
PowerPC Compiler Backend for the Molen Programming
Paradigm

Elena Moscu Panainte, Koen Bertels, and Stamatis Vassiliadis
Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4, 2600 GA Delft, The Netherlands
Phone: +31 15 2786249 Fax: +31 15 2784898

E-mail:
�
elena|koen|stamatis � @ce.et.tudelft.nl

Abstract— The Molen Programming Paradigm is a se-
quential consistency paradigm for programming CCMs
(Custom Computing Machine) possibly including a general
purpose computational engine(s). The paradigm allows for
parallel and concurrent hardware execution and it is in-
tended (currently) for single program execution. It requires
only a one time architectural extension of few instructions
to provide a large user reconfigurable operation space. The
Molen machine organization has been implemented on Vir-
tex II Pro Platform, with an IBM PowerPC 405 processor
immersed into the FPGA fabric. For the validation of the
proposed programming paradigm, we develop a PowerPC
compiler backend, integrated into Delft WorkBench com-
piler. In order to illustrate the complexity of generating code
for a modern processor such as PowerPC 405, several is-
sues regarding special features, user-programming model,
the impact of the operating systems and the PowerPC EABI
are presented.

Keywords—retargetable compiler; Custom Computing
Machine (CCM); PowerPC; compiler backend

I. INTRODUCTION AND BACKGROUND

The development of architectural improvements or in-
novations is a complex process as it deals with a large num-
ber of highly interconnected factors. An improvement in
one component does not necessarily result in an improved
system performance. This complexity increases consider-
ably as heterogeneous architectures (e.g. ASIC, FPGA’s)
are included. Such an approach is becoming increasingly
popular (e.g. [1], [2], [3], [4]) as it allows developers to
better partition and manage their projects (e.g. [5], [6], [7],
[8] and [9]). Exploiting the full potential of these future
architectures is not a trivial task. In [10] a programming
paradigm called the Molen Programming Paradigm is pre-
sented that facilitates the development of such systems.

In the remainder of this section we explain the basic ap-
proach. We then introduce a specific implementation of
the Molen architecture using the Xilinx Virtex-II Pro with
a PowerPC 405 processor immersed into the FPGA fab-

Fig. 1. The Molen machine organization

ric. We then present the compiler extensions required for
the Molen Programming Paradigm and discuss the specific
characteristics of the target PowerPC 405 Processor.

The organization of the target CCM is the Molen ma-
chine organization[4] presented in Figure 1. The main
components are the Core Processor - which is a GPP (Gen-
eral Purpose Processor), and the Reconfigurable Processor
- implemented in the FPGA. The arbiter performs a partial
decoding of the instructions fetched from the main mem-
ory and issues them to the corresponding execution unit.
The parameters for the FPGA reside in the Exchange Reg-
isters.

Programing the target CCM is performed under the
Molen Programming Paradigm[10] which is a sequential
consistency paradigm for CCMs possibly including a gen-
eral purpose computational engine(s). The paradigm al-
lows for parallel and concurrent hardware execution and
it is intended (currently) for single program execution. It
requires only a one-time architectural extension of few in-

structions to provide a large user reconfigurable operation
space. In this article the relevant extensions are:
� Two instructions for controlling the reconfigurable hard-
ware, namely:
– SET �������
	
����� : actually perform the hardware

configuration as stored in memory from the referred ad-
dress location. The information about the configuration
microcode length is embedded inside the microcode itself.
– EXECUTE ��������	
������� : for controlling the exe-

cutions of the operations on the reconfigurable hardware.
The address sequence referred by this instruction contains
the microcode to be executed on the CCU configured in
the SET phase.� Two move instructions for passing of values to and from
the GPP register file and the reconfigurable hardware.
More specially:
– MOVTX XR ��� R � : (move to XR) used to move the

content of general purpose register R � to XR � .
– MOVFX R ��� XR � : (move from XR) used to move

the content of exchange register XR � to GPP register R � .
The paradigm also requires for the reconfigurable hard-

ware to have associated a special set of registers - Ex-
change Registers(XRs) for passing values to/from GPR
(General purpose Register). Finally, it is noted that every
user is provided with an arbitrary number of functions that
can be performed on the reconfigurable hardware.

II. VIRTEX-II PRO AND POWERPC 405 PROCESSOR

The Virtex-II Pro family contains platform FPGAs for
designs that are based on IP cores and customized mod-
ules. The family incorporates up to four IBM PowerPC
RISC 405 processor blocks, with the following main fea-
tures:
� embedded 300+ MHz Harvard Architecture Block� low power consumption: 0.9 mW/MHz� five-stage data path pipeline� hardware multiply/divide unit� thirty-two 32-bit General Purpose Registers� 16 KB two-way set-associative instruction cache� 16 KB two-way set-associative data cache� memory management unit (MMU)
– Variable page sizes (1 KB to 16 MB)� dedicated on-chip memory (OCM) interface� supports IBM CoreConnect” bus architecture� debug and trace support� timer facilities

Virtex-II Pro devices incorporate large amounts of 18Kb
Block SelectRAM+ memory. The available memory re-
sources for Virtex-II Pro XC2VP20 is around 300 Kb
while for XC2VP50 is around to 700 Kb. OCM controllers
provide dedicated interfaces between Block SelectRAM+
memory and processor block instruction and data paths for

high-speed access routing resources.
These features make the The Virtex-II Pro platform suit-

able for the implementation of the Molen Machine Organi-
zation. A key element is the implementation of the arbiter
which is described in detail in [11].

III. COMPILER BACKEND DEVELOPMENT FOR

POWERPC 405 PROCESSOR

In the next subsections, we briefly describe the key as-
pects for developing a compiler backend in order to gen-
erate code for PowerPC 405 processor included in the
Virtex-II Pro. We first describe the implemented compiler
extensions for the Molen Programming Paradigm and con-
tinue with the required extensions for developing a pure
PowerPC backend compiler.

A. Compiler Extension for Molen Programming Paradigm

The compiler [12] currently relies on the Stanford
SUIF2 (Stanford University Intermediate Format)[13] for
the front-end and the Harvard Machine SUIF[14] backend
framework. The last component has been designed with
retargetability in mind. It provides a set of backends for
GPPs, powerful optimizations, transformations and anal-
ysis passes. These are essential features for a compiler
targeting a CCM. We have currently implemented the fol-
lowing extensions for the Molen Programming Paradigm:� Code identification: for the identification of the code
mapped on the reconfigurable hardware, we added a spe-
cial pass in the SUIF front-end. This identification is based
on code annotation with special pragma directives (similar
to [6]). In this pass, all the calls of the recognized functions
are marked for further modification.� Instruction Set extension: the Instruction Set has been
extended with SET/ EXECUTE and MOVTX/MOVFX in-
structions at both MIR (Medium Intermediate Represen-
tation) level and LIR (Low Intermediate Representation)
level.� Register file extension: the Register File Set has been
extended with the XRs. The register allocation algorithm
allocates the XRs in a distinct pass applied before the GPR
allocation; it is introduced in Machine SUIF, at LIR level.� Code generation: code generation for the reconfigurable
hardware is performed when translating SUIF to Machine
SUIF IR, and affects the function calls marked in the front-
end.

An example of the code generated by the extended com-
piler for the Molen Programming Paradigm is presented in
Figure 2. In the first part, the C program is given. The
function implemented in reconfigurable hardware is an-
notated with a pragma directive named call fpga. It has
incorporated the operation name, op1 as specified in the

Register Type Usage

R0 Volatile Language specific
R1 Dedicated Stack Pointer (SP)
R2 Dedicated Read-only small data area anchor

R3 - R4 Volatile Parameter Passing/ return values
R5 - R10 Volatile Parameter Passing

R11 - R12 Volatile
R13 Dedicated Read-write small data area anchor

R14 - R31 Nonvolatile
Fields CR2 - CR4 Nonvolatile Condition Register
Other CR fields Volatile Condition Register
Other registers Volatile

TABLE I
POWERPC EABI REGISTER USAGE

FPGA description file. In the central part of the picture,the
code generated by the original compiler for the C pro-
gram is depicted. The pragma annotation is ignored and
a normal function call is included. The last part of the pic-
ture presents the code generated by the compiler extended
for the Molen Programming Paradigm; the function call is
replaced with the appropriate instructions for sending pa-
rameters to the reconfigurable hardware in XRs, hardware
reconfiguration, preparing the fix XR for the microcode of
the EXECUTE instruction, execution of the operation and
the transfer of the result back to the GPP. The presented
code is at MIR level and the register allocation pass has
not been applied.

B. PowerPC Compiler backend

In order for one application to utilize external and/or un-
derlying software or hardware, a binary interface - called
Application Binary Interface (ABI) has to be defined. For
example, many applications have to include a set of li-
braries (e.g. math) that are compiled using a number of
platform dependent conventions. One such set of conven-
tions proposed for PowerPC 405 is the Embedded Appli-
cation Binary Interface (EABI) with the goal of reducing
memory usage and optimizing execution speed, as these
are prime requirements of embedded system software. The
EABI describes conventions for register usage, parameter
passing, stack organization, small data areas, object file,
and executable file formats. A description of the key is-
sues for the PowerPC compiler backend is presented in the
rest of this section.

B.1 Register Usage

In user mode, The PowerPC 405 processor provides the
following registers:

� General Purpose Registers (GPRs): 32 registers, each 32
bits wide, numbered r0 through r31;� Condition Register (CR): a 32-bit register that reflects
the result of certain instructions and provides a mecha-
nism for testing and conditional branching; for example a
branch based on the condition r3 � 64 can be implemented
as follows:
; CR has 8 fields of 4 bits each
cmplwi 3, r3, 64 ; CR3 field contain

; the result of the comparison
blt 3, LABEL_1 ; branch based on CR3
......
� Fixed-Point Exception Register (XER): a 32-bit register
that reflects the result of arithmetic operations that have
resulted in an overflow or carry;� Link Register (LR): a 32-bit register that is used by
branch instructions, generally for the purpose of subrou-
tine linkage;� Count Register (CTR): a 32-bit register that can be used
by branch instructions to hold a loop count or the branch-
target address;� User-SPR General-Purpose Register (USPRG0): a 32-
bit register that can be used by application software for
any purpose;� SPR General-Purpose Registers (SPRG4- SPRG7): 32-
bit registers that can be used by system software for any
purpose and available with read-only access� Time-Base Registers: a 64-bit incrementing counter im-
plemented as two 32-bit registers(TBU and TBL) with
read-only access

The PowerPC EABI register usage conventions are de-
picted in Table I. Nonvolatile registers must have their
original values preserved, therefore, functions modifying
nonvolatile registers must restore the original values be-
fore returning to the calling function.

mov main.x <− $vr8.s32
movfx $vr8.s32 <− $vr5.s32(XR)

movtx $vr7.s32(XR) <− vr6.s32

exec address_op1_EXEC

ldc $vr6.s32(XR) <− 0

c=0;
for(i=0; i<b; i++)
 c = c + a<<i + i;
c = c>>b;
return c;
}
void main(){
int x,z;
z=5;

}
x= ; f(z, 7)

#pragma call_fpga op1

int c,i;
int f(int a, int b){

movtx $vr1.s32(XR) <− $vr2.s32

mrk 2, 14
mov $vr2.s32 <− main.z

ldc $vr4.s32 <− 7

set address_op1_SET

movtx $vr3.s32(XR) <− $vr4.s32

main:

mov main.x <− $vr1.s32

.text_end main

mrk 2,13
ldc $vr0.s32 <− 5
mov main.z <− $vr0.s32

mrk 2, 14
ldc $vr2.s32 <− 7

mrk 2, 15
ldc $vr3.s32 <− 0
ret $vr3.s32

C code Original MIR code
instructions for FPGA
MIR code extended with

cal $vr1.s32 <− f(main.z, $vr2.s32)

Fig. 2. Code Generation at MIR level

FuncX:

mflr %r0 ; Get Link register
stwu %r1,-88(%r1) ; Save Back chain and move SP
stw %r0,+92(%r1) ; Save Link register
stmw %r28,+72(%r1) ; Save 4 non-volatiles r28-r31

..

lwz %r0,+92(%r1) ; Get saved Link register
mtlr %r0 ; Restore Link register
lmw %r28,+72(%r1) ; Restore non-volatiles
addi %r1,%r1,88 ; Remove frame from stack
blr ; Return to calling function

Fig. 3. Function’s Prologue and Epilogue

The EABI also has a construct known as the Small Data
Area (SDA) designed to take advantage of the PowerPC
base plus displacement addressing mode. When a 16-bit
displacement fits, along with the instruction opcode, into
a single instruction word than only one instruction word is
required instead of the two needed to access it as a 32-bit
address. This is a more memory efficient method of ac-
cessing a variable from SDA than referencing it by using a
full 32-bit address. There are two such SDAs, one for read-
write variables and a second for read-only variables. The
small data areas are referenced by a base register loaded
when the C runtime environment is initialized. R2 is the
base for the read-only (const type) small data area, and
R13 is the base for the read-write (nonconst type) small
data area.

B.2 The Stack Frame

In addition to the registers, each function may have a
stack frame on the runtime stack. The PowerPC architec-
ture does not have a push/pop instruction for implementing

a stack. The EABI conventions of stack frame creation and
usage for parameter passing, nonvolatile register preser-
vation, local variables, and code debugging are presented
in Fig. 4. The following requirements apply to the stack
frame:

� The address of the previous frame is stored in Back
Chain Word, thereby forming a linked-list of stack frames
and it is always located at the lowest address of the stack
frame.� The return address to the calling function is stored in the
LR Save Word.� In order to maintain 8-byte alignment of the stack frame,
a Padding Area may be introduced to guarantee such align-
ment.� In the Function Parameters Area, additional function ar-
guments are stored when they do not fit into the designated
registers R3-R10.� When local variables are more than can be contained
in the available volatile registers, they are stored in Local
Variables Area.

SP

(optional, size varies)
Function Parameters Area

(optional, size varies)
Local Variables Area

CR Save Word
(optional)

GPR Save Area
(optional, size varies)

LR Save Word

Bach Chain Word

LR Save Word

Bach Chain WordOld SP

Padding for 8 byte stack alignment
(optional, size varies 1−7 bytes)

High address

Header
Frame

Fig. 4. PowerPC EABI Stack Frame Organization

� When the nonvolatile CR fields are modified, its contain
need to be saved in the CR Save Word.� GPR Save Area may be introduced to save nonvolatile
GPR. When saving any GPR, all the GPRs from the lowest
through R31, inclusive, must be saved.

The stack frame is created by a function’s prologue code
and destroyed in its epilogue code. In Fig. 3 is presented
an example of function’s prologue and epilogue.

B.3 Floating-Point Emulation

The PowerPC 405 is an integer processor and does not
support the execution of floating-point instructions in hard-
ware. System software can provide floating-point emula-
tion support by supplying a call interface to subroutines
within a floating-point run-time library. The individual
subroutines emulate the operation of floating-point instruc-
tions as presented in [15]. This method requires the recom-
pilation of floating-point software in order to add the call
interface and link in the library routines.

The compiler has to manage floating point arithmetic,
comparisons, loads, and stores by generating software
floating point emulation (sfpe) code, rather than using
PowerPC floating point instructions. In sfpe code:
� Floating point single precision scalars shall be treated as
long int scalars.� Floating point double precision scalars shall be treated
as long long scalars.� Whenever a function has a variable argument list, it shall
not set condition register bit 6 to 1 (as usual for Pow-
erPC architecture), since no arguments are passed in the
floating-point registers (as there are no FPR included in
PowerPC 405).

B.4 Code Selection

Code selection is typically the first backend phase and
maps machine independent IR statements and operations
into machine specific processor instructions. This phase is
performed in Machine SUIF where each IR statement is
translated into equivalent assembly instructions. For ex-
ample, for the MIR instruction mul r1, r2 � r3, the gener-
ated LIR set of instructions depends on the operands type
as presented in Table II. For example, when both operands
are of type unsigned short (2 bytes), then a mask for each
operand (to take the lower 16 bits) is required and the re-
sult of the single multiplication can be placed in a 32-bit
register. For integer operands, two multiplications are re-
quired when a 8 byte result is expected.

For RISC targets with homogeneous register files, the
translation of each MIR instruction separately provides
satisfactory results, since there are hardly complex instruc-
tions and late improvement of the selected code is still pos-
sible by means of peephole optimization.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the implemented com-
piler extensions for the Molen Programming Paradigm and
determined the key issues for developing a compiler back-
end for the PowerPC 405 processor included in Virtex-II
Pro Platform.

As future work, we intend to develop compiler opti-
mizations in order to hide the SET instruction latency and
moreover to exploit the parallelism of operations executed
on the reconfigurable hardware. As the compiler can gen-
erate additional code to perform a deep profiling for a
set of representative input data, we can also analyze the
hardware constraints for reconfigurable hardware config-
urations and executions, GPP-FPGA communication and
FPGA-memory communication for the Virtex-II Pro Plat-
form.

REFERENCES

[1] F. Campi, R. Canegallo, and R. Guerrieri. IP-Reusable 32-Bit
VLIW Risc Core. In Proc. of the 27th European Solid-State Cir-
cuits Conference, pages 456–459, Villah, Austria, Sep 2001.

[2] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
ADRES: An Architecture with Tightly Coupled VLIW Proces-
sor and Coarse-Grained Reconfigurable Matrix. In FPL, volume
2778, pages 61–70, Lisbon, Portugal, Sep 2003. Springer-Verlag
LNCS.

[3] M. Sima, S. Vassiliadis, S.Cotofana, J.T. van Eijndhoven, and
K. Vissers. Field-Programmable Custom Computing Machines
- A Taxonomy. In FPL, volume 2438, pages 79–88, Montpellier,
France, Sep 2002. Springer-Verlag LNCS.

[4] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN ��� -Coded
Processor. In FPL, volume 2147, pages 275–285, Belfast, UK,
Aug 2001. Springer-Verlag LNCS.

Op Type unsigned signed
rlwinm r1,0,0xff � r4

char rlwinm r2,0,0xff � r5
mullw r4, r5 � r3
rlwinm r1,0,0xffff � r4 extsh r1 � r4

short rlwinm r2,0,0xffff � r5 extsh r2 � r5
mullw r4, r5 � r3 mullw r4, r5 � r3

int mulhwu r1, r2 � r3’ mulhw r1, r2 � r3’
mullw r1, r2 � r3” mullw r1, r2 � r3”
mullw r2”, r1” � r3”” mullw r2”, r1” � r3””
mulhwu r2”, r1” � r3”’ mulhw r2”, r1” � r3”’
mullw r2”, r1’ � r10 mullw r2”, r1’ � r10
mulhwu r2”, r1’ � r3” mulhw r2”, r1’ � r3”
mullw r2’, r1” � r12 mullw r2’, r1” � r12
mulhwu r2’, r1” � r11 mulhw r2’, r1” � r11

long long mullw r2’, r1’ � r13 mullw r2’, r1’ � r13
mulhwu r2’, r1’ � r3’ mulhw r2’, r1’ � r3’
addc r3”’, r10 � r3”’ addc r3”’, r10 � r3”’
adde r3”, r10 � r3” adde r3”, r10 � r3”
addze r3’ � r3’ addze r3’ � r3’
addc r3”’, r12 � r3”’ addc r3”’, r12 � r3”’
adde r3”, r13 � r3” adde r3”, r13 � r3”
addze r3’ � r3’ addze r3’ � r3’

TABLE II
LIR TRANSLATION OF MIR INSTRUCTION mul r1, r2 � r3

[5] J.M. P. Cardoso and H. C. Neto. Compilation for FPGA-based
Reconfigurable Hardware. IEEE Design & Test of Computers,
20(2):65–75, March/April 2003.

[6] M.B. Gokhale and J.M. Stone. Napa C: Compiling for a Hy-
brid RISC/FPGA Architecture. In Proc. IEEE Symp. on Field-
Programmable Custom Computing Machines, pages 126–137,
Napa, California, April 1998.

[7] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
DRESC: A Retargetable Compiler for Coarse-Grained Reconfig-
urable Architectures. In FPL, pages 166–173, Hong Kong, Dec
2002. Springer-Verlag LNCS.

[8] A. La Rosa, L. Lavagno, and C. Passerone. Hardware/Software
Design Space Exploration for a Reconfigurable Processor. In
Proc. of the DATE 2003, pages 570–575, 2003.

[9] Z.a. Ye, N. Shenoy, and P. Banerjee. A C Compiler for a Pro-
cessor with a Reconfigurable Functional Unit. In ACM/SIGDA
Symposium on FPGAs, pages 95–100, Montery, California, USA,
2000.

[10] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. Moscu
Panainte. The Molen Programming Paradigm. In Proc. of the
Third International Workshop on Systems, Architectures, Model-
ing, and Simulation, pages 1–7, Samos, Greece, July 2003.

[11] G.K. Kuzmanov and Stamatis Vassiliadis. Arbitrating Instructions
in an -coded CCM. In FPL 2003, volume 2778, pages 81–90,
Lisbon, Portugal, Sep 2003. Springer-Verlag LNCS.

[12] E. Moscu Panainte, K. Bertels, and S. Vassiliadis. Compiling
for the Molen Programming Paradigm. In FPL 2003, volume
2778, pages 900–910, Lisbon, Portugal, Sep 2003. Springer-
Verlag LNCS.

[13] http://suif.stanford.edu/suif/suif2.
[14] http://www.eecs.hardward.edu/hube/research/machsuif.html.
[15] S. Sobek and K. Burke. PowerPC Embedded Application Binary

Interface 32-Bit Implementation, Version 1.0.

