
Implementation of MPEG-4 on the Philips Co Vector Processor

B. An1,2 S. Balakrishnan2 C.H. van Berkel2 D. Cheresiz1,∗ B. Juurlink1 S. Vassiliadis1

1Computer Engineering Laboratory

Delft University of Technology

2600 GA Delft

The Netherlands

2Philips Research Laboratories

Prof. Holstlaan, 4

5656 AA Eindhoven

The Netherlands

*email: cheresiz@dutepp0.et.tudelft.nl

Abstract— Multimedia applications provide new highly
valuable services to the consumer and form, consequently,
a new important workload for desktop systems. The in-
creased computing power of the embedded processors re-
quired in baseband processing for new high-bandwidth
wireless communication protocols (e.g UMTS, CDMA-
2000) can make multimedia processing possible also for
the mobile devices, such as cell phones. These devices
must meet high performance requirements of multimedia
applications while maintaining low cost and low power con-
sumption.

As a new platform which can provide the necessary com-
puting power for processing the inner tranciever functions
of the modem for UMTS, Philips develops a novel proces-
sor, called Co Vector-Processor (CVP), which is based on
the following techniques. First, CVP exploits the data-
level parallelism (DLP) by processing 256-bit data items,
which are interpreted as vectors consisting of 32 8-bit, 16
16-bit, or eight 32-bit elements. Therefore, a single vector
instruction of CVP performs up to 32 operations. Sec-
ond, CVP also exploits the instruction-level parallelism
(ILP) using VLIW approach: several vector instructions
are packed in a single very long instruction word (VLIW),
and are executed in parallel.

This high-performance machine can be employed not
only for its original purpose, the baseband processing, but
also for multimedia processing. In this paper we investi-
gate how well the parallel processing capabilities of CVP
can be utilized for a typical media application, and estimate
the performance levels which can be achieved. We use
the MPEG-4 video encoder as a benchmark. We identify
two most time-consuming kernels of this application, the
Motion Estimation (ME) and the Discrete Cosine Trans-
form (DCT), and rewrite them using CVP instructions.
These kernels operate on 8 × 8 pixel blocks. We propose
two different storage schemes: half-block based and pixel
based. Additionally, we propose some architecture exten-
sions, such as employing full-shuffles. We show that by us-
ing the appropriate storage schemes and the proposed ex-
tensions the performance of ME and DCT can be improved
by factors of 2.88 and 1.84, respectively. We, therefore,
show that the most important kernels of MPEG-4 encoder
can be vectorized and efficiently implemented on CVP.
Keywords: processor architecture, video processing, vec-
torization

I. Introduction

Importance of wireless communication services is
rapidly increasing and demand for new services with
higher quality is growing. To make such services
feasible, third generation (3G) wireless communica-
tion standards are developed, such as UMTS/TDD,

UMT/FDD and TD-SCDMA. These standards pro-
vide higher communication bandwidth than 2G stan-
dards, for example, UMTS (a 3G standard) requires
more than 10 times higher data bandwidth (384 kbps)
than the GSM system (about 30kbps) and, conse-
quently, impose higher requirements on the processing
power of a mobile device.

An architecture which would be powerful and flex-
ible enough to meet the 3G standards requirements
with low cost and low power consumption is developed
within the SW-modem for 3G mobiles project carried
out at Philips Nat.Lab. The aim of this project is
to develop a base-band platform for 3G mobile termi-
nals which supports multiple 3G (and 2G) standards
and modes, inter-standard hand-over, and a variety
of media applications and functions. The proposed
platform is based on a powerful Co Vector-Processor
(CVP). The CVP combines vector (8 × 32, 16 × 16,
or 32 × 8 bits) and scalar processing in a VLIW ex-
ecution model to exploit data level parallelism and
instruction level parallelism[1]. The functional units
and the communication among these units can be con-
figured. Powerful data processing can be provided by
CVP and simple structure and low cost are achieved.

The CVP was originally designed for 3G-baseband
processing, but since multimedia applications form
another important workload for the 3G mobile ter-
minals, suitability of CVP for media processing, e.g.,
audio and video processing, should be evaluated. The
most probable standard for video processing for 3G
mobile communications is MPEG-4.

The purpose of this paper is to investigate the fea-
sibility of implementation on the CVP of the most
compute-intensive kernels of the MPEG-4 encoder
and decoder.

This paper is organized as follows. Section II
presents a brief description of the CVP architec-
ture. Section III describes one of the most compute-
intensive kernels of MPEG-4, the motion estimation
(ME), and two different storage organizations for
MPEG-4 video frames: the half-block based (HB-
based) and the pixel scan order based (PSO-based).
In Section IV we describe the vectorization of the mo-
tion estimation for HB-based frames and study the
performance of such implementations. In Section V
the vectorization of the motion estimation for PSO-
based frames is studied. In Section VI we investi-



2

gate how the DCT algorithm can be implemented on
the CVP and study its performance. Finally, in Sec-
tion VII some conclusions are drawn and directions
for future work are proposed.

II. The CVP Architecture

The CVP can be applied in a system as presented
in Figure 1. The CVP combines the advantages of
VLIW and SIMD architectures to achieve high perfor-
mance and operates under the supervision of a host
DSP or micro-controller. The host processor can only
assign tasks to the CVP, while the CVP can interrupt
the host processor. The host processor and the CVP
can run in parallel. To control the data traffic from
and to the CVP, a DMA controller is employed. The
standard bus interconnects the various blocks and the
CVP is connected as a slave through it. All com-
munication with the CVP is memory mapped via the
vector memory (VM).

Host (DSP or

controller)
 DMA


Memory

rf control/

interface


CVP


vector

memory


vector

functional unit


Fig. 1. A CVP-based 3G-modem hardware architecture

Vector parallelism, also known as Single Instruction
Multiple Data (SIMD) parallelism, is exploited in the
CVP. In this architecture This means that a single
vector operation processes a vector of identical ele-
ments. The elements in CVP can be of the word- (8
bits), double-word (16 bits), or quad-word (32 bits)
size. A word (8 bits) is the basic unit of memory ad-
dressing. The CVP typically stores and manipulates
vectors of 32 words.

Orthogonally to vector parallelism, the instruction-
level parallelism (ILP) is also exploited in CVP, in the
form of the Very Long Instruction Word (VLIW) par-
allelism. Each CVP VLIW instruction consists of up
to seven instructions which control seven correspond-
ing functional units (FUs). These FUs are IDU (In-
struction Distribution Unit), VMU (Vector Memory

Unit), CGU (Code Generation Unit), AMU(Alu-Mac
Unit), SFU (ShuFfle Unit), SLU (Shift Left Unit),
and SRU (Shift Right Unit). These seven FUs oper-
ate in parallel. Each FU can receive and send both
vector and scalar data. We can configure most FUs
to tune their capabilities to the demands of specific
algorithms.

The IDU consists of the program memory, and is
responsible for sequencing the instructions, and dis-
tributing the seven instruction segments to itself and
the six other FUs. It does not support branches,
jumps, or interrupts. The VMU contains the vector
memory (VM). It can send a vector from the VM or
receive a vector into the VM. There are also scalar
send and receive operations. The VMU is the only
FU connected to the external world, i.e. to the exter-
nal bus. The CGU is the special-purpose unit used to
generate vectors of CDMA code chips. In the stud-
ies reported in this paper it is not used. The AMU
performs regular integer and fixed-point arithmetic.
It supports inter-vector operations and intra-vector
operations. In inter-vector operations, arithmetic is
performed element-wise on multiple vectors, while in
intra-vector operations, arithmetic is performed to the
elements within a single vector[2]. The SFU allows to
arbitrarily rearrange the elements of a vector accord-
ing to a shuffle pattern. In the current implementa-
tion of CVP only half of the vector elements can be
rearranged at a time, either even (even shuffle) or odd
ones. Therefore, two shuffles, even and odd are exe-
cuted, to perform one full shuffle operation. The SLU
can shift the elements of the vector by a word, a dou-
ble word or a quad word to the left. The data shifted
out can be placed in SLU’s scalar section. The shifted
positions on the right side of the vector are padded ei-
ther with zeroes or with the data taken from SLU’s
scalar section, depending on the type of SLU vector-
operation issued[2]. The SRU is similar to the SLU,
but shifts to the right.

Normally three to four FUs operate in parallel un-
der control of a single VLIW instruction. Instructions
are typically issued every clock cycle. Each FU has
three sections: control, scalar (32 bits), and vector
(256 bits). There is tight interaction between these
sections (intra-FU communication) within an FU. The
communication is strictly among the scalar sections
and among vector sections (inter-FU communication)
among FUs, as shown in Figure 2. The vector sections
of all FUs except the IDU are connected by a full in-
terconnect network. This feature allows each vector
section to receive a vector from any of the other vector



3

vector memory


              
  
 vector 

                caches


scalar caches


ACUs


ALU / MAC

register file


ALU / MAC


shuffle

code

gene-

ration


full scalar  switch   [6 
 
 32 b/cycle
]


program

memory


sequencer


full vector  switch    [6 
 
 256 b/cycle
]


scalar  i/o


VLIW instruction register

control

path


scalar

path


vector

path


bus


instruction

distribution


vector memory

unit


code gene-

ration unit


ALU/MAC

unit


shuffle

unit


shift

units


Fig. 2. CVP architecture

sections during each cycle and enables the creation of
arbitrary pipelines of the six FUs[2].

Many algorithms consist of parts that can be vec-
torized and parts that are of a scalar and sequential
nature. It is not practical to involve a host proces-
sor since the interaction between these parts is often
fine grained (every few clock cycles). The CVP allows
these interactions to occur inside the FUs. There is
considerable parallelism in the scalar path, in paral-
lel to that of the vector path, as shown in Figure 2.
The communication switch that connects the scalar
sections of the FUs can be configured in a way that is
identical to that of the vector sections[1]. The scalar
sections are independent of vector sections.

For the current CVP architecture prototype, tools
exist for assembly, simulation, and debugging. The
simulator is bit-true and cycle true. In order to reduce
the complexity of the programming task, a higher-
level programming language, called CVP-C, which is
a subset of C language, is developed to avoid error-
prone tasks such as scheduling of FU operations and
allocation of registers. The CVP-C programmer has
to transform the original algorithm that operates on
scalar samples into an algorithm operating on fixed-
size vectors samples. The CVP-C compiler can then
convert it to the CVP assembly and compound (or
schedule) the operations which can be executed in par-
allel into VLIW CVP instructions.

III. Vectorization of Motion Estimation

Motion estimation, as well as many other important
kernels of MPEG-4 operates on 8×8 pixel blocks. For
a given current block, several motion vectors(MV s)
are computed. A motion vector points to a lower-
left corner of the corresponding candidate block and
represent its displacement with respect to the current
block. We remark that the candidate MVs are pro-
vided in such a way that the corresponding block fits
into the search region, which is a domain of certain

 
 Constructing 

candidate block 


and BLIP
 

 


 

Clip
 


 

SAD
 


Fig. 3. Key functional blocks of the motion estimation

 


A
. B
LIP
 of pixel
 
 B
. B
LIP
 of block
 


MV
 


tl
 


bl
 
 br
 


tr
 


MV
 


TL
 


 
BL
 
 TR
 
BR
 


Fig. 4. Bilinear interpolation

predefined shape around the current block. Then, for
each MV the same sequence of operations, which is
depicted graphically in Figure 3, is carried out.

First, the candidate block is constructed by means
of Bilinear Interpolation (BLIP), as explained in the
following. Let MV be a motion vector. The co-
ordinates can be of the quarter-pixel accuracy, i.e.
MV = (x + p, y + q), where p, q ∈ {0, 0.25, 0.5, 0.75}
and x, y are integer. In a case when p = q = 0, no in-
terpolation is needed, and in case when p = 0

∨

q = 0,
the candidate block is an interpolation of two blocks.
In a general case, when p 6= 0

∧

q 6= 0, the motion
vector points inside an empty area surrounded by four
pixels: tl, bl, tr and br, as shown in Figure 4(A). Four
corresponding weighting factors (Atl, Abl, Atr, Abr)
are assigned to these pixels. The bilinear interpolation
of the pixel value that the MV points to is defined as
the weighted sum of these four neighbor pixels:

BLIP =
tl · Atl + bl · Abl + tr · Atr + br · Abr

Atl + Abl + Atr + Abr
(1)

The candidate block is constructed from the four
blocks TL (top-left), BL (bottom-left), TR (top-
right), and BR (bottom-right), which are located as
depicted in Figure 4(B), by applying (1) to every four
corresponding pixels of them.

After the candidate block is constructed, the Clip
function restricts the pixel values resulting from BLIP
to the [10, 240] range, and, finally, the Sum of Absolute
Differences (SAD) between the corresponding pixels



4

 


  4
 

  8
 

12
 

16
 

20
 

24
 

28
 

32
 

36
 

40 
 

 y
 

 


  0        8      16     24    32     40     48     56    64     72   
 x
 


9*5 blocks 

search region
  


the position of the 

original block
  


th
e order of 

HBs that are 

stored in VM 
  


(pixel)
 


Fig. 5. HB-Based storage

of the current and candidate block is computed. Af-
ter the SADs for all candidate blocks have been com-
puted, the motion vector corresponding to the block
that minimizes the SAD is selected and passed to the
later stages of the MPEG-4 encoding.

In this paper we assume that the 3DRS algorithm
for Motion Estimation (ME) is employed, where 7 can-
didate MVs are used to compute the ME for the cur-
rent block. The search region is a rectangle centered
at the current block and consisting of 5 × 9 blocks,
or 40 × 72 pixels. We assume also that a CIF format
video frame (352 × 288 pixels) is used.

Block Storage Schemes

The implementation of motion estimation greatly
depends on the way in which frame is stored in the
CVP’s vector memory (VM). In the remainder of
this section we propose two possible frame storage
schemes: the Half-Block Based (HB-based) and the
Pixel Scan Order Based (PSO-based).

Half-Block Based Scheme. We recall that a vector
in CVP contains 32 bytes. Since a block contains 64
bytes, it can be stored in two vectors: the upper 4
rows in one vector, and the lower 4 rows in the other.
The whole search region can be stored in 90 vectors.
The half-blocks are stored in the memory in the row-
major order, as shown in Figure 5.

Pixel-Scan-Order Based Scheme. As we described
above, one row in the search region consists of 9×8 =
72 pixels. Hence, it can be kept in 3 consecutive vec-
tors (96 words, i.e. 96 bytes) in the VM, with the
last 24 words in the third vector being unused. All
the 40 rows of the search region are stored, therefore,
in 120 consecutive vectors in the VM, as depicted in
Figure 6. Implementations of the motion estimation
based on the proposed storage organizations are dis-

 


8 pixels
 


unused memory
 


rows that belong to the same block for ME
 


one row of the search region
 


(5*8 rows in 
the
 

search region)
 


9*5 blocks 

search region
 


……
 


Fig. 6. PSO-Based storage

cussed in Section IV and Section V, respectively.

IV. ME Implementation for HB-Based frame

As we have explained above, to construct a candi-
date block, four blocks TL, BL, TR, and BR with in-
teger coordinates should be fetched and interpolated.
Below, we show the operations needed to fetch any of
them. We observe that a block (with integer coordi-
nates) is always contained in six half-blocks (HBs), as
Figure 7 depicts. In Figure 8 we show how the up-

 

0
 

1
 

2
 

3
 

 

 

 

 

 

 

 

 

 

 

y
 


0  1   2  3  4
  5   6  7   8                                         
 x
 


MV
 


upper HB
 


lower HB
 


HB1
 


HB3
 


HB2
 


HB4
 


HB6
 


HB5
 


Fig. 7. One candidate block out of six HBs

per HB of the desired block is extracted from HB1–
HB4. From this figure, it can be easily observed that
the pixels, which belong to the HB being constructed,
can be located at arbitrary positions within the source
HB/vector. To extract them, we employ the CVP
shuffle operation ◦, defined as follows: if a = b ◦ c,
where a, b, and c are CVP vectors, then a[i] = b[c[i]],
if 0 < c[i] < 31, and a[i] = a[i] if c[i] = −1, which
allows to extract arbitrary elements of b according to
the shuffle pattern c, and insert them in the vector
a. Each of HB1, HB2, HB3, and HB4 requires a dis-
tinct pattern for the necessary pixels to be extracted.
So, four patterns and four full shuffle operations are
needed to construct the upper half-block of the candi-



5

 


HB3
 


HB6
 


HB4
 


HB2
 


HB5
 


HB1
 


31,30,29,28,27,26,25,24  
 

23,22,21,20,19,18,17,16
 

15,14,13,12,11,10,  9,  8
 

  7,  6,  5,
 4,  3,  2,  1,  0
 


31,30,29
,28,27,26,25,24  
 

23,22,21,20,19,18,17,16
 

15,14,13,12,11,10,  9,  8
 

  7,  6,  5, 4,  3,  2,  1,  0
 


31,30,29,28,27,26,25,24  
 

23,22,21,20,19,18,17,16
 

15,14,13,12,11,10,  9,  8
 

  7,  6,  5, 4,  3,  2,  1,  0
 


31,30,29,28,27,26,25,24  
 

23,22,21,20,19,18,17,1
6
 

15,14,13,12,11,10,  9,  8
 

  7,  6,  5, 4,  3,  2,  1,  0
 


31,30,29,28,27,26,25,24  
 

23,22,21,20,19,18,17,16
 

15,14,13,12,11,10,  9,  8
 

  7,  6,  5, 4,  3,  2,  1,  0
 


31,30,29,28,27,26,25,24  
 

23,22,21,20,19,18,17,16
 

15,14,13,12,11,10,  9,  8
 

  7,  6,  5, 4,  3,  2,  1,  0
 


Upper HB
 


HB1
 


HB2
 


HB3
 


HB4
 


SFU pattern:
  (‘
-
1’ means unchanged)
  

•{
 
3, 
 2
, 
 1
, 
 0
, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1};
 

•{
-
1, 
-
1
, 
-
1, 
-
1, 
 7
, 
 6
, 
 5
, 
 4
,
 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1};
 

•{
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1,
27
,
26
,
25
,
24
, 
 
-
1, 
-
1, 
-
1, 
-
1, 1
9
,
18
,
17
,1
6,
 
-
1, 
-
1, 
-
1, 
-
1,
11
,
 10
,
  9
, 
 8
, 
-
1, 
-
1, 
-
1, 
-
1};
 

•{
-
1, 
-
1,
 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1, 
-
1
,31, 30,29,28, 
-
1, 
-
1, 
-
1, 
-
1
,23,22,21, 20
, 
-
1, 
-
1, 
-
1, 
-
1, 
15,14,13,12
};
 

 


Fig. 8. Extraction of a block from six HBs

date block. We remark that the same patterns should
be used construct the lower half-block from HB3-HB6.
Therefore, 4 different SFU patterns and 8 full shuf-
fle operations are required to construct the candidate
block. Since a full vector shuffle is implemented by
an odd shuffle and a consequent even shuffle on the
current CVP, 8 × 2 = 16 SFU operations (SFU ops)
are executed to form one block.

While four SFU patterns are needed to fetch, for
example, the upper HB (UHB), the SFU unit has
only two pattern registers (sfu cfg0, sfu cfg1 ). On the
other hand, the same four patterns are needed to form
the lower HB (LHB). Therefore, to avoid reloading of
the patterns, the following approach is taken. Two
patterns are loaded at one time. Instead of forming
UHB completely, part of UHB and part of LHB are
formed first. For example, HB1 and HB3 are shuf-
fled to form UHB, and HB3 and HB5 for LHB using
the two loaded patterns. After that, two other pat-
terns are loaded to completely form UHB and LHB.
However, after UHB is partially formed, the inter-
mediate result has to be stored. After loading the
other two patterns, the partially formed UHB should
be used as the target (state) of the SFU operation.
Unfortunately, a vector cannot be loaded into the im-

plicit target register of the SFU (sfu state) directly
in the current CVP. Therefore, the partially formed
UHB is copied (shuffled) from the SFU input register
(sfu input) to sfu state using the copy pattern, thus
requiring an extra SFU operation. Because the same
copy operation is needed for the other two patterns,
two extra SFU operations are needed to form UHB.
Similarly, another two SFU ops are needed to form
LHB. Totally, 16 + 4 = 20 SFU ops are executed to
form a block from six HBs.

We remark that since an MV can point anywhere
inside an HB, which contains 32 pixels, there are 32
different cases when the MV is of pixel accuracy (i.e.,
it has integer coordinates). Hence, there are 32 differ-
ent groups of SFU patterns and, as observed above,
each group contains 4 patterns. These 4 × 32 = 128
patterns are stored in the VM as a lookup table. For
different MVs, different group of patterns are loaded.
From the MV we can determine which HBs in the
VM contain the candidate block, which group of SFU
patterns has to be used to form the block, and which
group of weighting factors to be chosen for BLIP.

After forming the required blocks, BLIP is per-
formed. To complete this, 8 MAC operations are ex-
ecuted, since 4 MAC operations are needed for BLIP
for each of two half-blocks.

After BLIP, Clip function is performed to restrict
pixel values to the range [10, 240] instead of [0, 255].
Let v be the interpolated vector (half-block), v1 =
(10, 10, . . . , 10), and v2 = (240, 240, . . . , 240). Then,
by performing CVP operation u = MIN(v, v1) and,
consequently MAX(u, v2), we will clip values of v to
the desired range. Since interpolated block is stored
in two vectors, four AMU operations are needed for
clipping.

When pixels of the candidate block are clipped, the
sum of the absolute differences (SAD) between this
block and the original block is computed. SAD func-
tion is defined according to formula:

SAD(X, Y ) =
7

∑

i=0

7
∑

j=0

|X(i, j) − Y (i, j)| (2)

and is realized as follows. Let A, B be the upper HBs
of the original and the candidate blocks, respectively.
Two SUB and one MAX operation are performed to
obtain the absolute differences of A and B and then
intra add (IADD) is used to accumulate them and pro-
duce the SAD(A,B). Since blocks consist of two HBs,
9 AMU operations ((SUB×2 + MAX + DIADD)×2
+ ADD) in total are used.



6

After obtaining the SAD values of the 7 candidate
blocks and comparing these values, the block that has
the smallest SAD value is selected as the matched
block for ME. The corresponding MV of the matched
block is stored for decoding and the ME of a block is
completed.

Results

We now present the performance of the baseline ME
implementation which was described above, and pro-
pose and evaluate several optimized ME implementa-
tions. The results are obtained as follows: first we im-
plement the program in the CVP-C language, which is
a subset of C developed specifically for the CVP. The
compiler converts the code to VLIW CVP assembly
instructions. Since each VLIW instruction can be ex-
ecuted in one cycle, the execution time of the VLIW
code is equal to the number of VLIW instructions.
This number is also referred to as the length of the
schedule.

Table I summarizes the results for different ME im-
plementations. The second column shows the number
of VMU-busy cycles, i.e., cycles during which VMU
was occupied. It also shows the VMU utilization, i.e.,
the ratio of the VMU-busy cycles to the total number
of execution cycles. The third and the fourth columns
depict number of busy cycles and utilization for the
AMU and SFU units, respectively. The last column
depicts the execution time and the speedup of each of
ME implementations with respect to the baseline ME
implementation described earlier in this section and
referred to as ME1.

VMU/UR AMU/UR SFU/UR NoC/ME1*
ME1 55/35% 49/31% 78/50% 156/100%
ME2 45/37% 51/42% 64/52% 123/127%
ME3 31/27% 51/44% 64/55% 116/134%
ME4 58/45% 51/40% 40/31% 129/121%
ME5 31/29% 51/48% 32/30% 107/146%

TABLE I

Performance of ME in HB-based frame

The baseline ME implementation, ME1, takes 156
cycles. The execution time is determined by the crit-
ical path, i.e., the longest chain of dependent opera-
tions. In our case, there are 80 SFU operations on
the critical path. The shuffle unit is the most utilized
(or critical) resource and constitutes the performance
bottleneck.

Analysis of the ME1 implementation leads us to
several SFU optimizations, which are depicted in Fig-
ure 9. The corresponding ME implementations are
referred to as ME2–ME5.

 

4*4 patterns from VMU
 


6 HBs from VMU or 6 

AMU registers
 


output for BLIP
 


……
 
……
 


1*sfu_
input
 


 

shuffling
 


(oddly and evenly)
 


sfu_state
 


2*sfu_cfg
 


……
 


 

full
-
shuffle?
 


 

4*sfu_cfg?
 


Loading 

sfu_state from 


other unit?
 


Fig. 9. SFU structure and suggestions for improvement

ME2: We recall that in ME1 a partially constructed
HB (UHB or LHB) has to be loaded into sfu state,
the implicit target register in the SFU. Since there
is no direct operation on this register, the partially
formed HB from the SFU input register sfu input is
copied to sfu state by executing an SFU op with the
special pattern. If data can be loaded directly to the
implicit SFU target register from the VM, the extra
cycles are avoided. We refer to the approach with
such a modification to the CVP as ME2. The ME2
implementation requires 123 cycles and attains a 27%
speedup over ME1. The critical resource for ME2 is
still the SFU with 64 SFU operations.

ME3: Another possibility to avoid the 16 SFU opera-
tions that copy the partially formed HB from sfu input
to sfu state is to have four SFU configuration registers
(sfu cfg), instead of two. The CVP is extended with
four sfu cfg and the corresponding ME implementa-
tion is named ME3. It requires 116 cycles which cor-
responds to a speedup of 1.34 over ME1. The SFU
is the critical resource with 64 SFU operations on the
critical path.

ME4: Since the current CVP can only perform half-
shuffle operation (odd shuffle and even shuffle), if full
shuffle operation is available, just 40 SFU operations
are needed to realize ME. The CVP is extended with
the full shuffle operation and the corresponding ME
implementation is called ME4. It takes 129 cycles,
exhibiting a 21% speedup over ME1. We remark that
the SFU is not the busiest FU anymore, and the VMU
becomes the critical resource in.

ME5: This approach combines the ME3 and ME4 op-
timizations; i.e., the CVP is extended with full shuffle
and four SFU configuration registers. It reduces the
number of SFU operations from 80 to 32. However,



7

 


useful data, part of one block for BLIP
 


fetched vector
 


unused
 memory
 


Fig. 10. Fetching vector using SLU

1. SLU:: RCV(slu0, VMU);
2. SLU:: SHIFT0(slu0, QWORD), RCV(slu0, SLU), SRCV(SLU);
3. SLU:: SHIFTS(slu1, QWORD), RCV(slu1, SLU);
4. SLU:: SHIFT0(slu0, QWORD), RCV(slu0, SLU), SRCV(SLU);
5. SLU:: SHIFTS(slu1, QWORD), RCV(slu1, SLU);

1. SHIFT0(slu0, QWORD) – shift slu0 left by 4 bytes, padd with 0s;
2. SHIFTS(slu1, QWORD) – shift slu1 left by 4 bytes, padd with
scalar from the sslu

3. RCV(slu0, SLU) – receive vector from SLU and store it in slu0;
4. SRCV(SLU) – receive scalar from SLU and store it in sslu;

TABLE II

Extracting TL/BL row using SLU.

since the six HBs are stored in the AMU registers, vec-
tors are frequently fetched from the AMU to the SFU.
Each such fetch is represented as a separate AMU op-
eration and requires one cycle. Together with BLIP (8
MAC and 2 bit-shift), Clip (2 MAX and 2 MIN) and
SAD ((SUB×2+MAX+DIADD)×2+ADD), there are
51 AMU operations to be executed, and AMU be-
comes the critical resource. ME5 offers a speedup of
1.46 over ME1, requiring 107 cycles.

V. ME Implementation for PSO-Based frame

In this section we show that for a PSO-based frame
the pixels that are needed to construct the blocks used
in BLIP are located in a much more regular pattern
than for a HB-based frame. This allows to use shift
units SLU and SRU instead of shuffle unit SFU in or-
der to extract these pixels and, consequently, a more
efficient ME implementation. Since the implementa-
tion of BLIP, Clip, and SAD do not depend on the
storage format, our discussion will be focused on con-
struction of the input blocks for BLIP.

We recall that in 3DRS algorithm the search region
is 9 × 5 blocks (72 × 40 pixels) and each row of it is
stored in 3 vectors (96 words) in the VM. The first
two vectors and the first (rightmost) 8 words of the
third vector contain a row’s data. Four blocks TL,
BL, TR, and BR needed for BLIP (see Figure 4) are
contained in the square of 9 × 9 pixels. Therefore,
in the three vectors which hold a row, there are 9
consecutive pixels that are useful for BLIP. Blocks can
be fetched by using the SFU, but the efficiency of the

 


SFU pattern:
 


7 6 5 4 3 2 1 0, 15 14 13 12 11 10 9 8, 23 22 21 20 19 18 17 16, 31 30 29 28 27 26 25 24
 


Fig. 11. SFU operation to restore pixel order for TR/BR

SFU is still quite low, about 9/32. However, since the
pixels are consecutive, shift operations can be used.
For example, to construct TL/BL blocks we employ
shift-left (SLU) unit in a following way.

A vector from the VM is fetched so that 9 consecu-
tive useful pixels are located at the leftmost positions
within the vector, as depicted in Figure 10. Then,
the SLU operation is executed to obtain the useful
data. One vector contains 9 pixels useful for BLIP.
In order to obtain a row (8 pixels) of a TL/BL block,
quad-word shifts are used, as depicted in Table II.
We remark that in this code fragment the scalar and
the vector receive operations (SRCV and RCV, re-
spectively) write data to the register file of the same
SLU unit which produces the data to be written. Be-
cause of this, the RCV and SRCV can be scheduled
at the same cycle with the producing (i.e., shift) oper-
ations. After executing the code depicted in Table II
four times, the slu1 contains data of one half-block for
BLIP. Then MAC operations are executed to perform
BLIP, and at the same time, data are fetched from
the VM to form new half-block in the slu1.

Similarly to TL/BL, the TR and BR blocks can be
constructed by loading vectors, so that 9 required pix-
els are located at the rightmost positions, and apply-
ing subsequently shift-right operations. In this case,
however, the order of pixels is permuted and the ex-
tra SFU operation (shown in Figure 11) is needed.
We remark that SRU and SFU operations which form
TR/BR are independent of the SLU operations which
form TL/BL and, therefore, can be done in parallel
with them. Hence, the work performed solely by SFU
for HB-based frames, is now distributed to two func-
tional units and significant speedup can be expected.



8

VMU/UR SFU/UR SLU/UR SRU/UR NoC/ME1*
ME1 55/35% 78/50% 0/0% 0/0% 156/100%
ME6 28/41% 8/12% 35/52% 35/52% 68/229%
ME7 25/35% 0/0% 35/49% 35/49% 72/217%
ME8 43/61% 8/11% 18/26% 18/26% 70/223%
ME9 27/50% 8/15% 9/17% 9/17% 54/289%

TABLE III

Performance of ME for a PSO-based frame

Results

Table III summarizes the performance results of
the following ME implementations for a PSO-based
frame. In the following, we describe in detail different
ME implementations for a PSO-based frame.

ME6: This is the ME implementation described
above: SLU unit is used to form the TL/BL blocks
and SRU together with SFU unit are used to form
the TR/BR blocks. As expected, due to distribution
of block construction task to SLU and SRU, ME6 at-
tains an impressive 2.29 speedup with respect to the
baseline HB-based implementation ME1.

ME7: This implementation is similar to ME6. How-
ever, while the data processed by SLU to form TL/BL
is loaded as usual, from top to bottom, the data, which
is needed to construct TR/BR by SRU operations, is
loaded from bottom to top. In this way the pixels in
the vectors produced by SRU are not permuted and
the SFU operation needed by ME6 to rearrange the
shifted data is avoided. The execution time is 72 cy-
cles, close to that of ME6. That is because most of
the SFU operations in ME6 has been overlapped with
other FUs operations and they are not critical opera-
tions.

ME8: This ME implementation greatly differs from
ME6 and ME7. Instead of loading 32-pixel vector and
then extracting those data that belong to a BLIP in-
put block, we suggest assembling the block by loading
4-pixel scalar values from the VM consecutively using
the SLU or SRU. Since at most 4 pixels (one quad
word) can be fetched from the VM at one time in the
current CVP, ME8 fetches one quad word scalar at a
time and shifts it into a vector using the SLU or the
SRU to form one vector (half-block) for BLIP. In to-
tal, there are 9×2 SLU and 9×2 SRU operations and
9×2×2 VMU quad word scalar load (qw scalar send)
operations. As can be seen from Table III, ME8 is an
efficient approach realized in 70 cycles. The critical
resource is the VMU.

ME9: We propose to extend CVP to allow 8-word
scalar operations, i.e., to introduce 8-word scalar load
from VM and 8-word scalar shift operation in the SLU

and the SRU. This approach allows to reduce the num-
ber of VMU/SLU/SRU operations. To construct the
input blocks fro BLIP, 9×2 8-word scalar VMU loads
and 9 8-word scalar shift-in operations for SLU and
the SRU are executed. Note that all the other oper-
ations are the same to those in ME8. The schedule
takes 54 cycles and achieves a speedup of 1.26 over
ME8 and of 2.89 over ME1. We remark, however,
that in order to implement ME9, the datapath width
of the scalar section should be increased. Widening of
the datapath increases the hardware costs and should
be carefully considered before being implemented.

VI. Vectorization of (I)DCT

In this section, mapping of (I)DCT algorithm on the
CVP is presented. In MPEG4 algorithm, after finish-
ing motion estimation and motion compensation of
one block, 2D Discrete Cosine Transform (DCT) is
performed. In the decoding process, 2D inverse DCT
(IDCT) is performed to decompress the data. The
DCT and IDCT are very similar and, therefore, the
discussion is focused only on the DCT implementation
on CVP.

The 2D DCT is performed on 8× 8 blocks and has
separable nature, i.e., first, the 1D DCT on each of the
eight columns is performed, followed by a 1D DCT on
each of the eight rows:

ykl =
C(k)

2

7
∑

i=0









C(l)

2

7
∑

j=0

xij cos(
(2j + 1)lπ

16
)



 cos

(

(2i + 1)kπ

16

)





Let X be an 8×8 matrix representing the input block
for DCT, C be the block of DCT coefficients, Z – the
block of intermediate values, and Y – the result block.
Using this matrix notation, DCT can be expressed by
the following two equations:

Z = C · X, Y T = ZT · C (3)

We remark that it is acceptable for DCT to compute
Y T instead of Y because after the DCT the zig-zag
scan is performed on Y , and its direction can be easily
altered to operate on Y T instead of Y . In this way,
one matrix transposition can be avoided. The algo-
rithm thus consists of matrix-matrix multiplication,
transposition, and another matrix-matrix multiplica-
tion, as shown in Figure 12.

To compute the matrix product Z = C · X, the
dot product of each row of X with each column of
C should be computed. Since the CVP does not con-
tain instruction which can calculate the dot product of
two vectors in parallel, matrix multiplication cannot



9

 


Y
 
X
 


C
 


X = DCT input matrix
 


C = DCT coefficients matrix
 
 Y = DCT result matrix  
 


Z = intermediate matrix 
 


Multiplication of 

two 8*8 
matrices
 

 


8*8 matrix
 

transposition
 


Multiplication of 

two 8*8 
matrices
 


8*8 2D DCT function
  


Z
 


Fig. 12. Functional blocks of 2D DCT

VMU/UR AMU/UR SFU/UR NoC/DCT1*
DCT1 44/37% 43/36% 64+32(cfg)/80% 120/100%
DCT2 44/48% 43/47% 32+32(cfg)/70% 92/130%
DCT3 18/20% 43/47% 64/70% 92/130%
DCT4 18/28% 43/66% 32/49% 65/185%

TABLE IV

2D DCT performance of different approaches

be implemented straightforwardly. However, the CVP
contains multiply and accumulate (MAC) instruc-
tion. This instruction has format MAC(scr1, scr2,
acc), and performs the following operations: acci+ =
scr1i×scr2i, i = 1, 2, . . . , 32, where scr1 and scr2 des-
ignate CVP registers that are 256 bits and contain 32
8-bit values, and acc designates a CVP accumulator
which consists of 512 bits and contains 32 16-bit val-
ues. MAC cannot be utilized straightforwardly: sup-
pose the first row of X is contained in scr1 and the first
column of C is in scr2. Then, the first MAC will com-
pute products of (x00c00, x01c10, . . . , x07c70) in paral-
lel and store them in the elements (acc0, acc1, . . . acc7)
of the accumulator register. However, to obtain z00,
these elements have to be accumulated, which cannot
be done efficiently.

Therefore, the algorithm is modified such that, for
example, all the partial products needed to compute
z00 will be contained in the first elements of the vec-
tors, partial products needed for z01 in the second ele-
ments of the vectors, etc. This is achieved by permut-
ing the input matrix data using SFU unit. For brevity,
we do not describe these operations here. In the fol-
lowing, we evaluate the performance of the presented
baseline DCT algorithm, referred to as DCT1, and of
its optimized versions DCT2, DCT3, and DCT4. and
propose several optimizations.

Results

Table IV summarizes the performance results for
the following DCT implementations on the CVP.

DCT1: This is the baseline DCT implementation de-
scribed earlier. We observe that SFU is the critical

resource, which executes 96 operations and has uti-
lization of 80%. There are two reasons for such a high
number of SFU operations. First, in order to prepare
input matrices for the MAC operations 32 different
shuffle patterns should be used, resulting in 32 loads
to SFU configure registers. Second, since full shuffles
in current CVP require an even and an odd shuffles
to be executed, 32 · 2 = 64 SFU shuffles are needed to
perform 32 full shuffles with different patterns.

DCT2: This algorithm is a simple modification of
DCT1 under assumption that a full vector shuffle can
be executed as a single SFU operation. This allows
to reduce the pressure on SFU and achieve a speedup
of 30%. However, the SFU remains the critical re-
source. We remark, furthermore, that DCT2 cannot
be implemented on the current CVP.

DCT3: As was stated in the Section IV (see discus-
sion of the ME2 algorithm), if the SFU can receive
data from itself directly (i.e., if a datapath from the
SFU output (sfu state) to the SFU input (sfu input) is
added as presented in Figure 9), the output of the SFU
can be immediately sent to the SFU input register in
the same cycle. If this changes to SFU are made, less
shuffle patterns and, consequently, less pattern load
operations are needed. The corresponding modifica-
tion of DCT algorithm, referred as DCT3 requires 92
cycles and achieves a 30% speedup with respect to
DCT1.

DCT4: This algorithm combines the optimizations
used in DCT2 and DCT3. It achieves a 85% speedup
over the DCT1. We remark also that the critical re-
source for DCT4 is AMU, not SFU.

VII. Conclusions and Future Work

In this paper we have studied feasibility of vector-
ization of the MPEG4 kernels on the CVP. We have
shown that motion estimation and (I)DCT, which
are the most computationally intensive parts of the
MPEG4 algorithm, can be vectorized and hence, the
data-level parallelism can be exploited. Furthermore,
we have shown that, usually, several vector operations
can be executed in parallel, exploiting the instruction-
level parallelism. Several approaches exploiting both
data and instruction-level parallelism for ME and
DCT have been presented.

For ME, we have studied two different storage or-
ganizations of the video frame, which are Half-Block-
Based (HB-Based) storage and Pixel-Scan-Order-
Based (PSO-Based) storage.

The performance of ME implementation on the cur-
rent CVP for each of these storage schemes is pre-



10

sented in Table V. In the second column of this ta-
ble the number of cycles (NoC) required for ME is
depicted showing that . the ME implementation us-
ing PSO-Based scheme (ME6) provides higher per-
formance with a speedup of 2.24 over the ME1, an
implementation for an HB-Based frame. The third
column in Table V depicts the performance in terms
of Millions Instructions per Second (MIPS), under as-
sumption that the video sequence has the CIF format
and the frame rate of 30 frames per second. A DCT

NoC Performance(MIPS)

HB-Based(ME1) 156 45.4

PSO-Based(ME6) 68 20.3

TABLE V

Performance for motion estimation in two

different storage organizations

implementation on the current CVP, called DCT1, re-
quires 120 cycles, or 5, 7 MIPS.

Several modifications to the current CVP architec-
ture have been proposed in order to improve the per-
formance of ME and DCT. The most promising sug-
gestions are ME9 and DCT4. The ME9 algorithm
requires CVP to be extended to allow operations on 8-
word elements and achieves a 25% speedup over ME6
and a speedup of 2.79 over ME1. To implement DCT4
a full shuffle operation is needed, as well as a datapath
from the SFU output to the SFU input. It achieves a
speedup of 1.9 over DCT1.

Although we have accomplished vectorization of
motion estimation and DCT and obtained remark-
able speedups, there are several possibilities for future
work. To improve performance of motion estimation,
we can employ non-unit stride memory access tech-
nique[3] to fetch video blocks from vector memory in
a clever way. This requires a modification on vector
memory addressing. The data from one half-block can
be fetched into one vector at one time. In other words,
no data will be discarded after data fetching and the
data fetching efficiency will increase significantly.

There exist several fast DCT algorithms[4], [5], [6]
which reduce the number of additions and multiplica-
tions by exploiting the special structure of the coeffi-
cient matrix. Mapping these algorithms on the CVP
is likely to provide further performance improvements
for DCT.

References

[1] C.H (Kees) van Berkel, Patrick P.E. Meuwissen, Nur Engin
and S. Balakrishnan. CVP: A Programmable Co Vector Pro-
cessor for 3G Mobile Baseband Processing. World Wireless

Congress, 2003.

[2] Kees van Berkel, Patrick Meuwissen, Sander Weijs, Rob
Wubben and Nur Engin. Obelix: a Co Vector Processor
for 3rd Generation Mobile Communication: An Architec-
ture Study. Technical Report 2001/031, Philips Research
Laboratories, Eindhoven, The Netherlands, August 2002.

[3] Hennessy, John L. and Patterson, David A. Computer Ar-

chitecture – A Quantitative Approach. Morgan Kaufmann
Publishers, third edition, 2002.

[4] Byeong Gi Lee. A New Algorithm to Compute the Discrete
Cosine Transform. IEEE Trans. On Acoustics, Speech, and

Signal Processing, ASSP-32:1243–1245, 1984.
[5] Nam Ik Cho and Sang Uk Lee. Fast Algorithm and Imple-

mentation of 2-D Discrete Cosine Transform. IEEE Trans.

Circiuts Syst., CAS-40:259–266, April 1991.
[6] Yuh-Ming Huang and Ja-Ling Wu. A Refined Fast 2-D Dis-

crete Cosine Transform Algorithm. IEEE Trans. on Signal

Processing, 47(3):904–907, March 1999.


