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Abstract—In MPEG applications, many of the 
algorithms are data intensive and require high levels of 
data locality and data reusability. A crucial performance 
bottleneck is the enormous data bandwidth the involved 
algorithms require. We focus on improving the speed of 
hardware MPEG decoders by using a 2-dimensional 
storage structure as part of a dedicated memory 
organization. The 2D storage makes the accesses to 
rectangular blocks of data more efficient. This is achieved 
by reduced number of memory accesses and improved 
data bandwidth utilization. The paper presents a generic 
structural design of the 2D storage, realized in VHDL. 
Feasible dimensions of the storage structure and the 
corresponding speed-ups get particular emphasis in the 
presented research effort. Results are obtained after the 
VHDL code is synthesized for the recent platform FPGA 
technology of Xilinx – Virtex II Pro.  Reported data are 
related to the feasible sizes of the 2D buffer in terms of 
reconfigurable hardware resources consumed. 
Experimental data are compared for a 24x24 bytes 2D 
data storage and block patterns of 8x8 bytes versus linear 
memory with data bandwidth of 8, 16 and 32 bits. At 
reasonable hardware costs, the speed-up, estimated by 
simulations, may reach in some of the experimental cases 
up to a factor of 39. Structured tabular data are presented 
and can be utilized for taking design decisions with respect 
to different initial constraints and requirements. 
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I. INTRODUCTION 
The fast development pace of new visual data 

compression standards is dramatically increasing the 
system performance requirements. Very intensive data 
transfers cause the memory access bandwidth to be a 
severe performance bottleneck in a contemporary 
multimedia processing system.  In this paper, we discuss 
some FPGA implementation tradeoffs regarding the 
design of a fast memory structure with increased 
bandwidth. We aim at speeding up MPEG processing in 
hardware and especially focus on the most demanding 
motion estimation and motion compensation algorithms 

involved. By Exploiting two important issues of these 
algorithms, namely data locality and data reusability, 
we have implemented a specific 2D-organized memory 
buffer between a conventional linearly addressable 
memory (LAM) and the dedicated processing block(s). 
We investigate feasible sizes of the 2D memory in terms 
of hardware resources required for an FPGA 
implementation. Another important estimation criterion 
of the design is the achievable data access speedup for 
considered MPEG algorithms.  

The investigated designs have been described in 
VHDL and synthesized for the Virtex II Pro technology 
of Xilinx with the ISE 5.1 synthesis tools. Tabular data 
are presented to illustrate various synthesis results with 
respect to different design parameters.  
• Results indicate reasonable hardware costs between 

0,1% and 60% of the 2VP50 FPGA resources for a 
range of implementations with output bandwidth of 
4, 8, 16, 4x4, 8x8 and 16x16 bytes.  

• We estimate speedups between 2 and 39 versus pure 
LAM organizations with data words ranging between 
8 and 32 bits.  

The remainder of the paper is organized as follows. 
Section II presents some minimal required background 
information and introduces the problem by means of a 
motivating example. Section III describes the proposed 
design. Synthesis results for different design 
implementations are reported in Section IV. Finally, 
Section V concludes the discussion.  

II. BACKGROUND AND PROBLEM DESCRIPTION 
Typically, video information is presented as a scanned 

sequence of pixels in a two dimensional visual plane. In 
digital video systems, this information is usually stored 
in LAM and displayed later as two-dimensional frames. 
In MPEG standards, video data are processed and 
modified between the scan and display phases. Most of 
the data processing in these standards, however, is not 
performed over individual pixels, but rather over certain 
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Figure 1. Search area and ‘retrieving block’ in MPEG. 
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regions (blocks) of pixels in a frame [5]. This may lead 
to some performance drawbacks due to problems with 
data alignment and accessibility into systems memory. 
We consider the full search for determining motion 
vectors in MPEG, which is the most data throughput-
demanding algorithm. In full search, the ‘retrieving 
block’ is placed on every possible location inside a 
predefined search area. These locations are not restricted 
to any block position. A ‘retrieving block’ is a block of 
data, which will be compared in the search algorithm 
with a block from another frame. As motion estimation 
criteria, the Sums of Absolute Differences between the 
‘retrieving block’ and the blocks within the search area 
are calculated. The bold square shows the boundary of 
the starting points (upper-left pixel) of the retrieving 
block in Figure 1. The following example illustrates the 
block addressing problems and motivates our research.  
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Figure 2.  Block accessing problem example 

The example indicates that different memory 
organizations and addressing modes may be vital for the 
performance of visual data processing algorithms. 
Obviously, a new memory organization should be 
utilized to solve the discussed problems. 

III. PROPOSED DESIGN 
Figure 3 depicts a general view of the memory 

hierarchy considered for our design. The width of the 
LAM data bus is denoted by w, while m denotes the data 
width of the interfacing bus between the 2 
Dimensionally Addressable Memory (2DAM) and the 
processing elements (Dedicated process). TLAM  is the 
time to access LAM and T2DAM- time to access the 2D 
memory. The 2D memory storage is a buffer that allows 
the reduction of redundant data transfers from the LAM, 
thus the available memory bandwidth is utilized more 
efficiently. On the other hand, the most severe 
bandwidth demands are imposed on transfers over 
highly localized data in the 2D addressable memory 
(2DAM). Therefore, data bandwidth between the 2DAM 
and the dedicated processing block (i.e., w < m in Figure 
2) should be increased. Two design issues help the 
performance improvement: 

Motivating example. Assume a LAM and a pixel 
plane divided into 2x2 blocks, where each pixel is 
represented by a byte (see Figure 2a)). Note that in linear 
addressing spaces the basic addressable units are bytes 
and words. Further, assume that video information is 
memory aligned in a typical scan-line manner and the 
system is capable of accessing 4 bytes in a cycle. 
Obviously, neither of the blocks containing pixels 0, 1, 
16, 17 and 17, 18, 33, 34 is accessible by a single 
memory transfer, because they are not aligned into 
consecutive memory locations (see Figure 2b)). Even 
though a 32-bit memory bandwidth is available, 
redundant data fetches cannot be avoided. Another 
approach may be to reorder data into the LAM. If we 
align each block into consecutive bytes (Figure 2c)), we 
will be able to access some blocks in a single memory 
cycle (e.g., pixels 0, 1, 16, 17). In MPEG, however, 
some of the most demanding algorithms (e.g., motion 
estimation, referred earlier) require accessing block data 
at an arbitrary position in the frame, thus in memory. 
Figure 2c) suggests that in such cases data fetching may 
become even less effective than the scan-line alignment 
scheme (e.g., accessing block 17, 18, 33, 34). Further, 
for conciseness, we will refer to blocks like 0, 1, 16, 17 
on Figure 2a) as aligned, and to the remaining blocks 
(like 17, 18, 33, 34) as non-aligned blocks. 

1. More efficient bandwidth utilization. 
2. Reduced number of data transfers between memory 

hierarchy levels.  

LAM 2DAM Dedicated  process

T2DAM TLAM

w m 

Figure 3. Considered memory hierarchy 
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Figure 5. 2D barrel shifter implementation. 
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IV. SYNTHESIS RESULTS AND EVALUATION 
The design was described in VHDL and synthesized 

for Virtex II Pro FPGA technology using different 
design parameters. Synthesis results for a 24x24 search 
area implementation are presented in Table I. These 
results indicate reasonable implementation costs. 

Figure 4. A single 1D barrel shifter implementation. 

 
Speedup evaluation. Assume a LAM with word 

length of w bits (w= 8, 16, 32) and time for a LAM 
access TLAM. Consider square n x n data patterns to be 
accessed. We note that the following equations can be  

To implement the 2DAM, several approaches can be 
chosen. Many designs, originally dedicated for vector 
processors and display systems based on multiple 
memory module organizations can be adopted 
[1],[3],[4],[6]. Such designs, however, are suitable for 
large storage volumes. We consider motion estimation 
search algorithms, which are typically dealing with 
relatively smaller search areas. Therefore, we decided to 
use register storage with the dimensions of the search 
area, which can be easily implemented with the available 
FPGA flip-flops. 2 D addresses, horizontal X, and 
vertical Y, determine the location where a particular 
piece of data should be stored into the 2D register 
storage. Barrel shifters are used to access the output data. 
Since barrel shifters are relatively expensive to 
implement, we investigated a range of output designs. 
One extreme is to implement a single, 1D barrel shifter 
with input length equal to one of the search area 
dimensions, as depicted in Figure 4. Another option is to 
implement two levels of barrel shifters, thus 
implementing a 2D barrel shifting operation. Such a 
design includes in essence several 1D barrel shifters and 
its extreme implementation will include D+1 barrel 
shifters, where D x D are the dimensions of the search 
area. Figure 5 sketches the 2D barrel shifter structure. 

generalized for rectangular patterns, as well. The time  
 (in [LAM cycles]) to access N n x n blocks of 8-bit 
pixels each varies depending on the block alignment: 
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By mixed access scenario we mean accessing both 
aligned and non-aligned blocks considering the full 
search algorithm. To derive (3), we assumed the number 
of accesses to aligned blocks in LAM to be 1/n from all 
accesses. Table II presents the normalized numbers of 
LAM access per block for some typical values of n and 
w.  Three scenarios are considered: worst case (WC) – 
neither of the N blocks is aligned; (Mix) - Mixed 
scenario; and best case (BC) - all blocks are aligned.  

TABLE I 
 SYNTHESIS RESULTS FOR VIRTEX II PRO 50 FPGA 

D     1D = 24          2D = 24x24     

M   4   8   16   4x4   8x8   16x16
# of Slices: 0,91% 224 1,19% 293 1,56% 384 15,5% 3822 31,3% 7715 62,6% 15428

# of Slice Flip Flops: 0,06% 32 0,13% 64 0,26% 128 0,1% 32 0,3% 128 1,0% 512

T2DAM  (in ns)   5,4  7,8  7,5  25,5  25,6   25,8
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TABLE II.  

DAM

LAM

N
N

2
NS =  

 NUMBER OF LAM ACCESSES PER  N X N  BLOCK. 
N W WC Mix BC 

8 8 72 71 64
  16 40 39 32
  32 24 23 16

16 8 272 271 256
  16 144 143 128
  32 80 79 64

Taking into account the implementation technologies 
and utilizing (8), the actual speedup for 1D 
implementation is: 
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The actual speedup achievable by 2D barrel shifting, 

considering (9), is estimated to be: 
Assuming a square search area with dimensions D x D, 
the number of all possible searches Nfs is calculated as: 
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Consider the full search algorithm, i.e., a mixed access 
scenario. In a pure LAM implementation, the total 
number of memory cycles, required to perform one full 
search in the entire area is:  

Both SN and SACTUAL are presented in Table III. 
Obviously, the highest speedup can be observed when 

the ratio 
m
w is greater.  

fsLAM Nn
w
nN ⋅




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


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⋅
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      (5) 

This means, the greater the 2DAM bandwidth is 
compared to the LAM bandwidth, the greater the 
speedup.  For the 24x24 implementation, the speed up 
can reach up to 39, when a 16x16 pattern is accessed and 
the LAM data bus is 8 bits wide. The same pattern will 
be accessed almost 13 times faster than a pure LAM 
implementation, if the LAM is 32-bit wide.  

In the considered memory hierarchy, we should load 
all required aligned blocks into the 2DAM from the 
LAM first and then perform the full search accesses. The 
number of aligned blocks (Nab) in the 2D memory is 
estimated to be: 

2







=

n
DN ab

          (6) 

Thus, the number of cycles required for loading the 
2DAM from the LAM is: 

V. CONCLUSIONS 
We presented scalable memory storage with a high 

output bandwidth, which is dedicated for MPEG 
hardware implementations. The storage has been 
designed as an integral part of a specific memory 
hierarchy and is capable of accessing randomly aligned 
data patterns out of a virtual 2D organized data. 
Synthesis results from an FPGA implementation indicate 
considerable speedups, compared to traditional linearly 
addressable memories at reasonable hardware costs. The 
design can be utilized to support specific memory 
architectures like [2], and can be especially beneficial in 
new FPGA based custom computing machines, for 
example see [7]. 
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The total number of cycles, spent for accessing Nfs 
blocks out of the 2DAM storage depends on the 
implemented width of its output bus, i.e., on the design 
parameter m. Thus, the number of cycles for a full search 
in the considered memory hierarchy when 1D barrel 
shifting access is implemented will be: 
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For the 2D barrel-shifting access, when n barrel 
shifters are implemented in parallel, we assume that the 
2DAM output bandwidth is m x m pixels, thus the total 
number of access cycles will be: 
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We define technology independent speedup SN 
assuming TLAM=T2DAM : 
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TABLE III. 
 SPEEDUP ESTIMATIONS FOR TLAM=10NS, N X N=8 X 8, AND D X D=24 X 24 

W     8     16     32   

M   4 8 16 4 8 16 4 8 16

NLAM   20519 20519 20519 11271 11271 11271 6647 6647 6647

N2DAM 1D 5200 2888 1732 4912 2600 1444 4768 2456 1300

  2D 1154 865 720,5 866 577 432,5 722 433 288,5

SN 1D 3,9 7,1 11,8 2,3 4,3 7,8 1,4 2,7 5,1

  2D 17,8 23,7 28,5 13,0 19,5 26,1 9,2 15,4 23,0

T2DAM, [ns] 1D 5,4 7,8 7,5 5,4 7,8 7,5 5,4 7,8 7,5

  2D 25,5 25,6 25,8 25,5 25,6 25,8 25,5 25,6 25,8

SACTUAL 1D 6,68 9,77 20,41 3,67 5,37 11,21 2,17 3,17 6,61

  2D 10,01 19,95 39,74 5,50 10,96 21,83 3,24 6,46 12,87
 

REFERENCES 
[1] P. Budnik and D. J. Kuck. The organization and use of 
parallel memories. IEEE Transactions on Computers, 
20(12):1566-1569, December 1971. 
[2] G.Kuzmanov, S.Vassiliadis, J. van Eijndhoven “A 2D 
Addressing Mode for Multimedia Applications”, Proc. 
"Workshop on System Architecture Modeling and Simulation 
(SAMOS 2001)", Samos, Greece, July 2001, pp. 291-306. (in 
LNCS 2268)  
[3] D.H. Lawrie. Access and alignment of data in an array 
processor. IEEE Transactions on Computers, C-24(12):1145-
1155, December 1975. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
[4] D. Lei Lee. Scrambled Storage for Parallel Memory 
Systems. In Proc.IEEE International Symposium on 
Computer Architecture, pages 232-239, Honolulu, HI, USA, 
May 1988. 
[5] Y.Q. Shi and H. Sun Image and Video Compression for 
Multimedia Engineering. Boca Raton CRC Press, 2000. 
[6] D.C. van Voorhis and T. H. Morrin. Memory systems for 
image processing. IEEE Transactions on Computers, C-
27(2):113-125, February 1978. 
[7] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN ρµ 
-coded processor. In 11th International Conference on Field 
Programmable Logic and Applications (FPL), pages 275-285, 
Belfast, Northern Ireland, UK, August 2001. 

 

94


	Introduction
	Background and Problem Description
	Proposed Design
	Synthesis Results and Evaluation
	Conclusions
	Acknowledgments

