E1l,=El;+El4g=1+1=2.

z is a circuit output, for which the total counts are always equal to the essential counts,
hence T0O,=E0; and T1,=E1;,. In case of an N-input OR gate, the output of the gate can
only be 0 when all inputs are 0. Besides that, an input x; of the OR gate should also
carry the non-dominating value O when the other inputs should be 1 & observable, i.e.,
carry essential ones. Given this, the total zero count for an input x; of an OR gate can be
obtained with Eqg. 5.6.

N
T =T0,+ ¥ (Ely) ORgate (5.6)

where TOy, and TO0; are the total zero counts for OR gate input x;, respectively OR gate
output z, and E1y; the essential one count for OR gate input x;. Given Eq. 5.6, line d
should not only be 0 when z should be 0, but also when c carries an essential one value;
T0q=T0,+E1l;=2+1=3. Same applies to line c, it should not only be 0 when z
should be 0, but also when d carries an essential 1 value; TOc=T0,+El4g=2+1=3.

For an OR gate, it is not necessary for an input to be 1 when the output should be 1;
it is allowed to be 0 as long as there is another input that carries a 1. A 1 on an input of
the OR gate will also not make other inputs of the OR gate observable, therefore the total
one count of an input of an OR gate is just the number of times that the input itself should
be 1 & observable. In other words, the total one counts of an input of an OR gate equals
the essential one counts of that input, see Eq. 5.7.

T1y, =E1y OR gate (5.7)

Given Eq. 5.7, the total one counts for line ¢ and d become: Tl = El; =1,
Tlg=Ely=1

The total counts equation for an AND gate are derived in a similar way as for the OR
gate and are given in Egs. 5.8 and 5.9.

TOy, = EOy AND gate (5.8)
N

Tl = Tl+ Y (EOx) AND gate (5.9)
j=Lj#

52 TESTABILITY ANALYSIS MEASURES FOR DETECTING SPECIFIC
ATPG/TEST SET SIZE PROBLEMS 123

Given Egs. 5.8 and 5.9, the total counts for lines a and b are obtained. TO3 =EQ; =1,
Tla=T1l4+EO0p=14+1=2,TO,=EO0p=1,T1l,=T1lg+EOa=1+1=2.

With Eqg. 5.1, the lower bound on the test set size can be obtained. For the example
circuit of Fig. 5.1, the found lower bound is 4.

Table 5.3 shows for all input patterns of the circuit given in Fig. 5.1 which faults will
be detected. The first three columns, Columns a, b and c represent the input patterns and
the remaining ten columns show for all SAFs at lines a, b, ¢, d and z if the given pat-
tern covers (x) or does not cover (-) the fault. Given the fault coverage matrix of Table
5.3, 3 minimum test sets of 4 patterns covering all faults are found. These three sets are:
TS1={110, 010, 100, 001}, TS2={110, 010, 100, 011}, and TS3={110, 010, 100, 101}.
In TS1 and TS2, a=0 occurs twice, while in TS3, a=0 only occurs 1. Hence, a should be
0 at least once for complete coverage, which equals the total zero count of a calculated
before, TO; = 1. In TS1 and TS2, a=1 occurs twice, while in TS3, a=1 even occurs three
times. Hence a should be 1 at least twice for complete coverage, which equals the total
one count of a calculated before, T1; = 2. In the same way the correctness of the total
counts for lines b and ¢ can be checked. Hence for this example circuit, the TCs are exact
and the lower bound of the test set found with Eq. 5.1 equals the actual minimum test set
size.

The TC method is only exact for fan-out free circuits (the circuit given in Fig. 5.1
is fan-out free), because it cannot be known in advance how the essential zeros/ones will
divide over the different fan-out branches during actual ATPG. Heuristics are necessary to
predict how the TCs will divide over these branches. Section 5.3 will describe the heuris-
tic that is used in our proposed TPI algorithm. In [Kri87], propagation of the essential
values over branches is ignored: each branch is assigned an EO/E1 value of 1.

Table 5.3: Fault coverage matrix for all fault in Fig. 5.1

Pattern Stuck-at 0 fault | Stuck-at 1 fault
a b cjla b c d zja b c d z
oo o0j- - - - -]- - X X X
0O 0 1)- - x - X|[- - - - -
01 0})- - - - -]X - X X X
01 1)- - x - X|[- - - - -
1 0 O0f- - - - -]- X X X X
1 0 1(- - X - X|- - - - -
1 1 0f|x x - X X|- - - - -
1 1 1(- - - - X|- - - - -

124 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

When a circuit has lines with very large TC values, it will also have a very large ATPG
test set size, because TO+ T 1 gives a lower bound on the necessary test set size in order
to cover all SAFs in the circuit. With a CF that takes TCs into account, the TPI algorithm
will reduce the TC values. With reduced TC values, also the lower bound on the minimum
test set size reduces, which makes smaller test sets possible.

5.3| Test counts in a TPI cost function

For circuits with (reconvergent) fan-out, the TCs are not very accurate, because it is
not known how the essential counts are divided over the fan-out branches. Therefore it
would not seem to be a good idea to only rely on the individual TCs to find the best TP
positions in the circuit in order to get more test set size reduction. Therefore TCs will
only be used as a guidance in selecting the right TP positions. In [Geu00], we proposed a
CF that takes into account both COP and TC values, such that TPs will be selected on the
basis of minimizing a CF, hence both increasing PR detectability and reducing TC values
in the circuit. Results in [Geu00] and [Geu01] have shown that by taking into account
TCs, better compact ATPG test set size reductions can be achieved, as will be described
in this section.

The following text illustrates the basic idea of the CF that takes into account both
COP and TCs. Given that the following two lines are part of a circuit: Line a, with many
hard-to-test RPR faults in its input-cone and through which only one or two tests have to
pass, and line b with fewer hard-to-test RPR faults in its input-cone but through which
many tests have to pass. It is assumed that these two lines are the only two TP candidates.

According to CFs that are only based on COP, e.g., Egs. 3.11 and 4.30, the TPI al-
gorithm will primarily focus on solving the PR testability problems for line a because its
faults are the most hard-to-test. But for the ATPG this will mainly result in an easier gen-
eration of only a few patterns. These patterns will have fewer assigned inputs, however
there are only a few of these patterns such that this will not have too much impact on the
total test set size.

The proposed cost method based on TCs and COP however, will insert the TP at line
b. In spite of the fact that the faults in its input-cone are easier to test pseudo-randomly
than those of a, the cost contribution of b will be much higher because many tests (fault
effects) have to pass through b. A TP at b will probably result in a larger cost reduction
than at a. For the ATPG this means that many faults will be easier to detect and will have
fewer inputs assigned in their tests. When there are many faults that require fewer inputs
assigned in order to be detected, the impact on the compaction will be larger.

Subsection 5.3.1 introduces the proposed COP and TC based CF and the correspond-
ing cost gradient value equations. Using TC values in the CF has a significant impact on
the Hybrid TPI algorithm. The consequences of the TC-based CF on the TPI algorithm

5.3. TEST COUNTSINA TP COST FUNCTION 125

are described in Subsection 5.3.2.

5.3.1 TC and COP based cost function

Eg. 5.10 shows the CF used in [Geu00]; it takes into account both COP and TC values
and is based on the original HCRF CF for a line | [Tsa97], see Eq. 3.14.

~El +Tl|—E1|+ EOQ +T0|—EO|
- CL W, C1 CO -W, CO

This CF consists of the following four fractions:

Ki (5.10)

1. The first fraction represents the number of times that line | should be essential
one, i.e., the minimum number of times that line | should be driven to 1 and be
observable at the same time, divided by the detection probability of the SAOQ fault
at I, i.e., the probability that line | is 1 & observable.

2. The second fraction represents the remaining minimum number of times that line |
should be driven to 1, i.e., should be 1 but not necessarily be observable (the total
one counts minus the essential one counts), divided by the probability that | is 1.

3. The third fraction represents the number of times that line | should be essential
zero, i.e., the minimum number of times that line | should be driven to 0 and be
observable at the same time, divided by the detection probability of the SA1 fault
atl, i.e., the probability that line | is O & observable.

4. The last fraction represents the remaining minimum number of times the line should
be driven to 0, i.e., should be 0 but not necessarily be observable (the total zero
counts minus the essential zero counts), divided by the probability that | is 0.

This CF does not only take into account the probability of lines being 1(0) & observable
(i.e., the detection probability), but also takes into account the minimum number of times
that they should be 1(0) & observable (i.e., the TCs) to cover all faults in the fan-in cone
of the line. In three-state circuits, essential Zs and total Zs can also occur, but there they
are very rare, therefore we have not taken them into account.

A new CF means new cost gradient equations that are used by the HCRF TPI algo-
rithm, see Subsections 3.5.3 and 4.2.4. The chain-rule for the cost gradient calculation
does not change, but the parts of the equations with respect to the impact of controllabil-
ity/observability changes on the cost contribution of the line itself do change. Given the
CF of Eq. 5.10, Egs. 5.11-5.12 are the derived gradient equations with respect to observ-
ability changes on gate output z, and Eqgs. 5.14-5.16 are the derived gradient equations
with respect to controllability changes on gate input x;.

dK; EO, El,

dW, CO,-W2 CI,-W2 (.11)

126 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

dK,

AR 12

awzo ~ (5.12)

dK,

2 _ (5.13)

dWZZ

dK,. EO,. EO,. —T0,.

dcoXJ - T co X\;v + X1002 . (5.14)
Xj Xj "] Xj

dK,y. El, El. —T1y,

dc1XJ - Tcn X\;v + Xé:12 : (5.15)
Xj Xj "] Xj

M _ g (5.16)

dcz,, '

dK/dCz, dK/dw z° and dK/dwW Z1 are always 0, because this CF does not take into account
Z controllabilities, Z<0 observabilities and Z«1 observabilities. However, in three-
state circuits, there will be non-zero Z controllabilities, Z<0 or Z<1 observabilities.
Therefore the COP calculations and the cost gradient chain-rule will still have to take into
account these Z probabilities.

Because the CF does take into account TC measures and so will change when the
TC measures change, there also exist cost gradients with respect to essential counts and
total counts. The total counts cost gradients are derived in a similar way as the COP
observability cost gradients, see Subsection 3.5.3; they consist of a part with respect to
the total counts changes on a gate output z itself and a chain-rule for the total counts
changes on the gate inputs caused by the changes at z. Eqgs. 5.17 and 5.18 show the total
counts cost gradients,

dK dk, X/ dK dT0x dK dT1iy
_ i i 17
aT o0, dTOz+i;(dT0>q dT0, dT1, dT0, G.17)
dK dk, X/ dK dT0x dK dTly
_]] 1
dT1, dle+i;(dT0Xi dT1, " dT1L, dT1, .18)
Given CF 5.10, the first part of the total counts cost gradients become:
dK, 1
= — 1
dTo, Co, (519
dK, 1
dT1, = Cl, (520)
and the total counts cost gradients become:
dK 1 X/ dK dTO, dK dTiy
_]] 21
aTo, coﬁ;(dmm daTo, " dTL, dTOZ) (5:21)
dK 1 X/ dK dTOy = dK dTiy
aTL, c—lﬁi;(dmxi aT1, dTiy dTlZ) (5.22)

5.3. TEST COUNTSINA TP COST FUNCTION 127

The essential counts cost gradients are derived in a similar way as the COP controllability
cost gradients, see Subsection 3.5.3; they consist of a part with respect to the essential
counts changes on the gate input x; itself, a chain-rule for the essential counts changes
on the Z gate output(s) caused by the changes at x;, and a chain rule for the total counts
changes on the other X — 1 inputs of the gate caused by the essential counts changes on
Xj. Egs. 5.23 and 5.24 show the essential counts cost gradients.

K dKx. K dTOy K dT1x
d _ X Z dK dTO0y dK dT1y (5.23)
dEOy dEOy, i—fi] dTOx dEOx, dT 1y dEOy,
z
n Z dK dEOijL dK dE1,
& \dEQ, dEOx, dE1, dEO
dKx; X . .
dgi = Gt 2 (dig gggm dii Sgim> (5.24)
X Xj =174 Xi X Xi X
z
+z(dK dEOijL dK dElzk)
& \dEQz dEL,, dE1, dEI
Given CF 5.10, the first part of the essential counts cost gradients become:
dKy. 1— Wy,
I (5.25)
dEOy, COy; - Wy,
dKx, 1— Wy,
T Ch) (5.26)
dE1y Cly; - Wy,
and the essential counts cost gradients become:
dK - (1-Wy) X dK dTO0y dK dTiy 5.27)
dEOx; COx-Wy _f7.; \dT0x dEOy dT1ydEOy, '
+_Z dK dEOA_% dK dE1,
k; dEQz dEOx; dE1, dEO,
1—Wy X . ,
dE1y Cly; - Wy i—fri dTOx dE1ly, dT1y dEIy

Z 7/ dK dEO dK dE1
e)
& \dEO, dEL,, ' dE1, dEly,

5.3.2 Implications of a TC based CF on the TPI algorithm

As mentioned in Subsection 5.2.2, TCs are only exact in fan-out free circuits, because
it is not known how TC values will propagate over fan-out branches. In general all circuits

128 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

have fan-out branches, therefore before TCs can be used in the CF of the Hybrid TPI
algorithm, a heuristic must be established to divide the TC values over the different fan-
out branches. As mentioned in Subsection 5.2.1, ATPGs use SCOAP values to choose
which paths to take to activate or propagate fault effects. The lower the SCOAP value
of a line, the higher the probability that the ATPG will use that line to activate faults
or propagate fault effects. Therefore in [Geu00] we proposed to use a SCOAP based
heuristic to divide the essential counts over fan-out branches. The higher the SCOAP
observability of a fan-out branch, the less likely that essential counts will propagate over
that fan-out branch. The branch with the lowest SCOAP observability is assumed to
propagate most of the essential counts. Given a fan-out stem x with L fan-out branches
z;, with each fan-out branch having a SCOAP observability SW;, we use the following
heuristics for propagating the essential counts over the fan-out branches:

1

EOy = — -EOy (5.29)
2i-13N
1

El, = — 2 -El (5.30)
2i-13SN

Because its more likely that essential values propagate over lines with smaller SCOAP
observability, we use gk, such that swz% is larger for branches z; with smaller SCOAP val-

ues. The normalization with Zil':lﬁ is used such that the sum of the essential accounts
over all branches does not exceed the essential count of the fan-out stem.

The event-driven algorithm to calculate the HCRF values for each TP candidate be-
comes more complicated due to the TC based CF. Because the essential counts in the
circuit depend on the SCOAP observabilities, i.e., the propagation of the essential counts
over fan-out branches depends on the SCOAP observability, an extra forward and back-
ward propagation of cost changes is necessary in the event-driven HCRF algorithm, as is
explained in the following text.

The HCRF calculation given a TC based CF, like Eq. 5.10, can be divided into two
steps. The first step consists of the HCRF calculation for a non TC based CF, e.g., Egs.
3.11 and 4.30, as described in Subsection 4.3.1. In addition to the HCRF calculation for a
non TC based CF, an extra step is necessary to take into account essential counts changes
in the circuit due to SCOAP observability changes. Descriptions of these two steps are
given in the following text:

Step 1 of the HCRF calculation given a TC based cost function

This first part of the calculation is depicted in Fig. 5.2(a). This figure is the same as
Fig. 4.3, which describes the HCRF calculation given a non TC based CF. The impact of
the TP on the TA values, and hence on the cost reduction, differs for the four differently

5.3. TEST COUNTSIN A TPl COST FUNCTION 129

TSFFTP Boundary B
X, —4 x -4
'l vII -
VI v
p1 T N J(NPI o T N

/
Boundary B Boundéry A Boundary D Boundéry C

(a) Propagation of TA measures changes (b) Propagation of TC changes due to
SCOAP observability changes

Figure 5.2: Computing HCRF given a TC based cost function

shaded regions and is zero for the remaining (white) part of the circuit. These shaded
regions and their different impacts are:

Region I: The part of the circuit in the fan-out cone of line | up to Boundary A in
which the TSFF TP will cause significant changes in controllabilities and/or essen-
tial counts.

Region I1: The part of the circuit between Boundary A and Boundary B in which the
TSFF TP will cause significant observabilities and/or total counts changes. Region
Il includes Region 1.

Region I11: The part of the circuit between Boundary A and the POs in which the
TSFF TP will only cause small changes in controllabilities, observabilities, essen-
tial counts and total counts.

Region IV: The part of the circuit between the Pls and Boundary B in which the TSFF
TP will only cause small changes in observabilities and total counts.

Related to Regions I-1V, the first step of the HCRF for a TSFF TP at line | comprises the
following four parts:

Y (Kgorg) — Kgm)> for every fault f inside Regions I and II.
The TA measures (COP, SCOAP and TC) of the lines corresponding to the faults

in Regions | and Il and therefore the cost contributions of the faults are computed
explicitly.
dK dK
2. ZIbAeBoundaryA (W 'Acole + W 'AClle> +

3 lyacBoundary A (dEdTK.bA -AEQ),, + dEdTKle -AE1|bA> for every fault in Region I11.

130 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

The COP controllability and essential counts changes of the lines I, on Boundary
A (ACO,,, ACL,,,, AEO,,, and AEL,,,) and the COP controllability and essential
counts gradients of these lines are used to estimate the impact of the TP on the cost

contribution of the faults in Region I11, i.€., 3 cRregion 111 (K§°f9) - Kgm)).

3. Yl,scBoundary B (dV\4 AW, + dTO -ATOy 5 + dTl -AT 1|bB> for every fault in
Region IV.
The COP observability and total counts changes of the lines lpg on Boundary B
(AW, AT 0y, and AT 1,,;) and the COP observability and total counts gradients of
these lines are used to estimate the impact of the TP on the cost contribution of the
faults in Region IV, i.e., 3 tcregion Iv (KEOrg) _ K]Em))

4. The cost contribution of the faults at the inserted TSFF output.
The contribution of the new faults introduced by the inserted TSFF TP are added
as negative contribution to the cost reduction: 5 ,1 and g5 /1 . These are the

I /SAO I/ /SAL

SAOQ/SAL faults at the TSFF output, see Fig. 3.4(d).

Step 2 of the HCRF calculation given a TC based cost function

The SCOAP observability changes in Regions Il (including 1) and 1V have as a re-
sult that the essential counts will be distributed differently over the fan-out branches, see
Egs. 5.29 and 5.30. Therefore, for each fan-out branch in Region Il where the SCOAP
observability has changed, the impact of the altered essential count distribution on the
cost has to be recalculated. This recalculation is also performed using the hybrid event
driven algorithm and is visualized in Fig. 5.2(b). The impact of the SCOAP observability
changes, caused by the inserted TSFF TP, on the essential and total counts is different for
each shaded region in Fig. 5.2(b), and is zero for the remaining (white) part of the circuit.
These shaded regions are:

Region V: The part of the circuit in the fan-out cone of Boundary B up to Boundary
C in which the SCOAP observability changes will result in significant changes in
essential counts.

Region VI: The part of the circuit between Boundary C and Boundary D in which the
SCOAP observability changes will cause significant changes in total counts. Region
VI includes Region V.

Region VII: The part of the circuit between Boundary C and the POs, in which the
SCOAP observability changes will only cause small changes in essential and total
counts.

Region VII1: The part of the circuit between the Pls and Boundary D, in which the
TSFF TP will only cause small changes in total counts.

5.3. TEST COUNTSINA TP COST FUNCTION 131

Related to Regions V-VIII, the second step of the HCRF for a TSFF TP at line | comprises
the following three parts:

5 ¢ (Kgm) — K]Em()) for every fault f inside Regions V and VI.

The TCs of the lines corresponding to the faults in Regions V and VI and therefore

the cost contributions of these faults are computed explicitly. K]Em) is the cost con-

tribution of fault f in the circuit with the TP candidate when the TC values have

not yet been updated for to SCOAP observability changes and K?”) is the cost con-
tribution of fault f in the circuit with the TP candidate in case the TC values have
been updated for the SCOAP observability changes.

6. Y iceBoundary C (dEO|bC AEQ . + dE1 AE1|bC> for every fault in Region VII.

The essential counts changes of the Ilnes Inc on Boundary C and the essential counts
gradients of these lines are used to estimate the impact of the SCOAP observability

changes on the cost contribution of the faults in Region VII, i.e.,
n
ZfeRegion VIl <K§m) - K]E)>-

7. ¥ |,peBoundary D <dTobD ATO, + dTl — AT 1|bD> for every fault in Region VIII.

The total counts changes of the lines l,p on Boundary D and the total counts gradi-
ents of these lines are used to estimate the impact of SCOAP observability changes
on the cost contribution of the faults in Region VII, i.e.,

f
Y feRegion V11 (K]Em) - K§)>-

Combining the 7 parts of Step 1 and 2 in one equation, the HCRF estimate for a TSFF TP
at line I given a TC based CF becomes:

HCRF= 5 (K99 kM) (5.31)
feR&g1&II
- — - ACO, -AC1 -AEQ .AE1
lpacBotind. A <dCOIbA 't dc,, dcy,, foa dEO,, Ioa, dEL,, IbA)
- AWM -ATQ AT)
IbBeBgmd B (de be dTO be + dTl bB
— (Kir/sao + Kirysa1)
+ K(m _ g(m)
feRegZ\/&Vl ()
dK
N —=~— AEQ -AE],)
Ibcengnd. C (dEolbc e dEl bC

dK
_— | + ——— -AT],)
lyp€Bound. D <dTO'bD bD dTl,, *0

132 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

Table 5.4: Compact ATPG results of ISCAS circuits after TC&COP TPI

NPAT TPI TPI TC&COPTPI
Circuit T [FC(%)| CPU|TSFF| CPU|| T |FC(%)]| CPU
c1908 36| 99.92]046s| 25| 175s| 42| 99.92]046s
c3540 75| 9780 | 174s|| 25 |439s|| 73| 97.67 | 1.69s
C7552 60 | 9947 | 316s| 40 |829s| 74| 9940 | 340s
Subtotal || 171 99.08 | 536s || 90 | 144s| 189 | 99.01 | 5555
s1196 4510000 | 0.30s | 20 |086s| 52| 100.00 | 0.30s
51488 90 | 100.00 | 048s || 20 |119s|| 88| 100.00 | 0.44s
51494 80| 99.87 | 049s|| 20 |122s| 87| 99.87 | 0465
s5378 57| 9893 | 156s|| 30|286s|| 60| 9891 |153s
92341 || 53| 94.85|446s| 50| 108s|| 51| 9469 | 4.24s

s13207.1 || 223 | 99.22 | 119s 50 | 16.4s || 202 | 99.16 | 11.0s
s15850.1 98 | 9830 | 10.1s 50 | 159s 88 | 9838 |9.72s
s38584.1 122 | 97.33 | 39.7s 50 | 333s || 110 | 96.53 | 364s
Subtotal 777 | 97.76 | 68.9s 290 | 826s || 738 | 97.39 | 64.0s

s49% 31| 100.00 | 0.19s 8 02Ls| 2810000 | 0.185s
s938a 40 | 10000 | 0.25s || 12| 054s| 40 | 100.00 | 0.25s
s3330a 61| 100.00 | 099s || 32 |220s| 6710000 | 1.03s
Subtotal || 132 | 100.00 | 142s || 52 | 295s | 135 100.00 | 146
[Tota [1080 | 9803 | 75.7s| 432] 100s | 1062 | 97.71] 71.1s|

5.3.3 Results of HCRF TPI with TC based cost function

Tables 5.4 and 5.5 give a comparison between NPAT TPI and the proposed TC and
COP based CF, i.e.,, TC&COP TPI, of the compact ATPG test set sizes after TPl on
the ISCAS benchmark circuits, respectively the industrial benchmark circuits [Geu00].

Column NPAT TPI shows the ATPG results for the circuits listed in Column Circuit
after NPAT TPI; they consist of the number of ATPG test patterns (T), the ATPG fault
coverage (FC(%)) and the CPU time spent on ATPG (cPu). Column TPI shows the number
of inserted TSFF TPs (TSFF) and the CPU time spent on TC&COP TPI (cpu). Column
TC&COP TPI shows the ATPG results for the circuit after TPl with the TC&COP based
CF; again the number of ATPG test patterns (T), the ATPG fault coverage (FC(%)) and the
CPU time spent on ATPG (CPu) are listed.

The results in Table 5.4 show for the ISCAS’85 circuits that the TC& COP based CF
does result in less ATPG test set size reduction than the NPAT reduction. Especially for
circuit ¢7552, 14 more ATPG patterns (74 versus 60) are generated after TC&COP TPI
compared to NPAT TPI. These circuits do not suffer from high TCs, therefore using a CF
that takes into account TCs does not seem to be a very good idea.

On the other hand, the compact ATPG test set size reduction for the ISCAS’89 circuits

5.3. TEST COUNTSINA TP COST FUNCTION

133

Table 5.5: Compact ATPG results of industrial circuits after TC&COP TPI

NPAT TP TPI TC&COP TP
Circuit T |[FC(%)| CPU|TSFF| CPU| T |FC(%)| CPU
p7653 153] 99.63| 825s| 15| 506s| 178 | 9962 | 874s
pl4148 | 218 |10000 | 174s| 15| 643s| 260 | 99.99 | 199s
p27811 168 | 9529 | 327s| 38| 189s| 97| 9522 | 252s
p31025 | 449 | 9867 | 129s|| 25| 451s| 463 | 9887 | 129s
P34592 162 | 9998 | 56.1s| 34| 213s| 198 | 9998 | 754s
p36503 110 | 9722 | 37.1s|| 30| 2L4s| 159 | 97.25| 481s
p43282 207 | 97.70 | 123s|| 49| 592s| 197 | 9773 | 127s
p43663 98| 99.25| 360s| 50| 287s| 132| 9925 | 40.1s
p72767 311| 96.65| 409s| 50| 159s| 302 | 97.25| 404s
p73133 || 301 | 9673 | 405s| 50| 148s| 285 | 97.39| 404s
p73257 | 2132 | 9806 | 1030s| 73| 141s| 1308 | 9809 | 56ls
p75344 196 | 9925 | 114s|| 55| 721s| 174 | 9931 | 102s
pl62057 | 556 | 9878 | 330s| 162 | 432s| 447 | 9869 | 348s
Subtotal || 5061 | 98.15 | 273ls| 646 | 1159s| 4200 | 9828 | 229%s
p32118 || 263 | 9353 | 398s| 32| 223s| 147 | 9356 | 30.2s
p37021 136 | 77.28| 213s| 37| 275s| 176 | 7728 | 232s
pe6171 | 1792 | 9679 | 580s|| 66| 465s| 1177 | 96.79 | 354s
p71553 76| 9661 395s| 71| 204s| 96| 9686 | 290s
po3140 | 367 | 9425| 616s| 93| 228s| 325| 9403| 587s
pl04649 | 785 | 99.37 | 394s| 104 | 203s| 476 9939 | 367s
pl14605 | 513 | 9864 | 520s| 80| 220s| 366 | 99.01| 500s
p137498 | 276 | 9882 | 199s| 137 | 315s| 274 | 9886 | 177s
481470 | 1671 | 99.25 | 12400s || 185 | 1686s | 1435 | 99.28 | 8390s
p596922 || 2100 | 96.89 | 9475s| 317 | 2980s| 521 | 96.97 | 2595s
p598004 | 1942 | 9877 | 3006s|| 100 | 926s| 2069 | 98.74 | 4313s
p705050 | 530 | 9147 | 4942s| 250 | 2630s| 286 | 76.86 | 6817s
p824184 || 1114 | 96.73 | 24468s | 300 | 4536s| 759 | 96.73 | 186555
p854266 | 359 | 97.62 | 574ls|| 300 | 4273s| 411 | 97.65| 5442s
Subtotal || 11924 | 96.58 | 62803s || 2072 | 18720s || 8518 | 94.42 | 48546

[Tota || 16985 | 96.78 | 655355 || 2718 | 19879s || 12718 | 94.92 | 508425 |

becomes better with the TC&COP CF. Especially the larger three circuits, i.e., circuits
$13207.1, s15850.1 and s38584.1, seem to benefit from the new TC&COP CF. TPI with
this CF results in 39 fewer test patterns (738 versus 777) than NPAT TPI. The difference
in ATPG test set size reduction for the ISCAS’89 addendum circuits is limited. ATPG
after TC&COP TPI results in 3 more patterns (135 versus 132) than after NPAT TPI.

In total over all ISCAS circuits, the ATPG test set size reduction after TC&COP TPI
results in 18 (1080-1062) fewer patterns than NPAT TPI. Hence, the TC&COP based CF

134 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

only results in a small test set size reduction; 18 patterns reduction of 1080 pattern in total
is only 1.7%. Most of the ISCAS circuits do not suffer from large TC values, therefore
the TC values in the TC&COP based CF do not have a large impact on the TP selection.

Comparing the fault coverages of NPAT TPI and TC&COP TPI shows that the ATPG
fault coverage after TPI is less for TC&COP TPI (97.71%) compared to NPAT TPI
(98.03%). For the ISCAS circuits, the NPAT TPI results in more faults becoming de-
tectable than TC&COP TPI. On the other hand, the CPU time spent on compact ATPG
after TC&COP TPI is less than the CPU time spent on ATPG after NPAT TPI. Overall,
both CFs are well matched and it is hard to say that one CF performs better on the ISCAS
circuits than the other one as this depends on the importance of the ATPG CPU time, the
ATPG fault coverage and the number of ATPG patterns.

Contrary to the results of the ISCAS comparison, significant differences are found
for the industrial benchmark comparison shown in Table 5.5. For the Boolean industrial
benchmark circuits, compact ATPG after TC&COP TPI results in 4200 patterns, while
compact ATPG after NPAT TPI results in 5061 patterns. In other words, TC&COP re-
sults in 30142001009 = 17% better test set size reduction than NPAT TPI. Especially
the ATPG test set size reduction for circuit p73257 is remarkably better with TC&COP
TPI1 (1308 patterns) than with NPAT TPI (2132 patterns). This circuit contains many large
FFRs which do result in large TCs, see Section 5.4. Using a TC based CF, i.e., TC&COP
TPI, seems to be very useful in order to reduce the ATPG test set by reducing the TC
values.

The ATPG fault coverage with TC&COP TP is also somewhat better than with NPAT
TP1 (98.28% for TC&COP versus 98.15% for NPAT TPI). And finally, for the Boolean in-
dustrial circuits, also the CPU time spent on ATPG is significantly less with TC&COP TPI
(2296 seconds) than with NPAT TPI (2731 seconds); TC&COP TP is 2231-22% . 10096 =
16% faster than NPAT TPI. For the Boolean industrial circuits, the TC&COP TPI outper-
forms NPAT TPI in ATPG test set size reduction, fault coverage and ATPG CPU time
reduction.

Also for the three-state industrial circuits, TC&COP TPI results in far better test set
size reduction than NPAT TPI; TC&COP TPI results in 119228518 . 10006 = 28.5% bet-
ter test set size reduction than NPAT TPI. Especially the ATPG test set size for circuit
p596922 is much smaller after TC&COP TPI than after NPAT TPI, 521 versus 2100
patterns. This circuit does not suffer from high TC values. The COP detectabilities in
this circuit are very low and the NPAT algorithm is not able to handle these poor COP
detectabilities very well, as will be explained in Subsection 5.5.1. The test set size reduc-
tion for circuit p598004 is still limited after TC&COP TPI, it is even worse compared to
NPAT TPI. The test set size reduction for this circuit is less than 3%, from 2129 without
TPs (see Table 5.2) down to 2069 patterns after TPI. This circuit has one very large FFR
that causes the large number of test patterns, as will be explained in Section 5.4.

The difference in ATPG fault coverage after TPI for the three-state industrial circuits,
is very large. NPAT TPI results in 96.78% ATPG fault coverage, while TC&COP TPI

54. TPl AND CIRCUITS WITH LARGE FAN-OUT FREE REGIONS 135

Table 5.6: TC&COP cost values for faults f; and fo

f1 fo
co|10° [10°°
W |01 10—°
EO | 756 1
TO | 512 1
K |5.4100°] 101

results in only 94.42% reduction. When analysing the individual fault coverages of the
three-state industrial circuits, we found that this difference is totally caused by circuit
p705050. After NPAT TPI 530 ATPG patterns are generated resulting in a fault coverage
of 91.47%. TC&COP TPI results in a much smaller ATPG test set, i.e., 286 patterns, but
the ATPG fault coverage is only 76.86%. But after an analysis of the fault efficiency for
this circuit (not shown in the table due to space limitation), we found that both TC&COP
TPI and NPAT TPI resulted in 99.9% fault efficiency. In other words, NPAT TPI results
in many redundant/untestable faults becoming testable after TPI, while TC&COP TPI
hardly results in redundant/untestable faults becoming testable after TPI (the fault cover-
age and efficiency for circuit p705050 without TPs is 76.76%, respectively 99.90%, see
Table 5.2). Not taking into account circuit p705050, for eight of the thirteen remaining
three-state industrial circuits, the fault coverage after TC&COP TPI is higher than after
NPAT TPI, while only for two circuits, i.e., circuits p93140 and p598004, NPAT TPI re-
sults in higher fault coverage than TC&COP TPI.

For the three-state industrial circuits, the CPU time spent on ATPG after TC&COP
TPl is significantly less than after NPAT TPI, i.e., 48546 seconds versus 62803 seconds.
In other words, TC&COP TPI results in 92893248596 . 10004 = 22.79% CPU time reduction
compared to NPAT TPI.

In total over all industrial benchmark circuits, TC&COP TPI results in significantly
better compact ATPG test set size reduction than NPAT TPI, i.e., 1695242718 . 10005 =
25.1% better test set size reduction, and also in significantly better compact ATPG CPU
time reduction, i.e., 8353084210096 = 22.4%. The fault coverage after NPAT TPI
is better than after TC&COP TPI, i.e., 96.78% versus 94.42%. However, this is almost
totally caused by circuit p705050. Not taking into account this circuit, the difference be-
tween the fault coverages after TC&COP TPI and NPAT TPI will be small and probably
in the advantage of TC&COP TPI.

5.4] TPI and circuits with large Fan-out Free Regions

The experimental results given in Tables 5.1-5.5 have shown that for several circuits
(e.g., for circuit p598004) TPI did not result in a significant reduction of the compact

136 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

FFR output

l
T
T
Py
~
-

L

~FFRinputs
FFR inputs

TSFF

FFR output

(a) FFRg g with a very large number of in- (b) Two FFRs, FFR; and FFR, with fewer
puts inputs

Figure 5.3: Splitting of an FFR

ATPG test set sizes, even with the TC&COP based CF. These problem circuits often
contain very large Fan-out Free Regions (FFRs). Analysis of the inserted TPs by the TPI
algorithm has shown that the TPI algorithm did not insert TPs within these large FFRs.
A circuit with very large FFRs will very likely suffer from high TCs and hence large test
sets. All faults in that FFR have to pass through the single output of the FFR. Many test
patterns are required to make sure that all faults in the FFR are covered by a test set,
which can have a significant impact on the total size of the ATPG generated test set. The
TC&COP CF does take into account TC measures, however the COP measures dominate
the CF. This is explained in the following text. Given a circuit with two SA1 faults f1 and
fo, for which the TA measures and cost contributions (using the CF of Eq. 5.10) are given
in Table 5.6. Although fault f; has very high TC values, the cost contribution of fault f,
is four magnitudes in size larger due to the much smaller COP detectability of fault f,
such that the TPI algorithm will mainly focus on improving the TA measures for fault f;
instead of for fault f;.

The high TCs can be reduced by TPI, which splits these large FFRs into two FFRs
with fewer inputs. This is achieved by inserting a TSFF within the FFR and is illustrated
in Fig. 5.3. The FFR FFRp,g of Fig. 5.3(a) is split into two smaller FFRs in Fig. 5.3(b),
FFR1 and FFR2, by the TSFF at line I. In this example, the TSFF almost reduces the FFR
sizes into half the size of the original FFRg,g. In [Geu02b], we proposed four techniques
that can be used to insert TPs in large FFRs. They are described in Subsection 5.4.1.
Experimental results of the four techniques to reduce large FFRs are given in Subsection
5.4.2.

54. TPl AND CIRCUITS WITH LARGE FAN-OUT FREE REGIONS 137

5.4.1 Four TPI techniques for reducing large FFRs

The TPI for ATPG algorithm is extended with a TPl pre-process for reducing very
large FFRs in the circuit. This pre-process should be run before normal TPI using the
Hybrid TPI algorithm (with the TC&COP CF). While the Hybrid CRF TPI algorithm is
a global optimization TPI method, the TPI pre-process for reducing large FFRs will be a
local optimization method. Only the large FFR testability problem is targeted. The TPI
pre-process searches for very large FFRs in the circuit and insert TPs in the large FFRs to
reduce them. In the following text four techniques are described that can be used to find
and split the FFRs. The size of an FFR corresponds to the number of inputs of the FFR.

The first question which has to be answered is the definition of a ’large FFR’. We use
two definitions for a large FFR:

A: An FFR is large when it has more than LARGE_FFR THRESHOLD inputs.
LARCE_FFR_THRESHOLD is a user-defined threshold.

B: An FFR is large when it has more than FFR + 3*cFFR inputs. FFR is the average
size of an FFR in the circuit and o™ R is the standard deviation of the FFR size
distribution. Because most of the FFRs only have a small number of inputs, FFR
and o™ R are only determined for the larger FFRs (> 10 inputs).

Definition A uses a fixed, user-defined threshold to determine whether an FFR is very
large or not, while definition B uses statistics to determine if an FFR is too large.

As already described, large FFRs usually have high TCs. This has led to two strategies
to reduce the FFR sizes:

1: The TP candidate that splits the FFR into two smaller FFRs of which the number of
inputs are closest to each other (i.e., two approximately equal sized FFRs), is the
TP that will be inserted in the FFR.

2: The TP candidate that splits the FFR into two smaller FFRs with both the lowest TC
values, is the TP that will be inserted.

The two definitions of large FFRs and the two strategies are combined into four tech-
niques to reduce large FFRs, i.e., methods

Al: ATPwill be inserted in the largest FFR, with at least LARGE_FFR_THRESHOLD inputs,
that results in two smaller (approximately) equal sized FFRs.

A2: A TP will be inserted in the largest FFR, with at least LARGE_FFR_THRESHOLD inpults,
that results in two smaller FFRs with both the lowest TC values.

B1: A TP will be inserted in the largest, with at least FFR + 3*c™ R inputs, that results
in two smaller (approximately) equal sized FFRs.

B2: A TP will be inserted in the largest, with at least FFR + 3*c™ R inputs, that results
in two smaller FFRs with both the lowest TC values.

138 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

Table 5.7: ATPG results after TPI for reducing large FFRs

Method A1 Method A2 Method B1 Method B2
Circuit TSFFror | Tno EER TSFF | T TSFF | T TSFF | T TSFF ‘ T
p73257 73 1308 43 979 43 | 965 0 | 1308 0 | 1308
p162057 162 447 21 204 21 204 2 361 2| 361
p32118 32 147 1 133 1 133 1 133 1 133
p93140 93 325 3| 334 3| 334 3| 334 3| 334
p104649 104 476 3 510 3| 529 4 | 501 4 | 518
p137498 137 274 3 276 3 276 3 276 3 276
p481470 185 1435 111 | 1656 111 | 1705 38 | 1428 38 | 1468
p596922 317 521 20 | 521 20 | 517 23 553 23 | 560
p598004 100 2069 23 | 1320 23 | 1319 30 | 1347 30 | 1345
p705050 250 286 1 281 1 288 10| 284 2| 270
p824184 300 759 29 742 0 743 0| 895 0| 865
p854266 300 411 3 378 3| 3%4 20 | 388 21 | 387
Total 2053 8458 261 | 7334 232 | 7397 134 | 7808 127 | 7825

5.4.2 Experimental results of TPI for reducing large FFRs techniques

The experimental results of the four TPI techniques for reducing large FFRs (TPIggR),
described in the previous subsection, are shown in Table 5.7 [Geu02b]. The compact
ATPG test set sizes after TPI are listed for ISCAS circuits and industrial benchmark
circuits that have FFRs with more than 200 inputs. The FFR sizes for the ISCAS and
industrial benchmark circuits are listed in Appendix A, respectively Appendix B. The ex-
periments have been run on an AMD Athlon 1600+ computer with 512Mb of DDR RAM
running RedHat Linux 7.3.

Column TSFFror shows for the circuits listed in Column Circuit the total number of
inserted TPs. Column Tno rer Shows the compact ATPG test set sizes after TPI, using
the Hybrid TPI algorithm with the TC&COP based CF given in Eqg. 5.10, but without
reducing the large FFRs. Columns Method A1, Method A2, Method B1, and Method B2 show
the compact ATPG test set sizes T after the insertion of TSFF TPs with TPI for reducing
large FFR method A1, respectively A2, B1 and B2. Note that all listed test set sizes are
the sizes after TSFFror TPs are inserted. In case of TPI for reducing large FFRs, first
TSFF TPs are inserted with methods Al, respectively A2, B1, and B2. The remaining
TPs, (TSFFror - TSFF), are inserted using the Hybrid CRF TPI algorithm.

In total over all circuits listed in Table 5.7, 7699 ATPG patterns are generated after the
insertion of 1753 TPs without reducing large FFRs. In case TPI for reducing large FFR
Method A1 is used, 232 of the 1753 TPs are inserted to reduce the large FFRs. With TPI
for reducing large FFRs Method A1, the number of ATPG test patterns after TP1 is reduced
from 7699 down to 6592 patterns, which is a reduction of 14.4% (722832 . 100%) com-
pared to TPI without reducing large FFRs. In case of TPI for reducing large FFR Methods

54. TPl AND CIRCUITS WITH LARGE FAN-OUT FREE REGIONS 139

A2, B1, and B2, the number of ATPG patterns after TPI is reduced from 7699 to 6654
patterns (13.6% reduction compared to TPI without reducing large FFRs) for Method
A2, respectively to 6913 patterns (10.2% reduction) for Method B1, and to 6960 patterns
(9.6% reduction) for Method B2. Overall, Method A1l results in the best test set size re-
duction.

From these results one can conclude that using definition A for a large FFR results in
better test set size reduction than definition B; Methods A1 and A2, which are based on
definition A, have better test set size reduction than Methods B1 and B2, which are based
on definition B. These differences in reduction are mainly caused by the large difference
in test set size reduction for circuit p73257. This circuit contains over 50 FFRs with more
than 200 inputs and because of this, FFR + 3-aF R is larger than 269 (the largest FFR)
and no TPs are inserted by TPI for reducing large FFRs methods B1 and B2. Although this
circuit only contains semi-large FFRs, it does suffer from a large test set and the results
of TPI for reducing large FFR methods Al and A2 show that TPI for reducing large FFRs
results in significantly better test set size reduction.

In contrast to the results of NPAT TPI and TC&COP TPI shown in Table 5.5, the re-
sults in Table 5.7 show that it is possible to achieve significant compact ATPG test set size
reduction for circuit p598004, as long as TPI for reducing large FFRs is used. With TPI
for reducing large FFRs, the ATPG test set size for this circuit is reduced to 1320-1345
patterns which is considerably less than the 2129 patterns without TPI.

The experimental results in [Geu02b] showed that far more TPs were inserted with
Methods B than with Methods A. The results in Table 5.7 show that fewer TPs are inserted
with Methods B than with Methods A. Due to a bug in the TPI tool, the FFR+3-oFFRwas
not set correctly in [GeuO2b]; as a result far too many TPs were inserted with Methods B
in [Geu02b] for the larger circuits. Inserting more TPs with a TPI for reducing large FFR
method does not always result in a better test set size reduction. For circuit p481470 more
TPs are inserted with Methods A than with Methods B, but the test set size reduction for
Methods B are better than for Methods A; i.e., 1428-1468 patterns for Methods B versus
1657-1705 patterns for Methods A. Too many TPs in circuit p481470 are inserted with
the TPI for reducing large FFR Methods A, i.e., 111 out of 185, such that only a small
number of TPs are inserted with the Hybrid TPI algorithm. More TPs with the Hybrid TPI
algorithm are probably required for this circuit to solve the ATPG testability problems in
this circuit, other testability problems than large FFRs.

Method A1 results in better test set size reduction than Method A2, with the same num-
ber of TPs inserted for reducing large FFRs. Also Method B1 results in better test set size
reduction than Method B2. Given these results, it can be concluded that using Strategy 1
to reduce large FFRs results in better test set size reduction than Strategy 2. More equally
sized FFRs seems more important for the ATPG tool than better test counts reduction.

Overall, the results in Table 5.7 show that by using TPI for reducing large FFR meth-
ods for circuits with large FFRs, an extra ATPG test set size reduction of 9.6% to 14.4%
can be obtained. Method A1 results in the best test set size reduction. In the remaining part
of this dissertation, TPI for reducing large FFR method Al is used as a TPI pre-process

140 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

of the Hybrid TPI algorithm.

5.5] Multi-stage TPI with dynamic cost function selection

Every circuit has its own characteristics and therefore also its own testability prob-
lems. Some circuits suffer from many RPR faults, while other circuits suffer from signal
lines with high TCs, as described in Section 5.3. It is also possible that the circuit suffers
from a combination of testability problems. The Hybrid CRF TPI algorithm for industrial
circuits uses a CF to determine where in the circuit TPs should be inserted. It is important
that a CF is used that takes into account the TA measures for the testability problems that
really exist in the circuit. E.g., using a TC based CF, while the circuit does not suffer from
high TCs, does not seem to be useful.

In [Geu02b] we proposed a TPI pre-process that selects a CF for the Hybrid TPI al-
gorithm for industrial circuits that tries to solve the hardest test problem that is found in
the circuit. The TA measures, extracted from the circuit, are analyzed to identify these
test problems. Instead of inserting all TPs using the selected CF, we proposed to split the
TPI process into multiple stages. In each stage, the TPI pre-process is run to select the
best CF given the TA measures of the current circuit (including already inserted TPs from
previous stages). Several TPs are inserted by the TPI algorithm using this CF. In the next
stage, the TPI pre-process is run again to select a new cost function.

The CF selection procedure introduced in [GeuO2b] is described in Subsection 5.5.1
and the corresponding experimental results are shown in Subsection 5.5.2.

5.5.1 The cost function selection procedure

COP, SCOAP and TC give, for each line, measures for different possible testability
problems in the circuit; i.e., COP gives measures for the PR detectability, SCOAP for the
number of necessary input assignments and TC for the number of tests that have to prop-
agate through a line. The TPI pre-process analyzes the TA measures to find out whether
they indicate that there are testability problems. During the analysis, priorities are as-
signed on improving the COP, SCOAP and TC measures. The higher the priority for a
TA measure, the higher the testability problem corresponding to this TA measure and the
more important it becomes to improve these TA measures. For the different TA measures,
the following priority schemes are used:

CORP priority:

The COP priority is determined by the number of faults with a COP detectability
(Pds) below a given threshold value. The more faults with a Pd¢ below this threshold, the
higher the priority. The priority is also higher, when there are faults with very low Pd+s,
e.g., below 1719, to make sure that the TPI algorithm will target these very hard-to-test
faults, even when there are only a few of them.

SCOAP priority:

5.5. MULTI-STAGE TPl WITH DYNAMIC COST FUNCTION SELECTION 141

The SCOARP priority is determined in a similar way as the COP priority. The number
of faults with SCOAP values higher than a given threshold determine the priority. As
mentioned in Subsection 5.2.1, relative SCOAP values (SCOAP values of a given signal
line compared to SCOAP values of other lines) are more useful than absolute SCOAP
values. Therefore the threshold is determined by the distribution of the SCOAP values
and is set at SCOAP + 3 - 0gcoap (Standard deviation). This threshold equation has been
chosen experimentally.

TC priority:

For the TC only two priority values are used, 0 and 1. Experiments with more prior-
ity values have not taken place. Again a given threshold is used to differentiate between
these priorities. When there are TC values (T0+T 1) for lines higher than this threshold,
the priority is 1, otherwise 0. This threshold has experimentally been set at 40.

When the COP priority is higher than the SCOAP priority, a COP-based CF is se-
lected. On the other hand, when the SCOAP priority is higher, a SCOAP based CF is
selected. When COP and SCOAP have an equally high priority, a CF is selected that
takes into account both COP and SCOAP. The selected CF will also take into account
TCs when the TC priority is 1.

Two kinds of COP CFs have been described in this dissertation, the original COP
based CF of Tsai et al. [Tsa97]: P%f’ from now on called “Tsai CF”, and our proposed

NPAT CF: (1—Pd¢)NPAT, The CF selection procedure also has to select which kind will
be used in the selected CF. Subsection 4.3.3 already described that the Tsai CF mainly fo-
cuses on improving the detection probability of the hardest RPR fault(s), while the NPAT
CF focuses on improving the detection probabilities of all faults with low detection prob-
abilities. These faults will have a cost contribution of (nearly) 1. Several properties of the
NPAT CF are described in the following text in order to explain how to choose between
the Tsai and the NPAT CF and how to select the NPAT value.

The NPAT CF divides the faults in the circuit into three groups:
Group 1: The faults with a cost contribution of (almost) 1.
Group 2: The faults with a cost contribution of (almost) 0.
Group 3: The faults with a cost contribution larger than 0 but smaller than 1.

Whether a fault belongs to Group 1, 2 or 3 depends both on its detection probability and
on the value of NPAT. This is illustrated in Fig. 5.4. The detection probabilities of the
SAQ faults for the first 1000 signal lines in circuit s15850.1 are shown. Fig. 5.4(a) shows
the different fault groups in case NPAT =320. COST=1 represents the group with a cost
contribution of almost 1 (>0.95), cosT=0 the group with a cost contribution of almost 0
(<0.05) and 0<cosT<1 the group with a cost contribution between 0.05 and 0.95.

142 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

Detection probabilitiesin circuit s15850.1

5

Detection probabilitiesin circuit s15850.1

1

001 [O V&SGR0 % @7 Q" 08
L @% 0‘5\0 0? '000% <§<§ @0'7

¢ O
0.0001 - -- %@p <

0.01 gt

0.0001 s

(o

I : P |
L 8 o, 8 wdBa o« 888
1e-06 o 08B, WTOp %oo%@

ﬁ ? 1e-06 |- i@} —0@%><>§ . ,ess&<>§§§>, 0<cost<1 F
> : A ‘ : g > ; o ' W
£ ol %o %oo@ @8@000@@3@% £ ol %0 §§<>© @8000
-g1e-08 *% B0 OIS w0 T -21e-08 Q@ """ R
E & 0% © oo 0% ° S & 0% © oo 8°° P
= ‘ ‘ Lo : = : : Lo :
Sle-10 f i EESTESE SO P a Sle-10 [oiooooo EEETESE SO P a
§ [stuckjatOfauIFs <>] : :] § [stuckjatOfauI;s <>] : :]
S1e-12 4 L2 02 L2 S1e-12 4 Lo 19 L__©
0 200 400 600 800 1000 0 200 400 600 800 1000
Signal line — Signal line —
(@) Cost contributions for NPAT =320 (b) Cost contributions for NPAT=320000

Figure 5.4: Impact of NPAT on the cost contributions of faults in circuit s15850.1

The Hybrid TPI algorithm targets at reducing the global cost of the circuit. The algo-
rithm tries to improve detection probabilities of faults in the circuit that results in a cost
contribution reduction from non-zero (>>0) to (almost) 0, hence the TPI algorithm targets
the faults in Group 1, and partially the faults in Group 2. But when NPAT is low, there
are a lot of faults in Groups 1 and 2. Given Fig. 5.4(a) with NPAT =320, it is possible that
the TPI algorithm insert TPs that improve the detection probabilities of lots of faults with
detection probabilities between 103 and 10~4, while it does not improve the detection
probabilities of the really hard-to-test faults, i.e., faults with detection probabilities below
107

When NPAT is increased to 320000, shown in Fig. 5.4(b), the faults with detection
probabilities between 10~3 and 10~ have a cost contribution of (almost) 0 and the TPI
algorithm will not target these faults. Now the TPI algorithm will mainly target on the
hard-to-test faults, the faults with a detection probability lower than 10~.

In case the cost selection procedure selects the NPAT CF as COP based CF, the NPAT
parameter will be selected such that approximately 5% of the faults will be in Groups 1
and 2. The TPI algorithm will mainly focus on improving the detection probability of the
5% hardest-to-test faults and will not be influenced by the less hard-to-test faults.

At this point still the question has to be answered when to use the Tsai COP CF and
when to use the NPAT CF. In case there are very low detection probabilities in the circuit,
often the difference in detection probabilities within the 5% lowest detection probabilities
is high, i.e., many orders (>5) of magnitude. In that case it is still possible that although
a TP might improve the detection probability of a fault with several orders of magnitude,
its NPAT cost contribution hardly changes and stays almost 1. This is illustrated in Fig.

5.5. MULTI-STAGE TPl WITH DYNAMIC COST FUNCTION SELECTION 143

le+15 ' | ' 1 ' 1 ' I ' !
le+10 |

100000 |

Cost contribution

1e-05 |

1e-10 : :
- Original ¢ost function
- NPAT cost function

le-12 1e-10 1e-08 1le-06 0.0001 0.01 1
Detection probability of a fault

le-15

Figure 5.5: Cost contribution of a fault as function of its detection probability

5.5.

In Fig. 5.5 the cost contribution of a fault is plotted as function of its detection
probability. The cost contributions are shown for both the Tsai CF and the NPAT CF
with NPAT =1,000,000. Assume that the detection probabilities of the 5% faults with the
lowest detection probability ranges from 10~12 to 10~6. When a TP candidate improves
the detection probability of a fault from 1012 to 107, the NPAT cost contribution of
that fault hardly changes, i.e., remains almost 1. Even when for many faults the detection
probability improves from 10~12 to 10—, the total cost for the circuit will hardly change
because the cost contribution for each of these faults remains almost 1. The impact of
detection probability changes on the cost in this range of detection probabilities is very
limited. On the other hand, the Tsai CF results in a cost gain of almost 1012 (1012 - 107)
for that fault. When for more faults the detection probability is improved from 1012 to
10~7, the cost gain will even be higher. The TPI algorithm with the Tsai CF will consider
this TP candidate as possible TP to insert, while the TPI algorithm with NPAT CF will
certainly not. In case of the NPAT CF only TPs are inserted which result in detection
probability changes from 10~ and lower to 10~ and higher.

When a higher value of NPAT is selected, fewer faults will contribute to the CF and
the range of non-zero cost contributing faults becomes smaller. In that case it becomes
more likely that a detection probability improvement for a hard-to-test fault will result
in a cost contributing change from almost 1 to almost 0, because the range in which the
impact of detection probabilities on the cost is limited, has become much smaller. But in
that case, the TPI algorithm will only focus on the very hard-to-test faults and ignore all
other faults. It will even focus more on the very hard-to-test faults only than the Tsai CF.

144 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

Consider again two faults 1 and f, Pds, = 10~ and Pd, = 10~8 and a value for NPAT
of 1,000,000,000. The cost contribution of fault f1=0.99, while the cost contribution of
fault f,=4.5-10~5, a difference of 5 orders of magnitude. The TPI algorithm with NPAT
CF will ignore fault f2. In case of the Tsai CF the difference in cost contribution is “only’
3 orders of magnitude. Still this is not a high probability that the TPI algorithm will take
into account cost changes of fault fo, but it will take them sooner in account than with the
NPAT CF.

So when does the NPAT CF become interesting? The NPAT CF becomes interesting
when the range in detection probabilities of the faults with non-zero cost contribution is
less than 3 orders of magnitude [Geu02a]. Consider again the two faults f; and fo, this
time Pd¢, = 10~° which results in a cost contribution of 0.36. This NPAT cost contri-
bution is in the same order of magnitude as the contribution of fault f;, hence the TPI
algorithm with NPAT CF will focus on improving the detection probability of both faults.
In case of the Tsai CF, the difference in cost contribution for faults f1 and fo is 2 orders
in magnitude. Therefore, the TPI algorithm with the Tsai CF will mainly focus only on
solving the detection probability of fault f1.

The CF selection procedure selects the NPAT COP based CF when the detection prob-
ability range of cost contributing faults is less than 3 orders of magnitude, otherwise the
Tsai COP based CF is selected.

The list of CFs from which the CF selection procedure can select is given in Table
5.8. Column # in Table 5.8 shows an identification for the used CF, e.g., CF; corresponds

Table 5.8: Cost functions for solving different test problems in a circuit*)

Cost function Based on
1

CH PO st COP
CFy | (1—Pdj/ga)N™T COP
CFz | (O +SM) SCOAP
CFs | (TO) TC
CFs | "o COP & SCOAP
CFs | (SCO +SM) - (1—Pdj/ga)NPAT COP & SCOAP

TO —EQ EO
CF7 | ~cor + oo COP& TC
CFg | (TQ —EQ)-(1—-CO)NPAT +EQ; - (1— Pdj/sa)N™T | COP& TC
CFg | (TO — E0|) (SCO) +EOQ - (SCO 4 SM) SCOAP& TC
CFy | (PG + B S COP & SCOAP& TC
CFyu | (TO —EQ)-SCO; - (1—Cop)NPAT

+EQ; - (SO + SM) - (1 — Pdy jgar)NAT COP & SCOAP& TC

*) Only the stuck-at 1 parts of the cost functions are shown

with the Tsai CF. Column Cost function gives the CF equations for the SA1 fault for line
I In these equations, Pd, ;sa1 represents the detection probability of the SA1 fault at line
I, CO; the COP 0O-controllability of line I, SCO; and SW, the SCOAP 0-controllability,

5.5. MULTI-STAGE TPl WITH DYNAMIC COST FUNCTION SELECTION 145

respectively SCOAP observability of line I, EQ; and T 0; the essential-zeros, respectively
total-zeros counts for line I. Only the part of the CF with respect to the SA1 fault is
shown in order to limit the size of the table. Finally, Column Based on shows on which
TA measures this CF is based. Given that there are two possible COP-based CFs, there
are 11 possible CFs: two COP-only, one SCOAP-only, one TC-only, two COP&SCOAP,
two COP&TC, one SCOAP&TC, and two COP&SCOAP&TC based CFs.

5.5.2 Experimental results of multi-stage TPI

This subsection shows the impact of multi-stage TPI, with the TPI pre-process that se-
lects the CF, on the compact ATPG test set sizes. The results of multi-stage TPI [Geu02b]
are compared with the results of the COP&TC based CF proposed in Section 5.3. The
comparison results are given in Tables 5.9 and 5.10 for the ISCAS respectively industrial
circuits. Multi-stage TPI includes the TPI pre-process for reducing large FFRs [Geu02b]
as described in Section 5.4.

Column Tc&coP TPI shows the compact ATPG results for the circuits listed in Col-
umn Circuit after TC&COP TPI; the ATPG test set size (T), the ATPG fault coverage
(FC(%0)) and the CPU time spent on ATPG (cPu) are listed. Column TPI shows the num-
ber of inserted TSFF TPs (TSFF) and the CPU time spent on multi-stage TPI (CPu).
Column multi-stage TP1 shows the compact ATPG results for the circuit when multi-stage
TPI has been used; the ATPG test set size (T), the ATPG fault coverage (FC(%)) and the
CPU time spent on ATPG (cpu) after multi-stage TPI are listed.

The compact ATPG results, listed in Table 5.9, show that with multi-stage TPI 48
fewer ATPG patterns are generated than with TC&COP TPI, i.e., 1014 patterns are gen-
erated after multi-stage TPI versus 1062 patterns after TC&COP TPI. In other words,
multi-stage TPI results in 4.5% extra test set size reduction compared to TC&COP TPI.
For all three sets of ISCAS circuits, i.e., ISCAS’85, ISCAS’89 and ISCAS’89 addendum,
better test set size reduction is achieved with multi-stage TPI. However, there are three
circuits for which the test set size reduction is not as good as with TC&COP TPI, i.e.,
circuits $9234.1, s13207.1 and s938a. For these circuits, the multi-stage TPI does not
select the best CF, although still very good test set size reduction has been achieved after
TPI compared to the results without TPI, see Appendix A. On the other hand, the number
of compact ATPG test patterns for circuits ¢7552, s15850.1 and s38584.1 is considerably
smaller with multi-stage TPI compared to TC&COP TP. For these circuits it is clearly
shown that the multi-stage TPI results in better ATPG testability improvement.

The ATPG fault coverages of the ISCAS circuits after TC&COP TPI and multi-stage
TPI do not differ a lot, i.e., 0.01% (99.02%-99.01%) for the ISCAS’85 circuits, 0.16% for
the ISCAS’89 circuits, and 0.13% over all ISCAS circuits. For all sets of ISCAS circuits,
multi-stage TPI results in the better fault coverage.

Also the ATPG CPU times do not differ a lot. Overall, the ATPG CPU times for the

146 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

Table 5.9: Compact ATPG results of ISCAS circuits after multi-stage TPI

TC&COPTPI TPI multi-stage TP

Circuit T [FC(%)| CPU|TSFF| CPU|| T |FC(%)]| CPU
c1908 42| 9992 046s| 25|125s| 40| 99.92]045s
c3540 73| 97.67 | 169s|| 25|445s| 70| 97.73 | 2265
C7552 74| 9940 | 3.40s|| 40 |7.58s| 56| 99.40 | 301ls
Subtotal || 189 | 99.01 | 5555 || 90 | 1335 166 | 99.02 | 5735
s1196 52| 100.00 | 0.30s | 20 | 0.65s| 52| 100.00 | 0.3Ls
51488 88 | 100.00 | 0.44s|| 20 |091s|| 81 |100.00 | 0.47s
51494 87| 99.87 | 046s|| 20|092s| 82| 99.93|045s
s5378 60 | 9891 | 153s|| 30| 260s|| 58| 9898 |162s
92341 || 51| 9469 | 424s| 50 |849s|| 57| 9460 | 465s

s13207.1 || 202 | 99.16 | 11.0s 50 | 128s || 212 | 99.15 | 115s
s15850.1 88 | 9838 |9.72s 50 | 13.2s 75| 9836 | 8.75s
s38584.1 110 | 96.53 | 36.4s 50 | 349s 98 | 96.91 | 344s
Subtotal 738 | 97.39 | 64.0s 290 | 744s || 715 | 9755 | 622s

s499a 28 100.00 | 0.18s 8 02Ls| 2810000 | 0.185s
s938a 40 | 10000 | 0.25s || 12| 044s| 4110000 | 0.25s
s3330a 67| 10000 | 1.03s || 32 |189s| 6410000 | 1065
Subtotal || 135 | 100.00 | 146s | 52 | 254s || 133 | 100.00 | 148
[Tota [1062 | 97.71 | 711s| 432[902s || 1014 | 97.84 | 6945 |

ISCAS circuits after multi-stage TPI are 1.7 seconds less than after TC&COP TPI (69.4
seconds for multi-stage TPI versus 71.1 seconds for TC&COP TPI).

The results of the industrial benchmark circuits, listed in Table 5.10, also show that
multi-stage TPI results in significantly better compact ATPG test set size reduction than
TC&COP TPI. For the Boolean industrial circuits, the ATPG test set size is reduced from
4200 patterns with TC&COP TPI to 3050 patterns with multi-stage TPI. This means
that with multi-stage TPI a test set size reduction of 223901009 = 27.4% has been
achieved compared to TC&COP TPI. Especially for circuits p73257 and p162057, better
test set size reduction has been achieved. In case of circuit p162057, this better reduc-
tion is totally the result of the usage of the TPI for reducing large FFRs pre-process in
multi-stage TPI, see Table 5.7. In case of circuit p73257, this is only partially true. After
multi-stage TPI on circuit p73257, the ATPG test set size contains 413 patterns less (566
patterns versus 979 patterns) than with TPI for reducing large FFR method A1 in combi-
nation with TC&COP TPI, see Table 5.7. Compared to TC&COP TPI without reducing
large FFRs, multi-stage TPI on circuit p73257 results even in 56.7% (£33353% . 100%)
extra test set size reduction.

The fault coverage differences between TC&COP TPI and multi-stage TPI for the

5.5. MULTI-STAGE TPl WITH DYNAMIC COST FUNCTION SELECTION

147

Table 5.10: Compact ATPG results of industrial circuits after multi-stage TPI

TC&COP TPI TPI multi-stage TP
Circuit T |FC(%)| CPU|TSFF| CPU| T [FC%)]| CPU
p7653 178 9962 | 874s| 15| 69ls| 158 | 99.63| 8665
p14148 260 | 9999 | 199s| 15| 568s| 212 | 9999 | 17.3s
p27811 97 | 9522 | 252s| 38| 160s| 87| 9522 | 256s
p31025 | 463 | 9887 | 129s| 25| 309s| 445| 9874 | 122s
P34592 198 | 9998 | 754s| 34| 221s| 173 | 9997 | 701s
p36503 159 | 97.25| 481s| 30| 235s|| 125| 97.25| 422s
p43282 197 | 9773 | 127s| 49| 499s| 183 | 97.79 | 118s
P43663 132 | 9925| 401s| 50| 285s| 115| 99.26 | 389s
p72767 || 302 | 9725| 404s| 50| 147s| 304| 9741 | 400s
p73133 285 | 97.39 | 404s| 50| 164s| 270 | 97.30 | 393s
p73257 | 1308 | 9809 | 56ls| 73| 133s| 566 | 9825 | 3565
p75344 174 | 9931 | 102s| 55| 704s| 182 | 99.33| 109s
pl62057 | 447 | 9869 | 348s| 162 | 627s| 230 | 9879 | 273s
Subtotal || 4200 | 9828 | 2296s || 646 | 1326s| 3050 | 9832 | 1977s
p32118 147 | 9356 | 302s| 32| 200s| 134| 9357 | 30.7s
p37021 176 | 7728 | 232s| 37| 253s| 208 | 77.23| 240s
pe6171 | 1177 | 9679 | 354s| 66| 379s|| 1138 | 9679 | 348s
p71553 96 | 9686 | 290s| 71| 145s| 87| 9.78 | 228s
po3140 | 325 | 9403 | 587s| 93| 173s|| 386 | 9403 | 6l4s
pl04649 | 476 | 9939 | 367s| 104 | 191s| 480 | 99.39 | 346s
pl14605 | 366 | 9901 | 500s| 80| 173s| 381 | 9894 | 5265
pl37498 | 274 | 9886 | 177s| 137 | 308s| 298| 9885 | 200s
p481470 | 1435 | 9928 | 8390s | 185 | 904s|| 1693 | 99.26 | 11283s
P596922 || 521 | 9697 | 2595s| 317 | 2894s| 450 | 96.95 | 2953s
P598004 | 2069 | 98.74 | 4313s| 100 | 932s|| 1440 | 98.74 | 4022
p705050 || 286 | 76.86 | 6817s| 250 | 2653s| 256 | 76.86 | 6568
p824184 || 759 | 96.73 | 18655s| 300 | 3952s| 749 | 96.74 | 18123s
p854266 | 411 | 97.65| 5442s| 300 | 3911s|| 414 | 97.68 | 61365
Subtotal || 8518 | 94.42 | 485465 | 2072 | 16666S | 8114 | 94.42 | 51406S
[Total || 12718 | 94.92 | 50842s || 2718 | 17992 s || 11164 | 94.92 | 533845 |

Boolean industrial circuits are very limited, 98.28% after TC&COP TPI versus 98.32%
after multi-stage TPI. For seven of the thirteen Boolean industrial circuits, multi-stage
TPI results in the better fault coverage, while TC&COP TPI only results three times in
the better fault coverage.

The compact ATPG CPU times after multi-stage TPI are also less than the compact
ATPG CPU times after TC&COP TPI; 1977 seconds versus 2296 seconds. In other words,
multi-stage TPI results in 22201977 . 100% = 13.9% extra ATPG CPU time reduction

148 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

compared to TC&COP TPI. Again this difference is mainly caused by circuits p73257
and p162057. For the ATPG tool it becomes much easier to activate faults or propagate
fault effects when there are fewer large FFRs with high TCs.

The compact ATPG test set size reduction after multi-stage TPI for the three-state
industrial circuits is less compared to the reduction for the Boolean industrial circuits.
8114 ATPG patterns are generated after multi-stage TPI compared to 8518 patterns af-
ter TC&COP TPI; in other words a reduction of 8518811410006 = 4.7%. A very large
amount of this difference is caused by the usage of TPI for reducing large FFRs within
multi-stage TPI, see the results of circuits p481470 and p598004 in Tables 5.7 and 5.10.
The multi-stage TPI algorithm is not able to find really better CFs for the three-state in-
dustrial circuits compared to the TC&COP CF, i.e., CF7. The larger three-state industrial
circuits mainly suffer from poor COP detectability and high TC values, which is exactly
what TC&COP TPI tries to improve.

The ATPG fault coverages after multi-stage TPI and TC&COP TPI are the same, i.e.,
94.42%. Just like TC&COP TPI, multi-stage TPI is also not able to improve the fault
coverage for circuit p705050, which NPAT TPI was able to do (see Tables 5.2 and 5.5).
For all three-state industrial circuits, the differences in ATPG fault coverages after TPI is
limited to less than 0.1%.

Multi-stage TPI results in longer ATPG CPU times than TC&COP TPI for the three-
state industrial circuits. This is mainly caused by circuit p481470. As explained in Sub-
section 5.4.2, most of the inserted TPs in circuit p481470 are inserted by the TPI for
reducing large FFR method A1 (included in multi-stage TPI), i.e., 111 out of 185 TPs.
Only a relatively small number of TPs is inserted by the Hybrid CRF TPl method. This
circuit requires more TPs to be inserted with the Hybrid CRF TPI method in order to
improve other ATPG testability problems in the circuit, i.e., improve COP detectability
and/or SCOAP observability.

Overall, the compact ATPG test set size reduction for the industrial benchmark circuits
is 12.2% better after multi-stage TPl compared to TC&COP TPI, i.e., 11164 patterns
versus 12718 patterns. There is no significant difference in ATPG fault coverage between
multi-stage TPl and TC&COP TP; both result in 94.92% ATPG fault coverage. The CPU
time spent on ATPG is 5% more for multi-stage TPl compared to TC&COP TP TP, i.e.,
53384 seconds versus 48546 seconds. As explained above, this is mainly due to the many
TPs that are inserted in circuit p481470 for reducing large FFRs.

5.6/ Summary and conclusions

The growth in ATPG test set sizes, caused by the increasing complexity of circuits,
has a major impact on the ATE demands for the semiconductor industry. In this chap-
ter it has been shown that TPI can be used to reduce the compact ATPG test set sizes,

5.6. SUMMARY AND CONCLUSIONS 149

hence reduce the ATE memory requirements and the long test time needed to apply the
generated ATPG test sets. The TPI algorithm with the NPAT CF, which is only targeted
on improving the PR testability of a circuit, is capable of significantly reducing compact
ATPG test set sizes.

For the set of ISCAS benchmark circuits, 43.5% test set size reduction has been
achieved, and for the industrial benchmark circuits, the test set size reduction was 26.1%.
Besides reducing the ATPG test set sizes, NPAT TPI also resulted in an improvement of
the ATPG fault coverage and a reduction of the CPU time spent on ATPG. For the ISCAS
circuits, the ATPG fault coverage improved from 97% to 98%; this means that 33% of all
faults that were not covered by ATPG patterns before TPI, became detectable after NPAT
TPI. The ATPG CPU time spent on all ISCAS benchmark circuits has been reduced with
31.8%.

For the industrial benchmark circuits, the ATPG fault coverage improved from 94.76%
t0 96.78%; in other words 40% of the faults that were not covered by ATPG patterns with-
out TPI, became covered after NPAT TPI. The ATPG CPU time spent on the industrial
circuits has been reduced with 65.1%.

Although results show that, in general, significant test set size reductions can be
achieved with NPAT TPI, there are however circuits for which the compact ATPG test
set size reduction was not so high; i.e., less than 10%. These circuits suffer from other
testability problems that cause large test sets than only poor PR testability. We have pro-
posed [Geu00] a CF for the Hybrid TPI algorithm for industrial circuits that not only takes
into account COP measures, but also test counts (TCs) [Hay74]. With TCs a lower bound
on the compact ATPG test set size can be calculated. High TC measures indicate that the
ATPG test set size will also be high. Reducing the TCs may result in a reduction of the
ATPG test set size.

Experimental results on both the ISCAS benchmark and industrial circuits have shown
that the proposed TPI algorithm with the CF that takes TCs into account, i.e., TC&COP
TPI, in general results in a better test set size reduction than NPAT TPI. Although for
the ISCAS benchmark circuits, only 1.7% extra test set size reduction is achieved, for
the industrial circuits 17% extra test set size reduction is achieved after TC&COP TPI
compared to NPAT TPI. The ISCAS circuits do not contain circuits that suffer from high
TC values, while several industrial circuits do; this is the cause for the difference in extra
test set size reduction between the ISCAS circuits and the industrial circuits.

Even with TC&COP TPI, there are still circuits for which the test set size reduction
was disappointing, e.g., for circuit p598004 less than 3% reduction had been achieved
after the insertion of 100 TPs with TC&COP TPI compared to the circuit without TPs.
This circuit suffers from a very large FFR that results in very high TC values on the FFR
output. Still, the TC&COP TPI (or NPAT TPI) algorithm did not insert TPs in this large
FFR. By extending the TPI algorithm with methods to reduce the sizes of large FFRs, also
significant test set size reduction can be achieved for circuits that suffer from very large

150 CHAPTER 5. TEST POINT INSERTION FOR COMPACT SAFATPG

FFRs. Experimental results have shown that with these methods, also the test set size for
circuit p598004 can be reduced with 38%, from 2129 patterns down to 1320. Over the set
of industrial benchmark circuits that contain large FFRs, 9.6% up to 14.4% extra test set
size reduction has been achieved when the TPI algorithm includes a TPI pre-process that
reduces the large FFRs by means of one of the TPI for reducing large FFR methods.

The ISCAS circuits do not suffer from high TCs; using a TC-based CF like in TC&COP
TPI does not seem useful for these circuits. In general each circuit suffers from differ-
ent testability problems. In this chapter we have proposed to use a TPI pre-process, that
analyzes the TA measures of the circuit, to select a CF aimed at solving the testability
problems of that specific circuit. The TPI process is divided into multiple-stages. Before
each stage, the TPI pre-process is run to select the CF that targets the worst testability
problems in the circuit. Several TPs are inserted with that CF, after which the pre-process
is run again to select a new CF. Because the inserted TPs improve the testability problems
in the circuit, another CF may become better to target the testability problems that exist
after the currently inserted TPs. In this chapter we have shown that by dividing the TPI
process into multiple stages, in order to select in each state a CF after an analysis of the
TA measures, even better test set size reductions are achieved than using a COP-only (i.e.,
NPAT) CF or the TC&COP CF during the whole TPI process.

Experimental results of the proposed multi-stage TPl method, i.e., multi-stage TPI,
show that for the ISCAS circuits the number of ATPG patterns is reduced with 4.5% com-
pared to TC&COP TPI. For the industrial circuits, the extra reduction is 12.2% compared
to TC&COP TPI. Especially the reduction for the Boolean industrial circuits is large, i.e.,
27.4%. The reduction for the three-state industrial circuits is 4.7%.

Comparing the compact ATPG results of multi-stage TPI with the ATPG results of
the circuits without TPs, for the ISCAS circuits the number of ATPG test patterns is
reduced from 1913 down to 1014 patterns; a reduction of 47%. The ATPG fault coverage
is improved from 97% to 97.84% and the CPU time spent on ATPG is reduced from
111 seconds down to 69.7 seconds. For the industrial benchmark circuits, the number of
ATPG patterns is reduced from 22987 patterns to 11164 patterns; a reduction of 51.4%.
The ATPG fault coverage has only been improved from 94.76% to 94.92%. For one
circuit, i.e., p705050, NPAT TPI was able to improve the fault coverage from 76.76%
to 91.47%, resulting in a fault coverage improvement over all industrial circuits of 2%.
TC&COP TPI and multi-stage TPl were not able to improve the fault coverage for this
circuit significantly, resulting in only a small overall improvement in the ATPG fault
coverage. The CPU time spent on ATPG is reduced from 186185 seconds without TPs to
52758 seconds after multi-stage TPI, a reduction of even 71.6%. Hence, multi-stage TPI
can significantly facilitate compact ATPG in reducing the number of patterns to reach a
high fault coverage as well as reduce the CPU time that the ATPG requires for generating
the patterns.

CHAPTER 6

Test Point Insertion for delay fault
ATPG

Besides the impact of TPI on stuck-at fault (SAF) ATPG test set sizes, we have also
tested the impact of TPI on gate-delay fault (GDF) ATPG test set sizes. The compact
GDF ATPG test sets tend to be even larger than the compact SAF ATPG test sets, as will
be explained in Section 6.1, and hence also form a big problem for the ATE. It would be
nice if TPI could also result in significant delay fault ATPG test set size reductions.

Section 6.1 starts with describing the Transition Fault (TF) model, a special case of
the gate-delay fault model. Section 6.1 also briefly describes GDF ATPG (TF ATPG),
including the possible impact of TPl on GDF ATPG. Section 6.2 shows experimental
results of TPI for SAF ATPG, described in the previous section, on GDF ATPG. Section
6.3 summarizes and concludes this chapter.

6.1] Transition faults and gate-delay fault ATPG

Chapter 1 has shown that delay faults are often divided into two groups: path-delay
faults and gate-delay faults. A special case of the gate-delay faults exists, i.e., the gross
gate-delay faults::

gross gate-delay fault [Pra95]: A gate is defined faulty if its gate defect results in path-
delay faults for all the paths passing through it.

The gross gate-delay faults can be modeled by the Transition Fault (TF) model. For the
two kinds of transitions, i.e., the up-transition (the value on a line changes froma 0 to a
1) and down-transition (the value on a line changes from a 1 to a 0), there are two types
of TFs:

1. The slow-to-rise fault: With respect to the clock-frequency, the delay of a gate
(output) to change from 0 into 1 is too high.

151

152 CHAPTER 6. TEST POINT INSERTION FOR DELAY FAULT ATPG

2. The slow-to-fall fault: With respect to the clock-frequency, the delay of a gate
(output) to change from 1 into 0 is too high.

The TF model is similar to the SAF-model; the slow-to-rise (slow-to-fall) TF corresponds
to a SAO(SAL) fault, since it behaves as a SAO(SAL) fault for a temporary period of time.
Given this relationship between the TF-model and the SAF-model, the TF test problem is
similar to a two time frame sequential SAF test problem, illustrated by Fig. 6.1. A time
frame is the state of the circuit, i.e., the state of the FFs, between two clock pulses.

Fig. 6.1 shows the circuit for the two time frames: the Initial time frame (IT) and the
Final time frame (FT). ITp; (ITpo) and FTp (FTpo) represent the PI values (PO values) of
the circuit in the Initial time frame, respectively Final time frame. ITpp represents the
pseudo-PI values (i.e., SFF output values) in the Initial time frame, and FTppo represents
the pseudo-PO values (i.e., SFF input values) in the Final time frame. The values of the
pseudo-Pls (SFF outputs) in the Final time frame, i.e., FTpp;, Will be the same as the values
of the pseudo-POs (SFF inputs) in the Initial time frame, i.e., FTppo; after a clock-pulse,
the values on SFF inputs are clocked into the FFs.

In the Initial time frame a test pattern is generated to initialize the required transition
at the faulty line. In the Final time frame, a stuck-at test pattern is generated to provoke
the required transition at the faulty line and to sensitize a path to a circuit output. Both
time frames are connected through FFs, i.e., after a clock pulse, the pseudo-PI values in
the Final time frame will follow the pseudo-PO values in the Initial time frame. Hence,
during TF ATPG, two test generation targets need to be specified: A SAF in the Final
time frame and an Ippq modeled fault in the Initial time frame. Just like for an Ippq fault,
the fault only needs to be justified in the Initial time frame without being propagated,
therefore the term Ippq fault is used.

As a result, when the circuit contains hard-to-control and hard-to-observe lines, one

(test stimulus) (test stimulus)

¢ ¢ ITp; ¢ FTppp = ITppg, ¢ ¢ FTPW
2 > IT FT: 3
3 5 ' > 05
2 5| Initia Fina L 5%
B~ .| timeframe N timeframe | "k ﬁ
f!i — — =

(test response)

Figure 6.1: Two time frame model for TF ATPG

can imagine that it becomes even harder for the TF ATPG to generate test patterns than

6.2. EXPERIMENTAL RESULTS OF TPl FOR SAF ATPG ON GATE-DELAY FAULT
ATPG 153

for the SAF ATPG. The hard-to-control/hard-to-observe lines exist in both time frames.
A TP will make nodes easier controllable/observable in both time frames, which should
result in significant TF test set size and CPU time reduction.

6.2] Experimental results of TPI for SAF ATPG on gate-
delay fault ATPG

This section gives experimental results of TPI for SAF ATPG on GDF ATPG, i.e.,
TF ATPG. The TPI algorithm that has been used is the multi-stage Hybrid TPI algorithm
described in Section 5.5 [Geu02b]. The experiments have been run on a 1600+ AMD
Athlon with 512Mb of DDR RAM, running RedHat Linux 7.3

Subsection 6.2.1 shows the impact of TPI for SAF ATPG on GDF ATPG in general.
In this subsection it will be shown that TPI results in GDF test set size reduction, GDF
fault coverage/fault efficiency improvement and GDF CPU time reduction. As will be
explained, improving the GDF fault coverage/efficiency can result in more GDF test pat-
terns, in other words a negative impact on the GDF test set size reduction. In Subsection
6.2.2 experimental results of TPI for SAF ATPG on GDF test set sizes are shown in case
we limit the fault efficiency after TPI to the fault efficiency level for the circuits without
TPs, such that we minimize the negative impact of the fault coverage/efficiency improve-
ment on the GDF test set sizes.

6.2.1 The impact of TPI for SAF ATPG on GDF ATPG in general

Tables 6.1 and 6.2 show experimental results of TPI for SAF ATPG on GDF ATPG
for the ISCAS, respectively industrial benchmark circuits [Geu02b]. Before TPI has been
run, compact GDF ATPG has been run to get the GDF ATPG test set sizes for the circuits
without TPs. These GDF ATPG test sizes are listed in Tables A.3 and A.4 of Appendix
A for the ISCAS circuits, and in Tables B.3 and B.4 of Appendix B for the industrial cir-
cuits. Like for TPI for SAF ATPG, we only apply TPI on the circuits that have a compact
GDF test set size of over 100 patterns. Circuits with smaller ATPG test set sizes are not
candidate for TPI, because we consider their test set size to be small enough. Due to the
very large CPU times of GDF ATPG on larger circuits, and the 512Mb memory limitation
of the computer on which the experiments are run, we have limited the experiments to
circuits with less than 200,000 signal lines.

In Tables 6.1 and 6.2, Column Circuit shows the names of the circuits. Column GDF
ATPG without TPs shows the compact GDF ATPG results for the circuits without TPs; the
GDF test set size (T), the GDF fault coverage (FC(%)), the GDF fault efficiency (FE(%)),
and the CPU time spent on GDF ATPG (cpu) are listed. Column TPI (TSFF) shows the
data with respect to multi-stage TPI, i.e., the number of TSFFs that have been inserted.
Column GDF ATPG after TPI shows the compact GDF ATPG results for the circuits after

154 CHAPTER 6. TEST POINT INSERTION FOR DELAY FAULT ATPG

Table 6.1: GDF ATPG results of ISCAS circuits using multi-stage TPI

GDF ATPG without TPs TH GDF ATPG after TPI
Circuit T | FC(%) ‘ FE(%) | CPU || TSFF T ‘ FC(%) | FE(%) \ CPU
cl1355 142 | 9622 | 96.53 | 2.08s 16 78 | 9765 | 97.65 | 0.98s
c1908 157 | 9683 | 97.07 | 243s 25 113 | 97.72 | 9782 | 1.62s
€3540 162 | 9229 | 95.74 | 589s 25 126 | 9488 | 9721 | 456s
C7552 131 | 96.67 | 97.83 | 11.3s 40 80 | 96.89 | 9753 | 844s
Subtotal 592 | 9557 | 97.09 | 21.7s 106 397 | 9658 | 9750 | 156s
s1196 156 | 9564 | 95.73 | 1.33s 20 77| 9572 | 9577 | 0.79s
51488 139 | 89.53 | 97.08 | 5.18s 20 118 | 95.73 | 95.77 | 1.44s
s1494 143 | 8794 | 96.01 | 4.79s 20 127 | 9554 | 9565 | 1.57s
s5378 141 | 8854 | 96.97 | 7.97s 30 92| 9215 | 97.18 | 468s

s$9234.1 232 | 8146 | 9286 | 52.3s 50 99 | 8782 | 9556 | 131s
s13207.1 357 | 8385 | 96.39 | 56.0s 50 257 | 8883 | 9694 | 332s
s15850.1 207 | 8143 | 96.30 | 59.0s 50 161 | 8712 | 96.84 | 36.7s
s38417 154 | 9417 | 96.12 | 125s 50 118 | 9416 | 96.10 | 84.3s
s38584.1 229 | 89.23 | 96.90 | 264s 50 187 | 9118 | 9751 | 175s
Subtotal 1758 | 88.63 | 96.21 | 576s 340 || 1236 | 91.27 | 96.71 | 351s
s938a 184 | 7859 | 96.09 | 1.36s 12 73| 7753 | 9451 | 062s
s3330a 151 | 8050 | 90.90 | 7.40s 32 96 | 86.77 | 96.40 | 295s
Subtotal 335 | 80.08 | 9204 | 8.76s 44 169 | 84.74 | 9598 | 357s

Total || 2685 | 89.07 | 96.17 | 607s || 490 || 1802 | 9161 | 96.77 | 370s |

multi-stage TPI; the GDF test set size (T), the GDF fault coverage (FC(%)), the GDF fault
efficiency (FE(%)), and the CPU time spent on GDF ATPG (cpPu) after TPI are listed.

The results in Table 6.1 show that TPI for SAF ATPG also results in significant GDF
ATPG test set size reduction. Over all circuits listed in Table 6.1, the number of GDF pat-
terns is reduced from 2685 patterns without TPI to 1802 patterns after multi-stage TPI; a
reduction of 32.9% (22851892 100% = 32.9%). The individual circuit reductions differ a
lot, from 11.2% for circuit s1488 (from 139 to 118 patterns) up to 60.3% for circuit s938a
(from 184 patterns to 73 patterns). In other words, how successful TPI is on reducing
GDF test set sizes, is circuit dependent.

Analyzing the GDF fault coverages before and after multi-stage TPI shows that they
significantly improve after TPI for a large number of circuits, i.e., the GDF fault cov-
erage improvements for circuits s1488, s1494, s9234.1, s15850.1 and s3330a are more
than 5%. Overall, the fault coverage improvement is 2.54%, from 89.07% to 91.61%. In

other words, 23.2% ((1— %) -100% = 23.2%) of all GDF faults that were not
covered by a GDF pattern for the circuits without TPs, becomes covered by GDF patterns
after TPI. This improvement in fault coverage is much larger than the fault coverage im-
provements seen for the ISCAS circuits in case of SAF ATPG. Tables 5.1 and 5.9 show
that the SAF fault coverage after multi-stage TPI only improves from 97.00% to 97.84%.
The fault efficiency improvement after TPI is less than the fault coverage improvement;

the fault efficiency improves from 96.17% without TPs to 96.77% after TPI, an improve-

6.2. EXPERIMENTAL RESULTS OF TPl FOR SAF ATPG ON GATE-DELAY FAULT
ATPG 155

ment of 0.6%.

Such a GDF fault coverage improvement means that a lot of GDFs that were unde-
tectable without TPs have become detectable after TPI. For these GDFs also patterns have
to be generated, and as a result, the compact GDF ATPG test sizes increase. This makes
clear why the GDF ATPG test set size reduction is less than the SAF ATPG test set size
reduction. The GDF ATPG has to generate more new patterns for the GDFs that have
become detectable, than the SAF ATPG has to generate for the SAFs that have become
detectable after TP1 as more GDFs than SAFs have become detectable after TPI.

The GDF ATPG CPU times for the ISCAS circuits significantly reduce after TPI; they
reduce from 607 seconds without TPs to 370 seconds after TPI. This means a reduction
of 39.0%. As explained in Section 6.1, GDF ATPG is more difficult than SAF ATPG,; the
GDF ATPG has to deal with two time frames while the SAF ATPG only has to deal with
one time frame. Also the GDF ATPG version in AMSAL that has been used for GDF
ATPG, see Appendix E, is not as far in development as the SAF ATPG and as a result not
yet as good in performance. Therefore the GDF CPU times are much larger than the SAF
CPU times shown in Tables 5.1 and 5.9.

The results in Table 6.2 shows that TPI for SAF ATPG also results in significant
GDF ATPG test set size reductions for the industrial circuits. For the Boolean circuits,
the number of GDF patterns reduces with 34.0%, from 15,827 patterns without TPs to
10,452 patterns after multi-stage TPI. Especially circuits p73257 and p162057 have very
large GDF test set sizes without TPI. These are two circuits with large FFRs. Like for
SAF ATPG, also for GDF ATPG large FFRs form a problem; all fault effects have to
propagate through the single FFR output. The used multi-stage TPI algorithm includes
TPI for reducing large FFR method A1, see Section 5.4, such that the large FFRs will
be reduced after TPI. For circuit p162057, reducing the FFR size results in a GDF test
set size reduction of 72.4%, from 3578 patterns to 987 patterns. This reduction is far
more than the reductions for the other Boolean industrial circuits. The reduction of the
GDF patterns for circuit p73257 is not so high. Although the number of GDF patterns
is reduced with more than 1000 patterns (from 5697 patterns without TPs to 4612 pat-
terns after multi-stage TPI), the reduction is only 19.0%. This circuit does suffer from
large FFRs, but also from other testability problems as explained in Subsection 5.5.2. The
Multi-stage TPI is able to reduce the GDF test set sizes for circuit p73257, but not as well
as for SAF ATPG, see Table 5.10.

Like for the ISCAS circuits, there is a significant GDF fault coverage improvement of
2.04%, from 90.50% to 92.54%. The fault efficiency improves with 1.09%, from 95.04%
to 96.13%. For the Boolean industrial circuits, (1 — m%) -100% = 21.5% of
all GDF faults that were not covered by a GDF pattern without TPs, becomes covered by
GDF patterns after TPI.

With multi-stage TPI, the CPU time spent on GDF ATPG for the Boolean industrial
circuits is reduced from 39,551 seconds without TPs to 17,448 seconds. This is a reduc-
tion of 55.9%. Especially the reduction for circuit p162057 is large; the GDF ATPG CPU

156 CHAPTER 6. TEST POINT INSERTION FOR DELAY FAULT ATPG

Table 6.2: GDF ATPG results of industrial circuits using multi-stage TPI

GDF ATPG without TPs TH GDF ATPG after TPI
Circuit T | FC(%) ‘ FE(%) | CPU || TSFF T ‘ FC(%) | FE(%) | CPU
p7653 660 | 90.98 | 95.04 107 s 15 465 | 9324 | 96.23 529s
p13138 134 | 9535 | 95.88 228s 20 110 | 96.10 | 96.88 16.1s
p14148 623 | 90.50 | 94.76 155s 15 384 | 89.66 | 94.43 116s
p27811 273 | 8246 | 96.64 301s 38 151 | 8347 | 96.69 190s
p31025 1185 | 94.19 | 96.37 1343 s 25 1014 | 95.06 | 96.70 941s
p34592 310 | 9848 | 98.50 320s 34 268 | 99.13 | 99.14 239s
p36503 615 | 83.68 | 91.31 647s 30 431 | 88.10 | 93.16 327s
p43282 747 | 92.60 | 96.39 1078 s 49 580 | 93.63 | 97.16 815s
p43663 296 | 94.24 | 99.27 191s 50 238 | 94.69 | 99.23 157s
p72767 603 | 93.02 | 96.91 5036 s 50 439 | 93.80 | 9742 2019 s
p73133 629 | 9329 | 97.11 3368 s 50 431 | 94.01 | 9761 2012s
p73257 5697 | 87.21 | 89.08 7389 s 73 4612 | 87.37 | 89.07 5725s
p75344 477 | 91.92 | 96.99 1156 s 55 342 | 93.05 | 96.98 824 s

p162057 3578 | 8747 | 93.06 | 18431s 162 987 | 9313 | 96.45 4008 s
Subtotal || 15827 | 90.50 | 95.04 | 39551s 666 || 10452 | 9254 | 96.13 | 17448s
p32118 1189 | 8250 | 97.01 915s 32 592 | 8540 | 98.99 440 s

p37021 358 | 38.87 | 9843 185s 37 240 | 4427 | 99.24 132s
p66171 1067 | 3744 | 41.09 | 129635s 66 2777 | 8555 | 89.19 | 129672s
p71553 220 | 96.67 | 99.91 1497 s 71 169 | 96.75 | 99.90 1193 s
p93140 668 | 93.88 | 99.17 3450s 93 499 | 94.08 | 99.30 2323 s

p104649 1956 | 89.60 | 94.77 | 11975s 104 1636 | 94.25 | 98.28 6453 s
p114605 2332 | 95.03 | 9852 | 16641s 80 1743 | 95.76 | 99.11 7758's
p137498 1082 | 92.09 | 98.73 4802 s 137 710 | 9322 | 99.11 2554 s
Subtotal 8872 | 8398 | 9234 | 169104 s 620 8366 | 90.42 | 98.09 | 150528 s

Totl || 24699 | 87.37 | 93.74 | 2086555 || 1286 || 18818 | 9152 | 97.07 | 1679765 |

time for circuit p162057 is reduced with 78.3%, from 18,431 seconds without TPs to 4008
seconds after TPI. For the GDF ATPG tool it becomes much easier to activate faults and
propagate fault effects when there are fewer large FFRs.

The reduction of the number of GDF test patterns for the three-state industrial cir-
cuits is not as large as the reductions seen for the ISCAS, respectively Boolean industrial
circuits. For the three-state industrial circuits, the number of GDF patterns after TPI is
reduced with 5.7%, from 8872 patterns to 8366 patterns. This poor reduction is caused
by the results of circuit p66171. The number of GDF patterns for circuit p66171 do not
decrease, the contrary, they were increased by 160% from 1067 GDF patterns to 2777
GDF patterns. Not taking into account this circuit, the number of GDF patterns for the
industrial circuits would reduce from 7805 (8872-1067) patterns to 5589 (8366-2777) pat-
terns, a reduction of 28.4%. 28.4% is more conform the results shown for the ISCAS and
Boolean industrial circuits.

But why do the number of GDF patterns increase so much for circuit p66171? During

6.2. EXPERIMENTAL RESULTS OF TPl FOR SAF ATPG ON GATE-DELAY FAULT
ATPG 157

all compact ATPG experiments, both SAF and GDF, the ATPG tools were not allowed
to spent more than approximately 36 hours on each circuit. For circuit p66171, the GDF
ATPG was only able to generate 1067 GDF patterns for 41.09% of all detectable faults
within these 36 hours. After TPI, the GDF ATPG tool was able to generate within 36
hours 2777 GDF patterns for 89.19% of all detectable faults. In addition to the fact that
the number of GDF patterns increased enormously after TPI, so did the fault coverage.
Without the GDF ATPG time limit, a lot more GDF patterns would be generated, resulting
in a higher fault coverage. The results of circuit p66171 show that multi-stage TPI makes
it a lot easier for the GDF ATPG tool to generate GDF patterns. Within the same amount
of time, i.e., 36 hours, 89.19% of all detectable faults are covered after TPl while only
41.09% of all detecable faults are covered without TPs.

The results of circuit p66171 also show an enormous GDF fault coverage and fault
efficiency improvement for the three-state industrial circuits after TPl. The GDF fault
coverage improves from 83.98% without TPs to 90.42% after TPI, and the GDF fault ef-
ficiency improves from 92.34% to 98.09%. Not taking into account circuit p66171, the
GDF fault coverage would improve from 89.20% without TPs to 90.97% after TPI, and
the fault GDF fault efficiency would improve from 98.09% to 99.09%.

Due to the very large GDF ATPG CPU time consumption for circuit p66171, com-
pared to the other circuits, the GDF ATPG CPU reduction is also less than for the ISCAS
and Boolean industrial circuits. The GDF ATPG CPU times reduce from 169104 seconds
without TPs to 150528 seconds after TPI; a reduction of 11.0%. Not taking into account
circuit p66171, the GDF ATPG CPU times would reduce from 39469 (169104-129635)
seconds without TPs to 20856 (150528-129672) seconds after TPI; a reduction of 47.2%.
47.2% is again more conform the CPU time reductions seen for the ISCAS and Boolean
industrial circuits.

6.2.2 The impact of TPI for SAF ATPG on GDF test set sizes only

The results given in the previous subsection show that TPI not only results in GDF
test set size reduction, but also in GDF fault coverage/efficiency improvement. The GDF
fault coverage/efficiency improvement means that also new GDF patterns have to be gen-
erated for the GDFs that have become detectable after TPI. These new GDF patterns have
a negative impact on the GDF test set size reduction. In order to get the GDF ATPG test
set size reduction after TP1 without this negative impact, Tables 6.3 and 6.4 will show ex-
perimental results in case the GDF ATPG stops generating GDF patterns when the same
fault efficiency has been reached as without TPI [Geu02b]. Although, given the same
fault efficiency, the GDF fault coverage can still improve after TPI (the results in Sub-
section 6.2.1 have shown that the GDF fault coverage improvement is much larger than
the GDF fault efficiency improvement after multi-stage TPI), using this fault efficiency
limit already gives a better understanding of the impact of TPI on the GDF test set size
reduction itself.

In Tables 6.3 and 6.4, Column Circuit shows the names of the circuits. Column

158 CHAPTER 6. TEST POINT INSERTION FOR DELAY FAULT ATPG

Table 6.3: GDF ATPG results of ISCAS circuits with fault efficiency limitation

GDF ATPG GDF ATPG after TPl

Circuit without TPs Without FE limit With FE limit

T |[FC(%)| CPU| T |FC(%)| CPU| T |FC(%)| CPU
c1355 142 | 9622 |208s| 78| 9765[098s| 78| 97.65| 101s
1908 157 | 96.83 | 243s | 113 | 97.72 | 162s| 112 | 97.42 | 1.69s
c3540 162 | 9229 | 589s | 126 | 94.88 | 456s| 126 | 94.88 | 479s
C7552 131 | 9667 | 11.3s| 80| 9689 |844s| 80| 96.89 |877s
Subtotal || 592 | 9557 | 21.7s| 397 | 96.58 | 156s| 39 | 96.54 | 1635
s1196 156 | 95.64 | 1.33s| 77| 9572 [079s| 77| 9572 |08ls
$1488 139 | 8953 |518s | 118 | 9573 | 144s| 109 | 9498 | 1.42s
51494 143 | 87.94 | 479s | 127 | 9554 | 157s| 121 | 9523 | 1.54s
5378 141 | 8854 |797s| 92| 9215 |468s| 89| 9232 |4.82s

s9234.1 232 | 8146 | 523s 99 | 87.82 | 131s 73| 86.17 | 120s
s13207.1 || 357 | 83.85|56.0s| 257 | 8883 | 332s | 257 | 8883 | 343s
s15850.1 || 207 | 8143 | 59.0s || 161 | 87.12 | 36.7s| 132 | 86.61 | 355s
s38417 154 | 9417 | 125s || 118 | 9416 | 843s|| 118 | 94.16 | 87.7s
s38584.1 || 229 | 8923 | 264s || 187 | 9118 | 175s| 176 | 91.06 | 179s
Subtotal || 1758 | 88.63 | 576s || 1236 | 91.27 | 351s || 1152 | 91.04 | 357s
s938a 184 | 7859 | 1.36s 73| 7753 | 062s 73| 7753 | 062s
s3330a 151 | 8050 | 7.40s 96 | 86.77 | 295s 75| 8524 | 312s
Subtotal 335 | 8008 |876s| 169 | 84.74 | 357s || 148 | 8354 | 3.74s

Totl || 2685 | 89.07 | 607s | 1802 | 9161 | 370s [1696 | 9137 | 377s |

GDF ATPG without TPs shows the compact GDF ATPG results for the circuits without TPs;
the GDF test set size (T), the GDF fault coverage (FC(%)), and the CPU time spent on
GDF ATPG (cpu) are listed. The GDF fault efficiency is not listed as it will be approxi-
mately the same before TPI as after TP1.1 Column GDF ATPG after TPI shows the compact
GDF ATPG results for the circuits after multi-stage TPI; Column without FE limit Shows
the results as presented in the previous subsection; Column with FE limit shows the GDF
ATPG results when the GDF ATPG stops generating GDF patterns when the same fault
efficiency has been reached as for the circuits without TPs. These GDF ATPG results
consist of the GDF test set size (T), the GDF fault coverage (FC(%)), and the CPU time
spent on GDF ATPG (cpu) after TPI.

In case the GDF ATPG stops generating ATPG patterns when the same fault efficiency
has been reached as for the ISCAS circuits without TPs, 106 (1802-1696) fewer patterns
are generated compared to the case that there is no fault efficiency limit. Especially for

1The GDF ATPG tool is not able to stop generating patterns when exactly the same fault effi ciency is
reached as for the circuits without TPs. Therefore approximately the same fault effi ciency.

6.2. EXPERIMENTAL RESULTS OF TPl FOR SAF ATPG ON GATE-DELAY FAULT
ATPG 159

circuits s9234.1 (-26 patterns), s15850.1 (-29 patterns), and s3330a (-21 patterns) fewer
GDF patterns are generated with the fault efficiency limit.

Because fewer GDF patterns are generated due to the fault efficiency limit, the fault
coverages after GDF ATPG are not as high as the GDF fault coverages without the fault
efficiency limit; i.e., 91.37% with fault efficiency limit versus 91.61% without fault ef-
ficiency limit. Especially the fault coverages for circuits s1488, $9234.1, s15850.1 and
s3330a with the fault efficiency limit are less than without the fault efficiency limit. This
is not strange as for these circuits the number of GDF patterns has reduced the most with
the fault efficiency limit. Still the GDF fault coverage is significantly higher than for the
circuits without TPs, 91.37% versus 89.07%.

The CPU times do not differ much. The CPU times with the fault efficiency limit
are even larger than the CPU times without fault efficiency limit, 377 seconds versus 370
seconds. This can be partially explained by ATPG CPU time variations and by the fact
that it takes time to check if a certain fault efficiency has been reached.

Also for the industrial benchmark circuits fewer GDF patterns are generated in case
the GDF ATPG stops generating patterns when the same fault efficiency has been reached
as for the circuits without TPs; for the Boolean circuits 1149 (10,452-9303) fewer patterns
are generated, and for the three-state circuits 4219 (8366-4147) fewer patterns. Especially
for the three-state circuits the difference in number of GDF patterns is very large. Again
the results for circuit p66171 are the cause of this large difference. Without TPs it takes
the GDF ATPG tool 36 hours (129,635 seconds to be exactly) to generate GDF patterns
for only 41.09% of the detectable GDF faults. After TPI, it has become much easier for
the GDF ATPG tool to generate GDF patterns. In only 2005 seconds, the GDF ATPG
reaches the 41% fault efficiency level after the generation of only 173 patterns. Without
the fault efficiency limit, the GDF ATPG continues generating patterns until the time limit
of 36 hours has been reached. At that time 2777 patterns have been generated resulting
in a GDF fault coverage of 85.55%, far more than the 39.01% fault coverage after GDF
ATPG with the fault efficiency limit.

Not only for circuit p66171, the number of GDF ATPG patterns has reduced signif-
icantly in case the FE limit is used. Also for circuits p162057 (-643 patterns), p104649
(-988 patterns), and p114605 (-290 patterns) the reduction is large. But as seen before,
this reduction is at the cost of a lower fault coverage.

For the Boolean industrial circuits the fault coverage has been reduced from 92.54%
without fault efficiency limit to 91.62% with this limit. For the three-state circuits, the
GDF fault coverage has been reduced from 90.42% without fault efficiency limit to 84.98%
with fault efficiency limit. This large difference for the three-state circuits is mostly
caused by circuit p66171, as explained above.

The GDF ATPG CPU times with and without fault efficiency limit for the Boolean
industrial circuits do not differ much; 17,448 seconds without limit compared to 17,113
seconds with the limit. On the other hand, the GDF CPU times for the three-state indus-
trial circuits differ enormously; 167,976 seconds without fault efficiency limit compared

160 CHAPTER 6. TEST POINT INSERTION FOR DELAY FAULT ATPG

Table 6.4: GDF ATPG results of industrial circuits with fault efficiency limitation

GDF ATPG GDF ATPG after TPI

Circuit without TPs Without FE limit With FE limit

T \ FC(%) \ CPU T \ FC(%) \ CPU T \ FC(%) \ CPU
p7653 660 | 90.98 107 s 465 | 93.24 52.9s 435 | 92.73 52.8s
p13138 134 | 95.35 22.8s 110 | 96.10 16.1s 110 | 96.10 16.8s
p14148 623 | 90.50 155s 384 | 89.66 116s 382 | 89.63 120 s
p27811 273 | 82.46 301s 151 | 83.47 190s 129 | 83.04 194 s
p31025 1185 | 94.19 1343s || 1014 | 95.06 91s 966 | 94.87 908 s
p34592 310 | 98.48 320s 268 | 99.13 239s 229 | 98.69 248 s

p36503 615 | 83.68 647s 431 | 88.10 327s 370 | 8751 322s
p43282 747 | 92.60 1078 s 580 | 93.63 815s 535 | 93.08 836s

p43663 296 | 94.24 191s 238 | 94.69 157s 235 | 94.68 165s
p72767 603 | 93.02 5036 s 439 | 93.80 2019s 342 | 93.07 | 1996s
p73133 629 | 93.29 3368 s 431 | 94.01 2012s 323 | 9326 | 1921s
p73257 5697 | 87.21 7389s || 4612 | 87.37 5725s || 4607 | 87.36 | 6153s
p75344 477 | 91.92 1156s 342 | 93.05 824 s 296 | 92.89 823s

pl62057 || 3578 | 87.47 | 18431s 987 | 93.13 4008 s 344 | 90.37 | 3351s
Subtotal || 15827 | 90.50 | 39551s | 10452 | 9254 | 17448s || 9303 | 91.62 | 17113s
p32118 1189 | 8250 915s 592 | 85.40 440's 463 | 84.30 470s

p37021 358 | 38.87 185s 240 | 44.27 132s 191 | 4361 133s
p66171 1067 | 37.44 | 129635s || 2777 | 8555 | 129672 s 173 | 39.01 | 2005s
p71553 220 | 96.67 1497 s 169 | 96.75 1193s 176 | 96.75 | 1147s
p93140 668 | 93.88 3450s 499 | 94.08 2323s 467 | 9394 | 2419s

p104649 1956 | 89.60 | 11975s | 1636 | 94.25 6453 s 648 | 91.16 | 5519s
pl114605 || 2332 | 95.03 | 16641s| 1743 | 95.76 7758s || 1453 | 9521 | 8239s
p137498 1082 | 92.09 4802 s 710 | 93.22 2554 s 576 | 9297 | 2473s
Subtotal 8872 | 8398 | 169104s || 8366 | 90.42 | 150528 s || 4147 | 84.98 | 22408 s

Total || 24699 | 87.37 | 208655 || 18818 | 91.52 | 167976s || 13450 | 88.42 | 39521 |

to 39,521 seconds with the limit. Again this is mainly caused by circuit p66171. Without
the fault efficiency limit, the GDF ATPG consumes 36 hours, while with the fault effi-
ciency limit, the GDF ATPG only consumes 2005 seconds.

Over all industrial circuits, the number of compact GDF ATPG patterns is reduced
from 18818 patterns without the fault efficiency limit to 13450 patterns with the limit;
in other words a reduction of 28.5%. However, this GDF pattern reduction is at the cost
of a GDF fault coverage reduction. The GDF fault coverage is reduced from 91.52%
without the limit to 88.42% with the limit. Still the GDF fault coverage after TPI with
the fault efficiency limit is 1.05% higher than for the circuits without TPs; 88.42% versus

6.3. SUMMARY AND CONCLUSIONS 161

87.37%. The GDF ATPG CPU times in case of the fault efficiency limit are enormously
reduced compared to the GDF ATPG CPU times without the fault efficiency limit. But
this difference is mainly caused by circuit p66171.

6.3] Summary and conclusions

Besides facilitating compact SAF ATPG in generating compact test sets, TPI should
also be able to facilitate the generation of tests for other fault models. In this chapter we
have tested the impact of multi-stage TPI, as described in Chapter 5, on test sets generated
by a compact GDF ATPG.

The GDF ATPG, on which the impact of TPI has been tested, is a gross GDF ATPG
that uses the Transition Fault (TF) model. Experimental results of multi-stage TPI on
GDF ATPG show that for both the ISCAS and the industrial benchmark circuits signif-
icant test set size reductions can be achieved; 32.9% GDF test set size reduction for the
ISCAS circuits, and 34.0% for the Boolean industrial circuits. For the three-state indus-
trial circuits 5.7% reduction has been achieved. This lower reduction is caused by the
results for circuit p66171. Within the time limit for the GDF ATPG of 36 hours, 1067
patterns were generated for only 41% of the detectable faults. After TPI, the GDF ATPG
was able to generate 2777 patterns for 89% of the faults within 36 hours. A lot more pat-
terns, but also a more than twice higher GDF fault coverage. Without taking into account
circuit p66171, 28.4% GDF test set size reduction is achieved for the three-state industrial
circuits.

Besides a significant impact on the GDF test set sizes, multi-stage TPI also results in
significant GDF fault coverage improvements. The GDF fault coverage for the ISCAS
circuits improve from 89.07% to 91.61%, for the Boolean industrial circuits from 90.50%
to 92.54% and for the three-state industrial circuits from 83.98% to 90.42%. The large
difference in fault coverage for the three-state circuits is again caused by circuit p66171,
as explained above. Without circuit p66171, the fault coverages for the three-state circuits
improve from 89.20% without TPs to 90.97% after TPI.

Like for SAF ATPG, TPI also results in large GDF ATPG CPU time reduction. The
GDF ATPG CPU times reduction is 39% for the ISCAS circuits, 55.9% for the Boolean
industrial circuits, and 11.0% for the three-state industrial circuits. Without taking into
account circuit p66171, which causes the poor CPU time reduction for the three-state cir-
cuits, the CPU reduction is 47.2%.

The GDF fault coverage improvement after TPI has a negative impact on the GDF test
set size reduction. For the GDFs that have become detectable after TPI, also GDF patterns
have to be generated by the ATPG. To get the impact of TPl on GDF test set sizes without
the negative impact of the fault coverage improvement, also GDF ATPG runs with a limit
on the fault efficiency have been performed on the circuits after TPI. The GDF ATPG has
to stop generating patterns for the circuits after multi-stage TPI as soon as the same fault

162 CHAPTER 6. TEST POINT INSERTION FOR DELAY FAULT ATPG

efficiency has been reached as for the circuits without TPs.

With the fault efficiency limit indeed better GDF test set size reductions have been
achieved. Compared to GDF ATPG without the fault efficiency limit, the GDF test set
sizes reduce from 1802 patterns to 1696 patterns for the ISCAS circuits, from 10,452 pat-
terns to 9303 patterns for the Boolean industrial circuits, and from 8366 to 4147 patterns
for the three-state industrial circuits. Especially the reduction for the three-state circuits
is very large. Again this is for a large part caused by circuit p66171.

Due to the fault efficiency limit, of course the GDF fault coverages are not as high as
without the fault efficiency limit. Still higher fault coverages have been achieved than for
the circuits without TPs.

The difference in GDF CPU times between the GDF ATPG results with and without
fault efficiency limit is not very high, except for the three-state industrial circuits. With the
fault efficiency limit, the GDF ATPG stops generating GDF patterns for circuit p66171
after 2005 seconds, while without this limit it generates patterns for 36 hours.

The compact GDF ATPG results after TPl for SAF ATPG, i.e., multi-stage TPI, pre-
sented in this chapter, have shown that TPI is also capable of significantly reducing GDF
ATPG test set sizes. Not only the GDF test set sizes reduce, also the fault coverages that
can be achieved with GDF ATPG increase significantly after TPI. The increase in GDF
fault coverages has a negative impact on the GDF test set size reductions. As a result,
the GDF test set size reductions are not as high as the SAF ATPG test set size reductions.
On the other hand, the improvements in GDF fault coverages also result in a significant
improvement of the quality of the GDF tests. The GDF ATPG CPU times can be very
large as shown for circuit p66171. TPI results in large GDF ATPG CPU time reductions.
GDF CPU time reductions up to 78.3% for circuit p162057 have been achieved. For cir-
cuit p66171, the GDF CPU time reduction was even 99%, given the same fault efficiency
before and after TPI.

Overall, the experimental results given in this chapter have shown that TPI for SAF
ATPG can significantly facilitate GDF ATPG, resulting in smaller test sets, higher fault
coverages and lower ATPG times.

CHAPTER 7

Summary and conclusions

This final chapter provides a summary of the main subjects of this dissertation, an
overview of the main contributions, and topics for further research.

In Chapter 1 it has been motivated that the IC-manufacturers need high quality struc-
tural tests for their integrated circuits. These high quality tests are necessary to make sure
that as few as possible malfunctioning ICs are shipped to customers. These structural
tests can be performed on-chip and off-chip, i.e., with testers. Off-chip testing has the
advantage that high fault coverages can be achieved, but expensive testers are required
with a lot of memory. For on-chip testing, or Built-In Self-Test (BIST), no expensive
testers are required, but the fault coverages that can be achieved with on-chip testing are
lower and on-chip testing means silicon overhead. Because the increasing complexity of
nowadays 1Cs makes the external testers more and more costly, BIST becomes more and
more interesting. But before BIST can successfully be used for a circuit, the BIST fault
coverages have to be high enough to meet the test quality demands of the customers of
the IC-manufacturer.

Test Point Insertion (TPI) can be used to improve the testability of circuits. By the
insertion of Control Points (CPs) and Observation Points (OPs) it becomes easier to ac-
tivate faults and to propagate fault effects to circuit outputs. This suggests that TPI can
help to improve the fault coverage for on-chip testing, and to reduce the high costs of
testers for off-chip testing, by reducing the number of test patterns and the tester memory
requirements. Not every position in the circuit is suitable for Test Points (TPs). Although
several TPI algorithms exist, most of them assume Boolean circuits and cannot cope with
industrial circuits, with high impedance and unknown values, that are found in the real
world. Inserting TPs at wrong chosen positions can result in circuit damage.

One of the targets in this dissertation is to investigate on-chip methods with which the
fault coverage can be improved without a large silicon overhead, and which can cope with
industrial (three-state) circuits. The other targets consist of investing existing TPI meth-
ods and developing new TPI methods for improving on-chip fault coverage and off-chip
test set size reduction. These TPI methods should not only be applicable to small Boolean

163

164 CHAPTER 7. SUMMARY AND CONCLUSIONS

circuits, but also to large industrial designs. The targets described in this dissertation are
summarized chapter-wise:

Chapter 2: BIST The purpose of BIST is to embed a test on-chip in order to reduce
external tester requirements. However, due to Random Pattern Resistant (RPR) faults in
the circuits, the fault coverages achievable with BIST are often not high enough to meet
the high quality requirements of the I1C industry. Also a successful BIST implementation
implies several restrictions on a circuit, especially with respect to three-state circuits.

Several state-of-the-art BIST methods have been described with which higher fault
coverages can be achieved. These state-of-the-art BIST methods have been divided into
methods that modify the Pseudo-Random (PR) test patterns, methods that embed a full
set of deterministic test patterns, and methods that only embed parts of deterministic test
patterns.

The BIST methods that modify the generated test patterns or partially embed deter-
ministic test patterns, are capable of increasing the fault coverages significantly, up to
complete coverage. However, especially for RPR circuits, reaching a high or a complete
fault coverage is at the cost of a significant silicon overhead, often over 10% and some-
times even over 100%. Also the BIST methods which embed full sets of deterministic
patterns have significant silicon overhead, sometimes over 100%.

When the silicon overhead of BIST methods is too high for successful BIST imple-
mentation, one can consider redesigning the circuit, or the insertion of Test Points (TPs)
to make the IC better testable. Although this impacts the design process, it helps improv-
ing the BIST fault coverage and reducing the silicon overhead of BIST,

Chapter 3: Test Point Insertion TPI improves the testability of a circuit. CPs can
be inserted to improve the controllability of lines and OPs to improve the observability of
lines. Besides the traditional AND/OR CP, the transparent scan flipflop (TSFF) is intro-
duced as TP. A categorization of TPl methods is given; it depends on the method used to
determine the faults which testability should be improved; i.e., a method based on ATPG,
fault simulation or testability analysis (TA). TPl methods can also be divided into test set
dependent and test set independent methods. In case of industrial circuits, TPI algorithms
should be able to cope with industrial circuits and avoid bus-conflicts. Also no TPs should
be allowed at the critical to avoid performance loss.

Several existing state-of-the-art TPI algorithms have been described for improving
BIST fault coverage, among the Cost Reduction Factor (CRF) TPI algorithm of Seiss
[Sei91], the Hybrid CRF (HCRF) TPI algorithm of Tsai [Tsa97] and the Multi-phase
TPI (MTPI) algorithm of Tamarapalli [Tam96]. These three TPI algorithms assume a
STUMPS based architecture, and both the CRF and HCRF TPI algorithm use a cost func-
tion, based on COP TA measures, to select the best TP positions. Therefore the STUMPS
architecture, the COP TA measures, the cost function and cost gradients have been de-
scribed first.

In Chapters 4 to 6 several TPI issues are addressed. An overview of these topics is

165

given including a description of benchmark circuits, i.e., ISCAS and Philips benchmark
circuits, that have been used to test the new TPI techniques and algorithms proposed in
Chapters 4 to 6.

Chapter 4: Test Point Insertion for BIST In Chapters 4 to 6, the HCRF TPI al-
gorithm has been used as a base for further TPI development. It is described why this
algorithm has been chosen. The HCRF TPI algorithm assumes Boolean circuits and does
not take into account any implications with respect to industrial circuits. A new TPI algo-
rithm has been proposed, based on the HCRF TPI algorithm, that can cope with industrial
circuits and results in even better BIST fault coverage improvement after TPI. Also a new
cost function, the NPAT cost function, has been proposed for this new TPI algorithm to
improve the BIST fault coverage after TPI even further. In order to cope with industrial
circuits, the COP TA measures, cost function and gradients calculations have been ex-
tended such that they can be used in combination with high impedance values, unknown
values, and three-state elements.

Experimental results of the proposed NPAT TPI algorithm for industrial circuits have
shown that better BIST fault coverages can be achieved than with the original Hybrid CRF
TPI algorithm of Tsai, on both Boolean and industrial (three-state) circuits. The results
also show that the algorithm can be applied to small circuits and large complex industrial
designs.

A method has been introduced that reduces the number of TP candidates in the circuit,
such that the CPU time spent by the NPAT TPI algorithm is reduced without impacting
the quality of the TP selection.

Chapter 5: Test point insertion for compact SAF ATPG The growth in ATPG test
set sizes, caused by the increasing complexity of circuits, has a major impact on the ATE
demands for the semiconductor industry. Experimental results have shown that NPAT
TPI, that is only targeted at improving the BIST fault coverage for a circuit, is already ca-
pable of significantly reducing compact ATPG test set sizes. Also the stuck-at fault (SAF)
ATPG fault coverages improve, and the ATPG CPU times reduce after NPAT TPI. Still
several ATPG specific testability issues were not yet solved, resulting in a not optimal test
set size reduction for several circuits, i.e., less than 10%. A new cost function has been
proposed that takes into account test counts (TCs). TCs give a lower bound on the ATPG
test set size, given complete fault coverage. High TC measures in a circuit indicate that
the ATPG test set size will also be high. With the proposed TC-based cost function, the
TPI algorithm will also try to reduce the TCs in the circuit in order to reduce the ATPG
test set size. Experimental results show that with the TPI algorithm that takes into ac-
count TCs, i.e., TC&COP TPI, in general better test set size reduction can be achieved,
i.e., 1.7% better reduction for the ISCAS benchmark circuits up to 17% better reduction
for the industrial benchmark circuits.

Also after TC&COP TPI there are still circuits with disappointing test set size reduc-
tions. These circuits often suffer from very large fan-out free regions (FFRs). Although

166 CHAPTER 7. SUMMARY AND CONCLUSIONS

the FFR outputs have high TC values, the TC&COP TPI and NPAT TPI algorithm do
not always insert TPs in these large FFRs to reduce the TC values. Therefore, the TPI
algorithm has been extended with a TPI pre-process that inserts TPs to reduce the FFR
sizes within the circuit. Four TPl methods for reducing large FFRs have been described
to identify and reduce the large FFRs. With this TPI pre-process, also for the circuits that
suffer from very large FFRs, the test set sizes can be reduced significantly.

Because each circuit suffers from different testability problems (related to SAF ATPG),
the multi-stage TPI algorithm has been developed. The TPI process is divided into mul-
tiple stages. In each stage a TPI pre-process is applied, that analyzes the TA measures
to select a cost function aimed at solving the testability problems of that specific circuit.
With this cost function several TPs are inserted, after which the TPI pre-process is run
again to select a new cost function. After multi-stage TPI, that also includes TPI for re-
ducing large FFRs, extra reductions of 4.5% for the ISCAS circuits and 12.2% for the
industrial circuits have been achieved compared to TC&COP TPI.

Chapter 6: Test Point Insertion for delay fault ATPG Besides facilitating SAF
ATPG in generating compact test sets, TPI should also be able to facilitate the generation
of tests for other fault models. The impact of TPI for SAF ATPG, i.e., multi-stage TPI, has
been tested on gate-delay fault (GDF) ATPG, i.e., Transition Fault ATPG. Experimental
results have shown that indeed significant GDF test set size reductions can be achieved
with TPI for SAF ATPG; on average 32.9% for the ISCAS circuits and 23.8% for the in-
dustrial circuits. For several circuits also the GDF fault coverage increased considerably.
This increase in GDF ATPG fault coverage has a negative impact on the GDF test set size
reduction; the GDF ATPG also has to generate patterns for the GDFs that have become
detectable after TPI. Due to the much larger GDF fault coverage increase than SAF fault
coverage increase, the GDF test set size reduction was not as high as the SAF test set size
reduction.

Altering the experimental setup such that the GDF ATPG stops generating patterns
for the circuits with TPs as soon as the same fault efficiency has been reached as for the
circuits without TPs, results in a reduction of the negative impact of the GDF fault cov-
erage improvement. The experimental results have shown that indeed better GDF test set
size reductions have been achieved. The GDF test set size reduction increased to 36.8%
for the ISCAS circuits and to 45.5% for the industrial circuits.

Besides reducing the GDF test set sizes and improving the GDF fault coverage, TPI
also resulted in significant GDF ATPG CPU time reductions, up to 99%.

7.1. MAJOR CONTRIBUTIONS 167

7.1

Major contributions

The major contributions of this research are:

On-chip testing (BIST) [Chapter 2]

1.

2.

3.

Investigation and categorization of existing state-of-the art on-chip test methods,
i.e., BIST methods.

An analysis and comparison of the existing BIST methods with respect to hardware
overhead and pseudo-random fault coverage. In general will random pattern resis-
tant circuits result in (too) large silicon overhead for BIST methods to be applicable.

An analysis of the existing BIST methods whether they are only applicable to small
benchmark circuits, or also to large industrial designs.

Test Point Insertion for BIST

1.
2.
3.

A categorization of TPl methods [Section 3.3].
Investigation of existing state-of-the-art TPI algorithms [Section 3.7].

An analysis and comparison of three TPI algorithms that improve pseudo random
fault coverage with respect to [Section 4.1]:

o the number of inserted test points versus the pseudo random fault coverage,

o the application on Boolean and industrial circuits,

¢ the application on large circuits.
The extension of the Hybrid CRF TPI algorithm such that it can be used for im-
proving the pseudo random fault coverage of both Boolean as well as industrial
(three-state circuits). This has been accomplished by adding three-state and un-
known value capabilities to [Sections 4.2,4.3][Geu03]:

e COP,

e cost function,

e cost gradients.
The development of a new cost function for the extended Hybrid CRF TPI method

for industrial circuits in order to further improve the pseudo-random fault coverage
after TPI [Section 4.3][Geu03].

The development of a method to reduce the number of test point candidates that
results in a TPl CPU time reduction without impacting the quality of the test point
selection [Section 4.3][Geu02a].

168

CHAPTER 7. SUMMARY AND CONCLUSIONS

Test Point Insertion for stuck-at fault ATPG
1. An evaluation of the impact of TPI for BIST on reducing stuck-at fault ATPG test

set sizes [Section 5.1][Geu00].

. An analysis of which testability problems cause large ATPG test sets, i.e., large

FFRs and high test counts [Sections 5.2,5.4][Geu00, Geu02b].

. The development of a new TPI algorithm that takes into account test counts such

that the TPI algorithm becomes more aimed at reducing ATPG test set sizes. This
is accomplished by [Section 5.3][Geu00, Geu01]:

e defining a heuristic for propagating test counts in a circuit with fan-outs,

o the development of a cost function that takes into account both COP and test
counts testabilities,

e defining the test counts gradient equations,

e extending the HCRF TPI algorithm for industrial circuits with an extra event-
driven forward and backward propagation step of changed test counts due to
aTP.

The development of a TPI pre-process to reduce large FFRs in a circuit as large
FFRs often cause large stuck-at fault ATPG test sets [Section 5.4][Geu02b].

The development of a multi-stage TPI algorithm. In each stage of the TPI process,
a cost function is selected, based on testability analysis measures, that targets the
highest testability problems found in the circuit, given already inserted test points
in previous stages [Section 5.5][Geu02b].

TPI for gate-delay fault ATPG

1. The application of TPI has been tested on another fault model, the gross gate-delay

fault. An analysis is given of the impact of multi-stage TPI, on gate-delay fault
ATPG, i.e., transition fault ATPG. The following gate-delay fault ATPG results
have been analyzed before and after multi-stage TPI [Section 6.2][Geu02b]:

e The gate-delay fault test set size reduction, together with the gate-delay fault
coverage improvement, and the gate-delay fault ATPG CPU time reduction.

e The gate-delay fault test set size reduction only, as the gate-delay fault cov-
erage improvement has a negative impact on the gate-delay fault test set size
reduction.

Experimental results have demonstrated that the proposed TPI for BIST algorithm,
i.e., NPAT TPI, is applicable to small and large designs, both Boolean and industrial,

7.2. SUGGESTED TOPICS FOR FUTURE RESEARCH 169

and that in general better fault coverage improvements can be achieved that with existing
state-of-the-art TPI algorithms [Geu03]. The pseudo random fault coverage for industrial
circuits has been improved from 93.53% with the original Hybrid CRF TPI algorithm for
industrial circuits to 94.49% with NPAT TPI, see Table 4.5. In other words 15% of the
faults that were not covered after TPI with the original cost function, have become cov-
ered after NPAT TPI.

NPAT TPI also facilitates stuck-at fault ATPG in reducing ATPG test sets, improv-
ing the ATPG fault coverage and reducing the ATPG CPU times [Geu00]. On aver-
age, the ATPG test set sizes of the Boolean and industrial benchmark circuits have been
reduced with 43%, respectively 26%. The presented TPl for SAF ATPG algorithms,
i.e., TC&COP TPI and multi-stage TPI (including the TPI for reducing large FFRs pre-
process) significantly improve the facilitation of SAF ATPG compared to NPAT TPI
[Geu00, Geu01, Geu02b]. On average, the stuck-at fault ATPG test set sizes have been
reduced with 47% for the Boolean, respectively 51% for the industrial circuits compared
to the circuits without test points.

It has been shown that multi-stage TPI does not only facilitates stuck-at fault ATPG,
but also gate-delay fault ATPG [Geu02b]. The average gate-delay fault ATPG test set size
reduction after TPI was 37% for the Boolean, respectively 46% for the industrial circuits,
given the same gate-delay fault efficiency before and after TPI. Also the impact of TPI
on the gate-delay fault coverage and ATPG times is significant. For circuit p66171, the
gate-delay fault ATPG time for generating patterns for 41% of all detectable faults, is
reduced from 36 hours without TPI to 2005 seconds after TPI. After TPI, the gate-delay
fault ATPG was able to generate in 36 hours patterns for 89% of all detectable faults,
compared to the 39% for the circuit without test points.

The proposed new TPI algorithms and techniques, i.e., NPAT TPI, TC&COP TPI,
TPI for reducing large FFRs, multi-stage TPI, and the TPI candidates reduction tech-
nique, have been implemented and integrated in the Delft Advanced Test (DAT) gener-
ation system and AMSAL, and are being used worldwide within Philips as part of their
logic test tool set. The robustness and application of the TPI algorithms on very large
industrial designs have been proven at Philips as the TPI algorithms are currently applied
to multi-million gate designs.

7.2] Suggested topics for future research

A state-of-the art TPI tool has been developed. It improves PR fault coverage for
on-chip testing, and significantly reduces compact SAF and GDF ATPG test set sizes for
both Boolean and three-state circuits. However, for both on- and off-chip testing, there
are still several TPI related topics for which we suggest further research.

With respect to TPI for BIST, i.e., on-chip-testing, we suggest the following topics:

170 CHAPTER 7. SUMMARY AND CONCLUSIONS

1. The integration of the Hybrid TPI algorithm for industrial circuits with a state-of-
the-art BIST method and comparing the BIST fault and silicon overhead with other
state-of-the-art TPI+BIST solutions, i.e., MTPI BIST.

2. The development of TPI extensions for industrial circuits in order to:

e insert TPs for bypassing fixed circuit inputs, i.e., inputs from embedded mem-
ories.

e add CPs between buses and circuit outputs, such that it can be prevented that
unknown values, caused by bus-conflicts, can corrupt the MISR state.

With respect to TPI for ATPG, we suggest the following topics:

1. Research and integration of other TA measures that indicate on large ATPG test set
sizes, such that the ATPG test set sizes can be further reduced. The integration of
ATPG data taken from an ATPG run for the circuit without TPs to find the ATPG
"problem’ locations in the circuit, hence the best TP positions in the circuit.

2. An evaluation of the impact of TPI on other fault models than SAF and GDF ATPG,
e.g., path-delay faults or bridge-faults.

3. Research of a GDF related TA measure and a TPI cost function that is specifically
aimed at reducing GDF ATPG test set sizes.

With respect to TPI in general, i.e., both for on-chip and off-chip testing, we suggest the
following topics:

1. Further reducing the number of TPI candidates without impacting the test quality,
i.e., test set size reduction and/or fault coverage improvement.

2. Research how TPI can be optimally used for partial-scan circuits, i.e., circuits that
contain SFFs but also non-scannable memory elements. In other words, TPI for
controlling and observing non-scannable FFs, without impacting the critical path,
hence the performance of the IC.

3. Research how TPI can help making untestable/redundant faults testable in test
mode, without impacting the purpose of the redundancy, when such a purpose ex-
ists.

4. An investigation of the impact on the test set size reduction and/or fault coverage
improvement when TPs on critical paths are avoided.

APPENDIX A

| SCAS 85 and '89 benchmark circuits

Tables A.1 and A.2 provide characteristics of the ISCAS’85 [Brg85], ISCAS’89 [Brg89]
and ISCAS’89 addendum [Glo93] circuits that have been used in this dissertations for
benchmarking. The ISCAS’85 circuits consist of only combinational logic circuits, while
the sequential ISCAS’89 circuits are used in full-scan mode. All circuits are Boolean
designs and contain no three-state elements.

Column circuits gives the name of the circuit. Columns #Conn and #Gates show the
number of connections respectively the number of gates. Columns #GPI and #GPO show
the number of PIs+SFF outputs, respectively the number of POs+SFF inputs. Column
FFRmax Shows the number of inputs of the largest FFR found in the circuit.

Tables A.3 and A.4 provide compact stuck-at fault (SAF) and gate-delay fault (GDF)
ATPG data for the ISCAS’85 respectively the ISCAS’89 (addendum) circuits listed in
the Tables A.1 and A.2. This information consists of the number of test patterns in the
test set (T), the fault coverage (FC(%)), fault efficiency (FE(%)) and the CPU time spent
on compact SAF respectively GDF ATPG (CcPu). The ATPG runs took place on a 1600+

Table A.1: Characteristics of several ISCAS’85 benchmark circuits

Circuit || #Conn | #Gates | #GPI | #GPO | FFR gy |

c880 880 383 60 26 17
c1355 1355 546 41 32 16
c1908 1908 880 33 25 o1
€2670 2670 1193 | 233 140 72
€3540 3540 1669 50 22 62
€5315 5315 | 2307 | 178 123 19
€6288 6288 | 2416 32 32 4
c7552 7552 3512 | 207 108 35

171

172 APPENDIX A. ISCAS'85AND '8 BENCHMARK CIRCUITS

Table A.2: Characteristics of several ISCAS’89 (addendum) benchmark circuits

| Circuit | #Conn | #Gates | #GPI | #GPO | FFR x|

s1196 1196 529 32 32 29
s1423 1423 657 91 79 20
$1488 1488 653 14 25 75
s1494 1494 647 14 25 76
s5378 5295 | 2779 | 214 228 122
$9234.1 9234 | 5597 | 247 250 165
s13207.1 || 13179 | 7951 | 700 790 103
s15850.1 || 15847 | 9772 | 611 684 75
$35932 35612 | 16065 | 1763 | 2048 11
s38417 38339 | 22179 | 1664 | 1742 59
s38584.1 || 38432 | 19253 | 1464 | 1730 90
s499a 477 152 23 44 5
s635a 635 286 34 33 32
s938a 938 446 66 33 134
s1269a 1261 569 55 47 18
s1512a 1494 780 86 78 32
s3271a 3252 1572 | 142 130 42
$3330a 3330 1789 | 172 205 176
s3384a 3375 1685 | 226 209 94
s4863a 4799 | 2342 | 153 120 14
$6669a 6518 | 3080 | 322 294 12

AMD Athlon XP computer, with 512MB DDR SDRAM memory running Redhat Linux
7.3.

Tables A.5 and A.6 provide PR fault simulation run data for the ISCAS’85 respec-
tively the ISCAS’89 (addendum) circuits. The first columns (Complete run) show the
results after the complete fault simulation run, consisting of the number of applied PR
patterns (T), the fault coverage (FE(%)), fault efficiency (FE(%)) and the CPU time spent
on applying T PR patterns. The last three columns (FE > 99%) show the number of applied
PR pattern after which the fault efficiency is higher than 99% (T) and the fault coverage
(FE(%0)) and fault efficiency (FE(%)) corresponding to this number of applied PR patterns.

173

Table A.3: ATPG characteristics of the ISCAS’85 circuits

Stuck-at fault ATPG

Gate-delay fault ATPG

Circuit || T \ FC(%) \ FE(%) \ CPU| T ‘ FC(%) ‘ FE(%) \ CPU
c880 28 | 100.00 | 100.00 | 0.27s | 34 | 9735 | 97.35|0.37s
c1355 || 89 | 99.70 | 100.00 | 0.49s || 142 | 96.22 | 96.53 | 2.08s
c1908 || 114 | 99.71 | 100.00 | 1.32s || 157 | 96.83 | 97.07 | 2.43s
c2670 || 59 | 96.40 | 100.00 | 1.30s || 61 | 91.85 | 94.89 | 2.12s
c3540 || 119 | 96.38 | 100.00 | 2.59s || 162 | 92.29 | 95.74 | 5.89s
€5315 78 | 99.42 | 100.00 | 2.47s | 85 | 97.29 | 97.99 | 4495
c6288 || 32 | 99.46 | 100.00 | 2.77s || 77 | 99.22 | 99.90 | 14.1s
c7552 || 128 | 98.55 | 100.00 | 6.01s || 131 | 96.67 | 97.83 | 11.3s

Table A.4: ATPG characteristics of the ISCAS’89 (addendum) circuits

Stuck-at fault ATPG Gate-delay fault ATPG
Circuit T |FC(%) | FE(%) | CPU || T | FC(%) | FE(%) | CPU
s1196 133 | 100.00 | 100.00 | 0.52s || 156 | 95.64 | 95.73 | 1.33s
51423 39 | 99.09 | 100.00 | 0.35s || 72 | 86.31 | 97.17 | 1.15s
s1488 115 | 100.00 | 100.00 | 0.53s || 139 | 89.53 | 97.08 | 5.18s
51494 117 | 99.46 | 100.00 | 0.52s || 143 | 87.94 | 96.01 | 4.79s
s5378 117 | 98.87 | 100.00 | 2.81s || 141 | 8854 | 96.97 | 7.97 s
$9234.1 || 135 | 9395 | 99.91 | 20.0s || 232 | 81.46 | 92.86 | 52.35
s13207.1 || 272 | 98.87 | 100.00 | 15.5s || 357 | 83.85 | 96.39 | 56.0's
s15850.1 || 128 | 97.51 | 100.00 | 13.9s || 207 | 81.43 | 96.30 | 59.0s
535932 14 | 89.69 | 100.00 | 20.8s | 24 | 83.03 | 97.05 | 139s
$38417 88 | 99.68 | 100.00 | 30.9s || 154 | 94.17 | 96.12 | 1255
s38584.1 || 123 | 95.57 | 100.00 | 44.9s || 229 | 89.23 | 96.90 | 264 s
s499a 104 | 100.00 | 100.00 | 0.28s || 66 | 68.43 | 99.78 | 0.34s
s635a 47 | 100.00 | 100.00 | 0.23s || 99 | 73.47 | 100.00 | 0.53s
s938a 145 | 100.00 | 100.00 | 0.45s || 184 | 7859 | 96.09 | 1.36s
s1269a 38 | 100.00 | 100.00 | 0.33s || 54 | 94.38 | 95.22 | 0.71s
s1512a 64 | 100.00 | 100.00 | 0.41s || 74 | 84.12 | 90.51 | 2.67 s
s3271a 59 | 100.00 | 100.00 | 1.03s || 77 | 94.70 | 97.51 | 3.08 s
s3330a 163 | 100.00 | 100.00 | 2.20s || 151 | 80.50 | 90.90 | 7.40s
s3384a 74 | 100.00 | 100.00 | 1.04s || 96 | 98.89 | 98.91 | 2.89s
s4863a 48 | 100.00 | 100.00 | 1.94s || 87 | 96.77 | 97.78 | 9.10s
$6669a 35 | 100.00 | 100.00 | 2.29s || 59 | 99.68 | 99.68 | 5.76 s

174 APPENDIX A. ISCAS'85AND '8 BENCHMARK CIRCUITS

Table A.5: PR Fault simulation results of the ISCAS’85 circuits

Complete run FE > 99%

Circuit T |FC(%) | FE(%) | CPU T | FC(%) | FE(%)
c880 9024 | 100.00 | 100.00 | 0.18s || 2720 | 99.58 | 99.58
c1355 | 2848 | 99.49 | 100.00 | 0.16s || 1312 | 98.60 | 99.11
c1908 | 11520 | 99.52 | 100.00 | 0.47s || 2080 | 98.67 | 99.15
c2670 | 32000 | 84.82 | 89.08 | 2.055s - - -
c3540 | 32000 | 95.97 | 99.97 | 2.30s || 1408 | 95.01 | 99.01
cb315 || 3712 | 98.90 | 100.00 | 0.63s || 416 | 98.00 | 99.10
c6288 128 99.56 | 100.00 | 0.49s | 64 99.33 | 99.77
c7552 | 32000 | 95.30 | 97.03 | 6.17 s - - -

Table A.6: PR Fault simulation results of the ISCAS’89 (addendum) circuits

Complete run FE > 99%

Circuit T |FC(%) FE(%)| CPU T | FC(%) | FE(%)
51196 32000 | 99.60 | 99.60 | 0.43s || 12864 | 99.03 | 99.03
s1423 17568 | 99.08 | 100.00 | 0.35s || 2176 | 98.22 | 99.14
51488 3520 | 100.00 | 100.00 | 0.18s || 1536 | 99.13 | 99.13
51494 3520 | 99.20 | 100.00 | 0.17s || 1312 | 98.21 | 99.00
s5378 32000 | 98.94 | 99.80 | 3.88s || 6816 | 98.13 | 99.00
$9234.1 | 32000 | 87.05| 93.49 | 10.0s - - -
s13207.1 || 32000 | 97.05 | 98.58 | 13.0s - - -
s15850.1 || 32000 | 92.83 | 96.14 | 15.4s - - -
$35932 224 89.81 | 100.00 | 1.05s | 96 89.06 | 99.26
s38417 || 32000 | 94.42 | 94.95 | 4655 - - -
s38584.1 || 32000 | 95.31 | 99.46 | 43.2s || 14080 | 94.85 | 99.00
s499a 32000 | 41.85| 4185 0.365s - - -
s635a 32000 | 73.57 | 7357 | 0.29s - - -
s938a 32000 | 64.98 | 64.98 | 0.48 s - - -
s1269a 1056 | 100.00 | 100.00 | 0.14s | 256 99.33 | 99.33
s1512a || 32000 | 95.28 | 95.28 | 0.64 s - - -
s3271a || 32000 | 99.82 | 99.82 [2.08s || 5984 | 99.24 | 99.24
s3330a || 32000 | 86.97 | 86.97 | 2.93s - - -
s3384a 32000 | 96.18 | 96.18 | 2.23s - - -
s4863a || 32000 | 97.57 | 97.57 | 3.29s - - -
$6669a 4416 | 100.00 | 100.00 | 0.85s | 96 99.22 | 99.22

APPENDIX B

| ndustrial benchmark circuits

Tables B.1 and B.2 provide characteristics of the Philips industrial cores used in this
dissertation for benchmarking. Most of these industrial circuits are used in products, ex-
cept for circuit p93140, which only has been designed for test purposes. The circuits
listed in Table B.1 are Boolean circuits, while the circuits listed in Table B.2 contain one
or more three-state elements.

Column circuits gives the name of the circuit. Columns #Conn and #Gates show the
number of connections respectively the number of gates. Columns #GPI and #GPO show

Table B.1: Characteristics of several Boolean Philips industrial benchmark circuits

Circuit || #Conn | #Gates | #GPI | #GPO | FFRyax

p5973 6621 | 2979 | 245 225 35
p7653 7653 | 3685 | 197 264 67
p13138 13138 | 5901 | 498 440 52
p14148 14148 | 6827 | 559 572 170
p27811 27811 | 13247 | 1273 | 1403 96
p31025 31025 | 14913 | 629 662 137
p34592 34592 | 17685 | 408 651 92
p36503 36503 | 19292 | 1502 | 1514 96
p43282 43282 | 21484 | 1003 906 110
p43663 43663 | 17865 | 8232 | 8249 56
p72767 72767 | 35266 | 1923 | 1630 169
p73133 73133 | 35675 | 1922 | 1629 169
p73257 73257 | 37587 | 2353 | 2229 269
p75344 75344 | 36561 | 3716 | 3742 181
p162057 || 162057 | 77994 | 5914 | 5841 1518

175

176 APPENDIX B. INDUSTRIAL BENCHMARK CIRCUITS

Table B.2: Characteristics of several tri-state Philips industrial benchmark circuits

| Circuit [#Conn | #Gates | #GPI | #GPO | FFRmax
p32118 | 32118 | 14449 | 1572 | 1560 244

p37021 37021 | 17059 | 2001 | 1843 96
p66171 66192 | 27011 | 1002 | 1047 78
p71553 71553 | 32691 762 520 19

p93140 93140 | 47809 | 3331 | 2891 474
p104649 || 104649 | 44619 | 3533 | 3466 244
p114605 || 114605 | 57356 | 2754 | 2670 131
p137498 || 137498 | 59240 | 6984 | 6592 433
p481470 || 481470 | 237328 | 18564 | 18577 1044
p596922 || 596922 | 313711 | 17768 | 17356 467
p598004 || 598004 | 285355 | 20648 | 20084 1518
p705050 || 705704 | 359615 | 30856 | 29916 256
p824184 || 824184 | 453002 | 26124 | 24548 520
p854266 || 855659 | 433361 | 32194 | 32303 292

the number of PIs+SFF outputs, respectively the number of POs+SFF inputs. Column
FFRmax Shows the number of inputs of the largest FFR found in the circuit.

Tables B.3 and B.4 provide compact SAF and GDF ATPG data for the Boolean re-
spectively three-state industrial circuits listed in the previous tables. This information
consists of the number of test patterns (T), the fault coverage (FC), fault efficiency (FE)
and the CPU time spent on compact SAF, respectively GDF ATPG, (cpu). Each run had a
CPU time limit of 36 hours. Results with runs which took more than 36 hours are incom-
plete, as ATPG did not finish yet. Because of the long GDF ATPG times and the limited
memory capacity (512Mb) of the test computer, GDF ATPG has only been performed on
circuits with less than 200,000 signal lines. The ATPG runs took place on a 1600+ AMD
Athlon XP computer, with 512MB DDR SDRAM memory running Redhat Linux 7.3.

Tables B.5 and B.6 provide PR fault simulation run data for the Boolean respectively
three-state industrial circuits listed in the previous tables. Note that the PR results are only
shown for the three-state circuits, which do not contain buses that can become in conflict
due to the application of PR patterns!

The first columns (Complete run) show the results after the complete fault simulation
run, consisting of the number of applied PR patterns (T), the fault coverage (FC(%)), fault
efficiency (FE(%)) and the CPU time spent after T PR patterns. The last three columns (FE
> 99%) show the number of applied PR pattern after which the fault efficiency is higher
than 99% (T) and the fault coverage (FC(%)) and fault efficiency (FE(%)) corresponding to
this number of applied PR patterns.

177

Table B.3: ATPG characteristics of the Boolean industrial circuits

Stuck-at fault ATPG Gate-delay fault ATPG
Circuit T \ FC(%) \ FE(%) \ CPU T \ FC(%) \ FE(%) \ CPU
p5973 58 98.93 | 99.83 | 5.17s | 90 9280 | 95.11 | 76.4s
p7653 334 | 99.48 | 99.99 | 149s | 660 | 90.98 | 95.04 107 s
p13138 66 99.76 | 100.00 | 5.21s || 134 | 95.35 | 9588 | 22.8s
pl14148 385 | 99.99 | 100.00 | 30.0s || 623 | 90.50 | 94.76 155s
p27811 200 | 95.21 | 99.97 | 42.8s | 273 | 82.46 | 96.64 301s
p31025 714 | 9790 | 99.64 | 307s | 1185 | 94.19 | 96.37 | 1343s
p34592 243 | 99.88 | 99.90 | 142s | 310 | 98.48 | 98.50 320s
p36503 175 | 97.20 | 100.00 | 71.3s || 615 | 83.68 | 91.31 647 s
p43282 382 | 9766 | 99.83 | 207s | 747 | 92.60 | 96.39 | 1078s
p43663 194 | 99.23 | 100.00 | 58.8s || 296 | 94.24 | 99.27 191s
p72767 438 | 96.31 | 99.09 | 1527s | 603 | 93.02 | 96.91 | 50365
p73133 407 | 96.37 | 99.08 | 1492s || 629 | 93.29 | 97.11 | 33685
p73257 || 2097 | 98.06 | 99.97 | 1030s || 5697 | 87.21 | 89.08 | 7389s
p75344 273 | 99.18 | 99.90 | 153s | 477 | 91.92 | 96.99 | 11565
pl62057 || 2055 | 98.51 | 99.59 | 926s || 3578 | 87.47 | 93.06 | 18431 s

Table B.4: ATPG characteristics of the three-state industrial circuits

Stuck-at fault ATPG Gate-delay fault ATPG
Circuit T | FC(%) | FE(%) | CPU T | FC(%) | FE(%) | CPU
p32118 570 | 93.50 | 99.95 131s || 1189 | 82.50 | 97.01 915s
p37021 531 | 76.89 | 99.99 56.1s | 358 | 38.87 | 98.43 185s
p66171 || 2042 | 96.79 | 100.00 576s || 1067 | 37.44 | 41.09 | 129635 s
p71553 138 | 96.69 | 99.98 295s || 220 | 96.67 | 99.91 1497 s
p93140 511 | 93.81 | 99.18 1139s || 668 | 93.88 | 99.17 3450 s
p104649 || 1031 | 98.96 | 99.70 847s || 1956 | 89.60 | 94.77 | 11975s
pl14605 || 689 | 98.44 | 99.55 827s || 2332 | 95.03 | 98,52 | 16641s
pl37498 || 446 | 98.66 | 99.93 308s || 1082 | 92.09 | 98.73 4802 s
p481470 || 1679 | 99.23 | 99.93 | 16560 s - - - -
p596922 || 2038 | 96.87 | 99.74 8887 s - - - -
p598004 || 2129 | 98.70 | 99.76 5051 s - - - -
p705050 || 655 | 76.76 | 99.87 8463 s - - - -
p824184 || 2066 | 96.54 | 99.82 | 130153 s - - - -
p854266 || 565 | 97.54 | 99.75 6881 s - - - -

178 APPENDIX B. INDUSTRIAL BENCHMARK CIRCUITS

Table B.5: PR Fault simulation results of the Boolean industrial circuits

Complete run FE > 99%

Circuit T | FC(%) | FE(%) | CPU T | FC(%) | FE(%)
p5973 7328 | 98.93 [100.00 | 1.65s || 3520 | 97.94 | 99.01
p7653 32000 | 98.48 | 99.14 | 6.665 || 29888 | 98.36 | 99.02
p13138 736 99.58 | 100.00 | 0.62s || 192 98.58 | 99.01
p14148 | 32000 | 94.27 | 94.29 | 18.2s - - -
p27811 || 32000 | 91.90 | 96.29 | 31.5s - - -
p31025 || 32000 | 95.15 | 97.09 | 64.1s . - -
p34592 || 32000 | 94.79 | 94.82 | 36.7 s - - -
p36503 || 32000 | 89.03 | 94.89 | 47.4s - - -
p43282 | 32000 | 93.27 | 95.29 | 5165 - - -
p43663 || 32000 | 98.64 | 99.63 | 60.0s || 896 | 98.01 | 99.01
p72767 || 32000 | 91.73 | 95.19 | 257s - - -
p73133 || 32000 | 92.13 | 95.52 | 194s - - -
p73257 || 32000 | 59.14 | 61.53 | 156s - - -
p75344 | 32000 | 98.12 | 99.03 | 90.8s || 29056 | 98.11 | 99.01
p162057 || 32000 | 96.11 | 97.17 | 310s - - -

Table B.6: PR Fault simulation results of the three-state industrial circuits

Complete run FE > 99%

Circuit T |FC(%) | FE(%) | CPU | FC(%) | FE(%)
p32118 || 32000 | 84.07 | 90.61 | 41.4s | - - -
p37021 || 32000 | 67.95 | 91.78 | 45.2s || - - -
pl14605 || 32000 | 89.22 | 90.47 | 202s || - - -
pl37498 || 32000 | 93.79 | 9549 | 205s || - - -
p481470 || 32000 | 82.82 | 83.73 | 999s || - - -
p596922 || 32000 | 86.16 | 89.57 | 1102s || - - -

—

APPENDIX C

Boolean elements

The gate symbol, truth table and the COP TA measures are given for several Boolean
primitive elements. The symbols and truth tables are taken from [vdL96]. The truth tables
do take into account the "high impedance’ value Z and the "unknown’ value U such that
they are compatible with three-state circuits. In case of (N)AND and (N)OR gate, the
truth tables are shown for a two-input gate.

For all Boolean elements, the COP TA measures, extended for three-state logic, con-
sist of the equations for CO, C1 and W. All CZs, WZ°, and WZ? are 0, because Z values
cannot propagate through Boolean elements; they result in U values on the outputs. CU
can be found with CU =1 —-C1 —CO.

Buffer:
x_|q1l1—z z X Co, | COy
01 z U C1, | Ci
[0 1 U v W W
Inverter:
X _| z z X Co, C1,
1P 0O 1 z U Cl, COy
(10U VU W W
AND:
x £ X1
17 0 1 zZ U
&= CO; [1-MX4(1-COy)
Xy | 0[O0 O O O X
X Cl; | Mia1(Clx)
X 1/0 1 U U WX o
Z|/0 U U U Wy 2 [lizi j(%)
Uul/o U u u

179

180 APPENDIX C. BOOLEAN ELEMENTS

NAND:
X z X1
| &P 1 [[Ch)
a X 0/1 0 U U CL, |1- |_|ix:1(1—C0>q)
Z 1 U U U vaj WZ'Hi:l,i J(C]-X|)
Ulli U U U
OR:
X Z X1
x1 _ > 1% 0 8 i S 3 CO0, |-|i><:1(§(0xi
X —1 x> 1/1 1 1 1 Cl, 1_|_|iX:1(1_C1Xi)
Z|uUu 1 U U Wi WG - 172,12 (COx)
ujlu 1 U U
NOR:
X z X1
17 0 1 7z U
x > 10— % oz o T A=CL)
a Cl, | MF4COy
X 110 0 0 O O
Z|U 0 U U V\&j WZ'I_]i=17i J(COX,)
uj/u 0 U U
XOR:
X z X1
x1] =1+ % 0 8 1 S 3 Co, COy, -COy, +C1,, -Cl,,
o 1,1 0 U U Cl; | COx-Cly, +Cly -COy
z|u U U u W, | We- (COy, +Cly,)
Uulu u u u
NXOR:
X z X1
- - : 0 2 é lZJ 3 CO; | COx -Cly, +Cly, -COy,
X — X 110 1 U U C1, COy, -COx, +C1,, -Cly,
2 Z|U U U u W | We- (COx, +Cly,)
ujlu U U U

APPENDIX D

Three-state e ements

The gate symbol, truth table and the COP testability analysis measures are given for
several three-state primitive elements. The truth tables are taken from [vdL96]. The truth
tables for the buses assume a two-input bus.

For all listed three-state elements, the COP TA measures consist of the equations for
C0,C1,CZ,W,WZz%and WZ?*. CU can be found with CU =1 —-C1—C0—CZ.

Switch:
control
]
dam—/ — Z C0, Cleontrol - COqata
Clz Clcontrol 'Cldata
CZ, COcontrol + CZdata - Clcontrol . Czdala
z control Wyata W, - Cleontrol
0 1 z U wzl,. WZ2 - Cleontrol
d 0[/Z 0 U U Wzl W22 - Cleontrol
a 1/zZ2 1 U U Weontrol WZ0.COqata + WZ2 - Clyata
t 2|2 z z2 Z WZ rol 0
a U|Z U U U WZClOntrol 0

181

182 APPENDIX D. THREE-STATE ELEMENTS
NSwitch:
control
data
— =2 COZ COcontrol 'Codata
C1, COcontrol 'Cldata
Cz, C]-control +Czda1a— C]-control 'Czdala
z control Woata W - COcontrol
0 1 z U wzl,. WZ2 - COcontrol
d 0|0 z U U Wzdlata WZ - COcontrol
a 1 1 2 U U Wcontrol WZ? 'Codata+szl ' Cldata
t 2|72 Z Z Z ch(:)ontrol 0
a U u z u U clontrol 0
Bus-driver:
control
data
—*D—— = CO, Clcontrol - COdata
C:l-z C]—control 'Cldata
CZ, COcontrol
z control Woata W, - Cleontrol
0 1 z U wzl,. 0
d 0[/Z 0 U U Wz, 0
a 1z 1 U U lcontrol Wzg'codata+wzzl'C1daIa
t Z|z U U U wz2 0
a Uz U U U zZA . |0
NBus-driver:
control

e

data—&— z COz COcontrol ‘Codata
C:I-z COcontrol 'Cldaxa
CZ, Cleontrol
Z control Woiata W - COcontrol
0 1 z U wz3,., 0
d 0[/0 Z U U WZia 0
a 1|1 zZz U U Weortrol WZS : Codata-ﬁ-WZz1 -Clgata
t Zz|U Zz U U WZ8 o 0
a Ujlu z u U Z2 irol 0

183

Three-state bus:

X, |

L 1 },_Z
.X'X_

z X1
0 1 zZ U
0|0 U 0 U
x> 1|lU 1 1 U
Z|0 1 zZ U
ulu U u u
Wired AND:
X.
;]
. | Z
IR
VA X1
0 1 z U
0/0 0 0 O
X 1|0 1 1 U
Z|0 1 zZ U
ulo U u u
Wired OR:
X.
X
Dy e — Z
XX_
Z X1
0 1 z U
00 1 0 U
X 1/1 1 1 1
Z|0 1 zZ U
ulu 1 U U

Co; |_|§=1(COXa +CZy) — ﬂi:l(CZXi)

Cl, Mz1(Clg +CZy) — MiZ1(CZx)

Cz, Mi£1(CZx)

W, W - nix:%<i7éj (CZy)

WZ)(?j WZg- Hi:l,i;éj (szi)

WZ; WZ} - 11744(CZy)

. R,

Cl, Miz1(Cl +CZy) — Mi1(CZx)

Cz, M1(CZx)

W W - Hi:l,i;éj (CL; +CZy)

Wz Wz 21,4 (Cly +CZy)
+wz? ;WZ) M1z (CZx)

WZ)J(-j szl' Hi:l,i;éj (CZXi)

Co, M1 (COx +CZy) — M1 (CZx)

Cl, 1; M, (1-Cl)

CZ M1i=1(CZy)

W W - Hix=%<i;£j (CO +CZy)

wzp WZ0-M744(CZ)

WZ;, W 17112 (COx +CZy)

Xj

HWZZ W) - %y 4 (CZy)

184

APPENDIX D. THREE-STATE ELEMENTS

Pull-down bus:

X,]

1
: },_Z
xX_‘O
z X1
0 1 z U
0[/0 U 0 U
» 1|/U 1 1 U
Z|0 1 0 U
uju u u u
Pull-up bus:
X.
;]
: }._Z
xX_‘l
z X1
0 1 z U
0[/0 U 0 U
» 1|/U 1 1 U
Z|0o 1 1 U
uju u u u

Open-drain PFET:

=)
N| =
CIN
cCc

Open-drain PFET:

—Z

CO;, |'|§:1(CO>q +CZy))
Cl, Mi=1(Cl +CZy) — Mi1(CZx)
Cz, 0

W W, 1114 (CZx)
wz 0

WZg, W, 174,(CZy)

Co, Mie1(COx +CZy) — M171(CZy)
CL, M4 (Cly +CZy)

Cz, 0

W o W - nizl,béj (CZy)
WZXj W - Hi:l,i;éj (CZXi)
Wz 0

CO; 0

Cl, COx

Cz, Cly

W wz}

wz? 0

wz! 0

Co, C1y

C1, 0

Cz, COx

Wi wz?

wz? 0

wzi 0

185

Tri:
1
|
EP
_O(B
EN/| _i
| Co, Clep-Clen
0 Cl, COgp - COen
CZ, Clep - COen
z EP WeN WZY-Clgp
0 1 zZ U Wz, 0
0/1 Z U U wzi, 0 .
E 1/U 0 U U Wep WzL.COey
N Z|U U U U wz2, 0
UujluU U U U wzi, 0
CMOS Tristate inverter (Trinv):
COo, Clyaa Clen
1 C1, COgata - COgp
epl 7 Cz, COgata - Clep + Cldaa - COen +Clep - COen
_—O(—(COdata+Cldata) - Clgp - COen
] Wiata szl -COgp - COgn -I—WZ;J -Clgp-Clen
+W,-COgp - Clen
data | }_ z Wzgiata 0
Wzdata 0 1
Wep WZ; - COgata
] wz2, 0
EI_7_| wzl, 0
5 WeN WZ?-Clgata
0 wzg, 0
wzi, 0

z= bus[nswitch[data, ODP[EP]], switch[data, ODN[EN]]]

186 APPENDIX D. THREE-STATE ELEMENTS

APPENDIX E

Delft Advanced Test (DAT) generation
system and AM SAL

The TPI algorithms and techniques in this dissertation have been implemented in C++
inside the ATPG system: DAT, the Delft Advanced Test generation system. Details on the
implementation can be found in [Kon96a]. The code has been successfully ported to HP
(PA-Risc; HP-UX) and Linux platforms.

The DAT tool can be used fully stand-alone, and can be operated by means of (scripts
or command line input in) a dedicated command language (DCL [vdL96] [Kon96b]).
It can read in circuits in the ISCAS formats, 2 internal formats, KISS2 [Kis89], BLIF
[B1i89], Verilog (limited), and the (Philips) NDL format (and via AMSAL, also EDIF
1.1.0 and EDIF 2.0.0).

The main tasks which DAT can perform are ATPG (using (pseudo-)random and deter-
ministic (extended FAN-algorithm based) test pattern generation (TPG)), fault simulation
(FS), logic simulation (LS) and test point insertion (TPI). The circuits may contain one or
more scan-chains, which can be explicitly or implicitly present in the circuit. By means
of the command language, very complex ATPG and TPI schemes (having multiple stages,
each using multiple strategies in test generation) can be defined, and ‘aliased’ into a sim-
ple user-defined command. Apart from Boolean gates, various 3-state elements such as
(regular 3-state, ‘wired’, and ‘pulled’) buses, and various types of switches and drivers, as
well as bidirectional terminals (1/0 pins) are supported. Random TPG, FS and LS can be
performed by *parallel patterns’ (32 patterns at the same time). Compact ATPG by means
of extended additional targets TPG is supported as well. Fault model/test methods com-
binations supported for combinational circuits are: Single Stuck-At Fault (SSAF) logic
observation testing, and potential logic observation testing, and Ippq testing of SSAFs
and bridging faults. TPI for improving PR fault coverage can be performed by using the
CRF TPI algorithm [Sei91] for Boolean circuits and TPI for both improving PR fault
coverage and reducing ATPG test time and data volume for both Boolean and three-state
circuits can be performed by enhanced TPI algorithms based on the Hybrid CRF algo-
rithm [Tsa97].

187

188 APPENDIX E. DELFT ADVANCED TEST (DAT) GENERATION SYSTEM AND
AMSAL

Since early 1995, the combinational circuit part of DAT has replaced the heart of
Philips” AMSAL [Hap93] ATPG system. The various interfacing procedures of AMSAL
have been recoded in such a way that the external interface to AMSAL remains practically
the same as it used to be, such as net-list compilation, pattern conversions, etc. Since
2001, the TPI part of DAT has also been embedded in AMSAL. AMSAL is used as the
ATPG tool within Philips design and production departments worldwide. AMSAL in its
turn, is an important part of the larger test generation system, that also incorporates test
generation algorithms for various types of RAM, ROM, etc.

Glossary

This glossary gives an overview of the abbreviations and symbols used throughout this
dissertation.

Abbreviations

TA Testability analysis

ACRF Actual cost reduction factor
ATE Automated test equipment
ATPG Automatic test pattern generator
BIST Built-in self-test

CA Cellular automaton

ChPol Characteristic polynomial
COP Controllability observability program
CP Control point

CRF Cost reduction factor

CUT Circuit-under-test

DL Defect level

DPM Defects per million

F-O Force-observe

FC Fault coverage

FE Fault efficiency

FF Flipflop

FFR Fan-out free region

FRU Field replaceable unit

FSM Finite-state-machine

FT Final time frame

189

190 GLOSSARY
GDF Gate-delay fault

HCRF Hybrid cost reduction factor

IC Integrated circuit

IT Initial time frame

LFSR Linear feedback shift register

LSSD Level sensitive scan design

MISR Multiple input shift register

MTPI Multi-phase test point insertion

OP Observation point

ORA Output response analyzer

PFS Probabilistic fault simulation

PGC Logic Pattern generation and control logic
Pl Primary input

PO Primary output

PR Pseudo random

PRTPG Pseudo random test pattern generator
PXTPG Pseudo exhaustive test pattern generator
ROM Read-only memory

RPR Random pattern resistant

SA0Q Stuck-at 0

SAl Stuck-at 1

SAF Stuck-at fault

SCOAP Sandia controllability/observability analysis program
SFF Scan flipflop

SFN Scan, fix and normal

SGL Sequence generating logic

SML Sequence modifying logic

SRSG Shift register sequence generator
STUMPS Self-test using MISR/parallel SRSG
TC Test count

TF Transition fault

TP Test point

GLOSSARY

191

TPG
TPI
TSFF
XTPG

Symbols
#CP

#TP

#WP

®

o

C

CO

C1

CM

CPrax

CU

Cu

(o4
dK/dC

dK /dCO
dK /dC1
dK /dCZ
dK /dEO
dK /dT0
dK/dT1
dK/dT1
dK /dw
dK /dw z°
dK /dwz?!
EO

El

Test pattern generator

Test point insertion

Transparent scan flipflop
Exhaustive test pattern generator

Number of control points

Number of test points

Number of observation points

Number of phases

Phase

COP controllability

COP 0-controllability

COP 1-controllability

Cube mapping

Maximum number of control points

COP U-controllability

Test cube

COP Z-controllability

Derivative of the cost with respect to a change in controllability
Derivative of the cost with respect to a change in 0-controllability
Derivative of the cost with respect to a change in 1-controllability
Derivative of the cost with respect to a change in Z-controllability
Derivative of the cost with respect to a change in essential zero counts
Derivative of the cost with respect to a change in total zero counts
Derivative of the cost with respect to a change in essential one counts
Derivative of the cost with respect to a change in total one counts
Derivative of the cost with respect to a change in observability
Derivative of the cost with respect to a change in Z<0 observability
Derivative of the cost with respect to a change in Z«1 observability
Essential zero count

Essential one count

192 GLOSSARY

F Number of faults

f Fault

hy Feedback coefficient for memory cell r
iCu Image cube

IM Identity matrix

K Cost function

Km Cost of modified circuit, i.e., circuit with test points
L Number of signal lines

I Line

M; Memory cell r

MBPC Minimum-benefit-per-cost

OPrax Maximum number of observation points
p Probability

Pd+ COP detection probability of fault f

R Number of memory cells in a shift register
r Index of memory cells

SCO SCOAP 0-controllability

SC1 SCOAP 1-controllability

sCu Source cube

SW SCOAP observability

T Number of test patterns

t Test pattern

TO Total zero count

T1 Total one count

Te Characteristic matrix

Trin Minimum test set size

T Prrax Maximum number of test points

W COP observability

w Test pattern width

wzO COP Z—0 observability

wz?t COP Z~1 observability

X(t) State/Pattern at time t

Bibliography

[Ake87] S.B. Akers, C. Joseph and B.Krishnamurthy. On the role of independent fault

[Als94]

[Bar87]

[Blig9]

[Bra84]

[Bra89]

[Brg84]

[Brg85]

[Brg89]

[Cha92]

sets in the generation of minimal test sets. Proc. of the IEEE Int. Test Conf.,
pages 1100-1107, 1987.

M.F. Alshaibi and C.R. Kime. Fixed-biased pseudo-random built-in selft-test
for random pattern resistant circuits. Proc. of the IEEE Int. Test Conf., pages
929-938, 1994.

P.H Bardell, W.H. McAnney and J. Savir. Built-In Pseudo-Random Testing of
Digital Circuits, chapter 8. John Wiley & Sons, New York, 1987.

Berkeley logic interchange format. http://www-cad.eecs.berkeley.edu/Res-
pep/Research/sis/abstract.html, 1989.

R.K. Brayton, G.D. Hachtel C. McMullen, A. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
Boston, 1984.

R.K. Brayton, Rudell R., A. Sangiovanni-Vincentelli, A.R.Wang. An exact
minimizer for boolean relations. Proc. of IEEE Int. Conf. on Computer Aided
Design (ICCAD), pages 316-319, 1989.

F. Brglez. On testability analysis of combinational networks. Proc. of Int.
Symp. on Circuits and Systems, pages 221-225, 1984.

F. Brglez and H. Fujiwara. A neural netlist of 10 combinational benchmark
designs and a special translator in fortran. Proc. of Int. Symp. on Circuits and
Systems, June 1985.

F. Brglez et al. Combinational profiles of sequential benchmark circuits. Proc.
of Int. Symp. on Circuits and Systems, pages 1929-1934, May 1989.

Jau-Shien Chang and Chen-Shang Lin. Test set compaction for combinational
circuits. Proc. of Asian Test Symp., pages 20-25, November 1992.

193

194

BIBLIOGRAPHY

[Che95a]

[Ched5b]

[Chr75]

[Dufo1]

[Dufa3]

[Eic77]

[Fei9g]

[Fei01]

[Fuj85]

[Geu97a]

[Geu97b]

[Geu00]

[Geu01]

[Geu02a]

C. Chen, and S. Gupta. A methodology to design efficient bist test pattern
generators. Proc. of the IEEE Int. Test Conf., pages 814-823, 1995.

K-T. Cheng and C-J. Lin. Timing-driven test point insertion for full-scan and
partial-scan bist. Proc. of the IEEE Int. Test Conf., pages 506-514, 1995.

N. Christofedes and K. Korman. A computational survey of methods for the
set covering problem. Management Science, 21(5):591-599, 1975.

C. Dufaza and G. Cambon. Lfsr based deterministic and pseudo-random test
pattern generator structures. Proc. of European Test Conf., pages 27-34, 1991.

C. Dufaza and C. Chevalier. Lfsrom basic principle and bist application. Proc.
of European Conf. on Design Automation, pages 211-216, 1993.

E.B. Eichelberger, and T.W. Williams. A logic design structure for Isi testabil-
ity. Proc. of the 14th Design Automation Conf., pages 462—-468, June 1977.

C. Feige, M.J. Geuzebroek, J. ten Pierick and H. Vranken. Lbist evaluation
report. Technical report, Philips Semiconductors B.V., December 1999.

C. Feige, and M.J. Geuzebroek. Logic bist technology evaluation: an industrial
case study. European Test Workshop - Informal Digest, pages 333-340, 2001.

H. Fujiwara. Logic Testing and Design for Testability. The MIT Press, Cam-
bridge, Massachusetts, 1985.

M.J. Geuzebroek. The deterministic bist scheme. Master’s thesis, Delft Uni-
versity of Technology, Faculty of Electrical Engineering, Mekelweg 4, 2628
CD, Delft, April 1997.

M.J. Geuzebroek. Test point insertion techniques. Technical Report 1-68340-
44(1997)13, Delft University of Technology, Faculty of Electrical Engineering,
Mekelweg 4, 2628 CD, Delft, November 1997.

M.J. Geuzebroek, J.Th. van der Linden and A.J. van de Goor. Test point inser-
tion for compact test sets. Proc. of the IEEE Int. Test Conf., pages 292-301,
2000.

M.J. Geuzebroek, A.J. van de Goor and J.Th. van der Linden. Facilitating au-
tomatic test pattern generators using test point insertion. World Market Series
Business Briefing: Global Semiconductor Manufacturing Technology, pages
149-152, Januari 2001.

M.J. Geuzebroek. Tpi facilitation techniques. Technical report, Delft Univer-
sity of Technology, Faculty of Electrical Engineering, Mekelweg 4, 2628 CD,
Delft, November 2002,

BIBLIOGRAPHY 195

[GeuO2b] M.J. Geuzebroek, J.Th. van der Linden and A.J. van de Goor. Test point in-

[Geu03]

[Gl093]

[Goe81]

[Gol80]

[Gu 01]

[Hap93]

[Har93]

[Hay74]

[Hel92]

[Het99]

[Hors9]

sertion that facilitates atpg in reducing test time and data volume. Proc. of the
IEEE Int. Test Conf., pages 138-147, 2002.

M.J. Geuzebroek, A.J. van de Goor and J.Th. van der Linden. Tpi for im-
proving pr fault coverage of boolean and three-state circuits. To appear at the
European Test Workshop 2003, pages xx—xx(6 pages), 2003.

C. Gloster. Dynamic scan testing: Investigating a new paradigm. Tech-
nical report, MCNC, Center of Mictroelectronics, 1993. INTERNET:
http://www.cbl.ncsu.edu/pub/Benchmark _dirs/ISCAS89/ADDENDUMZ93/
DOCUMENTATION/main.ps.

P. Goel, and B.C. Rosales. Podem-x: An automatic test generation system for
visi logic circuits. Proc. of 18th Design Automation Conf., pages 260-268,
1981.

L.H. Goldstein and E.L. Thigpen. Scoap: Sandia controllability/observability
analysis program. Proc. of 17th Design Automation Conf., pages 190-196,
1980.

X. Gu , S.S. Chung, F. Tsang, J.A. Tofte and H. Rahmanian. An effor-
minimized logic bist implementation method. Proc. of the IEEE Int. Test Conf.,
pages 1002-1010, 2001.

F. Hapke and R. Reche. Amsal reference manual. Technical Report Release
01.08.00, Philips GmbH, VALCO RHW, Stresemannallee 101, D-2000 Ham-
burg 54, Germany, September 1993.

J. Hartmann, and G. Kemnitz. How to do weighted random testing for bist.
Proc. of IEEE Int. Conf. on Computer Aided Design (ICCAD), pages 568-571,
1993.

J.P. Hayes and A.D. Friedman. Test point placement to simplify fault detection.
IEEE Transactions on Computers, C-33:727-735, July 1974.

S. Hellebrand, S. Tarnick, J. Rajski and B. Courtois. Generation of vector pat-
terns through reseeding of multiple-polynomial linear feedback shift registers.
Proc. of the IEEE Int. Test Conf., pages 120-129, 1992.

G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan and J. Ra-
jski. Logic bist for large industrial designs: Real issues and case studies. Proc.
of the IEEE Int. Test Conf., pages 358-367, 1999.

P.D. Hortensius, R.D. McLeod, W. Pries, D.M. Miller and H.C. Card. Cellular
automata-based pseudorandom number generators for built-in-self-test. IEEE
Transactions on Computer-Aided Design, 8(8):842-859, 1989.

196

BIBLIOGRAPHY

[Kag96]

[Kie98]

[Kie00]

[Kis89]

[Kon96a]

[Kon96b]

[Kon96¢]

[Kongg]

[Kri87]

[Lem94]

[Lis87]

[Maj94]

D. Kagaris, S. Tragoudas and A. Majumdar. Deterministic test pattern repro-
duction by a counter. Proc. of European Design and Test Conf., pages 37-41,
1996.

G. Kiefer and H-J. Wunderlich. Deterministic bist with multiple scan chains.
Proc. of the IEEE Int. Test Conf., pages 1057-1064, 1998.

G. Kiefer, H. Vranken, E.J. Marinissen and H-J. Wunderlich. Application of
deterministic logic bist on industrial circuits. Proc. of the IEEE Int. Test Conf.,
pages 105-114, 2000.

Logic synthesis and optimization benchmarks.
http://www.cbl.ncsu.edu/pub/Benchmark _dirs/LGSynth89/DOCUMEN-
TATION, 1989.

M.H. Konijnenburg and J.Th. van der Linden. Data structures and algorthims
of the delft automatic test pattern generation system (dat). Technical Report 1-
68340-44(1996)06, Delft University of Technology (Faculty of Electrical En-
gineering, Department CARDIT), Mekelweg 4, 2628 CD Delft, March 1996.

M.H. Konijnenburg and J.Th. van der Linden. Delft Automatic Test Pattern
Generation Platform (DAT) User Manual. Delft University of Technology
(Faculty of Electrical Engineering, Department CARDIT), Mekelweg 4, 2628
CD Delft, March 1996.

M.H. Konijnenburg, J.Th. van der Linden and A.J. van de Goor. Accelerated
compact test set generation for three-state circuits. Proc. of the IEEE Int. Test
Conf., pages 29-38, October 1996.

M.H. Konijnenburg. Automatic Test Pattern Generation for Synchronous Se-
quential Circuits. PhD thesis, Delft University of Technology, Faculty of Elec-
trical Engineering, Mekelweg 4, 2628 CD, Delft, December 1998.

B. Krishnamurthy. A dynamic programming approach to the test point in-
sertion problem. Proc. of 24th ACM/IEEE Design Automation Conf., pages
695-705, 1987.

M. Lempel, S.K. Gupta and M. Breuer. Test embedding with discrete loga-
rithms. Proc. of 12th IEEE VLSI Test Symposium, pages 74-80, 1994.

R. Lisanke, F. Brglez, A.J. Degeus and D. Gregory. Testability-driven random
test-pattern generation. IEEE Transactions on Computer-Aided Design, CAD-
6:1082-1087, 1987.

A. Majumdar. A new procedure for weighted random built-in self-test. Proc.
of IEEE Int. Conf. on Computer Aided Design (ICCAD), pages 288-291, 1994.

BIBLIOGRAPHY 197

[Mur90]

[Nag95]

[Nak99]

[Pat91]

[Poh78]

[Pom91]

[Pom93]

[Pra95]

[Raj99]

[Ree96]

[Sav9l]

[Sch5]

F. Muradali, V.K. Argarwal and B. Nadeau-Dostie. New procedure for
weighted random built-in-self-test. Proc. of the IEEE Int. Test Conf., pages
660-669, 1990.

P. Nagvajara and P. Kumhon. Built-in self-test based on pre-stored test. Private
Communication, Drexel University Philadelphia, 1995.

M. Nakao, S. Kobayashi, K. Hatayama, K. lijimaand S. Terada. Low overhead
test point insertion for scan-based bist. Proc. of the IEEE Int. Test Conf., pages
348-357, 1999.

S. Pateras and J. Rajski. Generation of correlated random patterns for the
complete testing of synthesized multi-level circuits. Proc. of 28th ACM/IEEE
Design Autom. Conf., pages 347-352, 1991.

S.C. Pohlig and M. Hellman. An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance. IEEE Trans. Information Theory,
IT-24(1):106-110, 1978.

I. Pomeranz, L.N. Reddy and S.M. Reddy. Compactest: A method to generate
compact test sets for combinational circuits. Proc. of the IEEE Int. Test Conf.,
pages 194-203, 1991.

I. Pomeranz and S.M. Reddy. 3-weight pseudo-random test generation based
on a deterministic test set for combinational and sequential circuits. 1EEE
Transactions on Computer-Aided Design, 12(7):1050-1058, 1993.

G. Pramadono. Dat’s path delay fault atpg. Master’s thesis, Delft University of
Technology, Faculty of Electrical Engineering, Mekelweg 4, 2628 CD, Delft,
August 1995.

J. Rajski, G. Mrgugalski and J. Tyszer. Comparison study of ca-based prpgs
and Ifsrs with phase shifters. Proc. of 17th IEEE VLSI Test Symposium, pages
236-245, 1999.

B. Reeb and H-J. Wunderlich. Deterministic pattern generation for weighted
random pattern testing. Proc. of European Test Conf., pages 30-36, March
1996.

Y. Savaria, M. Youssef, B. Kaminska and M. Koudil. Automatic test point in-
sertion for pseudo-random testing. Proc. of International Symposium on Cir-
cuits and Systems, pages 1960-1963, 1991.

C. Schotten and H. Meyr. Test point insertion for an area efficient bist. Proc.
of the IEEE Int. Test Conf., pages 515-523, 1995.

198

BIBLIOGRAPHY

[Seiol]

[SemO01]

[Sen92]

[Smi85]

[Tam96]

[Tou95]

[Tou96]

[Tro91]

[Tsa97]

[Vas93]

[vdG98]

[vdL96]

[Vra02]

[Wai89]

B.H. Seiss, P.M. Trouborst and M.H. Schulz. Test point insertion for scan-
based bist. Proc. of 2nd European Test Conf., pages 253-262, 1991.

Semiconductor Industry Association. International technology
roadmap for semi-conductors 2001 edition, test and test equipment.
http://public.itrs.net/Files/2001I TRS/Test.pdf, 2001.

E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton and A. Sangiovanni-
Vincentelli. Sequential circuit design using synthesis and optimization. Proc.
of Int. Conf. on Computer Design, pages 328-333, 1992.

G.L. Smith. Model for delay faults based upon paths. Proc. of the IEEE Int.
Test Conf., pages 342-349, 1985.

N. Tamarapalli and J. Rajski. Constructive multi-phase test point insertion for
scan-based bist. Proc. of the IEEE Int. Test Conf., pages 649-658, 1996.

N.A. Touba and E.J. McCluskey. Transformed pseudo-random patterns for
bist. Proc. of 13th IEEE VLSI Test Symposium, pages 410-416, 1995.

N.A. Touba and E.J. McCluskey. Test point insertion based on path tracing.
Proc. of 14th IEEE VLSI Test Symposium, pages 2-8, 1996.

Gert-Jan Tromp. Minimal test sets for combinational circuits. Proc. of the
IEEE Int. Test Conf., pages 204-209, 1991.

H.-C. Tsai, K.-T. Cheng, C.-J. Lin and S. Bhawmik. A hybrid algorithm for
test point selection for scan-based bist. Proc. of 34th Design Automation Conf.,
pages 478-483, 1997.

B. Vasudevan, D.E. Ross, M. Gala and K.L. Watson. Lfsr based deterministic
hardware for at-speed bist. Proc. of 11th IEEE VLSI Test Symposium, pages
201-207, 1993.

AJ. van de Goor. Testing Semiconductor Memories, Theory and Practice.
ComTex Publishing, http://cardit.et.tudelft.nl/"vdgoor, 1998.

J. Th. van der Linden. Automatic Test Pattern Generation for Three-State Cir-
cuits. PhD thesis, Delft University of Technology, Faculty of Electrical Engi-
neering, Mekelweg 4, 2628 CD, Delft, May 1996.

H. Vranken, F. Meister and H-J. Wunderlich. Combining deterministic logic
bist with test point insertion. Proc. of the Seventh IEEE European Test Work-
shop, pages 105-110, 2002.

J.A. Waicukauski, E. Lindblook, E.B. Eichelberger and O.P. Forlenza. A
method for generating weighted random test patterns. IBM J. Res. Develop.,
33(2):149-161, March 19809.

BIBLIOGRAPHY 199

[Wai90] J.A. Waicukauski, P.A.Shupe, D.J. Giramma and A. Matin. Atpg for ultra-large
structured designs. Proc. of the IEEE Int. Test Conf., pages 44-51, 1990.

[Wil81] T.W. Williams, and N.C. Brown. Defect level as function of fault coverage.
IEEE Transactions on Computers, C-030:987-988, 1981.

[Wun96] H.-J. Wunderlich and G. Kiefer. Bit-flipping bist. Proc. of IEEE Int. Conf. on
Computer Aided Design (ICCAD), pages 337-343, 1996.

[You93] M. Youssef, Y. Savaria and B. Kaminska. Methodology for efficiently inserting
and condensing test points. IEEE Proceedings-E, 140(3):154-160, 1993.

200 BIBLIOGRAPHY

Samenvatting (Summary in Dutch)

Test punt toevoeging voor het verbeteren van BIST prestaties, en het
reduceren van ATPG test tijd en data volume

Dit proefschrift behandelt het vergemakkelen van structureel testen van geintegreerde
circuits (chips) op mogelijke defecten. Tijdens het fabricage-proces van chips, kunnen
defecten optreden, zoals extra of ontbrekende verbindingen door stofdeeltjes, waardoor
de chips niet meer volgens verwachting werken. Om te voorkomen dat chips met defecten
toch in consumenten producten terechtkomen, worden structurele testen uitgevoerd door
testers. Echter, door de steeds toenemende complexiteit van chips, worden de kosten van
deze testers steeds hoger. Moore’s law dicteert dat de snelheid (klokfrequentie) en de
geheugencapaciteit van de testers steeds groter moet worden. Deze steeds grotere tester
kosten gaan een steeds belangrijker aandeel vormen in de prijzen van chips.

Een alternatief voor het uitvoeren van de tests door externe testers is het insluiten van
de test op de chip zelf, Built-In Self-Test (BIST) genaamd. Hierdoor is er geen snelle
tester met heel veel geheugen meer vereist, maar kan de chip ook door een veel goed-
kopere (tragere en met minder geheugen toegeruste) tester worden gestart. De chip hoeft
alleen maar aangestuurd worden om zichzelf te testen en na de test behoeft alleen maar
"gevraagd’ te worden of de chip defecten bezit.

In Hoofdstuk 2 worden verscheidene bestaande BIST methodes beschreven en gecat-
egoriseerd, waarbij wordt gekeken naar de foutdekking, extra silicium oppervlak en de
bruikbaarheid op grote industriéle chips.

Een belangrijk nadeel van BIST is dat bij moeilijk testbare circuits, of de foutdekking
vaak een stuk lager is dan bij het extern testen, of de extra benodigde chip oppervlak te
groot is. Een manier om de testbaarheid van chips te verbeteren is Test Punt Toevoeging
(Test Point Insertion (TPI)), waardoor de foutdekking bij BIST verbetert en ook de ben-
odigde extra chip oppervlak afneemt. Hoofdstuk 3 beschrijft de algemene werking van
TPI en verdeelt de methodes die gebruikt worden voor het bepalen van de posities van de
test punten (TPs), in categorieén. Niet elk circuit, of elke positie op de chip, is geschikt
voor een TP. In de industrie komen naast Boolean elementen ook vaak circuits met "three-
state’ elementen voor. Deze geven nog meer restricties. In Hoofdstuk 3 wordt ook een
beschrijving gegeven van bestaande TPI algoritmes. Ook wordt een overzicht gegeven
van de TPl onderwerpen in de hoofdstukken 4 tot 6 en de circuits die zijn gebruikt voor
het testen van de TPI algoritmes.

Hoofdstuk 4 begint met het selecteren van een bestaand TPI algoritme voor verdere

201

202 Samenvatting (Summary in Dutch)

ontwikkeling. Een nadeel van dit algoritme is dat het is ontworpen voor Boolean circuits
en niet voor industriéle circuits. Dit algoritme wordt aangepast voor complexe industriéle
circuits. Daarnaast wordt het TPI algoritme ook aangepast voor een nog grotere fout-
dekking na TPI, en wordt een methode gepresenteerd waarmee de processor tijd gebruikt
door TP, significant wordt gereduceerd, zonder dat de kwaliteit van de gekozen TP posi-
ties negatief wordt beinvioed.

De tests voor op de testers worden gegenereerd door Automatische Test Patroon Gen-
erators (ATPGs). TPI zorgt niet alleen voor een hogere foutdekking bij BIST, doch ook
voor kleinere ATPG test sets, omdat het makkelijker wordt om voor de te dekken fouten
test patronen te genereren. Hierdoor wordt het ook makkelijker om meerdere fouten te
laten dekken door een test patroon en daardoor het totaal aantal testpatronen te verkleinen.
In Hoofdstuk 5 wordt aangetoond dat het BIST TPI algoritme voor industriéle circuits,
gepresenteerd in Hoofdstuk 4, al goed in staat is de test sets flink te verkleinen, waarbij
tevens de foutdekking toeneemt en de ATPG processor tijd nodig om de tests te gener-
eren fors afneemt. Echter niet voor alle circuits wordt een even goede reductie van het
aantal test patronen gehaald. Er zijn specifieke ATPG gerelateerde test problemen die het
TPI algoritme niet weet op te lossen. In Hoofdstuk 5 wordt beschreven hoe test counts
(TCs), die een schatting geven voor de minimale grootte van de test, in het TPI algoritme
kunnen worden geintegreerd om de grootte van de ATPG test sets nog meer te verkleinen.
Een ander probleem voor de ATPG zijn zeer grote fan-out vrije gebieden in de circuits.
Deze zorgen vaak voor grote test sets en moeten daardoor gedurende TPI verkleind wor-
den. Hiervoor worden vier methoden gepresenteerd die gebruikt kunnen worden voor het
verkleinen van deze fan-out vrije gebieden. Omdat elk circuit zijn eigen specifieke test
problemen heeft, wordt een nieuwe TPI algoritme gepresenteerd dat bestaat uit meerdere
stadia. In elke stadium wordt eerst uitgezocht welk test probleem of problemen het belan-
grijkst zijn om te worden aangepakt. Het TPI algoritme zal dan enkele TPs toevoegen om
dit test probleem aan te pakken. In het volgende stadium wordt opnieuw bekeken welk
test probleem het belangrijkst is om aan te pakken. Resultaten in Hoofdstuk 5 laten zien
dat hiermee het aantal test patronen nog verder gereduceerd kan worden.

In Hoofdstuk 6 wordt aangetoond dat TPI niet alleen werkt voor het vergemakkelen
en verkleinen van ATPG test sets voor het stuck-at fault (SAF) foutmodel, maar ook voor
het gate-delay fault (GDF) model. De GDF test sets zijn vaak nog groter dan de SAF
test sets, waardoor TPI ook voor dit foutmodel een belangrijke rol kan spelen. Uit de re-
sultaten blijkt dat niet alleen het aantal GDF test patronen significant afneemt, maar ook
dat de foutdekking behoorlijk toeneemt na TPI. Ook de processor tijd voor GDF ATPG
neemt fors af.

Tot slot wordt in Hoofdstuk 7 een samenvatting gegeven van het onderzoek, worden
de belangrijkste bijdrages opgesomd en worden aanbevelingen gedaan voor verder onder-
zoek.

Jeroen Geuzebroek

Curriculum Vitae

Jeroen Geuzebroek was born in Rotterdam on June 18, 1974. After his secondary
education at the R.S.G. (currently “Maerlant College”) in Brielle from 1986 to 1992, he
studied at the department of Electrical Engineering of the Delft University of Technology,
where he graduated in 1997. During his masters study, he investigated the advantages
and disadvantages of state-of-the-art BIST implementations, i.e., BIST implementations
that embed deterministic test patterns. One deterministic BIST method, the Determin-
istic LFSR was implemented in the DAT test tool, developed at the Delft University of
Technology. In 1997 he started this PhD study at the computer architecture group of
Prof. A.J. van de Goor. This research was funded by Philips Semiconductors. The soft-
ware developed during this research has been integrated in Philips’ production test system
worldwide. During his PhD period, Jeroen also joined Philips for several months for the
evaluation of a BIST tool. Jeroen’s (research) interests include Design-for-Test, all aspects
of facilitating testing, especially with respect to test data reduction and compression, and
the development of software for solving complex problems.

203

204 Curriculum Vitae

