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Abstract

The Complex Streamed Instruction (CSI) set is an instruction set extension targeted at multimedia applications. CSI

instructions process two-dimensional data streams stored in memory and the streams can be of any length. Sectioning

(the process of splitting up arbitrary-length streams into fixed-size sections that fit in a vector register), data alignment,

and conversion between different packed data types are all performed in hardware. It has been shown previously that

CSI provides significant speedups compared to current media ISA extensions such as MMX and VIS. This paper

presents a detailed design of a unit that can execute CSI instructions under the assumption that it is interfaced with the

first-level data cache. In particular, it is shown that the complex, two-dimensional, address-generation calculations can

be performed in a pipelined fashion and implemented using a three-stage pipeline with acceptable delay and hardware

cost.
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1. Introduction

The growing importance of multimedia appli-

cations for the desktop market motivated major

processor vendors to extend their instruction set

architectures (ISAs) with instructions that can be

used to implement key multimedia algorithms ef-

ficiently. Examples of such extensions are the Vi-

sual Instruction Set (VIS) for the UltraSPARC
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architecture and the MultiMedia eXtension

(MMX) for the x86 architecture [1,2]. These ex-

tensions are, essentially, load-store vector archi-

tectures with short (typically, 64-bit or 128-bit)

vector registers called multimedia registers. In a

64-bit vector register, for example, a vector con-

sisting of eight 8-bit, four 16-bit, or two 32-bit

elements can be stored. The instructions provided

in VIS and MMX take advantage of the fact that
multimedia applications process small data types

(for example, 8-bit pixels or 16-bit audio samples)

and exploit the data-level parallelism present in

these codes by operating on all vector elements in

parallel.

The ISA extensions mentioned above have

proven to provide significant performance benefits
ed.
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(see, e.g., [3,4]). Further performance improve-

ments may be limited, however, due to several

characteristics of these ISA extensions.

First, the fixed size of the registers limits the

number of operations performed in parallel by a

single instruction. For example, since MMX reg-
isters are 64 bits wide and the smallest data type

supported by MMX is a byte, the number of

parallel operations performed by a single MMX

instruction is at most 8. Much higher amounts of

parallelism are present in many multimedia kernels

where the same operation often has to be per-

formed on data streams consisting of tens to

hundreds of elements. To implement such kernels
using MMX instructions, the streams have to be

split into sections that fit into the 64-bit registers.

This process, called sectioning, results in a large

number of instructions to be executed.

Second, VIS and MMX implementations of

multimedia kernels may require a significant

number of overhead instructions for data align-

ment and conversion, increasing the instruction
count even further. Data alignment instructions

are needed if the data is not aligned at a byte-ad-

dress that is a multiple of the vector register size in

bytes. Data conversion instructions are needed to

convert data from storage format (the number of

bytes a data element occupies in memory) to

computational format (the number of bytes used

during computation) and vice versa. Often, the
storage format is too narrow for intermediate

computations to occur without overflow. Accord-

ing to [3], up to 41% of the total instruction count

for VIS constitutes overhead.

With the number of instructions being fixed,

more instructions have to be fetched, decoded, and

executed in each cycle in order to increase the

performance of MMX- or VIS-enhanced proces-
sors. Increasing the issue width, however, requires

a substantial amount of hardware [5] and increases

the cycle time [6]. Another possibility to improve

performance is by increasing the multimedia reg-

ister size. The drawback of this approach is,

however, that it implies a change of the ISA and,

therefore, requires recompiling or even rewriting

existing codes. Furthermore, to increase the reg-
ister size beyond 256 bits is not likely to provide

much benefit, because many multimedia kernels
process small two-dimensional sub-matrices and

only a limited number of elements, typically 8 or

16, are stored consecutively.

The Complex Streamed Instruction (CSI) set

has been proposed in order to overcome these

limitations. Two-dimensional streams of arbitrary
length can be processed by a single CSI instruc-

tion which performs the actual computation, the

memory accesses, sectioning, as well as data

alignment and conversion. CSI has proven to

provide significant speedups on a wide variety of

multimedia applications [7–10]. For example, us-

ing a near cycle-accurate simulator we have shown

that a 4-way superscalar processor enhanced with
a CSI unit capable of operating on 32 bytes in

parallel outperforms the same processor enhanced

with comparable amount of VIS execution hard-

ware by factors of up to 7.4 on kernels and by

factors of up to 1.54 on full applications.

In this paper a detailed design of a unit that can

execute CSI instructions is presented. It is orga-

nized as follows. Section 2 provides a brief de-
scription of the CSI architecture. Section 3

describes the datapath of the streaming execution

unit and discusses to which level of the memory

hierarchy it should be connected. Section 4 is fo-

cused on the control organization of the unit.

After that, Section 5 presents a detailed descrip-

tion of the address-generation hardware. It is

shown that the complex, two-dimensional, ad-
dress-generation calculations can be implemented

using a three-stage pipeline with acceptable delay.

In Section 6 we discuss how the results of this

paper influence the performance results reported in

our previous work, propose directions for future

research, and present concluding remarks.
2. The CSI architecture

In this section we briefly sketch the CSI multi-

media ISA extension. Further details on the CSI

architecture can be found in [7].

CSI is a memory-to-memory architecture for

two-dimensional streams. As illustrated in Fig. 1,

the streams follow a matrix access pattern, with a
fixed horizontal stride (distance between consecu-

tive elements of the same row) and a fixed vertical



Base

HStride =4 

V
S

tr
id

e 
=

 3
2

Format.Size

Fig. 1. Format of a stream. Each box represents a byte. Filled

boxes are stream elements.
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stride (distance between rows). The stream length

is not fixed architecturally. In other words, CSI

instructions can process streams of arbitrary

length, since the stream length is an operand of

the instruction.
Each stream is specified by a set of stream

control registers (SCR-set) that consists of the

following registers:

(1) The Base register holds the address of the first
element of the stream.

(2) HStride contains the stride (in bytes) between
consecutive stream elements in a row. It is
assumed to be positive.

(3) HLength contains the number of stream ele-

ments in a row.

(4) VStride contains the distance in bytes between
consecutive rows.

(5) VLength contains the number of rows in the
stream.

(6) The Format register consists of three fields,
Size, ProcessingSize, and Scale-Factor, that

describe the storage and the computational

format of the stream elements. It also contains

some other fields, such as Saturate, which de-

termines whether saturation or wrap-around

arithmetic should be performed. Further de-

tails are given in [7].

Additionally, each SCR-set contains two more

registers, CurrCol and CurrRow, which specify the
position of the element currently being processed.

They are used for interrupt-handling.
Most CSI instructions fetch two input streams

from memory, perform arithmetic operations on

corresponding elements, and store the resulting

output stream back to memory. For example, the

instruction csi_add SCRSk, SCRSi, SCRSj adds

corresponding elements of the data streams de-
scribed by the SCR-sets SCRSi and SCRSj, and

writes the results to the stream specified by the

SCR-set SCRSk. If the storage format of one of

the source streams differs from the computational

format, the elements are converted (unpacked)

before being processed. Similarly, if the computa-

tional format differs from the storage format of the

destination stream, the results are packed before
being stored. Suppose, for example, that SCRS1

and SRCS2 describe streams with 8-bit and 16-bit

elements, respectively, and that SRCS3 specifies a

stream with 8-bit elements. Then the instruction

csi_add SCRS3, SCRS1, SCRS2 will load both

input streams, unpack the elements of the stream

described by SCRS1 from 8 to 16 bits, perform

additions in 16-bit precision, pack the results
back from 16 to 8 bits and write them to the des-

tination stream.

The key advantages of the CSI architecture are

its ability to exploit large amounts of parallelism

using a single instruction, the reduction of the

overhead associated with converting between dif-

ferent data types, and the possibility to run the

same CSI code on an implementation with a wider
SIMD datapath without recompilation. The first

feature is achieved by having no restriction on the

stream length and by supporting two-dimensional

streams. The second one results from performing

conversion internally in hardware and overlapping

it with useful computations. The third character-

istic, code compatibility, is a consequence of the

fact that the number of elements that are actually
processed in parallel is not part of the architecture.
3. Datapath of the CSI execution unit

A CSI instruction such as csi_add loads the

source streams from memory, unpacks (if neces-

sary) the stream elements from storage to com-

putational format, performs a certain operation on
corresponding elements, packs (again if necessary)
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the results, and stores the resulting output stream

back to memory. Since these operations are inde-

pendent, they can be pipelined. The CSI execution

unit is, therefore, organized as a pipeline in which

stream data flows through a sequence of stages

that perform these operations. The datapath of the
streaming execution unit is depicted in Fig. 2. For

clarity, some parts (for example, floating-point

hardware) have been omitted. The control logic is

described in Section 4.

The main hardware entities of the streaming

execution unit are the stream control register sets

(SCR-sets), memory-interface unit (MIU), the

stream input and stream output buffers, the pack

and unpack units, and one or more SIMD-like

functional units. In Fig. 2, two SIMD functional

units, medADD and medMUL, are shown that
perform addition-related and multiply-related op-

erations, respectively. In the remainder of this

section we describe the parts of the streaming

execution unit in detail.
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The memory interface unit is responsible for

transferring data between the memory hierarchy

and the stream input buffers. In addition, if the

source stream elements are not stored consecu-

tively, it must also extract and store them consec-

utively in the stream buffers. If the destination
stream elements are not stored consecutively, the

unit must perform the reverse operation, scattering

data into appropriate memory locations.

Each unpack unit converts stream data from

storage format to computational format (if re-

quired). Unsigned fixed-point numbers are zero-

extended (additional bits are filled with zeroes)

while signed numbers are sign-extended. Addi-
tionally, the values can be scaled by means of

shifting in order to position the binary point.

These operations are controlled by the fields of the

Format register of the corresponding SCR-set.
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ches are n bits wide, these units process either n=8
bytes in parallel, n=16 halfwords, or n=32 words.
The value of n is implementation dependent. It can
be 64, 128, or even larger. As mentioned before,

this feature allows CSI codes to take advantage of

a wider datapath without recompilation. The
output register is 2n wide so that no overflow oc-
curs during computation. The medADD unit per-

forms the usual addition, subtraction, and bitwise

logical operations, as well as addition-related op-

erations such as the Paeth operation [11]. It also

expands the output to 2n bits by padding it with
zeroes in order to produce the same number of bits

as the medMUL unit. The medMUL unit performs
the packed multiply operation as well as more

complex media operations such as the Sum of

Absolute Difference (SAD) [11].

From the output register, data flows to the

stream output buffer via the pack unit. The pack

unit converts, if necessary, the data from compu-

tational format to storage format under control of

the Format register of the destination stream.
When no conversion is needed, data is passed

through the unit without being changed.

The design of the CSI execution unit is strongly

influenced by the memory hierarchy level it is

connected to. It can be connected to the first-level

(L1) cache, or it can bypass the L1 cache and go

directly to the L2 cache or even main memory. We

decided to interface it to a 2-ported L1 cache. The
motivation for this design decision is as follows.

First, Ranganathan et al. [3] and Slingerland and

Smith [12] have observed that with realistic L1

cache sizes, most multimedia applications for

audio, video, speech and document processing

achieve high hit rates. Our experiments [7,9,10]

support this observation: with a 32 KB direct-

mapped L1 data cache, JPEG and MPEG-2 cod-
ers/decoders as well as the 3D graphics benchmark

viewperf exhibited hit rates of over 99%. Another

motivation is that since the L1 cache is on-chip, it

will not be expensive to widen the path between

the cache and the streaming execution unit, so that

an entire block can be transfered in a single access.

Such a design can provide high data bandwidth

without increasing the number of cache ports,
which is undesirable since multi-ported caches are

expensive and may increase the cache hit time. An
additional advantage of attaching the CSI execu-

tion unit to the L1 cache is that it keeps the cache

coherent with memory. Therefore, in the remain-

der of this paper we assume that the CSI execution

unit is interfaced with the L1 cache.
4. Control organization

This section presents a detailed description of

the CSI execution unit, concentrating on the de-

sign of the parts which are particular to its L1

cache interface and on the organization of the

control. The design of the most complex part of
the unit, the address-generators, is presented in

Section 5.

Fig. 3 depicts the CSI datapath and the control

lines. Thick lines represent paths through which

data and addresses move and thin lines are control

lines. Rounded rectangular and trapezium shapes

are used for computational units and boxes for

storage between pipeline stages. In this figure, the
stream address-generators (boxes labeled AG), the
load and store queues (LQ and SQ), and the extract
and insert units represent collectively the imple-
mentation of the memory-interface unit (the box

labeledMIU in Fig. 2). The latencies of the pipeline
stages are estimated in terms of machine cycles,

where one cycle is assumed to be approximately

twice as long as the delay of a 32-bit adder.

4.1. General control organization

The control logic is distributed across the

pipeline stages. Each control signal is associated

with a storage entity located between two consec-

utive pipeline stages. The control organization

guarantees that if storage entity Si is full, no data
generated by the preceding pipeline stage will be

written to Si and destroy valid data in it. There-
fore, one signal sent by the control logic of Si to
the control logic of the previous storage entity Si�1
is, usually, the signal Si full. According to this
control organization, the CSI pipeline operates in

general as follows: at the beginning of each cycle

the control logic associated with Si receives the
control signals from the control associated with

the next storage element Siþ1. Based on these signals
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and its current state, the control logic associated

with Si updates its state and decides whether the
data can be transferred to the next pipeline stage.

If so, the transfer is performed and the control

logic associated with Siþ1 is notified. After that, it
checks the notification control signal generated by
the control logic associated with the previous

storage entity Si�1 if data is transferred from Si�1 to
Si. Based on this signal, the control logic associ-
ated with Si again updates its state.

4.2. Stream address generators

Each address generator associated with an in-
put stream (AG1 and AG2) produces a sequence of
records consisting of addresses and some book-

keeping information needed to extract stream ele-

ments from a cache block. As illustrated in Fig. 4,

each AG record consists of the following fields.

• The addr field contains the address (aligned at a

cache block boundary) of the cache block from
which stream data should be extracted.

• Let bsize denote the size of an L1 data cache

block in bytes. The mask field is a (bsize�
log2 ðbsizeÞ)-bit position mask. It indicates which

bytes in the cache block contain stream data. If

a byte in the block belongs to the stream, the

corresponding log2 ðbsizeÞ-bit value is equal to
the order of this byte among all stream bytes
in the block. For example, for the first byte in

the block that belongs to the stream, the corre-

sponding position mask value is 1. For bytes

that do not belong to the stream, the value is

equal to zero.

• The els field contains the number of stream ele-

ments contained in the cache block.

• The bytes field contains the number of bytes be-
longing to the stream and contained in the

cache block. It is equal to the value of the els

field multiplied with the value of the el_size con-

trol register from the corresponding SCR-set.
address mask els bytes valid

Fig. 4. Format of an AG record.
• Finally, the valid field is a 1-bit flag which signi-

fies if the record is valid. Invalid records may

be generated by an AG when the end of a row

of a two-dimensional stream has been reached.

In Section 5 we describe how these fields are

computed. Here we describe the control signals

received and generated by each AG and how they

influence their operation.

• The CSI_start signal is generated by the host

CPU. If this signal is set, the fields of the first

AG record for the cache block corresponding
to the base address of the stream are calculated

and the AG starts generating the records.

• The LQ_full control signal is generated by the

load queue (LQ). When this signal is set, the

AG pipeline is stalled. We remark that since

each AG is organized as a 3-stage pipeline, up

to three valid AG records can be in-flight when

the signal is received. To guarantee that none of
them is lost, each AG contains a FIFO buffer

with three entries.

• The AGi LQ wr signal is generated by the con-
trol of AGi (i ¼ 1, 2) to notify the LQ that an
AG record is transferred. The signal is asserted

if LQ_full is deasserted and the first record in

the FIFO of AGi is valid. In this case, the record

is dequeued from the FIFO and sent to the LQ.

4.3. The load queue

The Load Queue (LQ) fetches data from the L1

data cache and passes it further through the

pipeline. Fig. 5 depicts its organization. It is or-

ganized as a circular queue where each entry

consists of an AG record and three extra fields,
data, ready, and stream_num. The data field is bsize

bytes large and contains the cache block fetched

from the L1 cache. The ready field is a 1-bit flag

indicating that the data has arrived. The stream_-

num field indicates to which input stream (1 or 2)

the entry belongs. In the experiments reported in

[7,13], an 8-entry LQ was used.

The internal state of the LQ consists of registers
that hold information needed to implement a cir-

cular queue (LQ_head, LQ_tail, LQ_length, and
LQ_size), and of the LQ_mem register which points
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to the first entry that has not yet been sent to the

L1 cache. We now describe the signals received by

the control associated with the LQ from other

parts of the CSI pipeline, the actions they initiate,

and the signals generated by the LQ control and

sent to other parts of the pipeline. The four se-

quences of actions described below are performed

in parallel during each cycle.

(1) The control associated with the LQ checks the

number of the input stream associated with the

first LQ entry. Suppose it is the first stream.

Then the LQ control receives the In-

Buf1_#bytes_free signal from the control of In-
Buf1 and generates the LQ_InBuf1_wr signal.
This signal is asserted if the cache block for
the first LQ entry has arrived and InBuf1 has
enough free space to accommodate all bytes

in the block that belong to the stream. In this

case, the data and mask fields of the first LQ

entry are sent to the extract unit which extracts
the stream data from the block according to

the mask and places it into the input buffer In-
Buf1. The log2 ðbsizeÞ-wide control signal
LQInBuf1_wr_#bytes notifies the control of In-
Buf1 of the number of stream bytes contained
in the block. After this, the first LQ entry is

discarded.

Since the calculations for generating the LQIn-

Buf1_wr signal are simple, they will only take a

fraction of a cycle. We therefore deduce that the

LQ control is able to perform the same calcula-
tions for the second LQ entry in the same cycle

and, therefore, pass two cache blocks to the extract

stage during a single cycle. This makes the design

balanced because, for a two-ported L1 cache, two
cache blocks can be delivered to the LQ in one

cycle.

(2) If there were less than two free entries in the

load queue at the end of the previous cycle,

then the LQ_full signal is asserted to stall the

AGs. Two free entries are needed because

two cache blocks can be delivered in a cycle.

Otherwise, two entries are appended to the
LQ, the LQ_AG_read signals are sent to AG1
and AG2, and the first valid AG record of each
AG are transferred to the AG_record fields of

the next two LQ entries.

(3) The ports_available signal is received from the

cache port arbiter responsible for sharing the

cache ports between the load and store queues.

If the signal is set and there are two LQ entries
which have not yet accessed the L1 cache,

the LQ control sends their address fields to

the cache ports and increments the LQ_mem
register.

(4) The data_available signal is received from the

L1 cache controller. If it is asserted, cache

blocks are received from the ports and written

to the data field of the corresponding LQ en-
tries and the ready flags of these entries are

set. Since we assume a 2-ported L1 cache,

two cache blocks can be received in a single

cycle.

4.4. Extract units and stream input buffers

Each extract unit receives data of a loaded
cache block from an LQ entry, extracts the bytes

belonging to the stream, and stores them consec-

utively in one of the input buffers (see Fig. 6). An

extract unit is implemented as a bsize� bsize
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switch controlled by the mask field of the LQ

entry. It is assumed that the delay of an extract
unit is less than one cycle. Each log2 ðbsizeÞ-bit
entry of the mask field controls the position to

which the corresponding byte is routed. If the
entry is zero, the corresponding byte is discarded.

Each stream input buffer is a shift buffer that

stores stream elements consecutively. From there

the data is passed to the unpack units. Each input
buffer has two control registers. The buf_data
register points to the position of the first byte (least

recently received from the extract unit) which is
not yet passed to the Unpack stage. In the buf_size
register the size of the buffer (in bytes) is hard-

wired. We now describe the control organization

of the first input buffer and its interface with other

parts of the CSI pipeline. The second buffer op-

erates identically. In each cycle the following

sequence of actions is performed.

(1) The InLatch1_full signal is received from the
next storage entity in the CSI pipeline, In-
Latch1. This signal is asserted if InLatch1 is
filled with stream data that has not yet been

consumed by the SIMD execution units. If

the signal is deasserted, the control logic calcu-

lates how many bytes of stream data are

needed to fill InLatch1. If InBuf1 contains the
required number of bytes, they are sent to
the Unpack stage and removed from the buffer
by adjusting the value contained in the buf_
data register. The InBufInLatch1_wr signal is

then asserted to notify InLatch1.
(2) The LQInBuf1_wr signal is received from the

LQ. If it is asserted, the contents of InBuf1
are shifted n positions to the right and the n
leftmost bytes are transferred from the extract
unit to the n leftmost positions in InBuf1,
where n is the value of the LQIn-

Buf1_wr_#bytes control signal generated by

the control of the LQ (cf. Fig. 6). After this,

the buf_data register is incremented by n
and the value of buf_size-buf_data is sent to
the control of the LQ via the InBuf1_bytes_free

signal.
4.5. Unpack units

Each unpack unit receives stream data from its
corresponding input buffer and converts (unpacks)

it, if needed, from storage to computational for-

mat. Unpacking consists of converting an m-bit
value to a larger width by sign-extending (for

signed fixed-point numbers) or zero-extending (for

unsigned numbers) it. Additionally, the promoted
value can be shifted, which is performed to repo-

sition the fractional point. The converted data is

stored in the input latches located in front of the

SIMD functional units.
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4.6. SIMD functional units

After the input data has arrived at the input

latches in the computational format, the arithmetic

or logical operation specified by the CSI instruc-
tion is performed by the SIMD functional units.

Two input latches, InLatch1 and InLatch2, are lo-
cated in front of the SIMD execution units, each of

which is n bits wide, where n ¼ 8 � SIMD width and
where SIMD_width is the number of bytes pro-

cessed in parallel by the SIMD functional units.

The following sequence of actions is performed

for InLatch1 in each cycle. The same actions are
performed for InLatch2.

(1) The OutLatch_full signal is received from the

output latch of the SIMD units, OutLatch. If

InLatch1_full and InLatch2_full indicate that

both input latches are full and OutLatch_full

is deasserted, the SIMD computation on the

data contained in the input latches is triggered
and the InLatchOutLatch_wr is asserted to sig-

nal to the OutLatch that a transfer has taken
place. After that, the InLatch1_full and In-

Latch2_full are reset.

(2) The InBuf1InLatch1_wr signal is received from

the control of InBuf1. If it is asserted, the un-
pack unit writes data to InLatch1 and the

InLatch1_full flag is set.

The results of the SIMD execution units flow to

OutLatch, the storage entity located after the

SIMD functional units. The control associated

with OutLatch generates a 1-bit flag OutLatch_full.

In each cycle the following actions are performed.

The OutBuf_full signal is received from the next

storage entity in the CSI pipeline, the stream out-
put buffer Outbuf. If this signal is deasserted and
the Outlatch contains a valid result, then the result
is sent to the pack unit and the notification signal
OutLatchOutBuf_wr is asserted. Simultaneously,

the OutLatch_full flag is set to the value of the

OutBuf_full signal and passed to InLatch1. If the
flag was set, the input latch will stop triggering

new SIMD operations in the next cycle.
We remark that the latency of the medMUL unit

is assumed to be at least two cycles and that the

unit is fully pipelined. Because of this, there can be
two or more valid results in-flight at the moment

the OutLatch_full signal is asserted. To guarantee

that this data is not lost, the output latch is not

organized as a single register but as a FIFO buffer

with s entries, where s is the number of pipeline
stages needed to implement the medMUL unit so
that it has a throughput of one result per cycle.

4.7. Pack unit

The pack unit converts (packs), if required, the
output stream data from computational to storage

format. Packing is the reverse operation of un-

packing: the elements are shifted (usually, to the
right) and then truncated. Additionally, elements

can be rounded prior to shifting and saturated

when being truncated. Fig. 7 illustrates how the

signed 16-bit fixed-point numbers with 4 fractional

bits 129.7510¼ 000100000001.11002 can be packed
to 8 bits. First 0.12 is added to round the result.

After that, the result is rounded to the nearest

integer by shifting out the fractional bits. Finally,
it is saturated to the largest value representable

as an 8-bit 2�s complement value to obtain

12710¼ 011111112.



800 808 816 904 912

Fig. 8. A stream stored in memory.
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4.8. Stream output buffer and insert unit

The stream output buffer OutBuf operates
similarly to the the stream input buffers. It receives

the SQ_data_needed and SQ_bytes_needed signals
from the store queue (SQ) in order to determine

whether data should be transferred from OutBuf
to the SQ through the insert hardware unit. If the
transfer should occur, the control of the output

buffer asserts the OutBufSQ_wr and Out-

BufSQ_wr_#bytes signals and sends them to the

SQ. After this, the control logic associated with

OutBuf generates the OutBuf_full signal and sends
it to OutLatch. The signal is asserted if the number
of free bytes in OutBuf is less than the number of
bytes in the output latch. The insert unit performs
the reverse operation of the extract units. It takes
from the output buffer the stream bytes that be-

long to the same cache block and inserts them in

the appropriate positions of the data field of the SQ

entry which requested the insert operation. The
positions are determined by the mask field of the

entry. We note that only the elements which cor-

respond to non-zero mask positions are written.

4.8.1. The store queue

The SQ is organized and operates similarly to

the load queue. It is responsible for storing the

output stream data in memory. During each cycle
the following three sequences of actions are per-

formed in parallel.

• The SQ control receives the Port_available sig-

nal from the cache arbiter. If it is active and

there are entries in the queue which have al-

ready received data from the output buffer but

is not yet submitted to the L1 cache, they are
sent to the cache and the SQ_send signals are

asserted. It is assumed that two entries can be

transferred to L1 during one cycle.

• If there is a free entry in the SQ and a valid re-

cord in the FIFO of the output stream AG AG3,
the SQ_AG_read is asserted and the first valid

record from the FIFO is transferred to the

AG_record field of the SQ entry.
• The OutBuf_wr and OutBuf_wr_#bytes signals

are received from the output buffer. If they are

set, OutBuf_wr_#bytes are transferred from
the buffer to the data field of the appropriate

SQ entry. After this, the SQ_data_needed and

SQ_#_bytes_needed signals are generated. The

first signal is asserted if there are SQ entries

for which addresses are generated but data
has not yet been received. The second one is

set equal to the number of bytes needed by

the oldest entry.
5. CSI address generators

The task of the CSI address generators is to
produce the addresses of cache blocks containing

stream elements and information needed to extract

data from a cache block. In this section we de-

scribe how these AGs can be implemented. Each

AG should produce the following information:

• The addresses B1;1; . . . ;B1;k1 ;B2;1; . . . ;B2;k2 ; . . . ;
Bm;1; . . . ;Bm;km of all cache blocks that contain
stream elements. Each address Bi;j is a multi-
ple of the L1 cache block size bsize. ki is the
number of cache blocks containing elements

of row i of the two-dimensional stream.
• The sequence mask1;1; . . . ;maskm;km of position
masks. Each mask maski;j consists of

bsize log2 ðbsizeÞ-bit values. The k-th value is
equal to zero if the cache block does not belong
to the stream. Otherwise, it indicates the order

of the k-th byte among all bytes that belong
to the stream.

Consider, for example, the two-dimensional

stream illustrated in Fig. 8 and assume that the

block size is 8 bytes. The base address of this

stream is 804, the horizontal stride is 3, the row
length is 4, the element size is 1, and the number of

rows is 2. For this stream the AG should generate

successively the addresses 800, 808, 904, 912, and

the mask vectors (0;0;0;0;1;0;0;2), (0;0;1;0;0;2;0;0),
(1; 0; 0; 2; 0; 0; 3; 0), and (0; 1; 0; 0; 0; 0; 0; 0).
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This section is structured as follows. Section 5.1

presents formulas for calculating the addresses and

the mask vectors. Since these calculations are ra-

ther complex and do not appear to fit in one ma-

chine cycle, a pipelined implementation capable of

generating one AG record each cycle is developed
and presented in Section 5.2.
5.1. Formulas for calculating addresses and mask

vectors

Let hstr denote the horizontal stride of a
stream. Throughout this section we assume that

hstr6 bsize. If this is not the case each cache block
contains only one stream element and, there-

fore, CSI instructions will not achieve a higher

throughput than scalar instructions. We also as-

sume that hstr > 0.
We introduce the following notations and

definitions.

(1) Ai;j denotes the address of the first stream ele-
ment in the cache block starting at address Bi;j.

(2) ofsi;j is the offset of the first stream element to
the block boundary: ofsi;j ¼ Ai;j � Bi;j.

(3) elsi;j is the number of stream elements con-

tained in the block starting at Bi;j.
(4) By reli;j (Row Elements Left) we denote the

number of stream elements contained in the

blocks starting at Bi;j; . . . ;Bi;ki : reli;j ¼Pki
l¼j elsi;l.

(5) Let x and y be integers. We use the symbol %
for the modulo operation ðx%y ¼ xmodyÞ
and the symbols ~ and & for the bitwise NOT
and AND operations.

The calculations performed by each address

generator are based on the following formulas.

Proposition 1. Let SCRS be the stream control
register set for which an address generator generates
addresses. Then the following equations hold:

A1;1 ¼ SCRS:Base;

Aiþ1;1 ¼ Ai;1 þ SCRS:Vstride ð1Þ

Bi;1 ¼ Ai;1&~ðbsize� 1Þ; Bi;jþ1 ¼ Bi;j þ bsize ð2Þ
ofsi;1 ¼ Bi;1&ðbsize� 1Þ ð3Þ

elsi;j ¼ dðbsize� ofsi;jÞ=hstre ð4Þ

reli;1 ¼ SCRS:HLength; reli;jþ1 ¼ reli;j � elsi;j

ð5Þ

Given the offset ofsi;j of the first stream element in a
block to the block boundary, the oset ofsi;jþ1 in the
next block can be calculated using the following
theorem.

Theorem 1. If ofsi;j is the offset of the first stream
element in a block to the block boundary, then

ofsi;jþ1 ¼ ðofsi;j þ hstr � bsize%hstrÞ%hstr ð6Þ
Proof. Let k be the smallest integer such that

ofsi;j þ k � hstrP bsize:

Then

ofsi;jþ1 ¼ ðofsi;j þ k � hstrÞ%bsize
¼ ofsi;j þ k � hstr � bsize:

Because ofsi;jþ1 must be smaller than hstr, we can
take the modulo hstr on both sides and obtain

ofsi;jþ1 ¼ ofsi;jþ1%hstr

¼ ðofsi;j þ k � hstr � bsizeÞ%hstr
¼ ðofsi;j � bsizeÞ%hstr:

In order to implement it in hardware, we want to

add a positive term to ofsi;j. We, therefore, exploit
the fact that ðaþ bÞ%n ¼ ða%nþ b%nÞ%n and

add the term hstr to the inner expression to obtain

ofsi;jþ1 ¼ ðofsi;j þ hstr � bsize%hstrÞ%hstr: �

Generation of block addresses. Eqs. (1), (2), and
(5) are sufficient to construct the sequence of the

block addresses Bi;j. Suppose that Bi;j is calculated.
If the next block containing stream elements be-
longs to the same row, then its address is obtained

using the second part of (2). Otherwise, it is the

first block of the following row. In this case, first,

the address Aiþ1;1 is obtained using the second part
of (1). The required address Biþ1;1 is then given by
the first equation of (2). The row termination de-
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cision and which calculations should be performed

can be based on (5). The row termination condi-

tion is simply reli;jþ16 0.
Generation of mask vectors. The mask maski;j

can be derived from the base mask bmask which is
constant for a given stream and is determined by
the stream horizontal stride and the element size.

The calculations are based on (6), (4), (5), and the

following definitions.

Definition 1. msb maskðbsize; xÞ denotes the

bsize � log2 ðbsizeÞ-bit binary number for which the
x most significant bits (i.e., leftmost bits) are set
to 1 and all other bits to 0.

Definition 2. Given a stream with base address

0, horizontal stride hstr, row length HLength,
and element size elsize. Let HLengthP bsize. By
bmaskðbsize; hstr; elsizeÞ we denote the mask for
the cache block starting at address 0.

Consider, for example, the base mask
bmaskð8; 3; 1Þ. This mask is a 24-bit vector con-
sisting of eight 3-bit numbers. Element 0, 3, and

6 ¼ 2 � 3 are equal to 1, 2, and 3, respectively. All
other elements are equal to 0 because the corre-

sponding bytes do not belong to the stream. So

bmaskð8; 3; 1Þ ¼ 001 000 000 010 000 000 011 000:

Because the element size elsize is always a
power of two, it is easy to show that if the mask for

a stream with a given stride and element size of one

(byte) bmaskðbsize; hstr; 1Þ is known, the mask for
a stream with an element size elsize of 2 or 4 bytes,
bmaskðbsize; hstr; elsizeÞ, can be obtained using a
short sequence of binary shift and AND opera-

tions.

The following proposition presents formulas for
calculating maski;j.

Proposition 2. Let w ¼ log2 ðbsizeÞ. maski;j can be
calculated using the following equations:

If the cache block is not the last block in a row,
then

maski;j ¼ bmaskðbsize; hstr; elsizeÞ 
 ðofsi;j � wÞ;
ð7Þ
where 
 stands for the shift right logical operation.
If the cache block is the last block in a row, then

maski;j ¼ ðbmaskðbsize; hstr; elsizeÞ 
 ðofsi;j � wÞÞ &
� msb maskðbsize; ðy þ ofsi;jÞ � wÞ ð8Þ

where y ¼ reli;j � hstr þ elsize.

Proof. Eq. (7) is obvious. Let Ci;j be the last block

in the ith row, i.e., let j ¼ ki. Then the number reli;j
gives the number of stream elements in Ci;j.

Equation (8) is based on the observation that reli;j
can be less than elsi;j. We notice that for the mask
mask0i;j obtained using only the first part of (8), it
might be necessary to zero the last several nonzero

mask values, because they correspond to bytes

which lie after the row end. This is exactly what is

done by the bitwise AND operation on the right-

hand side of (8). Indeed, the number of the left-

most bytes in the block which might belong to
the stream is equal to z ¼ reli;j � hstr þ elsizeþ
ofsi;j. The remaining bsize-z bytes definitely do
not belong to the stream. The mask msb mask-
ðbsize; ðy þ ofsi;jÞ � wÞ used in (8) corresponds to
this situation, having each of the z leftmost w-bit
values set to 11 . . . 1 and each of the remaining
(bsize-z) values set to 00 . . . 0. This concludes
the proof. h
5.2. A pipelined implementation

The formulas presented in Proposition 1, The-
orem 1, and Proposition 2 are sufficient to generate

an AG record for each cache block that contains

stream elements. It is important to determine

whether these calculations can be implemented in

hardware at acceptable cost, what their latency is,

and whether they can be pipelined. The possibility

of pipelining is critical (if the latency is more than

one cycle), because otherwise the rate at which AG
records are produced will be less than the rate at

which they are consumed by the L1 cache ports

(under assumption that the cache hit latency is one

cycle), and the performance of the CSI unit might

become limited by the address generators. In this

section we present a pipelined implementation of

the CSI AGs with a latency of three machine



612 D. Cheresiz et al. / Journal of Systems Architecture 49 (2003) 599–617
cycles, where the machine cycle time is assumed to

be approximately twice as long as the delay of a

32-bit adder.
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ded and trapezium shapes are used for processing

hardware. Below we describe the pipeline stages

and the operations they perform in detail. To

make the figure clearer, the number b is sometimes
used instead of bsize. The symbol w denotes

log2 ðbsizeÞ, and m denotes wþ 2.
First stage. Let str be the stream assigned to the

AG. The stream is described by a certain SCR-set

S. During the first stage the block addresses Bi;j,
the offset of the first stream element in the block

ofsi;j, and the number of the elements remaining in
the same row reli;j are computed for the current
cache block Ci;j. These values are stored in the

pipeline latches B1, ofs, and rel, respectively.
The registers in the top row hold copies of the

corresponding stream control registers from the

SCR-set S. The registers in the second row contain
the following values: begin_row holds the address
Ai;1 of the first stream element in the current row
Ai;1, b)1 holds the value of bsize-1, and b holds the
value of bsize. The register k contains the number
hstr � bsize%hstr. The bmask register contains the
base mask bmaskðbsize; hstr; elsizeÞ. Finally, row-
s_left is a counter which contains the number of
stream rows (excluding the current one) for which

address information has yet to be generated.

Depending on whether Ci;j is the first block of

the first row, the first block of some other row or

not the first block of any row, data can flow along

different paths through the first stage. There are
three possible situations.

• Ci;j is the first block in a row that is not the first

one, i.e., i > 1 and j ¼ 1. The paths used in this
case are shown as thin lines in Fig. 9. The fol-

lowing actions take place simultaneously:

� The values of Ai;1 contained in the begin_row
register and of (bsize-1) contained in the b)1
register are fed into the functional unit

labeled ‘‘&’’. This unit simultaneously com-

putes the values of Ai;1&ðbsize-1Þ and of
Ai;1&~ðbsize-1Þ. These values are written into
the B1 and ofs registers, respectively.

� begin_row is incremented by the contents of
VStride using the 32-bit adder Add32.

� The value contained in HLength is trans-
ferred to the rel latch.

� The rows_left counter is decremented by one.
Each of these actions can be done in one cycle.

• Ci;j is not the first block of the ith row. The
paths used in this case are shown as thick lines

in Fig. 9. The following actions take place in

parallel:
� Register B1 is incremented by bsize using the
32-bit adder Add32. After that, B1 contains
the bsize-aligned address of Ci;j.

� The contents of the ofs latch (which is equal
to ofsi;j�1 at the beginning of the cycle) is in-
cremented by the value contained in the reg-

ister k using the m-bit arithmetic unit ALUm.

The result is routed to the LUT1 unit together
with the contents of HStride. This unit com-
putes a mod b, where a is its first input and b
its second. The result is written to ofs. These
two operations implement Eq. (3). Thus, on

the edge of the cycle ofs will contain the
value of ofsi;j.

Incrementing B1 fits in one cycle. The m-bit
addition using the ALUm unit will take a fraction of
a cycle. The subsequent m-bit modulo division will
most likely not fit into one cycle if LUT1 is im-
plemented as an m-bit divider. However, we ob-
serve that the width of the first input of LUT1 is
limited by 2 � bsize:
ofsi;j�1 þ hstr � bsize%hstr6 bsizeþ hstr6 2 � bsize:
Furthermore, the second input is constant for a
given stream. Therefore, if the remainders

(x mod hstr) are precalculated for all x (06

x6 2 � bsize), the LUT1 unit can be implemented as
a look-up table with 2 � bsize entries. For a typical
block size of bsize ¼ 32, it will have 64 entries. The
critical path in this case goes through ALUm and

LUT1. It is assumed that the critical path fits in one
cycle.
According to our experience, most multimedia

streams have horizontal strides of 1, 2, 3, or 4.

Therefore, if the hardware budget allows, the look-

up tables for these strides can be hardwired in the

LUT1 unit. One more table is needed for the case
that the stride is different. In this case the table

should be loaded with the precalculated remain-

ders before the AG can start generating addresses.
This setup operation might take a few cycles. The
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parts of the AG datapath used for this setup op-

eration are not shown in Fig. 9. Note that the total

number of different tables that should be precal-

culated is limited by bsize, because hstr6 bsize.
A similar approach can be applied to the LUT2
look-up table described below.

• Finally, if Ci;j is the first block of the first row

(i.e., i ¼ j ¼ 1), the same actions will take place
as for any other first block in a row but, prior to

this, some setup actions are performed. The

parts of the datapath of the first stage which

are utilized during these actions are shown as

dashed lines in Fig. 9. These setup operation
may require several cycles.

� If the stride is non-standard, the look-up ta-

bles LUT1 and LUT2 are loaded.
� The content of the Base register is transferred
to begin_row and the content of the Num-
Rows register to rows_left.

� The contents of the b and HStride registers
are routed to LUT1, and the resulting value
(bsize%hstr) is written to ofs. From there it

is passed to the ALUm unit which computes

hstr � bsize%hstr. The result is written to
the register k.

� Simultaneously, the number hstr contained
in HStride is sent to LUT2 which returns the
value of bmaskðbsize; hstr; 1Þ. This value is
sent to the setup unit which generates the
mask bmaskðbsize; hstr; elsizeÞ by means of
shift and bitwise AND operations and writes

it to the bmask latch.

Which parts of the datapath of the first stage

are used and which of the three operation

sequences described above are performed is de-

termined by the pipeline_status control signal
generated by the pipeline stage controller. This

signal depends on the CSI_start signal provided by
the host CPU, the change_row signal generated by
the second stage of the pipeline, and the stream

horizontal stride hstr.
Second stage.During this stage the total number

of stream elements in the block is computed and

some initial mask calculations are performed. This
stage has two possible modes of operation: setup
and process, which are activated by the pipe-
line_status signal.When the stage is operating in the
setupmode, the look-up table LUT3 is loaded (if the
horizontal stride is non-standard). The correspond-

ing parts of the datapath are not shown in Fig. 9.

When the stage operates in the process mode,
the following actions are performed in parallel.

• The V1 flag which indicates if the record gener-
ated for Ci;j is valid (i.e., whether j6 ki) is cop-
ied to V2.

• The block address is copied from B1 to B2.
• The mask stored in bmask is shifted to the right
by ofsi;j � w bits and written to mask1. This ac-
tion carries out the first computation on the
right-hand side of Eq. (8). The multiplication

of ofsi;j with w is implemented by the look-up
table LUT5.

• The SUBm unit calculates bsize-ofsi;j. The re-
sult is passed to the look-up table LUT3,
which implements integer division by hstr.
The output of LUT3 is equal to elsi;j calcu-
lated according to Equation (4). It is then
subtracted from reli;j stored in rel. If the re-
sult is negative then Ci;j is the last block in

the row and the change_row signal is gener-

ated. If the signal is asserted, the V1 flag is
set to zero, invalidating the record for Ci;jþ1
for which the calculations are started by the

first pipeline stage during the current cycle.

The signal also controls the multiplexer in
front of the final_els latch and is communi-
cated to the pipeline stage controller.

The critical path of this stage goes through

SUBm, LUT3, and SUB32. Given that the m-bit
subtracter SUBm is small (typically m ¼ 7 or 8) and
that the lookup table LUT3 usually has at most 32
or 64 entries, we estimate that the critical path fits
in one machine cycle.

Third stage. During this stage the mask com-
putations are completed. This stage also has two

possible modes of operation: setup and process,
which are activated by the pipeline_status signal.
When the stage operates in the setup mode and the
stream has a non-standard stride, the look-up

table LUT4 is loaded. When the stage operates in
the process mode, the following actions are per-
formed in parallel.
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• The registers V2 and B2 are copied to the corre-
sponding fields of the appropriate entry of the

AG FIFO buffer.

• The look-up table LUT4 computes the product
of the m-bit number contained in the final_els
latch and the horizontal stride. The product is

routed to the 3-input m-bit adder Addm which
calculates z ¼ y þ ofsi;j, where y is computed ac-
cording to the formula presented in Proposition

2. The hardwired (b � w)-bit constant 10 . . . 0 is
shifted arithmetically to the right by z � w bits,
resulting in the mask msb maskðbisze; z � wÞ
(see the last term of Equation (8)). By bitwise
ANDing this mask with the mask contained in

mask1 the final mask is obtained which is writ-
ten to the corresponding field of the appropriate

entry of the AG�s FIFO buffer. The multiplica-
tion of z by w is implemented by LUT6. We note
that the (b � w)-bit shifter Shiftb
w is simpler than
a common (b � w)-bit shifter because shifting
can be done only by amounts that are a multiple
of the constant w.

• The number contained in the final_els register is
shifted to the right by log2 ðelsizeÞ bits, produc-
ing the number final els � elsize, which is writ-
ten to the bytes field of the FIFO entry.

The critical path of this stage goes through the

LUT4, Addm, LUT6, Shiftb
w, and ANDb
w units. We
remark that the m-bit adder Addm is small (typi-
cally m ¼ 7 or 8) and the lookup tables usually
have at most 32 or 64 entries. Given the fact that

the Shiftb
w shifter is simpler than a common
(b � w)-bit shifter and the ANDb
w unit can be im-

plemented in just one level of gates, we estimate

that the critical path fits in one machine cycle.

This concludes the description of the AG. The
presented pipelined implementation is able to

produce a new AG record every cycle. We observe

that since the change_row signal is generated dur-
ing the second stage, a one-cycle bubble will ap-

pear in the pipeline when a new row is started.

However, the change_row signal is, in fact, gener-
ated by the carry bit produced by the Sub32 unit of
the second stage. The carry can be produced be-
fore the subtraction itself has finished and, there-

fore, the signal can become available before the

end of the cycle. Since the unit labeled ‘‘&’’ that
calculates the block address of the first block in the

next row Biþ1;1 consists of just one level of logic
gates, the bubble can be removed if an extra 32-

bit adder which calculates during every cycle

Aiþ1;1 ¼ Ai;1 þ VStride is added to the first AG
pipeline stage and connected to the unit labeled
‘‘&’’.
6. Conclusions

In this paper we described how a CSI execution

unit can be implemented. We presented a general

organization of such a unit as well as a detailed

description of a unit that is attached to the first-

level data cache. The decision to interface CSI unit

to the L1 cache was motivated by particular

characteristics of typical multimedia applications,
such as MPEG-2 and JPEG coders/decoders,

which exhibit high cache hit rates and, further-

more, require high data throughput. In the pre-

sented implementation, a whole cache block is

transferred to or from the unit in a single access.

When hit rates are high, such a design can provide

a high data throughput without increasing the

number of cache ports, thus satisfying the needs of
streaming multimedia applications. We analyzed

the computations needed for the generation of

address information. Although these computa-

tions turn out to be complex, we have shown that

they can be performed in a pipelined fashion. We

described a detailed design of a pipelined address

generation unit that can compute the address in-

formation for a new cache block every machine
cycle with the latency of three cycles.

In our previous work [7–10] we used a near

cycle-accurate simulator where it was assumed

that the latency of an AG is one cycle. We have

performed experiments assuming a three-cycle la-

tency and observed that the latency of a CSI in-

struction usually increases with just two cycles.

This is to be expected since AG calculations are
overlapped with useful computations and the in-

creased AG latency is incurred only for the first

access. Taking into account that CSI instructions

typically take tens to hundreds of cycles, an in-

crease of two cycles is insignificant.
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There are several directions for future research

on the CSI architecture. First, we intend to de-

velop a VHDL model of the CSI execution unit in

order to obtain more precise estimates of its area

and delay. Second, the issue of compilation from a

high-level language to CSI instructions should be
addressed. We expect that this problem can be

solved. CSI instructions have two main features:

operands are vectors, and individual vector ele-

ments can have short integer data types (8- and

16-bit) and require packing and unpacking. Vec-

torizing compilers have shown the possibility of

automatic vectorization. Furthermore, recently,

Intel provided a compiler for MMX/SSE, showing
that compilation for an instruction set which

supports short integer data types is feasible [14].
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