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Abstract—In this paper, we introduce a benchmark suite
on RTP/RTCP processing. The suite consists of three bench-
marks, namely RTP Sender, RTP Receiver and RTCP Pro-
cessing. For each benchmark, three aspects are specified:
functions, measurements and environments. After imple-
menting the benchmarks, we perform profiling in order to
determine the time-critical functions and investigate the ar-
chitectural characteristics. Finally, the results on architec-
tural characteristics show that the proposed benchmarks
differ significantly from MediaBench and NetBench.

Keywords—Benchmarking, real-time network processing,
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I. I NTRODUCTION

The continuous evolution of the Internet requires sup-
port from network devices that are capable of handling all
the necessary services, applications, etc.. This imposes
two requirements on the network devices: performance
and flexibility. Performance is needed, because network
devices are expected to process data at wire-speed in or-
der to eliminate network bottlenecks. Flexibility is needed,
because network devices are expected to be easily adapt-
able to support emerging applications. In designing net-
work devices for flexibility, an obvious choice would be
to utilize general-purpose processors (GPPs) which can
be adapted to rapidly changing network protocols. How-
ever, they usually lack the performance to handle data at
wire-speed. Traditionally, as the performance became in-
creasingly more important, application-specific integrated
circuits (ASICs) were introduced and substituted GPPs.
However, ASICs lack the flexibility to be easily updated in
order to support new features. Consequently, a new kind of
processor is needed to meet the two requirements. Such a
need has sparked the emergence of the network processor.

A network processor (NP) is a programmable device in-
corporating specialized hardware designed specifically to
process data at wire-speed. Network processors can pro-
vide speed improvements through architectures, such as
parallel distributed processing and pipeline processing de-

signs. The programmability of network processors can en-
able easier migration to new protocols and technologies.
While network processors are designed having both flexi-
bility and performance in mind, there is still a broad spec-
trum of trade-offs between these two requirements. The
advantage is that it allows network processor vendors to
distinguish their products from others by targeting slightly
different application areas. The main disadvantage is that
the existence of many architectures and implementations
of network processors makes it difficult to compare them
in terms of performance. Therefore, a key challenge is to
find an adequate way to evaluate the performance of the
heterogeneous collection of network processors (both cur-
rent and possible future ones). Consequently, benchmarks
are needed to measure the performance of network proces-
sors. Currently, several network processing benchmarks
have been introduced that mainly focus on some specific
applications in the networking domain. However, there is
still a need for a new set of benchmarks in order to more
accurately reflect the constantly evolving field of network
processing. More specifically, in this paper we create a
benchmark suite that allows the investigation of network
processing on real-time delivery that has not been intro-
duced in existing benchmarks. We also perform profiling
on the benchmarks in order to find the time-critical func-
tions in each benchmark, which could be implemented in
hardware in the future to obtain a performance gain. Fi-
nally, we investigate the architectural characteristics on the
benchmarks and compare them with the results from Net-
Bench [6] and MediaBench [3] to understand the features
of the created benchmarks.

This paper is organized as follows. Section II describes
the background on benchmarking and the protocols for
real-time delivery. Section III presents the implementa-
tion of the benchmarks on real-time delivery from three
aspects: function, measurement and environment. Section
IV describes the benchmarks results. Section V presents
the conclusions of the paper.
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II. BACKGROUND

This section presents two backgrounds on the topic of
this paper: benchmarking and the protocols for real-time
network processing.

A. Benchmarking

Simply put, a benchmark is a standard for judging sys-
tem performance in a target application. Generally, a
good benchmark helps to measure system performance in
a deterministic and reproducible manner. Like the well-
known SPEC benchmarks [13], they have been widely uti-
lized to evaluate the performance of modern computer sys-
tems. However, they are not suitable for benchmarking
network processors since network processors target spe-
cific applications related networking. [9] discusses the
requirements and challenges of benchmarks for network
processors. Recently, some benchmarks for network pro-
cessors, NetBench [6], CommBench [1], EEMBC [5], and
NPF [10], have been introduced. There is still headroom
for benchmarking network processing due to the following
reason. With new applications emerging, no benchmark
exists to evaluate the performance of network processors
on these new applications. It is necessary for benchmarks
to cover some of the untargeted applications that the exist-
ing benchmarks do not cover.

B. Real-Time Transport Protocol

As the need of multimedia services grows, it is in-
evitable that the convergence of voice and data will play an
important role in future networks. Currently, Voice-over-
IP (VoIP) is viewed as an attractive and effective technol-
ogy. However, the IP network only provides “best-effort”
services causing variable delays, packet duplicates, and
packet losses. This is usually not a big problem for data ap-
plications. However, voice data are delay sensitive mean-
ing that voice packets have to be delivered timely and long
packet delivery delays must be avoided. In order to ensure
timely voice data delivery, additional protocol support is
required. Such protocol must handle two main problems of
the voice data delivery over the IP network: out-of-order
delivery and jitter.

The Real-Time Transport Protocol (RTP) [11] is de-
signed to provide end-to-end delivery services for data
with real-time characteristics. The data transport is aug-
mented by the RTP control protocol (RTCP) to allow mon-
itoring of the data delivery.

The RTP protocol handles the out-of-order problems
by assigning a sequence number to each voice packet and
delay problems by assigning a timestamp to the packet.
The sequence number enables the receiver to process the
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Fig. 1. RTP packet.
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Fig. 2. RTCP Receiver Report (RR) packet.

packets in the same order as they were sent. It also allows
the receiver to detect packet losses and duplicates. Once
ordered, the receiver determines using the timestamp at
which time the data in the packet should be played back.
Figure 1 depicts the structure of an RTP packet. The first
twelve bytes must be present in every RTP packet, while
the CCRC list and RTP header extension are optional. Spe-
cific details regarding the use of these header fields, RTP
and its profiles are described in [11] and [12].

The RTCP protocol works in conjunction with RTP by
providing control information. An important RTCP packet
is the RTCP receiver report (RR) which allows all receivers
to exchange information on reception conditions and to
adapt their reporting rates to avoid using excessive band-
width and overwhelming the sender. Figure 2 depicts the
structure of an RTCP RR. It mainly consists of two sec-
tions possibly followed by a third profile-specific exten-
sion section if defined. The first section (header) is 8 bytes
long. The second section contain zero or more reception
report block. Each reception report block conveys statis-
tics on the reception of RTP packets from a single synchro-
nization source.

III. B ENCHMARKING

The RTP protocol is responsible for sending and receiv-
ing RTP packets and the RTCP protocol is responsible for
providing control information. Therefore, the benchmark
suite for the RTP and RTCP processing consists of an RTP
Sender benchmark, an RTP Receiver benchmark and an
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RTCP Processing benchmark. The implementation of the
benchmarks are based on existing software codes [7], [4]
and [11]. By using the methodology described in [8],
each benchmark is highlighted from three aspects. First,
the function aspect specifies the core algorithms used in
each benchmark, all necessary functions implemented in
the benchmark, and the manner to implement these func-
tions. Second, the measurement aspect specifies the veri-
fication of the benchmarks and the metrics used to investi-
gate the benchmarks. Third, the environment aspect spec-
ifies the interface (input/output) of each benchmark and
simulation environment on the benchmarks. For all three
benchmarks, the same measurement and the same simula-
tion environment are utilized.

This section is organized as follows. Section III-A de-
scribes function specification and environment specifica-
tion on interface of the RTP Sender benchmark. Section
III-B describes the two aspects of the RTP Receiver bench-
mark. Section III-C describes the two aspects of the RTCP
Processing benchmark. Section III-D describes the com-
mon aspects for the three benchmarks on measurement
specification and simulation specification.

A. RTP Sender

Function specification: Three functions are investigated
in the RTP Sender benchmark:
• Reading data from inputis to obtain a voice data unit as
an RTP payload and to allocate a buffer to the data unit.
• Encapsulating an RTP packetconsists of building an
RTP header, prepending the header to the RTP payload to
be an RTP packet, and increasing the timestamp and se-
quence number for the next RTP packet.
• Writing the RTP packetis performed in two ways: writ-
ing to the memory for the simulation and writing to the
hard disk for generating the input of the RTP Receiver
benchmark.
Environment specification - interface: The RTP Sender
benchmark takes an audio file as the input, the size of
which is4MB. The input buffer is set into160 bytes for
20 ms voice. The output buffer is set into10000 bytes for
an RTP packet.

B. RTP Receiver

Function specification: Four functions are investigated
in the RTP Receiver benchmark:
• Input buffer managementThe input buffer is utilized
to store incoming packets for further processing. If the
buffer is full, the new incoming packet will be placed at
the beginning of the buffer even if the old packet in the
beginning of the buffer has not been played out.

• Data parsingA packet is received as a format of a string.
This function is to convert this string into the structure of
an RTP packet. It takes a pointer to the string saved in
the input buffer and returns a pointer to the RTP packet
structure.
• Statistics updatingIt includes two procedures: first, pro-
cessing the sequence number of each coming RTP packet
and subsequently, estimating the interarrival jitter. The se-
quence number processing is done by the algorithm de-
fined in [11]. The interarrival jitter is estimated by the fol-
lowing equations:

Di = (Ri −Ri−1)− (Si − Si−1) (1)

WhereDi denotes jitter estimation for theith packet,Ri

andRi−1 denote the time of arrival in RTP timestamp units
for theith and(i − 1)th packet, respectively.Si andSi−1

denote RTP timestamp of theith and(i − 1)th packet, re-
spectively.

Ji = 15/16Ji−1 + 1/16|Di| (2)

WhereJi denotes temporal average of the jitter for theith
packet,Ji−1 denotes the one for the(i− 1)th packet.
• Queue managementIt is to manage the RTP packets
moving in and out of the queue. It is a sorted queue, known
asthe jitter buffer, based on the sequence number of RTP
packets. It includes two procedures: dequeuing and in-
serting. Dequeuing is done by first-in-first-out. To accom-
modate jitter, packets must not start to be dequeued un-
til the buffer has been filled past a threshold. Inserting is
to compare the sequence number of the incoming packet
with sequence numbers of all other packets in the queue
and to arrange a location where the packet should be in-
serted. Therefore, packets can be inserted in the middle of
the queue.
Environment specification - interface: The RTP Re-
ceiver takes the output of the RTP Sender benchmark as
the input. The input buffer is set into64KB. The output
of the RTP Receiver benchmark is written into memory for
simulation and into hard disk for verifying the correctness
of the benchmark.

C. RTCP Processing

Function specification: In RTCP Processing benchmark,
two functions are implemented: building an RTCP receiver
report (RR) and computing the RTCP transmission inter-
val.
• Building an RTCP RR packetsincludes two aspects:
generating an RTCP header and calculating each element
(depicted in Figure 2) in the receiver block.
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• Computing the RTCP transmission intervalis performed
by the following equation:

Td = max(Tmin, CL(t)) (3)

WhereTmin is 2.5s for the initial packet, and5s for all
other packets,C is the average RTCP packet size divided
by 5% of the session bandwidth,L(t) represents the num-
ber of users within a multicast group that have been heard
from at timet, and the initial value at time0, L(0) = 1
when the user joins the group.
Environment specification - interface: The RTCP Pro-
cessing benchmark works in conjunction with the RTP
Receiver benchmark, hence the same input data are used
in the RTP Receiver benchmark. The input buffer of the
RTCP Processing benchmark is set into100 bytes that can
contain one report block in an RTCP RR packet. The out-
put of the benchmark is stored in the memory.

D. Measurement And Simulation Environment

This section specifies the common aspects for the cre-
ated benchmarks in this paper on measurement and simu-
lation environment.
Measurement specification: It describes three aspects
in measurement. First,verification of benchmarkshas to
be performed before measuring the performance of the
benchmarks. The correctness of the benchmarks are veri-
fied by comparing the input of the RTP Sender benchmark
and the output of the RTP Receiver benchmark. If they
are the same, the benchmarks are correct since the final re-
sult at the receiver is to obtain the same voice signal with
the one at the sender. Second,the performance metricfor
evaluating the performance of all benchmarks is the num-
ber of clock cycles, which captures how fast the bench-
mark is executed and which functions in the benchmark
are time-critical. For the time-critical function, it could
be implemented in specifical hardware to obtain the per-
formance gain. Third,the architectural characteristicsfor
the benchmarks are also investigated. These characteris-
tics are as follows:
• Instruction Level Parallelism (ILP) is measured by in-
struction per cycle (IPC) which shows data-level paral-
lelism and dependency of the instructions. IPC value is
high when the dependency of the instruction with a pro-
gram is low.
• Branch Prediction Accuracy is measured by branch
address-prediction rate (APR) and branch direction-
prediction rata (DPR).
• Instruction distribution is measured by determining the
frequency of load instructions, store instructions, and
branch instructions.

• Cache behavior is measured by the number of cache ac-
cesses and miss ratios. Both data cache and instruction
cache are simulated: dl1 stands for first level data cache,
il1 stands for first level instruction cache and l2 stands for
the unified second level caches.

The four architectural characteristics on the created
benchmarks mentioned above are compared with the ap-
plications from NetBench and MediaBench to understand
the features of the benchmarks.
Simulation environment: The sim-outordersimulator
from the SimpleScalar tool set (Version 3.0) [2] is uti-
lized for all benchmarks. This simulator allows us to
measure the number of clock cycles spent in each func-
tion of each benchmark and to perform profiling to de-
termine the time critical functions. The measurement is
performed by utilizing instruction annotations in thesim-
outordersimulator. We have introduced a NOP instruction
to signify the start of a function and another NOP to sig-
nify the end of the function. More specifically, the overall
simulation clock cycle (called simcycle) is noted in both
cases. By subtraction the starting simcycle from the end-
ing sim cycle, the number of clock cycles spent in execut-
ing a given function can be calculated.

IV. SIMULATION RESULTS

In this section, we discuss the benchmarks results from
two aspects: performance and architectural characteristics.
In order to simulate the benchmarks, we made the follow-
ing assumptions. Thesim-outordersimulator entails a 2-
way superscalar processor with64 KB of direct-mapped
level 1 (L1) data and instruction caches and a1MB uni-
fied level2 (L2) caches. TheL1 andL2 cache latencies
are set to1 and6 cycles, respectively.
Profiling results: The performance results present the
number of clock cycles for each function in each bench-
mark in relation to the total cycles. This allows us to de-
termine the time-critical functions in the benchmarks. The
results are depicted in Figures 3, 4, and 5. In order to sim-
ulate a more realistic networking environment in which
packets may arrive in-order or out-of-order, three differ-
ent data sets are utilized in the RTP Receiver benchmark
(depicted in Figure 41: R input1 denotes packets are in or-
der, Rinput2 denotes packets are slightly out-of-order, and
R input3 denotes packets are largely out-of-order). Figure
3 illustrates that the biggest contributor to the total cycles
for the RTP Sender benchmark is the encapsulation func-
tion (encap), which takes more than 70% of the total cy-
cles. Figure 4 illustrates that the two biggest contributors
for the RTP Receiver benchmark are the statistics updating

1Only the biggest value in each function is marked in Figure 4.
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function and the data parsing function, which take about
25% and 23% of the total cycles, respectively. Figure 5 il-
lustrates that the biggest contributor for the RTCP Process-
ing benchmark is building RTCP receiver report function
(block), which takes about 55% of the total RTCP Process-
ing cycles.
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Fig. 3. RTP Sender benchmark results.
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Fig. 4. RTP Receiver benchmark results.

Results on architectural characteristics: The four ar-
chitectural characteristics are highlighted in Tables I, II,
and III. The results on NetBench and MediaBench are the
averages of the results presented in [6] due to the large
mix of different small and big benchmarks. We are able
to use the averages over the results, because there are no
significantly big differences between the results, except
for the number of cycles (# of cycles), the number of in-
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Fig. 5. RTCP Processing benchmark results.

structions (# of inst.), and the number of il1 and dl1 ac-
cesses (il1 acc. anddl1 acc.). Therefore, no comparison
is made based on these values and they are only shown
for completeness. Table I highlights the results on instruc-
tion level parallelism and branch prediction accuracy, Ta-
ble II highlights the results on instruction distribution, and
Table III highlights the results on cache behavior. In Ta-
bles I, II, and III, ‘Average’ denotes the arithmetic mean
of the RTP Sender, the RTP Receiver and the RTCP Pro-
cessing benchmark results. The results presented in Table
I show that the average IPC of the RTP/RTCP benchmarks
is 14.5% and 31% higher than NetBench and MediaBench,
respectively. The average APR and the average DPR of the
RTP/RTCP benchmarks is 4.9% and 4% higher than Me-
diaBench, respectively. The results presented in Table II
show that the average load/strore instruction frequency of
the RTP/RTCP benchmarks is higher than NetBench and
MediaBench. The results presented in Table III show that
the RTP/RTCP benchmarks has a better performance in
cache behavior than NetBench and MediaBench because
the first level data/instuction caches miss ratios (dl1 and
il1) and the second level unified cache miss ratio (l2) are
less than the ones of NetBench and MediaBench.

# of cycles (M)
 IPC
 APR (%)
 DPR (%)


RTP Sender
 11.4
 1.99
 95
 95.1


RTP Receiver
 16.5
 1.9
 92.2
 92.2


RTCP
 33
 1.84
 93.3
 93.3


Average
 20.3
 1.9
 93.5
 93.5


NetBench
 207
 1.66
 93.9
 94.2


MediaBench
 280
 1.45
 89.1
 89.9


TABLE I
COMPARISON IN IPC AND BRANCH PREDICTION VALUES

BETWEEN RTP/RTCPBENCHMARKS WITH NETBENCH AND

MEDIABENCH.
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# of inst. (M)
 load (%)
 store (%)
 branch (%)


RTP Sender
 22.8
 31.3
 21.9
 12


RTP Receiver
 31.9
 30.0
 18.8
 14.3


RTCP
 43.6
 29
 17.2
 1.3


Average
 32.8
 30.1
 19.3
 9.2


NetBench
 359
 7.2


MediaBench
 408
 11.3


27.7


19.8


TABLE II
COMPARISON IN INSTRUCTION DISTRIBUTION BETWEEN

RTP/RTCPBENCHMARKS WITH NETBENCH AND

MEDIABENCH.

il1 acc. (M)
 il1 miss ratio (%)
 dl1 acc. (M)
 dl1 miss ratio (%)
 l2 miss ratio (%)


RTP Sender
 23.9
 0
 11.9
 0
 4.6


RTP Receiver
 33.9
 0.0
 14.9
 0.4
 0.8


RTCP
 45.1
 0
 19.2
 0.3
 0.8


Average
 34.3
 0.0
 15.3
 0.2
 2.1


NetBench
 400
 0.05
 140
 0.8
 9.7


MediaBench
 519
 0.4
 86
 1.8
 14.8


TABLE III
COMPARISON IN CACHE BEHAVIOR BETWEENRTP/RTCP

BENCHMARKS WITH NETBENCH AND MEDIABENCH.

The results on architectural characteristics show that the
RTP/RTCP processing is significantly different from the
multimedia processing (MediaBench), which means that it
is necessary to create benchmarks for network processing.
The results also show that the RTP/RTCP processing has
some common characteristics with NetBench since they all
focus on processing in the same networking domain. How-
ever, they have some different characteristics since they
target on different network processing.

V. CONCLUSIONS

It has been argued in this paper that benchmarking net-
work processing in the higher layer of the TCP/IP model
is important since VoIP and quality of services are be-
coming increasingly popular technologies. It was briefly
discussed how RTP/RTCP was utilized to provide end-to-
end delivery services for data with real-time characteris-
tics. Subsequently, benchmarks for RTP/RTCP processing
were introduced and discussed from three aspects: func-
tions, measurements and environments. Consecutively,
these benchmarks were run in a simulation environment
in order to obtain profiling information and to investigate
architectural characteristics. The profiling results show
that the biggest contributor to the total cycles of the RTP
Sender Benchmark is the encapsulation function, which
takes more than 70% of the total cycles. The biggest con-
tributors to the RTP Receiver benchmarks are the statis-
tics function and data parsing function which take about
25% and 23% of the total cycles. The biggest contrib-
utor to the RTCP Processing benchmark is the building

RTCP receiver report function which takes about 55%
of the total cycles. Finally, the comparison on architec-
tural characteristics between the proposed benchmarks in
this paper with other network processing or multimedia
benchmarks shows that we differ from them in instruc-
tion level parallelism, instruction distribution and cache
behavior. These results highlight that we could achieve
a 14.5% and 31% higher parallelism than NetBench and
MediaBench, respectively. We could also achieve lower
first level data/instruction caches miss ratio and lower sec-
ond level unified caches miss ratios.
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