

Implementing 2D Memory Buffers for MPEG

M.B. Haverkamp G. Kuzmanov S. Vassiliadis
Electronic Engineering,

Hogeschool van Amsterdam,
 Amsterdam, The Netherlands

MartienHaverkamp@hotmail.com
 http://www.hva.nl

Computer Engineering Lab,
Electrical Engineering Dept., EEMCS,

TU Delft, The Netherlands
{G.Kuzmanov, S.Vassiliadis}@EWI.TUDelft.NL

http://ce.et.tudelft.nl/

Abstract—In MPEG applications, many of the
algorithms are data intensive and require high levels of
data locality and data reusability. A crucial performance
bottleneck is the enormous data bandwidth the involved
algorithms require. We focus on improving the speed of
hardware MPEG decoders by using a 2-dimensional
storage structure as part of a dedicated memory
organization. The 2D storage makes the accesses to
rectangular blocks of data more efficient. This is achieved
by reduced number of memory accesses and improved
data bandwidth utilization. The paper presents a generic
structural design of the 2D storage, realized in VHDL.
Feasible dimensions of the storage structure and the
corresponding speed-ups get particular emphasis in the
presented research effort. Results are obtained after the
VHDL code is synthesized for the recent platform FPGA
technology of Xilinx – Virtex II Pro. Reported data are
related to the feasible sizes of the 2D buffer in terms of
reconfigurable hardware resources consumed.
Experimental data are compared for a 24x24 bytes 2D
data storage and block patterns of 8x8 bytes versus linear
memory with data bandwidth of 8, 16 and 32 bits. At
reasonable hardware costs, the speed-up, estimated by
simulations, may reach in some of the experimental cases
up to a factor of 39. Structured tabular data are presented
and can be utilized for taking design decisions with respect
to different initial constraints and requirements.

Keywords— MPEG, memory hierarchy, memory buffer,
VHDL, FPGA

I. INTRODUCTION
The fast development pace of new visual data

compression standards is dramatically increasing the
system performance requirements. Very intensive data
transfers cause the memory access bandwidth to be a
severe performance bottleneck in a contemporary
multimedia processing system. In this paper, we discuss
some FPGA implementation tradeoffs regarding the
design of a fast memory structure with increased
bandwidth. We aim at speeding up MPEG processing in
hardware and especially focus on the most demanding
motion estimation and motion compensation algorithms

involved. By Exploiting two important issues of these
algorithms, namely data locality and data reusability,
we have implemented a specific 2D-organized memory
buffer between a conventional linearly addressable
memory (LAM) and the dedicated processing block(s).
We investigate feasible sizes of the 2D memory in terms
of hardware resources required for an FPGA
implementation. Another important estimation criterion
of the design is the achievable data access speedup for
considered MPEG algorithms.

The investigated designs have been described in
VHDL and synthesized for the Virtex II Pro technology
of Xilinx with the ISE 5.1 synthesis tools. Tabular data
are presented to illustrate various synthesis results with
respect to different design parameters.
• Results indicate reasonable hardware costs between

0,1% and 60% of the 2VP50 FPGA resources for a
range of implementations with output bandwidth of
4, 8, 16, 4x4, 8x8 and 16x16 bytes.

• We estimate speedups between 2 and 39 versus pure
LAM organizations with data words ranging between
8 and 32 bits.

The remainder of the paper is organized as follows.
Section II presents some minimal required background
information and introduces the problem by means of a
motivating example. Section III describes the proposed
design. Synthesis results for different design
implementations are reported in Section IV. Finally,
Section V concludes the discussion.

II. BACKGROUND AND PROBLEM DESCRIPTION
Typically, video information is presented as a scanned

sequence of pixels in a two dimensional visual plane. In
digital video systems, this information is usually stored
in LAM and displayed later as two-dimensional frames.
In MPEG standards, video data are processed and
modified between the scan and display phases. Most of
the data processing in these standards, however, is not
performed over individual pixels, but rather over certain

90

mailto:MartienHaverkamp@hotmail.com
http://www.hva.nl/

a)

0 1 2 3

16 17 18 19

4 5 6 7

20 21 22 23

8 9 10 11

24 25 26 27

12 13 14 15

28 29 30 31

32 33 34 35

48 49 50 51

36 37 38 39

52 53 54 55

40 41 42 43

56 57 58 59

44 45 46 47

60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

scan-line length

80 81 block to access

Retrieving block
Boundary of starting points

Search area

Figure 1. Search area and ‘retrieving block’ in MPEG.

b)

0 1 2 16 17 18 19 32 33 34 35

scan-line length

.....

block to access

regions (blocks) of pixels in a frame [5]. This may lead
to some performance drawbacks due to problems with
data alignment and accessibility into systems memory.
We consider the full search for determining motion
vectors in MPEG, which is the most data throughput-
demanding algorithm. In full search, the ‘retrieving
block’ is placed on every possible location inside a
predefined search area. These locations are not restricted
to any block position. A ‘retrieving block’ is a block of
data, which will be compared in the search algorithm
with a block from another frame. As motion estimation
criteria, the Sums of Absolute Differences between the
‘retrieving block’ and the blocks within the search area
are calculated. The bold square shows the boundary of
the starting points (upper-left pixel) of the retrieving
block in Figure 1. The following example illustrates the
block addressing problems and motivates our research.

c)

0 1 16 17

block 0

.....

block to access

2 3 18 19

block 1

32 494833

block 8

503534 51

block 9

Figure 2. Block accessing problem example

The example indicates that different memory
organizations and addressing modes may be vital for the
performance of visual data processing algorithms.
Obviously, a new memory organization should be
utilized to solve the discussed problems.

III. PROPOSED DESIGN
Figure 3 depicts a general view of the memory

hierarchy considered for our design. The width of the
LAM data bus is denoted by w, while m denotes the data
width of the interfacing bus between the 2
Dimensionally Addressable Memory (2DAM) and the
processing elements (Dedicated process). TLAM is the
time to access LAM and T2DAM- time to access the 2D
memory. The 2D memory storage is a buffer that allows
the reduction of redundant data transfers from the LAM,
thus the available memory bandwidth is utilized more
efficiently. On the other hand, the most severe
bandwidth demands are imposed on transfers over
highly localized data in the 2D addressable memory
(2DAM). Therefore, data bandwidth between the 2DAM
and the dedicated processing block (i.e., w < m in Figure
2) should be increased. Two design issues help the
performance improvement:

Motivating example. Assume a LAM and a pixel
plane divided into 2x2 blocks, where each pixel is
represented by a byte (see Figure 2a)). Note that in linear
addressing spaces the basic addressable units are bytes
and words. Further, assume that video information is
memory aligned in a typical scan-line manner and the
system is capable of accessing 4 bytes in a cycle.
Obviously, neither of the blocks containing pixels 0, 1,
16, 17 and 17, 18, 33, 34 is accessible by a single
memory transfer, because they are not aligned into
consecutive memory locations (see Figure 2b)). Even
though a 32-bit memory bandwidth is available,
redundant data fetches cannot be avoided. Another
approach may be to reorder data into the LAM. If we
align each block into consecutive bytes (Figure 2c)), we
will be able to access some blocks in a single memory
cycle (e.g., pixels 0, 1, 16, 17). In MPEG, however,
some of the most demanding algorithms (e.g., motion
estimation, referred earlier) require accessing block data
at an arbitrary position in the frame, thus in memory.
Figure 2c) suggests that in such cases data fetching may
become even less effective than the scan-line alignment
scheme (e.g., accessing block 17, 18, 33, 34). Further,
for conciseness, we will refer to blocks like 0, 1, 16, 17
on Figure 2a) as aligned, and to the remaining blocks
(like 17, 18, 33, 34) as non-aligned blocks.

1. More efficient bandwidth utilization.
2. Reduced number of data transfers between memory

hierarchy levels.

LAM 2DAM Dedicated process

T2DAM TLAM

w m

Figure 3. Considered memory hierarchy

91

Search area X

1D Barrel Shifter

S
ea

rc
h

ar
ea

 Y 1D Barrel Shifter

1D Barrel Shifter

1D Barrel Shifter

1D Barrel Shifter
1
D
B
S

Figure 5. 2D barrel shifter implementation.

0 1 2 3

16 17 18 19

4 5 6 7

20 21 22 23

8 9 10 11

24 25 26 27

12 13 14 15

28 29 30 31

32 33 34 35

224 225 226 227

36 37 38 39

228 229 230 231

40 41 42 43

232 233 234 235

44 45 46 47

236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Search area X

1D Barrel Shifter

21 22 23 24

S
ea

rc
h

ar
ea

 Y

IV. SYNTHESIS RESULTS AND EVALUATION
The design was described in VHDL and synthesized

for Virtex II Pro FPGA technology using different
design parameters. Synthesis results for a 24x24 search
area implementation are presented in Table I. These
results indicate reasonable implementation costs.

Figure 4. A single 1D barrel shifter implementation.

Speedup evaluation. Assume a LAM with word

length of w bits (w= 8, 16, 32) and time for a LAM
access TLAM. Consider square n x n data patterns to be
accessed. We note that the following equations can be

To implement the 2DAM, several approaches can be
chosen. Many designs, originally dedicated for vector
processors and display systems based on multiple
memory module organizations can be adopted
[1],[3],[4],[6]. Such designs, however, are suitable for
large storage volumes. We consider motion estimation
search algorithms, which are typically dealing with
relatively smaller search areas. Therefore, we decided to
use register storage with the dimensions of the search
area, which can be easily implemented with the available
FPGA flip-flops. 2 D addresses, horizontal X, and
vertical Y, determine the location where a particular
piece of data should be stored into the 2D register
storage. Barrel shifters are used to access the output data.
Since barrel shifters are relatively expensive to
implement, we investigated a range of output designs.
One extreme is to implement a single, 1D barrel shifter
with input length equal to one of the search area
dimensions, as depicted in Figure 4. Another option is to
implement two levels of barrel shifters, thus
implementing a 2D barrel shifting operation. Such a
design includes in essence several 1D barrel shifters and
its extreme implementation will include D+1 barrel
shifters, where D x D are the dimensions of the search
area. Figure 5 sketches the 2D barrel shifter structure.

generalized for rectangular patterns, as well. The time
 (in [LAM cycles]) to access N n x n blocks of 8-bit
pixels each varies depending on the block alignment:

All N blocks aligned N
w
n

⋅
⋅ 28 (1)

Neither of the N aligned: Nn
w
n

⋅







+

⋅ 28 (2)

Mixed: =⋅















+

⋅
⋅

−
+

⋅
⋅ Nn

w
n

n
n

w
n

n

22 8181

Nn
w
n

⋅







−+

⋅
= 18 2

 (3)

By mixed access scenario we mean accessing both
aligned and non-aligned blocks considering the full
search algorithm. To derive (3), we assumed the number
of accesses to aligned blocks in LAM to be 1/n from all
accesses. Table II presents the normalized numbers of
LAM access per block for some typical values of n and
w. Three scenarios are considered: worst case (WC) –
neither of the N blocks is aligned; (Mix) - Mixed
scenario; and best case (BC) - all blocks are aligned.

TABLE I
 SYNTHESIS RESULTS FOR VIRTEX II PRO 50 FPGA

D 1D = 24 2D = 24x24

M 4 8 16 4x4 8x8 16x16
of Slices: 0,91% 224 1,19% 293 1,56% 384 15,5% 3822 31,3% 7715 62,6% 15428

of Slice Flip Flops: 0,06% 32 0,13% 64 0,26% 128 0,1% 32 0,3% 128 1,0% 512

T2DAM (in ns) 5,4 7,8 7,5 25,5 25,6 25,8

92

TABLE II.

DAM

LAM

N
N

2
NS =

 NUMBER OF LAM ACCESSES PER N X N BLOCK.
N W WC Mix BC

8 8 72 71 64
 16 40 39 32
 32 24 23 16

16 8 272 271 256
 16 144 143 128
 32 80 79 64

Taking into account the implementation technologies
and utilizing (8), the actual speedup for 1D
implementation is:

DAMfsLAM

LAMLAM
ACTUAL

T
m
nNT

n
D

w
n

TN
S

2

2228
⋅⋅+⋅






⋅

⋅

⋅
=

The actual speedup achievable by 2D barrel shifting,

considering (9), is estimated to be:
Assuming a square search area with dimensions D x D,
the number of all possible searches Nfs is calculated as:

DAMfsLAM

LAMLAM
ACTUAL

T
m
nNT

n
D

w
n

TN
S

2

228
⋅⋅+⋅






⋅

⋅

⋅
= (4) 2)1(+−= nDN fs

Consider the full search algorithm, i.e., a mixed access
scenario. In a pure LAM implementation, the total
number of memory cycles, required to perform one full
search in the entire area is:

Both SN and SACTUAL are presented in Table III.
Obviously, the highest speedup can be observed when

the ratio
m
w is greater.

fsLAM Nn
w
nN ⋅








−+

⋅
= 18 2

 (5)

This means, the greater the 2DAM bandwidth is
compared to the LAM bandwidth, the greater the
speedup. For the 24x24 implementation, the speed up
can reach up to 39, when a 16x16 pattern is accessed and
the LAM data bus is 8 bits wide. The same pattern will
be accessed almost 13 times faster than a pure LAM
implementation, if the LAM is 32-bit wide.

In the considered memory hierarchy, we should load
all required aligned blocks into the 2DAM from the
LAM first and then perform the full search accesses. The
number of aligned blocks (Nab) in the 2D memory is
estimated to be:

2







=

n
DN ab

 (6)

Thus, the number of cycles required for loading the
2DAM from the LAM is:

V. CONCLUSIONS
We presented scalable memory storage with a high

output bandwidth, which is dedicated for MPEG
hardware implementations. The storage has been
designed as an integral part of a specific memory
hierarchy and is capable of accessing randomly aligned
data patterns out of a virtual 2D organized data.
Synthesis results from an FPGA implementation indicate
considerable speedups, compared to traditional linearly
addressable memories at reasonable hardware costs. The
design can be utilized to support specific memory
architectures like [2], and can be especially beneficial in
new FPGA based custom computing machines, for
example see [7].

228






⋅

⋅
n
D

w
n (7)

The total number of cycles, spent for accessing Nfs
blocks out of the 2DAM storage depends on the
implemented width of its output bus, i.e., on the design
parameter m. Thus, the number of cycles for a full search
in the considered memory hierarchy when 1D barrel
shifting access is implemented will be:

m
nN

n
D

w
nN fsDAM

222

2
8

⋅+





⋅

⋅
= (8)

For the 2D barrel-shifting access, when n barrel
shifters are implemented in parallel, we assume that the
2DAM output bandwidth is m x m pixels, thus the total
number of access cycles will be:

ACKNOWLEDGMENTS
This research has been supported by PROGRESS, the

embedded systems research program of the Dutch
organization for scientific research NWO, the Dutch
Ministry of Economic Affairs, and the Technology
Foundation STW (project AES.5021).

m
nN

n
D

w
nN fsDAM ⋅+






⋅

⋅
=

22

2
8 (9)

We define technology independent speedup SN
assuming TLAM=T2DAM :

93

TABLE III.
 SPEEDUP ESTIMATIONS FOR TLAM=10NS, N X N=8 X 8, AND D X D=24 X 24

W 8 16 32

M 4 8 16 4 8 16 4 8 16

NLAM 20519 20519 20519 11271 11271 11271 6647 6647 6647

N2DAM 1D 5200 2888 1732 4912 2600 1444 4768 2456 1300

 2D 1154 865 720,5 866 577 432,5 722 433 288,5

SN 1D 3,9 7,1 11,8 2,3 4,3 7,8 1,4 2,7 5,1

 2D 17,8 23,7 28,5 13,0 19,5 26,1 9,2 15,4 23,0

T2DAM, [ns] 1D 5,4 7,8 7,5 5,4 7,8 7,5 5,4 7,8 7,5

 2D 25,5 25,6 25,8 25,5 25,6 25,8 25,5 25,6 25,8

SACTUAL 1D 6,68 9,77 20,41 3,67 5,37 11,21 2,17 3,17 6,61

 2D 10,01 19,95 39,74 5,50 10,96 21,83 3,24 6,46 12,87

REFERENCES
[1] P. Budnik and D. J. Kuck. The organization and use of
parallel memories. IEEE Transactions on Computers,
20(12):1566-1569, December 1971.
[2] G.Kuzmanov, S.Vassiliadis, J. van Eijndhoven “A 2D
Addressing Mode for Multimedia Applications”, Proc.
"Workshop on System Architecture Modeling and Simulation
(SAMOS 2001)", Samos, Greece, July 2001, pp. 291-306. (in
LNCS 2268)
[3] D.H. Lawrie. Access and alignment of data in an array
processor. IEEE Transactions on Computers, C-24(12):1145-
1155, December 1975.

[4] D. Lei Lee. Scrambled Storage for Parallel Memory
Systems. In Proc.IEEE International Symposium on
Computer Architecture, pages 232-239, Honolulu, HI, USA,
May 1988.
[5] Y.Q. Shi and H. Sun Image and Video Compression for
Multimedia Engineering. Boca Raton CRC Press, 2000.
[6] D.C. van Voorhis and T. H. Morrin. Memory systems for
image processing. IEEE Transactions on Computers, C-
27(2):113-125, February 1978.
[7] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN ρµ
-coded processor. In 11th International Conference on Field
Programmable Logic and Applications (FPL), pages 275-285,
Belfast, Northern Ireland, UK, August 2001.

94

	Introduction
	Background and Problem Description
	Proposed Design
	Synthesis Results and Evaluation
	Conclusions
	Acknowledgments

