3D Graphics Benchmarksfor Low-Power Architectures

losif Antochi, Ben Juurlink, Stamatis Vassiliadis
Computer Engineering Laboratory, EEMCS
Delft University of Technology
Mekelweg 4, 2600 GA Delft, The Netherlands
Phone: +31 15 2783644 Fax: +31 15 2784898

Petri Liuha
NOKIA Research Center
Tampere, Finland
E-mail: petri.|iuha@oki a.com

E-mail: {t kg| benj | stamati s}@e. et.tudel ft.nl

Abstract—Currently, there is much interest in wireless 3D
graphics applications, in particular games. Since current 3D
graphics accelerators consume too much power to be em-
ployed in mobile computing devices, several companies and
universities have started to develop low-power 3D graphics
accelerators. However, to the best of our knowledge, there is
no publicly available benchmark suite appropriate for eval-
uating such devices. In this paper we present a set of 3D
graphics benchmarks which can be considered typical 3D
workloads of contemporary and emerging mobile devices.
First, reasons why most 3D benchmarks employed for desk-
top computers are not suitable for mobile environments are
given. After that, simulation results such as the number of
triangles or fragments processed by a typical rasterization
pipeline are presented. Finally, we discuss some architec-
tural implications of the obtained results for low-power im-
plementations.

I. INTRODUCTION

In recent years, mobile computing devices have been
used for a broader spectrum of applications than mobile
telephony or personal digital assistance. Several compa-
nies expect that 3D graphics applications will become an
important workload of wireless devices. For example, ac-
cording to [1], the number of users of interactive 3D graph-
ics applications (in particular games) is expected to in-
crease drastically in the future: it is predicted that the
global wireless games market will grow to 4 billion dollars
in 2006. Because current wireless devices do not have suf-
ficient computational power to support 3D graphics in real
time and because present accelerators consume too much
power, several companies and universities have started to
develop a low-power 3D graphics accelerator. However,
to the best of our knowledge, there is no publicly available
benchmark suite that can be used to guide the architectural
exploration of such devices.

The goal of this paper is to propose a set of benchmarks
that represents the types of 3D applications that might be
run on low-power, mobile systems. These benchmarks
were collected to facilitate our own studies on low-power
3D graphics accelerators. It includes several games as well
as virtual reality applications such as 3D museum guides.

18

Applications were selected on the basis of several criteria.
For example, CAD/CAM applications, such as contained
in the Viewperf package [3], were excluded because it is
unlikely that they will be offered on mobile devices. Other
characteristics we considered are resolution and polygon
count.

A second goal of this paper is to provide a quantitative
workload characterization of the collected benchmarks.
For each benchmark, we collected several statistics such
as the average and maximum numbers of triangles before
and after culling, the number of resulted fragments and
the total required texture memory. Such statistics could be
used to guide the development of low-power 3D graphics
architectures.

This paper is organized as follows. Previous work on 3D
graphics benchmarking is described in Section Il. In this
section we also give reasons why most current 3D graphics
benchmarks are not appropriate for mobile environments.
Section |11 describes our tracing environment, the simula-
tor we used to collect the statistics, and the components
of the proposed benchmark suite. Section IV provides
a workload characterization of the benchmarks and dis-
cusses some architectural applications. Conclusions and
directions for future work are given in Section V.

Il. RELATED WORK

To the best of our knowledge, 3D graphics benchmarks

specifically targeted at low-power architectures have not
been proposed. One well-known benchmark suite used to
evaluate 3D graphics accelerator cards employed in desk-
top computers is SPEC’s Viewperf [3]. Most benchmarks
contained in the Viewperf package, however, are not suited
for evaluating low-power 3D graphics architectures for the
following reasons:
o The Viewperf benchmarks are designed for high-
resolution output devices, but the output devices of current
wireless systems have a limited resolution. Specifically,
by default the Viewperf package is running at resolutions
above SVGA (800x600 pixels), while current mobile de-
vices use at most VGA (640x480) resolution.

« The benchmarks use a large number of polygons in order
to obtain high picture quality (most benchmarks have more
than 20,000 triangles per frame [4]). Translated to a mo-
bile platform, most rendered polygons will be smaller than
one pixel so their contribution to the generated images will
be small or even invisible. Specifically, the polygon count
of the Viewperf benchmarks DRV, DX, ProCDRS, and
MedMCAD is too high for mobile devices. Moreover, they
are using rendering modes (wire-frame or shaded models)
that are not encountered on low-power 3D graphics de-
vices.

» Some benchmarks are CAD/CAM applications. It is un-
likely that such applications will be offered on mobile plat-
forms.

Except Viewperf, there are no publicly-available, portable
3D graphics benchmark suites.

There have been several studies related to 3D graph-
ics workload characterization (e.g., [4][15]). Most related
to our investigation is the study of Mitra and Chiueh [4],
since they also considered dynamic, polygonal 3D graph-
ics workloads. Dynamic means that the workloads consist
of several consecutive image frames rather than individual
images, which allows to study techniques that exploit the
coherence between consecutive frames. Polygonal means
that the basic primitives are polygons, which are supported
by all existing 3D chips. The main differences between
that study and our workload characterization are that Mitra
and Chiueh considered high-end applications (Viewperf,
among others) and measured different statistics.

I1l. THE BENCHMARK SET

In this section are described the environment we used
to create some of the benchmarks, the components of our
benchmark set and also some general characteristics of the
workloads.

A. Tracing Environment

Due to their interactive nature, 3D games are generally
not repeatable. In order to obtain a set of repeatable work-
loads, we traced existing applications, logging all OpenGL
calls.

Our tracing environment consists of two components: a
tracer and a trace player.

Our tracer is based on GLtrace from Hawksoft [6]. It
intercepts and logs OpenGL calls made by a running ap-
plication, and then calls the OpenGL function invoked by
the application. No source code is required provided the
application links dynamically with the OpenGL library,
meaning that the executable only holds links to the re-
quired functions which are bounded to the corresponding
functions at run-time. Statically linked applications, in

19

which case the required libraries are encapsulated in the
executable image, cannot be traced using this mechanism
when the source code is not available.

We improved GLtrace in two ways. First, GLtrace does
not log completely reproducible OpenGL calls (for exam-
ple, textures are not logged). We modified the GLtrace
library so that the OpenGL calls used by the targeted ap-
plications are completely reproducible. Second, the trace
produced by GLtrace is a text trace, which is rather slow.
We improved its performance by adding a binary logging
mode that significantly reduces the tracing overhead.

In addition, we developed a trace player that plays the
obtained traces. It can play recorded frames as fast as
the OpenGL implementation allows. It does not skip any
frame so the workload generated is always the same.

The workload statistics were collected using our own
OpenGL simulator based on Mesa [9], which is a freely
available implementation of OpenGL.

B. The Benchmarks

The proposed benchmark suite consists of the following
components:
o Q3L and Q3H. Quake 111 [10] or Q3, for short, (depicted
in Figure 1) is a popular interactive 3D game, belonging to
the shooter games category. We used two profiles for this
workload in order to determine the implications of differ-
ent image sizes and object complexity. The first profile,
which will be referred to as Q3H, uses a relatively high im-
age resolution and objects detail. The second profile, Q3L,
employs a low resolution and objects detail. Q3 makes ex-
tensive use of blending operations in order to implement
multiple texture passes.
o Tux Racer (Tux) [11]. This is a freely available game
that runs on Linux. The goal of this game is to drive a pen-
guin down a mountain terrain as quickly as possible, while
collecting herring. Tux makes extensive use of automatic
texture coordinate generation functions.
o AWadvs-04 (AW) [3]. This test is a component of the
Viewperf 6.1.2 package. In this test a fully textured human
model is viewed from different angles and distances. As
remarked before, the other test in the Viewperf package
are not relevant for low-power accelerators, because they
represent high-end applications or are from an application
domain not likely to be offered on mobile platforms.
o« ANL, GRA, and DIN. These three VRML scenes were
chosen based on their diversity and complexity. ANL is
a virtual model of Austrian National Library and consists
of 10292 polygons, GRA is a model of Graz University of
Technology, Austria and consists of 8859 polygons, and
Dino (DIN) is a model of a dinosaur consisting of 4300
polygons. In order to obtain a workload similar to one

FPS: 47.7

N
b) Y

Teiamgles s

(d) Nat Lib

(b) Tux

(e) Gratz

(c) Aw

Fig. 1. The benchmark suite components

that might be generated by a typical user, we created “fly-
by” scenes. Initially, we used VRWeb [12] to navigate
through the scenes, but we found that the VRMLView [13]
navigator produces less texture traffic because it uses the
gl Bi ndText ur e mechanism.

Our benchmarks set is the result of extensive searching
on the World Wide Web. Although there are more OpenGL
applications available, most represent high-end applica-
tions and thus are not suited to evaluate low-power 3D
graphics architectures. Recently, several links to 3D games
were provided on Mesa’s website (ww. mesa3d. or g).
However, these games such as Doom, Heretic, and Quake
Il belong to the same category as Quake Il and Tux Racer,
and therefore do not represent benchmarks with substan-
tially different characteristics. We expect that more 3D
graphics applications for low-power mobile devices will
appear when accelerators for these platforms will be intro-
duced. For example, recently the Khronos group proposed
a lightweight version of OpenGL called OpenGL ES [5],
which is supposed to be a better match for mobile and em-
bedded platforms.

20

IV. BENCHMARKS STATISTICS

Tables 1,11, and 111 present some statistics of the work-
loads. The characteristics and statistics presented in these
tables are:

o Image resolution. A low-power accelerator should be
able to handle scenes with a currently typical resolution of
320x240 pixels. Since in the near future the typical reso-
lution is expected to double we decided to use a resolution
of 640x480. For the Q3 benchmark we have also included
the results a lower (320x240) resolution in order to study
the impact of changing the resolution.

« Frames. The total number of frames in each test.

« Avg. triangles. The average number of triangles sent to
the rasterizer per each frame.

o Avg. processed triangles. The average number of trian-
gles per frame, that remained after back-face culling, i.e.,
the triangles that remained after eliminating the triangles
that are invisible because they are facing in the same di-
rection as the view angle.

« Avg. total area. The average number of fragments/pixels
after scan conversion per each frame.

o Texture size. This quantity gives an indication of the

| Benchmark | Resolution | Frames | TextureMem. (MB) |

Q3L 320x240 1,379 12.84
Q3H 640x480 1,379 12.84
Tux 640x480 1,363 11.71
AW 640x480 603 3.25
ANL 640x480 600 1.8
GRA 640x480 599 2.1
DIN 640x480 600 1.7

TABLE

GENERAL CHARACTERISTICS OF THE BENCHMARKS

. Avg. Processed
Benchmark | Avg. Triangles Trigangles(PT) Avg. Area
Q3L 4,504 3,245 422k
Q3H 4,591 3,361 1,678k
Tux 2,985 1,801 760k
AW 23,336 10,551 63k
ANL 4,458 4,458 776k
GRA 4,901 3,682 245k
DIN 4,151 4,151 153k
TABLE I

GENERAL STATISTICS OF THE BENCHMARKS (AVERAGES)

Benchmark | Max. Triangles Max. _Proceﬁsed Max. Area
Triangles
Q3L 9,706 6,829 1,327k
Q3H 9,802 6,979 5,284k
Tux 4,809 2,964 1,224k
AW 25,720 13,931 307k
ANL 14,236 14,236 1,242k
GRA 10,475 6,907 325k
DIN 4,313 4,313 259k
TABLE III

GENERAL STATISTICS OF THE BENCHMARKS (MAXIMUMS)

amount of texture memory required.

o Maximum triangles per frame. The maximum number
of triangles that were sent for one frame. Because most
3D graphics accelerators implement only the rasterization
function, this statistic is an approximation of the band-
width required for geometry information, since triangles
need to be transferred from the CPU to the accelerator via
a system bus. We assume that triangles are represented in-
dividually. Sharing vertices between adjacent triangles al-

lows to reduce the bus bandwidth required. This quantity
also determines the throughput required in order to achieve
real-time frame rates. We remark that the maximum num-
ber rather than the average number of triangles per frame
determines the required bandwidth and throughput.

« Maximum processed triangles per frame. The maximum
number of triangles that remained after back-face culling,
over all frames.

o Maximum area per frame. The maximum number of

21

fragments after scan conversion, over all frames.

Several observations can be drawn from Table [1I. First,
it can be observed from the column labeled “Max triangles
per frame” that the scenes generated by Tux and Dino have
a relatively low complexity, that Q3, ANL, and Graz con-
sist of medium complexity scenes, and that AW produces
the most complex scenes by far. Second, back-face culling
is effective in eliminating invisible triangles. It eliminates
approximately 30% of all triangles in the Q3 benchmarks,
24% in Graz, and more than half (55%) of all triangles
in AW. It does not eliminate any triangle in the ANL and
Dino workloads, because it was not enabled. If we con-
sider the largest number of triangles remaining after back-
face culling (14236 for ANL) and assume that each trian-
gle is represented individually and requires 28 bytes (xyz
coordinates, 4 bytes each, rgb for color and alpha for trans-
parency, 1 byte each, and uvw texture coordinates, 4 bytes
each) for each of its vertices, the required bus bandwidth
is approximately 1.2MB/frame or 35.9MB/s to render 30
frames per second. Another observation that can be drawn
from Tables Il and 11 is that the AW and DIN compo-
nents have an average number of triangles almost equal to
their maximum number of triangles, while for the rest of
the components the average number of triangles is about
50% of the maximum number of triangles. The same ob-
servation is also valid for the number of processed trian-
gles. The implication of this observation is that if a raster-
ization accelerator is designed to have a sustained triangle
processing rate close to the maximum values (to ensure a
real-time frame generation, in most of the cases it might
not be used to its full potential and thus it could normally
operate at a lower frequency in order to reduce the power
consumption. Finally, we remark that the largest amount
of texture memory (as presented in Table 1) is required
by the Q3 and Tux benchmarks, and that the other bench-
marks require a relatively small amount of texture mem-
ory.

Other relevant observations obtained from the simula-
tion results are: The Q3 benchmark is quite scalable and
the results obtained for the low resolution profile (Q3L)
are similar with the results obtained for the high resolution
profile (Q3H). The Q3 benchmark can be characterized as
an application that uses textures for most of its primitives.
The Tux component is also using textures for more than
70% of its primitives, and it also uses the fog unit. The
AW component does not use the scissor test as the others
are doing and it has no pixels rejected at the depth test.
Another difference from the previous components is that
AW is also using the dithering mechanism, which allows
it to produce better looking images on devices with a low
color depth.

22

V. CONCLUSIONS AND FUTURE WORK

Although high-end 3D graphics benchmarks have been
available for some time, there are no benchmark suites
dedicated to low-power 3D graphics accelerators. In this
paper we have described a set of relevant applications for
low-power 3D graphics accelerators performance evalua-
tion. Also one of the objectives of this paper was to pro-
vide a quantitative workoad characterization that can be
used by 3D graphics designers. While most of the bench-
marks have a significant difference between the average
processed number of primitives and the maximum, there
are some which have no difference at all, thus producing
almost the same load for all the frames.

As future work, we intend to extend the number of
components for this benchmark suite and we also intend
to extend the statistics to include results from low-power
graphics architectures that are using a tile-based rendering
mechanism.

REFERENCES
[1] ARM Ltd., ARM 3D Graphics Solutions. Available at

http://www.arm.com/armtech/5D9JZR/$File/MBXWhitePaper.pdf.

[2] Yonsei University, 3D Graphics Accelerator Group,
http://msl.yonsei.ac.kr/3d/
[3] SPEC, SPECviewperf 6.1.2, Available at

http://www.specbench.org/gpc/opc.static/opcview.htm.

[4] Tulika Mitra and Tzi-cker Chiueh, Dynamic 3D Graphics
Workload Characterization and the Architectural Implications,
32nd ACM/IEEE Int. Symp. on Microarchitecture (MICRO),
November 1999, Haifa, Israel, pp. 62-71.

[5] The Khronos Group, OpenGL ES Overview, Available at
http://www.khronos.org/opengles/index.html.

[6] Hawk Software, GLTrace Programming Utility, Available at
http://Aww.hawksoft.com/gltrace/.

[7] Stanford University, GLSim & GLTrace, Available at
http://graphics.stanford.edu/courses/cs448a-01-fall/glsim.html

[8] SourceForge, spyGLass: an OpenGL call tracer and debugging
tool, Available at http://www.hawksoft.com/gltrace/.

[9] The Mesa Project, The Mesa 3D Graphics Library, Available
at http://www.mesa3d.org.

[10] Id Software Inc.,
http://www.idsoftware.com.

[11] Sunspire Studios, Tux
http://tuxracer.sourceforge.net/.

[12] Michael Pichler, Gerbert Orasche, Keith Andrews, Ed Gross-
man, and Mark McCahill, VRweb: a multi-system VRML
viewer, Proc. of the First Symposiumon Virtual Reality Model-
ing Language, 1995, San Diego, California, United States, pp.
77-85.

[13] Systems in Motion,
http://iwww.sim.no

[14] I. Antochi, B.H.H. Juurlink, A. G. M. Cilio, P. Liuha, Trading
Efficiency for Energy in a Texture Cache Architecture, Proc. of
the 2002 Euromicro Conference on Massively-Parallel Com-
puting Systems, April 2002, Ischia, Italy, pp. 189-196.

[15] J.C. Dunwoody and M.A. Linton. Tracing Interactive 3D
Graphics Programs, Proc. of ACM Symposium on Interactive
3D Graphics, 1990.

Quake 1, Available at

Racer, Available at

VRMLView, Available at

