Design Tradeoffsfor an Embedded OpenGL-Compliant
Hardware Rasterizer

Dan Crisu, Sorin Cotofana, Stamatis Vassiliadis
Computer Engineering Laboratory, EEMCS
Delft University of Technology
Mekelweg 4, 2600 GA Delft, The Netherlands
Phone: +31 15 2783644 Fax: +31 15 2784898

Petri Liuha
NOKIA Research Center
Tampere, Finland
E-mail: petri .| iuha@oki a.com

E-mail: {dan| sorin|stamati s}@e. et.tudel ft.nl

Abstract—This paper addresses design trade-offs for low-
power, low-cost embedded 3D graphics accelerators. More
in particular it focuses on a low-cost reciprocation hardware
algorithm suitable to be implemented in their datapath. The
algorithm exploits the limitations of the human visual system
that allows a reasonable amount of error to be introduced in
the computation process without inducing noticeable arti-
facts in the final computer-generated image. In the example
given in the paper, excerpted from the antialiasing datap-
ath of an embedded QVGA graphics hardware accelerator,
for a 14-bit operand, the reciprocal implementation requires
an inexpensive operand prescaler, one 1k lookup table with
10-bit entries, and a 5-bit adder, for a maximum relative er-
ror of the result of only 1.5% over the entire range of the
operand. Hardware synthesis in a typical 0.18um process
technology has indicated that the hardware implementation
requires only 1600 standard cells to achieve a latency of only
one clock cycle for a clock frequency of 250MHz.

Keywords—graphics architecture; embedded systems; re-
ciprocal approximation; system-on-chip; hardware/software
co-simulation

I. INTRODUCTION

With the advent of increasing powerful mobile plat-
forms for computing and communications, 3D computer
graphics hardware acceleration seems to become the next
generation integration target in these devices. Conse-
quently, there is much interest in the embedded systems
research community to provide low-power, cost-effective
real-time 3-D computer graphics capabilities. This means
that in contrast with mainstream graphics hardware ac-
celerator implementations that provide datapath bit-exact
arithmetic at a high expense regarding cost and power-
consumption, embedded graphics hardware implementa-
tions have to exploit the limitations of the human visual
system which allows a reasonable amount of error to be
introduced in the computation process without introducing
noticeable artifacts in the final computer-generated image.
Following, in this paper arithmetic precision trade-offs
are explored in the context of an OpenGL[1]-compliant

49

rasterization engine hardware implementation we devel-
oped, meant to be integrated in next-generation ARM-
based system-on-chip designs. The hardware model of the
rasterization engine is specified in the SystemC language
[2] and it is simulated using GRAAL (GRaphics Accel-
erator) Simulator [3], our power-aware hardware/software
co-simulation environment custom built for graphics hard-
ware accelerator development for ARM-based system-on-
chip designs. Using this tool and modifications of the stan-
dard OpenGL graphical pipeline embedded in the hard-
ware model, graphical output is provided for the visual-
ization of the potential impact tweaking the algorithms or
the bit operand width precision may have on the resulted
image quality, as well as a quantitative estimation of the er-
rors gathered in the process. As a result, we can show that
reducing the internal precision for certain operations and
applying a number of computational approximations on
commonly encountered and difficult arithmetic operators
in graphics, like division, pertaining especially to triangle
antialiasing, triangle setup, texture coordinates generation
and texture mapping, benefic effects can be achieved such
as area and power consumption reduction at the same per-
formance level without compromising the image quality.

This paper presents a low-cost reciprocation hardware
algorithm suitable to be implemented in the datapath of
low-power, low-cost embedded 3D graphics accelerators.
In the example given in the paper for a 14-bit operand,
excerpted from the antialiasing datapath of an embedded
QVGA graphics hardware accelerator, the reciprocal im-
plementation requires an inexpensive operand prescaler,
one 1k lookup table with 10-bit entries, and a 5-bit adder,
for a maximum relative error of the result of only 1.5%
over the entire range of the operand. Hardware synthesis
in a typical 0.18:m process technology has indicated that
the hardware implementation requires only 1600 standard
cells to achieve a latency of only one clock cycle for a
clock frequency of 250MHz.

The rest of the paper is organized as follows. An

Rasterizer Stage

* floating-point computations
* implemented in software

Application Stage

Rasterization

Model & View
Transform

Anti-aliasing

Lighting

2

Projection

2

Clipping

Texture
Mapping

Fog
Blending

Per-Fragment Operations
(including Z-Buffering)

—
Frame
Buffer

* integer (fixed-point) computations
* implemented always in hardware for
graphics accelerating purposes

Geometry Stage

Display

Screen
Mapping

* floating-point computations
* usually implemented in software

Fig. 1. Atypical 3D graphics pipeline.

SCC
Processor RAM ASI C1 ASI C2
Core
Internal Bus
P a
< >
DVA G aphi cs Di spl ay
Control ler Accel erator | | Controlier

Fig. 2. SOC organization.

overview of an SOC platform for embedded graphics ap-
plications is presented in Section Il. The role of division by
reciprocation in certain sub-stages of the graphics pipeline
(rasterization stage) is briefly discussed in Section I11. The
reciprocal hardware algorithm we propose for 3D graph-
ics is presented in Section IV. The impact on the quality
of the rendered images using the proposed algorithm and
hardware synthesis results are presented in Section V. Fi-
nally, Section VI draws the conclusions.

Il. EMBEDDED 3D GRAPHICS

A 3D graphics rendering system is organized conceptu-
ally as a number of stages chained in a pipelined fashion.
The conceptual stages of the graphics pipeline are the Ap-
plication, the Geometry, and the Rasterizer Stage. They
are presented in Figure 1. An in-depth explanation of these
stages is beyond the scope of the paper and the reader is re-
ferred for more details to any computer graphics textbook,
e.g. [4].

Typically, a platform for embedded graphics applica-
tions looks like in Figure 2 and the mapping of the con-

50

ceptual stages of the 3D graphics pipeline in the system
are described in the sequel. The graphics software appli-
cation is running on the host processor of the system. The
software application corresponds to the conceptual Appli-
cation Stage of the graphics pipeline. The software ap-
plication is relying on a 3D graphics library (perceived
in the sense of a software interface to the graphics hard-
ware [5]) like OpenGL or Direct3D to have its graphic
calls taken care further. This 3D graphics library exe-
cutes usually the conceptual Geometry Stage on the host
processor. The code that implements the Geometry Stage
in the library can further make calls to the graphics hard-
ware accelerator by means of a standardized, virtual in-
terface, to ensure library portability. Between this virtual
interface and the graphics hardware accelerator (on which
the conceptual Rasterizer Stage is mapped) there is an-
other piece of code executed on the host processor called
a device driver. This device driver performs the function
of a hardware abstraction layer and it translates the calls
through the virtual interface in actual memory-mapped or
programmable 1/O instructions (seen from the host proces-
sor point of view) particular to the graphics hardware ac-
celerator’s input and output register port mapping in the
system address space. Finally, the Rasterizer Stage is ex-
ecuted in hardware on the graphics hardware accelerator
(due to the computational explosion at this level) perform-
ing the following operations. Given the primitives (usu-
ally triangles) received from the host processor with trans-
formed and projected vertices, colors, and texture coordi-
nates computed for this vertices, the goal of the Rasterizer
Stage inside the graphics accelerator is to assign correct
colors to the pixels that will be stored in a memory called
the frame buffer, which is read periodically by the display
controller to form the image on the screen. This process is
called rasterization or scan conversion. During rasteriza-
tion, the information needed for the screen pixels covered
by the primitive is interpolated from the data (depth, colors
and texture coordinates) associated with its projected ver-
tices on the screen. In this way series of frame buffer ad-
dresses and values called fragments are produced for each
rasterized primitive. Each fragment so produced is fed to
the next functional stage depicted in Figure 1 that performs
operations on individual fragments before they finally al-
ter the frame buffer. These operations include color al-
teration based on the textures assigned per primitive and
texture coordinates, fog blending, conditional updates into
the frame buffer based on incoming and previously stored
depth values z in the depth buffer or z-buffer, blending of
incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.
Due to the sampling process involved by rasterization, a

X+ AX, + A
"Left" side (A yA)

+
"Right" side

a)

Fig. 3. Triangle representation using edge functions: a) The
edge is defined by a vector starting at the point A with the slope
Ay/Ax, b) The interior of the triangle is formed by the union
of the right sides of the oriented edges AB, BC, and C'A.

chain of filtering operations followed by resampling may
be necessary on fragment values to alleviate the inherent
aliasing phenomenon (e.g., the staircasing effect of lines
drawn on a raster screen). Finally, the fragments that will
survive in the frame buffer, after all of the primitives have
been processed, will produce the final image. All the op-
erations required by the Rasterizer Stage usually involves
only integer (fixed-point) arithmetic.

I1l. RECIPROCAL OPERATIONS IN RASTERIZATION

The rasterization pipeline in 3D computer graphics re-
quires several reciprocal computations along the way. Two
examples will be presented in the following. The enumer-
ation is by no means exhaustive, for more in-depth infor-
mation the reader being referred to [6].

A. Triangle antialiasing with prefiltering

One method of triangle rasterization is based on the al-
gebraic representation of triangle’s edges. Given that a
triangle edge can be represented as a vector between its
respective vertices (one being the source and the other the
sink), it can be detected if the current rasterization position
(xar, yar) in the screen space lies in one of the half-planes
delimited by the edge vector or exactly on the edge vec-
tor. The detection process involves the computation of the
cross-product of the edge vector with the vector formed by
the edge vector’s source and the current rasterization po-
sition (x s, yar). This cross-product can be expressed for
any arbitrary pixel position (x, y) on the screen as an ana-
Iytical function, called the edge function, in the unknowns
(x,y). When the edge function is evaluated at the current
rasterization position (xas,yar), if the result of the eval-
uation is zero than the position (x s, yas) lies exactly on
the edge, or, depending on the sign of the evaluation’s re-
sult, the position (zas, yar) lies in one of the half-planes
delimited by the edge vector. The half-planes delimited
by the edge and their connection with the edge function

51

value evaluated for points lying in the plane are presented
in Figure 3(a). Considering a triangle described by its ori-
ented edge vectors, a position belongs to the interior of a
triangle if all its edge functions computed for that posi-
tion have the same sign. Therefore, the values for the edge
functions are used as a stencil (depicted in Figure 3(b)) in
rasterization that allows a pixel to be modified only if it
is interior to the triangle. Additionally, if the edge func-
tion is properly normalized, its evaluation yields the dis-
tance from the edge vector to the pixel position (z, y) that
can be used in determining the coverage of the triangle’s
edge over the pixel position (x,y). This means that the
normalized edge function can be employed for both raster-
ization and antialiasing. Such a scheme was presented in
the Exact Area Sampling Algorithm (EASA) proposed by
Schilling [7] based on the Pineda’s effective edge function
formulation [8]. The normalized edge function formula-
tion of EASA is as follows:

_ E(@mym)

— [Az|+[Ay] A A
=(xp —T4)- m - (yM—yA) : m
=(xm — 2a) - dex (@) — (ym — ya) - dey(a)

dLl (M)

1)
It can be seen in Equation (1) that a reciprocal is re-
quired by de, () and de, (o) parameter computation.

B. Triangle setup

To rasterize a triangle, the exact values for the edge
functions, z, colors, and texture coordinates are computed
for a conveniently chosen pixel (z,y) on the screen and
also interpolation steps (gradients) along the = and y axes
are found for them. This stage is called the triangle setup
stage. Then, the values for the adjacent pixels can be com-
puted by simple linear interpolators that require only one
addition per component per iteration. In the triangle setup
stage reciprocal computations are required. The expres-
sions for the gradient setup used in the depth (z value)
linear interpolation during the rasterization of the triangle
with the vertices A, B, C are:

3z _ (DycaDzap—ADzca-Dyas)

dx Eap(zc,yc))
3z _ (DAzcaArap—Azca Nzap)

oy Eap(zc,yc)

where E4xp(zc,yc) represents the expression E(zc, yo)
of Equation (1) for the oriented edge AB.

The reciprocal of the E p(zc,yc) expression is also
required by the texture coordinates setup [6].

IV. RECIPROCAL ALGORITHM FOR 3D GRAPHICS

Division, being the most complex of the four ba-
sic arithmetic operations and the most difficult to speed

up, has received a great deal of attention in the litera-
ture [9][10][11][12]. The more conventional approach
uses add/subtract and shift operations with the operation
count linearly proportional to the word size n. The second
approach relies on multiplication and the number of steps
performed is logarithmically proportional to n, but each
individual step is more complex.

In this section we will focus on reciprocal computation
(because in the rasterization pipeline many divisions have
a common denominator) thus transforming the division in
a multiplication of the numerator with the reciprocal of the
denominator. Even so, this division method is more expen-
sive and slower than a multiplication. Therefore, instead of
providing datapath bit-exact arithmetic at a high expense
regarding cost, latency, and power-consumption, we will
try to reduce the cost of the reciprocal by exploiting the
limitations of the human visual system which allows a rea-
sonable amount of error to be introduced in the computa-
tion process without introducing noticeable artifacts in the
final computer-generated image.

Defining the relative error €,.;(1/X) of the reciprocal
computation as:

1 _ 1
€rel <%> — (X)W+X 3)

X

where (1/X)appror represents the reciprocal computed in
hardware and (1/X) represents the true value of the recip-
rocal of a given value X, our experiments on a QVGA dis-
play have suggested that a relative error of maximum 5%
does not introduce visible artifacts in the generated image.

In the followings, to illustrate the different design trade-
offs in the design of the reciprocal we will work on the
example given in Subsection IlI-A. The screen coordi-
nates x and y for a QVGA display (with a resolution of
320 x 240) will be represented as unsigned fixed-point
numbers in the format 9.4. The fractionary part of the co-
ordinates is necessary to eliminate drop-outs and overlaps
in the rasterized image [13]. This means that the quantity
|Az|+|Ay| will be represented as an unsigned fixed-point
number in format 10.4. Moreover, triangles will be culled
in the software driver if |Az| + |Ay| < 2% imposing that
the reciprocal should be less than or equal to 24, Also,
|Az| + |Ay| < (219 — 274) establishing the minimum
value of the reciprocal to approximative 2710,

To summarize, the objective is to compute the reciprocal
of an unsigned non-zero fixed-point number X represented
in a 10.4 format with a maximum relative error of only 5%.
In the following, three methods involving table lookup are
examined.

52

Index(X) Reciprocal () | Entry used

0000000000.0000
0000000000.0001
0000000000.0010

11111.1111111111 No
10000.0000000000 Yes
01000.0000000000 Yes

0000000000.0011 || 00101.0101010101 Yes

1111111111.1110 || 00000.0000000001 Yes

1111111111.1111 || 00000.0000000001 Yes
TABLE |

LOOKUP TABLE CONTENT FOR METHOD 1.

T
TRN ——
RND - - - -

0 2000 4000 6000 8000 10000 12000 14000 16001

X x 2

Fig. 4. Reciprocal relative error for Method 1 using reciprocal
truncation (TRN) or rounding (RND) in the lookup table.

A. Method 1

The first method presented implements the reciprocal
using direct table lookup. Employing the results of the
analysis performed in the beginning of the section, the re-
ciprocal can be represented in fixed-point format with 5
bits for the integer part and 10 or more bits for the frac-
tionary part. Choosing a minimal representation for the
fractionary part with 10 bits, the lookup table size required
is 16k (x is represented with 14 bits) entries of 15-bit each.
The content of the lookup table is presented in Table I.
The relative error of the reciprocal computation using this
method is depicted in Figure 4. The errors are significant,
being larger than 5%.

B. Method 2

The reciprocal relative error can be drastically reduced
if, instead of storing the reciprocal in fixed-point format,
it is stored in floating-point with a 1.6 fixed-point format
for the mantissa and 5 bits for the exponent in two’s com-
plement. All the entries should be normalized in order for
their most significant bit in mantissa to be 1 thus elimi-
nating one bit per entry. The content of the lookup table

Reciprocal ()

Index(X) Mantissa | Exponent | Entry used
0000000000.0000 || (1).111111 -1 No
0000000000.0001 (1).000000 +4 Yes
0000000000.0010 || (1).000000 +3 Yes
0000000000.0011 || (1).010101 +2 Yes
1111111111.1110 1.000000 —10 Yes
1111111111.1111 1.000000 —10 Yes

TABLE 1l
LOOKUP TABLE CONTENT FOR METHOD 2.

2 T T
Method 2 ——
15 |
SO *
o 05 J
[—
’ N\ 0 i
r4‘><
\ , —05 ,
(&
g -1 [l
w
-15
2 I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 1600

X x 2

Fig. 5. Reciprocal relative error for Method 2 using reciprocal
floating-point representation truncation in the lookup table.

is presented in Table Il. The relative error of the recipro-
cal computation using this method is depicted in Figure 5.
By using a floating-point representation in the lookup ta-
ble, Method 2 is significantly more accurate than Method
1, the errors being within 1.5%. However, the lookup table
is large requiring 16k 11-bit entries and its size reduction
will be addressed in the next subsection.

C. Method 3

Due to its nonlinearity, the reciprocal computation can
be implemented using only a lookup table of 1k entries
and a little amount of additional logic by employing the
scheme depicted in Figure 6. The lookup table for recipro-
cal is presented in Table 11l and stores values only for the
reciprocal of positive integers that can be represented on
10 bits. Now all the exponents are non-positive numbers
and to save an extra bit per entry they can be inverted and
stored as unsigned numbers. To loose as little precision
as possible in the reciprocal computation the original 14-
bit denominator has to be prescaled by left shifts up to 4
bit positions whenever the most 4 significant bits contain
leading zeros. After shifting or even when no shifting is

53

} 4 msb X
L |

14

Y

Prescale m €{0,1,2,3,4}

» Left Shift "m" bits & Drop 4 Isb

Control

Logic

1k-Entry Lookup Table

Exponent
Subtracter

Final Exponent Mantissa

Fig. 6. Block diagram of the reciprocal algorithm employing a
1k-entry lookup table.

performed, the least four significant bits of the denomina-
tor are thrown away and the the surviving 10 bits in the
result are used as an index in the lookup table to fetch the
reciprocal. This is the role of the prescaling control logic
and shifter depicted in Figure 6. The number of shifts per-
formed are recorded and sent to a small 5-bit two’s com-
plement subtracter, also sketched in Figure 6, which com-
pensates the inverted exponent fetched from the lookup ta-
ble forming the true exponent of the reciprocal. Using this
algorithm, the reciprocal of small numbers is performed
with the accuracy given by the lookup table and for large
numbers some or all of their 4 bits of fractionary part are
ignored during computation leading to an insignificant ad-
ditional error. The relative error of the reciprocal compu-
tation using this method over the entire range of possible
14-bit values of the denominator is depicted in Figure 7.
Comparing Figures 7 and 5, it can be seen that the rela-
tive error for Method 3 is almost the same with the relative
error given by Method 2 with the notable difference that
Method 3 uses a 1k 10-bit entry lookup table instead of
a 16k 11-bit entry lookup table. The overhead in cost in-
troduced by the additional logic required by Method 3 is
totally insignificant when compared with the size of the
1k-entry lookup table. Thus, Method 3 offers a low-cost
hardware algorithm for reciprocation suitable to embedded
3D graphics.

V. RESULTS

To assess the effectiveness of Method 3 presented in
Subsection 1VV-C compared to Method 1 described in Sub-
section IV-A for reciprocal computation in 3D graphics,

H 1
Reciprocal (})

Index (f() Mantissa | —Exponent | Entry used
0000000000 || (1).111111 +15 No
0000000001 || (1).000000 0 Yes
0000000010 || (1).000000 +1 Yes
0000000011 || (1).010101 +2 Yes
1111111110 || (1).000000 10 Yes
111111111 || (1).000000 | +10 Yes

TABLE I

LOOKUP TABLE CONTENT FOR METHOD 3.

T T
Method 3 ——

|

-15 4

2 I I I I I I I I
0 2000 4000 6000 8000 10000 12000 14000 1600

X x 2%

Fig. 7. Reciprocal relative error for Method 3.

we have modeled in SystemC RTL the reciprocation hard-
ware. The hardware model was employed in the datapath
of our OpenGL 1.2 compliant 3D graphics hardware accel-
erator SystemC model for an ARM based SOC platform.
The graphics hardware accelerator supports the following
3D OpenGL rasterization functionality:

« Triangle rasterization: flat- and Gouraud-shaded
with/without antialiasing with all the options controlling
rasterization;

« Texturing with only RGBAS internal texture format, tex-
ture fetching on demand;

« Per-fragment operations: scissor test, alpha test, stencil
and depth buffer test, blending, logical operation;

o Whole frame buffer operations: fine control of buffer
updates, clearing the buffers;

« State management: all the state management for previ-
ously mentioned functionality respecting all the invariance
rules imposed by the OpenGL 1.2 specification;

The other primitives supported by OpenGL (points, lines,
polygons with more than three vertices) are processed by
the software driver and presented to the graphics hardware
accelerator as a combination of triangles.

IC Technology
UMC Logic18-1.8V/3.3V-1P6M

Std. Cell Library
VST eSi-Route/11

Latency at CIk. Freq. | Std. Cell No. Total Cell Area
1 cycle at 250MHz 1615 65000um?
TABLE IV

METHOD 3 RECIPROCAL HARDWARE SYNTHESIS RESULTS.

Referring to the internal organization, the graphics ac-
celerator adopts a tile-based rasterization approach. The
tile size chosen for this particular implementation was set
at 32 x 16 pixels which implies that all the internal buffers
(color buffer, depth buffer, stencil buffer) composing the
tile frame buffer have this size. The display size resolu-
tion was set at 320 x 240 pixels (a quarter VGA), meaning
that the display can be conceptually divided into 10 x 15
tiles. The graphics accelerator has only one pixel process-
ing pipeline. The fixed-point formats utilized at the inter-
face with the internal datapath are all unsigned. The screen
coordinates (X, Y) are represented on 9.4 bits, the color
components (R,G,B,A) on 0.8 bits, the depth component
(Z) on 0.24 bits, and the stencil component on 8.0 bits.

The “aapoly” OpenGL application from [5] was exe-
cuted on our virtual SOC platform. The resultant image
is presented in Figure 8. It can be seen that the recipro-
cal employing Method 1 leads to noticeable artifacts in the
image, whereas the reciprocal using Method 3 does not in-
troduce artifacts in the image.

The results of the hardware synthesis on the recipro-
cal SystemC RTL model using the algorithm outlined in
Method 3 are presented in Table V.

VI. CONCLUSIONS

This paper presented a low-cost reciprocation hardware
algorithm suitable to be implemented in the datapath of
low-power, low-cost embedded 3D graphics accelerators.
The algorithm exploits the limitations of the human visual
system that allows a resonable amount of error to be intro-
duced in the computation process without inducing notice-
able artifacts in the final computer-generated image. In the
example given in the paper, excerpted from the antialias-
ing datapath of an embedded QVGA graphics hardware
accelerator, for a 14-bit operand, the reciprocal implemen-
tation requires an inexpensive operand prescaler, one 1k
lookup table with 10-bit entries, and a 5-bit adder, for a
maximum relative error of the result of only 1.5% over the
entire range of the operand. Hardware synthesis in a typi-
cal 0.18um process technology has indicated that the hard-
ware implementation requires only 1600 standard cells to
achieve a latency of only one clock cycle for a clock fre-

Fig. 8. A blowup on the image generated by “aapoly” OpenGL application — Left image: reciprocal computation using Method 1
produces noticeable artifacts; Right image: no artifacts produced when employing reciprocal computation according to Method 3.

quency of 250MHz. [12] 1. Koren. Computer Arithmetic Algorithms. A K Peters, 2002.
[13] O. Lathrop, D. Kirk, and D. Voorhies. Accurate Rendering by
REFERENCES Subpixel Addressing. IEEE Computer Graphics and Applica-

tions, 10(5):45-53, September/October 1990.
[1] M. Segal and K. Akeley. The OpenGL Graphics System: A Spec- fons, 10(5) eptember/ctober

ification (Version 1.2.1). Silicon Graphics, Inc., 1999.

[2] The Open SystemC Initiative (0scCl, URL:
http://www.systemc.org.

[3] D.Crisu, S.D. Cotofana, and S. Vassiliadis. A Hardware/Software
Co-Simulation Environment for Graphics Accelerator Develop-
ment in ARM-Based SOCs. In Proceedings of 13th Annual Work-
shop on Circuits, Systems and Signal Processing, ProRISC 2002,
November 2002.

[4] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Com-
puter Graphics: Principles and Practice, Second Edition in C.
Addison-Wesley, 1996.

[5] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Pro-
gramming Guide, Third Edition, The Official Guide to Learning
OpenGL, Version 1.2. Addison-Wesley, 1999.

[6] D. Crisu, S. Cotofana, and S. Vassiliadis. A Proposal of a
Tile-Based OpenGL compliant Rasterization Engine. Technical
Report (2002-02), Computer Engineering Laboratory, EEMCS,
Delft University of Technology, June 2002.

[7]1 A. Schilling. A New Simple and Efficient Antialiasing with Sub-
pixel Masks. In Computer Graphics (ACM SIGGRAPH *91 Con-
ference Proceedings), volume 25(4), pages 133-141, 1991.

[8] J. Pineda. A Parallel Algorithm for Polygon Rasterization. In
Computer Graphics (ACM SIGGRAPH ’88 Conference Proceed-
ings), volume 22(4), pages 17-20, 1988.

[9] M. D. Ercegovac and T. Lang. Division and Square Root:Digit-
Recurrence Algorithms and Implementations. Kluwer Academic
Publishers, 1994.

[10] B. Parhami. Computer Arithmetic: Algorithms and Hardware
Designs. Oxford University Press, 2000.

[11] M. J. Flynn and S. F. Oberman. Advanced Computer Arithmetic
Design. John Wiley & Sons, 2001.

55

