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Abstract

A flexible, parameterizable simulator of pipelined processors is presented. The simulator
allows to configure several (micro-)architectural features such as the pipeline depth, the stage
in which branch execution occurs, whether or not register file forwarding is performed, and the
number of branch delay slots. We use the simulator to perform experiments with three synthetic
benchmarks: vector addition, vector summation, and sum of absolute differences. These kernels
are representative for data parallel loops, reduction operations, and benchmarks containing many
hard to predict branches, respectively.

Keywords: simulation, pipelined processors, microarchitecture, embedded processors, energy reduc-
tion.

1 Introduction

Since superscalar processors are very power hungry, the core of many embedded systems is an in-
order issue, pipelined processor. This is exemplified by the ARM processors: the ARM7 implements
a 3-stage pipeline, the ARM10 has 5 stages, and the ARM11 8 stages. The optimal number of pipeline
stages usually depends on the application. If it performs many independent operations, a deep pipeline
is preferable and no forwarding datapaths are needed. If operations are dependent, a shorter pipeline
is preferable and forwarding may be required to avoid stalls. Furthermore, if energy consumption is a
concern, a deep pipeline is favorable because deep pipelines often translate to lower supply voltages
and, hence, reduced energy consumption.

In order to investigate these trade-offs, a simulator is needed that allows to configure the pipeline
depth, the forwarding datapaths, etc. However, to our knowledge, there does not exist a simulator that
allows to configure the microarchitecture. For example, in [7] the authors propose to pipeline cache
accesses to reduce the cache supply voltage and, thereby, energy consumption, but to evaluate their
proposal they had to modify the MARS simulator [2].

In this paper we present such a flexible, configurable simulator. As is typical for load/store RISC
architectures, it is assumed that the execution of every instruction passes through the following steps:
Instruction Fetch, Instruction Decode, Execute, Memory Access, Write-Back. Each of these steps (or
super-stages) may be split up in an arbitrary number of sub-stages. For example, pipelined caches
can be simulated by specifying that the Instruction Fetch and Memory Access super-stages consist of
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Figure 1: Simple RISC pipeline

two or more sub-stages. In addition, the simulator allows to specify several other microarchitectural
features such as the sub-stage in which branch execution takes place, whether or not forwarding is
performed, and in which sub-stages the registers are read or written. We use the simulator to determine
the “optimal” pipeline for some important kernels.

This paper is organized as follows. Section 2 describes the conventional, 5-stage pipeline and
discusses several micro-architectural trade-offs. Related work is described in Section 3. Section 4
presents our simulator called Sketch and discusses the processor parameters that can be varies. Sec-
tion 5 present the results of some experiments using three synthetic benchmarks representing different
type of applications: a data-parallel loop (vector addition), a reduction operation (vector accumu-
late), and a loop containing many branches (sum of absolute differences). Conclusions are drawn and
directions for future work are given in Section 6.

2 Background

Figure 1 [5] depicts a conventional pipeline, as implemented for example by the MIPS R1000 pro-
cessor.

It consists of five stages:

1. Instruction Fetch (IF). In this stage an instruction is fetched from the instruction memory and
the program counter is incremented.

2. Instruction Decode/Operand Fetch (IF/OF). The instruction is decoded and its source operands
are fetched from the register file. Note that the operands are fetched speculatively. This is pos-
sible because the register designators are always in the same location in the instruction format.

3. Execute (EX). Depending on the the instruction, an ALU operation is performed, the effective
address is calculated (for load/store instructions), or the branch condition is determined. The
ALU computes the branch condition and an additional adder is used to compute the branch
target address.
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Figure 2: Pipelined datapath

4. Memory access (MEM). In this stage load/store instructions access memory and branch in-
structions complete, meaning that if the branch is taken the PC is modified by the end of this
stage.

5. Write-back (WB). In this stage the result of the instruction is written back to the register file.

The pipelined datapath depicted in Figure 2 [5] suffers from two kinds of hazards: data hazards
and control hazards. Data hazards occur because the result of an instruction is not written to the
register file until the fifth stage (the write-back stage), while the register file is read during the second
stage (the operand fetch stage). This implies that when an instruction � writes to a register ��, the
three instructions immediately following � in program execution order cannot use �� as a source
operand. A solution to this problem would be to stall a dependent instruction in the operand fetch
stage until the instruction it depends on has written its result back to the register file, but in most
cases this causes many stall cycles. In the R1000 processor data hazard stall cycles are avoided using
two techniques. First, writing to the register file takes place during the first half of the processor
cycle, while reading from the register file occurs during the second half of the cycle. This reduces the
number of instructions that cannot use the destination register as a source operand to two. Second,
a technique called forwarding or bypassing is applied. This is illustrated in Figure 3 [4]. Instead of
waiting for a result to be written back to the register file, a Forwarding Unit is added that checks if the
destination register of the instruction currently in the memory access stage or the detination register of
the instruction in the write-back stage is equal to one of the source registers of the instruction currently
in the execute stage. If this is the case, the multiplexors that determine the ALU inputs select the result
of the instruction currently in the memory access or write-back stage rather than the values read from
the register file in the previous cycle.

There is one situation, however, where the result of an instruction cannot be forwarded to the next
instruction. This is when a load instruction is immediately followed by an instruction that uses the
destination of the load as a source operand. This is because the result of a load is not available until
the end of the fourth stage. The hazard detection unit depicted in Figure 3 [4] detects such cases and
stalls the pipeline if necessary.

Note, however, that adding a forwarding unit increases the critical path of the execute stage.
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Figure 3: Datapath with forwarding

Depending on the critical path of the other stages, this may increase the cycle time. Therefore, in order
to determine if forwarding is advantageous, micro-architectural simulations and cycle time estimates
may be used.

The other kind of hazards the pipelined datapath depicted in Figure 2 [5] suffers from are control
hazards. Because branch execution occurs in the fourth stage (the MEM stage), three instructions
following the branch in program order have already been fetched into the pipeline. If the branch is
taken, these instructions need to be flushed. In order to reduce the penalty of a taken branch, in the
R1000 branch execution is moved to the OF stages, as illustrated in Figure 3 [4]. Immediately after
the registers have been fetched from the register file, the branch condition is determined. In order to
evaluate the branch condition in a very short time, the MIPS-I instruction set includes only a very
limited set of easy to calculate branch instructions: branch if equal, branch if not equal, branch if less
than zero, and branch if greater than zero. Branch if less than, for example, needs to be synthesized
using the set if less than and branch if not equal instructions.

By moving branch execution to the OF stage, the branch dealy is reduced to one cycle. In the
R1000 the branch penalty is further reduced by always executing the instruction immediately after
the branch. It is up to the compiler to fill this slot with an useful instruction, or with a no-op if it
cannot find a useful instruction. It is questionable if making such an implementation issue visible at
the architectural level is good design. The superscalar R10000 processor does not need a branch delay
slot, but it is kept for binary compatibility reasons. Furthermore, moving branch execution to the OF
stage means that an ALU instruction followed by a branch that uses the result of the ALU instruction
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incurs a stall of one cycle.
Moving branch execution to the OF stage can have a negative impact on the cycle time. Since the

register file is read during the second half of the cycle, the time to read the register file plus the time
needed to calculate the branch condition must me less than a half cycle. Maybe this did not affect the
cycle time of the R1000, but it may affect the cycle time of other processors implemented in other
technologies. So, the designer might ask: should I move branch execution to the OF stage or should I
perform it in later stages, even if this means that the penalty of a taken branch is increased. This too
can be determined using �-architectural simulations and cycle time estimated, provided the simulator
allows to specify when branch execution takes place.

The five-stage pipeline described above is a conventional pipeline. Contemporary processors use
a deeper pipeline in order to achieve higher clock rates. This is also called superpipelining. The
pipeline of the MIPS R4000 is a good example. [6].

Because cache accesses took considerably more time than either a register file access or an ALU
operation, the designers of the R4000 decided to break up the IF and MEM stages into several stages.
The IF stage is split into the following two stages:

IF First half of instruction fetch.

IS Second half of instruction fetch. Instruction cache access completes.

The MEM stage, on the other hand, is split into three stages:

DF First half of data cache access.

DS Second half of data fetch. Data cache access completes.

TC Tag check. Determine whether the data cache access yielded a hit.

Note that in order to be able to split cache accesses into several stages, the caches must allow pipelined
cache accesses.

Deeper pipelines increase the load as well as the branch delays. The load delay of the R4000 is
two cycles because the value loaded is available at the end of the DS stage. If the subsequent tag check
indicates a miss, the pipeline is stalled until the data is available. The branch delay is three cycles,
because branch condition evaluation is performed during the EX stage.

Summarizing, there are many �-architectural design choices. However, we are not aware of a
flexible, parameterizable simulation system that allows to evaluate these design choices. The simu-
lator presented in the next section allows to configure �-architectural features such as the number of
pipeline stages, the stage in which branch execution occurs, whether forwarding is performed, etc.

3 Related Work

The SimpleScalar toolset [1] is probably the most often used simulation system for computer engi-
neering studies. For example, many papers appearing at the International Symposium on Computer
Architecture use SimpleScalar to verify the proposed techniques. SimpleScalar actually consists of
several simulators of which sim-outorder is the most advanced. It allows to vary many processor
and memory parameters such as the issue width (a single-issue, pipelined processor can be simulated
by specifying an issue width of one), the window or Register Update Unit size, and the cache miss
penalties. However, several micro-architecural features, in particular the pipeline organization, are
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fixed and can only be changed by modifying the code substantially. For example, sim-outorder
cannot be used to evaluate current deeply pipelined superscalar processors.

In [3], the authors present an analytical model based on which they want to determine the op-
timal pipeline depth for different sets of applications. They not only focus on the traditional SPEC
benchmark but also include more modern applications such as web based and database applications.
By They constructed a simulator based on the analytical model on which these workloads were then
executed varying the pipeline depth. When not distinguishing between the two sets of applications,
they found a Gaussian distribution of the pipeline lengths. When separating between the SPEC and
’modern’ applications, it is found that the latter category requires a much deeper pipeline than the
SPEC applications.

In [8], the relationship between performance and pipeline depth is explored. They show that the
branch misprediction latency is the main cause of performance loss in deep pipelines. They also show
that as the pipeline gets deeper, there is increasing pressure on the memory system, requiring larger on
chip caches. When increasing the pipeline depth and cache size, a performance improvement of 35 to
90% can be achieved. However, increasing the pipeline depth implies the use of increasingly complex
algorithms and more accurate timing tools. More accurate architectural simulators are required in
order to validate the impact of such choices and fine tune the architecture.

4 The Simulator

This section describes our simulator Sketch.
The first and most important parameter that can be configured is the number of pipeline stages.

Specifically, each stage in the conventional pipeline can be split into an arbitrary number of substages.
To avoid confusion, the stages in the conventional pipeline will be referred to as superstages. The
simulator takes the following command-line arguments which specify the number of substages in
each superstage:

if Number of substages in the IF superstage.

of Number of substages in the OF superstage.

ex Number of substages in the EX superstage.

mem Number of substages in the MEM superstage.

wb Number of substages in the WB superstage.

By default, the number of substages in each superstage is one, corresponding to the conventional
pipeline. In order to simulate the R4000 pipeline one has to specify

p3 -if=2 -mem=3 test

The current simulator cannot simulate pipelines that deviate significantly from the conventional
pipeline. For example, it cannot simulate register-memory architectures such as the x86/IA-32 where
one operand of an instruction can be a memory location. This is because for such architectures the EX
and MEM superstages need to be replaced by an address stage that computes the effective address,
a memory stages that loads the source operand from memory, and an execute stage. We remark,
however, that the Pentium translates complex instructions to RISC-like �-operations.

By default, branch execution takes place during the first substage of the MEM superstage.
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Figure 4: Branch delay

As illustrated in Figure 4 [4], this means that the branch delay is equal to the number of substages
in the IF and OF superstages. One can specify that branch execution takes place during an earlier
substage by specifying

p3 -branch=3.1 test

This specifies that branch execution occurs during the first substage of the third superstage (the EX)
stage. The earliest substage branch execution can be performed is the last substage of the OF super-
stage.

After a branch the simulator continues fetching the next instructions in static program order un-
til the branch is resolved. This is sometimes referred to as predict not taken. Not taken branches,
therefore, do not occur a branch penalty while taken branches do. The current simulator does not
implement delayed branches, in which the instruction(s) after the branch are always executed. If a
branch instruction is taken, all instructions preceding it in the pipeline are flushed. To evaluate de-
layed branches, a parameterizable code reorganization tool would also be needed. Another extension
we plan to incorporate in future versions of the simulator is branch prediction.

By default, the simulator does not perform forwarding. One can specify that forwarding should
be performed and the number of data hazard stall cycles using the command-line argument

-dhs=<n>

where <n> is the number of cycles between the time a result is produced and the time it can be
consumed. For most processors, n=0, meaning that the result of an arithmetic operation can be
forwarded immediately after the last substage of the EX superstage and that the result of a load can
be forwarded immediately after the last substage of the MEM superstage. However, as argued in
Section 2, adding a forwarding unit may increase the cycle time, so it might be advantageous to
allow one cycle for comparing if one of the source registers of the instruction currently in the first
substage of EX is equal to the destination register of an instruction later in the pipeline. It is assumed
that the result of a load can be forwarded from the last substage of the MEM superstage onwards.
Forwarding from a earlier substage onwards and roll-back in case of a miss, as in the R4000, is not
yet implemented.
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Kernel 1: VADD
implemented as "v-add.s"
addi $3, $0, 100
addi $4, $0, 400
addi $5, $0, 700
addi $1, $0, 0
addi $2, $0, 64
lw $6, 0($3)
lw $7, 0($4)
lw $8, 1($3)
lw $9, 1($4)
lw $10, 2($3)
lw $11, 2($4)
lw $12, 3($3)
lw $13, 3($4)
addi $3, $3, 4
addi $4, $4, 4
add $6, $6, $7
add $8, $8, $9
add $10, $10, $11
add $12, $12, $13
addi $1, $1, 4
sw $6, 0($5)
sw $8, 1($5)
sw $10, 2($5)
sw $12, 3($5)
addi $5, $5, 4
bne $1, $2, -21
stop

Kernel 2: VSUM
implemented as "v-sum.s"
addi $1, $0, 0
addi $4, $0, 100
addi $3, $0, 0
addi $2, $0, 64
addi $1, $1, 1
lw $5, 0($4)
addi $4, $4, 1
add $3, $3, $5
bne $1, $2, -5
stop

Kernel 3: SAD
implemented as "sad.s"
addi $4, $0, 100
addi $5, $0, 500
addi $10, $0, 1
addi $1, $0, 0
addi $2, $0, 0
addi $3, $0, 64
lw $6, 0($4)
lw $7, 0($5)
addi $4, $4, 1
addi $5, $5, 1
addi $2, $2, 1
sub $8, $6, $7
slt $9, $8, $0
add $1, $1, $8
bne $9, $10, 2
sub $11, $1, $8
sub $1, $11, $8
bne $2, $3, -12
stop

Figure 5: The kernels used for simulation

We remark that the current version of the simulator is a proof of concept. There are many features
that have not yet been implemented. For example, the current simulator does not simulate a memory
hierarchy: it is assumed that all memory accesses hit the cache. However, the cache hit ratio or the
lack of a cache (since many embedded processors do not have a cache) infuences the optimal pipeline
depth, since the memory latency may be hidden by splitting the IF and MEM superstages into many
substages.

5 Usage

We use the simulator to perform experiments with three synthetic benchmarks: vector addition, vector
summation, and sum of absolute differences. These kernels are representative for data parallel loops,
reduction operations, and benchmarks containing many hard to predict branches, respectively. The
assembly codes are given in Figure 5. Three experiments has been performed with the simulator,
which are: varying the number of substages of Execution superstage, moving branch execution from
MEM to EXE to ID/OF, and register file forwarding on/off. For each experiment, cycles of running
the kernels are tested. What we do in each experiment and the corresponding results are given as
follows.
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5.1 Experiment 1

In this experiment, we vary the number of substages of Execution(EXE) superstage. To change the
number of substages of EXE superstage, the number can be assigned in command line, using ”-e=the
number”.

For vector add(VADD) that contains few data dependencies (provided it is unrolled a couple of
(four) times), the extra cycles will be few initially(first time: 16, second time: 33) and more later(after
the number is bigger than 4, increase by 49 each time). For vector summation(VSUM) contains a true
dependence (unless one performs ”scalar expension”) so its execution time will grow substantially.
The test results and curves drawn based on results are depicted in Figure 6.

5.2 Experiment 2

In the second experiment, we move branch execution from MEM to EX to ID/OF. By default, branch
is executed in MEM stage(in command: -b=4.1). If branch executes in EXE or ID/OF, we should
change the value of ”-b” to ”3.1” or ”2.1” respectively.

For vector addition, the gain is small (contain only one branch per loop iteration and no data
dependence.). For vector summation and SAD, the gain are large. It is likely that moving branch
execution from MEM to EX will not affect the cycle time, so this will always improve performance.
However, moving it to the ID/OF stage may lengthen the cycle time, because the the registers need
to be fetched and the branch condition evaluated in the same cycle. As can be seen in Figure 7,
moving branch execution to the OF stage reduces the number of cycles taken by the VSUM and SAD
kernels substantially (19.5% and 18.8%), so execution time will be reduced provided the cycle time
is not increased by 19.5% and 18.8%. However, the number of cycles taken by the VADD kernel
is not reduced substantially, by 7.6%. For this kernels moving branch execution to the OF stage is
advantageous only if a register file access takes less time than a machine cycle.
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5.3 Experiment 3

In the third experiment, the test of register file forwarding on/off is performed. It is supposed to be
worthwile if there are many dependencies over a short distance (in other words, if we cannot find three
independent instructions between a definition and a use). For VSUM and SAD, there are more than
one data dependencies. Turning forwarding on will reduce cycle times(9.92For VADD, there is no
data dependence. So forwarding has nothing to do with this case. Test results are given in Table 1.

ForwardingOFF Cycles ForwardingON Cycles Perc. of Cycle reduction
VADD 390 390 0
VSUM 645 581 9.92%
SAD 1351 1223 9.47%

Table 1: Experiment 3: Register file forwarding effect

However, there is an exception. Writing to the register file during the first half of a cycle and
reading from the register file during the second half implies that a register file access can take at most
half a machine cycle � . If a register file access takes more time, for example ���� , then register file
forwarding will decrease the performance of all kernels.

6 Conclusions and Future Work

We have presented a flexible, parameterizable simulator of pipelined processors. As for load/store
RISC architectures, the simulator allows to configure several (micro-)architectural features such as
the pipeline depth (meaning default five pipeline superstages can be divided into arbitrary substages),
the stage in which branch execution occurs, whether or not register file forwarding is performed, and
the number of branch delay slots. We used the simulator to perform experiments with three synthetic
benchmarks: vector addition, vector summation, and sum of absolute differences. These kernels are
representative for data parallel loops, reduction operations, and benchmarks containing many hard to
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predict branches, respectively. With the help of our simulator, the cycle times of running each kernel
are given. And the optimal pipeline configuration for each kernel can be decided.

We remark that the current version of the simulator is a proof of concept. There are many features
that have not yet been implemented. For example, the current simulator does not simulate a memory
hierarchy: it is assumed that all memory accesses hit the cache. Forwarding from an earlier substage
onwards and roll-back in case of a miss, as in the MIPS R4000, is not yet implemented. These
additional features may lead to new research topics and will improve our simulator in the future.
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