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Abstract—This paper describes the mapping of Finite Im-
pulse Response (FIR) and Decimation filters on a new DSP
architecture: the Co-Vector Processor (CVP) developed by
Philips. This architecture is targeting the baseband sig-
nal processing algorithms for the third generation mobile
communication (3G). CVP is a Very Long Instruction Word
(VLIW) architecture with functional units supporting vector
parallelism. To exploit efficiently the architecture, a large
portion of the targeted DSP algorithms must be properly
vectorized. In this paper, different vectorization strategies
for FIR and Decimation filters for the CVP architecture are
investigated. The approach used is to restructure the origi-
nal sequential1 algorithms into block forms 2 that are suit-
able for parallel processing. In addition, the vectorization
should fully utilize the Multiply-Accumulate (MAC) struc-
ture. It is shown that for the targeted filters, several good
vectorization strategies can be applied. The benchmark re-
sults obtained using the proposed strategies outperform re-
sults of other architectures previously reported.

Keywords— Vectorization; FIR; Decimation; Co-Vector
Processor (CVP); vector parallelism.

I. INTRODUCTION

The demand toward high speed, integrated wireless
telecommunication services have been increasing rapidly
in the last decades. Currently a number of third genera-
tion wireless communication standards have emerged, e.g.
UMTS/TDD, UMTS/FDD, TD-SCDMA etc., and these
standards are expected to co-exist with the 2G standards
as well as their extensions (2.5G). Considering the above
diversity, the need for a single flexible architecture that has
the processing power to support different standards is aris-
ing.

Observing the trends as noted above, the so-called Co-
Vector Processor (CVP) architecture is being developed.
This architecture is to form part of a scalable, low-cost,
low-power baseband processing system for 3G handsets.
CVP is a vector processor that employs many advanced
techniques from VLIW and vector processors. Further-
more, CVP is a co-processor, which is operating as a slave
1A sequential algorithm is defined as an algorithm for calculating

single output at a time
2Inversely, a block algorithm is defined as an algorithm capable of

calculating multiple outputs at a time

to a host processor. The host processor is responsible for
executing the control and irregular tasks, whereas CVP can
offer high processing power for the regular operations in
the inner loops of 3G algorithms[6].

In order to exploit the CVP architecture efficiently,
the targeted DSP algorithms must be properly vectorized,
meaning converted to block form from sequential form.
Up to now, the vectorization of a number of algorithms
have been investigated, eg. RAKE, viterbi decoder [2],
FFT. In this paper, two filtering algorithms, i.e. Finite Im-
pulse Response (FIR) and Decimation FIR filter will be
investigated. First they will be restructured into appropri-
ate block forms and next mapped to CVP all of this with
adequate processing performance.

This paper is organized as follows: Section II presents
the CVP architectural description. Section III and IV
shows the vectorization and mapping of FIR and Decima-
tion filters to CVP. Section V concludes the paper.

II. T HE CO-VECTOR PROCESSOR

The details of CVP architecture have already been in-
troduced in a previous publication [6]. Here, only a short
overview will be given.

The CVP is a VLIW architecture, comprising seven
Functional Units (see Figure 1). At each clock cycle, CVP
can issue one very long instruction that contains seven ex-
ecution slots. Instruction Distribution unit (IDU) is re-
sponsible of distributing VLIW instructions to all other
units. ALU-MAC Unit (AMU) is the computational heart
of CVP, where general purpose integer arithmetic and logic
instructions exist alongside instructions tuned to specific
applications (such as ACS for Viterbi decoding [2]). Vec-
tor Memory Unit (VMU) supplies the data to all units
and can support up to 1 vector read/write and 1 scalar
read/write each clock cycle. Code Generation Unit (CGU)
has Galois field instructions supporting channelization and
scrambling code generation for 3G standards. Shift Left,
Shift Right and ShuFfLe Units (SLU, SRU and SFU) take
care of the operations in which a vector should be con-
verted to/from a sequence of scalars or where the vector
elements need to be reordered (shuffled).

Another architectural paradigm employed by CVP is
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vector processing. Each functional unit operates on vectors
of standard length (256 bits). Most vector instructions for
CVP units support scalable precision, so a vector can con-
tain 32 elements of 8-bit single-word, 16 elements of 16-
bit double-word or 8 elements of 32-bit quad-word. CVP
supports both real and complex fixed-point arithmetics

The vector processing nature of CVP functional units is
based on the observation that a large part of the algorithms
are vectorizable. However, in many algorithms a small
amount of operations exist which are inherently scalar
in nature. This can seriously limit the speedup achieved
through vectorization even if the non-vectorizable parts
form a very small percentage of the total amount of op-
erations in an algorithm (a special case of Amdahl’s Law,
see [3]). Some of the non-vectorizable operations are re-
lated to looping and address calculation. These are dealt
by means of loop-control units in the IDU and address cal-
culation units in the VMU [6], so these operations are ex-
ecuted in parallel with the vector operations, and there is
no speed limitation caused by them. Furthermore, there
are some irregular scalar operations in many algorithms.
To overcome the slowdown due to these operations, scalar
processing hardware has been included in the CVP func-
tional unit alongside the hardware for vector processing, so
that a scalar instruction can be executed in parallel with a
vector instruction. We call the combination of these scalar
processing elements the ”scalar path”. Examples of scalar
functionality are scalar send and receive instructions at the
VMU and instructions between a scalar and vector (by
means of scalar broadcasting) in the AMU.

Unlike traditional vector processors, CVP supports only
unit-stride vector accesses. This poses a problem on data-
packing when exploiting Instruction Level Parallelism ex-
posed in many algorithms [4], [3]. For instance, data gath-
ering is very important for Decimation filters. This can
be done easily in traditional vector processors where non-
unit stride accesses are supported. In the case of CVP, this
problem is addressed by using the SHUFFLE (SFU) unit
(Figure 1) that is able to rearrange elements of a vector in
an arbitrary order.

III. V ECTORIZATION OFFIR FILTERS

In this section, we describe the mapping of an N-tap FIR
filter with 16-bit fixed point coefficients and inputs to
CVP 3. It is supposed that the number of inputs are multi-
ple of 16 as it matches the architecture of CVP (256 wide
data path). However, this assumption would not reduce the
generality of the problem since normally, when the num-
3Because of the precision granularity of CVP is 8 bits, this is also the

case for filters with coefficients and inputs encoded by 9-bit to 16-bit
fixed-point representation
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Fig. 1. Block diagram of CVP

ber of inputs is not a multiple-of-16 number and much
larger than the number of filter coefficients , we can al-
ways use zero padding to extend the length of the input
vector to a proper number. To exploit the parallelism of-
fered by CVP first a proper parallelization strategy need
to be chosen given an application. In other words, the in-
vestigated problem must be vectorized or algorithmically
restructured.

A. The vectorization strategies

This section describes two vectorization strategies. We
show that the second strategy exploits efficiently the archi-
tecture. This strategy uses both the vector and the scalar
data paths available in CVP.

B. The horizontal strategy

A FIR filter is presented by

yn =

N�1X
k=0

hkxn�k (1)

whereh0
k
s (0 � k � N � 1) are the filter coefficients and

x0
k
s are the inputs. This equation can also be represented

in matrix form (for the case 16 outputs are calculated from
an N-tap FIR filter)
or using compact notation:

Y = X �H (2)

whereY andH are the output and coefficient vectors re-
spectively andX is the input matrix. An obvious way to
parallelize this algorithm for CVP’s vector processing is
to perform the multiplications horizontally and then add
the matrix elements together (called ”intra-add”) to get a
single output at a time.
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Fig. 2. The matrix representation of the N-tap FIR filter

yk = h0xk + h1xk�1 + � � �+ hN�1xk�N+1 (3)

In this paper, we define an intra-add operation as fol-
lows:

Definition 1: The intra-add of every L elements in a
vector of length N:X = [x0; x1; � � � ; xN�1] is also a
vector of length N:
Intra AddL(X) = R (R = [r0; r1; � � � ; rN�1]) where

rk =

( P
k+L�1

i=k
xi if (k mod L) = 0

0 if (k mod L) 6= 0

Intra-add operation is available as a CVP instruction.
Using the above definition, Equation 3 can be re-written
in a compact form

yk = Intra AddN (Xk �H) (4)

whereXk = [xk; xk�1; � � � ; xk�N+1] andN is the filter
length. The vector multiplication in the above equation is
element-wise.

The advantage of such implementation is that the pro-
gram will contain only one loop and thus is simple and
small in code size. However, this implementation would
result in significant inefficiency since we have to scale the
results of the multiplication before intra-adding. This in-
creases the latency due to the operations inside the loop,
therefore the performance of this strategy will not be high.

C. The Vertical Strategy

An alternative approach is to vectorize the algorithm
vertically or partition the input matrixX column-wise (or
vertically). The FIR equation in Equation 1 can be rewrit-
ten as follows:

Y = X0 � h0 +X1 � h1 + � � � +XN�1 � hN�1 (5)

where8>>>>>>><
>>>>>>>:

X0 = [xk; xk+1; xk+2; � � � ; xk+15]

X1 = [xk�1; xk; xk+1; � � � ; xk+14]

X2 = [xk�2; xk�1; xk; � � � ; xk+13]

� � � � � �

� � � � � �

X15 = [xk�15; xk�14; xk�13; � � � ; xk]:
1

In the vectorized expression 5, instead of calculating a
single output at a time, 16 outputs will be calculated at
once. This scheme needsN vector Multiply and Accu-
mulate (MAC) operations to get those 16 outputs. The
operands of a MAC operation are an input vector (Xi) and
a coefficient scalar (hk). By the application of the broad-
cast register in ALU and MAC Unit (AMU), a scalar can
be received from other functional units. It is then broad-
cast or replicated across an entire vector and hence can be
used as an operand in the MAC operation. We have:

Y = MAC(X0; h0) +MAC(X1; h1) + � � � +

MAC(XN�1; hN�1) (6)

The program will now contain two loops - an inner loop
to calculate 16 outputs and an outer loop that evolves ver-
tically along the input matrix (X). This will result in a
longer program compared to the first strategy and is shown
in Figure 3.

initialize addresspointers();
LOOP(16 times);

f

load(datavector x);
load(coefficientscalarb);
multiply accumulate(x, b);
updateaddresspointers();
g

Fig. 3. Pseudo code for the algorithm

D. The algorithm implementation for CVP

In this section, the algorithm presented in Figure 3 will
be mapped into CVP. The inner loop contains only four
tasks and can be packed into single CVP’s VLIW instruc-
tion. The most important part is to get data ready for MAC
4Notice that the definition ofXk in this strategy is different from the

previous one
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instructions; this includes initializing, updating pointers
and loading pointed data into the registers.

Figure 4 shows the organization of the inputs and coef-
ficients in the CVP’s memory. Two pointer registers are
needed for addressing an input vector and a coefficient
scalar. At the initialization stage, the first pointer (e.g.
acu0) must point to the first data vectorx0 and the second
(e.g. acu1) points to the beginning of the filter’s coefficient
vector (b0). This coefficient will be sent directly from Vec-
tor Memory Unit (VMU) using “scalar-send” instruction
(SSND).
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Fig. 4. Organization of filter coefficients and input in CVP’s
vector memory

E. Performance

The benchmark results of various DSPs for calculating
1024 outputs with a 50-tap FIR filter are presented in Ta-
ble I. As can be seen from the table, the performance of
CVP is better than its counterparts at equal or lower clock
frequency. This has been achieved by the vector parallel
architecture and the efficient algorithm mapping presented
in this paper.

Clock-rate Clock cycles Execution
(Mhz) time (�s)

CVP 300 3728 12.4
ALTIVEC 600 9334 15.6

TIGERSHARC 300 7200 24
TMS320C64x 600 16243 27

TABLE I
PERFORMANCE OFFIR FILTER ON CVP

IV. V ECTORIZATION OFDECIMATION FILTERS

Figure 5 shows the block diagram of a decimation filter
with decimation factorM .

H(z)    M
x[k] y[k] y[Mk]

Fig. 5. Decimation and Interpolation filters

or in matrix representation as shown in Figure 6.
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Fig. 6. The matrix representation of a decimation FIR filter with
factor of 2

The most straight-forward strategy to implement this al-
gorithm is to calculate a single output at a time directly
from the equation presented in Figure 6.

y2n =

N�1X
k=0

hkx2n�k (7)

This strategy, however, is exactly the same as the Hori-
zontal strategy for FIR, hence not efficient. In this section,
we propose two new strategies that exploit better the MAC
structure of decimation filter and the CVP architecture.

A. Strategy 1

Another way to reduce the computation requirement is
to use polyphase representation of the decimation filters
[5]. Figure 7 shows the block diagram of the 2-component
polyphase representations of the decimation shown in Fig-
ure 5 (M = L = 2).

In Figure 7, the input sequence (xk) is divided into two
shorter sequences. The first sequence contains the even-
numbered input samples and the second contains the odd-
numbered ones. As a result, the lengths of both input
sequences (x2k andx2k+1) are half of the original (xk).
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Fig. 7. Polyphase representations of Decimation and Interpola-
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These two shorter sequences are then filtered byE0(z) and
E1(z) whose lengths are again half of the original filter
H(z). The filtersH(z), E0(z), E1(z), R0(z) andR1(z)

are related by the following formulas:

8><
>:

H(z) =
P
1

n=�1 h(n)z�n

E0(z) � R0(z) =
P
1

n=�1 h(2n)z�n

E1(z) � R1(z) =
P
1

n=�1 h(2n+ 1)z�n

For a N-tap FIR filter, single output requires N multi-
plications. Hence for M outputs, we needMxN multipli-
cations. By using the polyphase representations, both the
number of input samples and the length of each component
FIR filters are reduced by the factor of two. As a conse-
quence, each decomposed filter -E0(z) orE1(z) - will be
used to calculate onlyM=2 outputs. The total number of
multiplications required will beN=2M=2 + N=2M=2 =

MN=2 which is half of the original computation require-
ment.

B. Strategy 2

The previous strategy has improved the efficiency of the
decimation filter but still suffers from the shuffling opera-
tions required. In this section, we derive another algorithm
which is able to exploit the MAC structure of the algorithm
and thus increase the efficiency when implemented in DSP
architectures.

The matrix equation of a decimation filter (with the dec-
imation factor of 2) shown in Figure 6 can be rewritten as
follows:

Y = X0 �H0 +X1 �H1 + � � �+XN�1 �HN�1 (8)

where

8>>>>><
>>>>>:

X0 = [xk; xk+1; xk+2; � � � ; xk+15]

X1 = [xk�1; xk; xk+1; � � � ; xk+14]

� � � � � �

� � � � � �

XN�1 = [xk�N+1; xk�N+2; xk�N+3; � � � ; xk�N+16]:

and

8>>>>>>><
>>>>>>>:

H0 = [h0; 0; h0; 0; � � � ; h0; 0]

H1 = [h1; 0; h1; 0; � � � ; h1; 0]

H2 = [h2; 0; h2; 0; � � � ; h2; 0]

� � � � � �

� � � � � �

HN�1 = [hN�1; 0; hN�1; 0; � � � ; hN�1; 0]:

Notice thatX1 is produced by shiftingX0 right one el-
ement and half of the elements inHk are 0’s, so Equation
8 can rewritten as follows:

Y = Intra Add2(X
0

1 �H
0

1 +X 0

3 �H
0

3 + � � �+ (9)

X 0

N�1 �H
0

N�1)

where

8>>>>><
>>>>>:

X 0

1 = [xk�1; xk; xk+1; � � � ; xk+14]

X 0

3 = [xk�3; xk�2; xk�1; � � � ; xk+12]

� � � � � �

� � � � � �

X 0

N�1
= [xk�N+1; xk�N+2; xk�N+3; � � � ; xk�N+16]:

and

8>>>>>>><
>>>>>>>:

H 0

1 = [h1; h0; h1; h0; � � � ; h1; h0]

H 0

3 = [h3; h2; h3; h2; � � � ; h3; h2]

H 0

5 = [h5; h4; h5; h4; � � � ; h5; h4]

� � � � � �

� � � � � �

H 0

N�1
= [hN�1; hN�2; hN�1; hN�2; � � � ; hN�1; hN�2]:

C. Performance

Table II shows the performance and the code sizes of
the implementations of the two vectorization strategies on
a 32-tap FIR decimation filter with 96 input samples. We
have shown that it is possible to escape the unit-stride limi-
tation in CVP. Additional investigation shows that the per-
formance of Strategy 2 increases when the lengths of FIR
filters used grow.

Clock cycles Code size (bytes)
Strategy 1 224 6,232
Strategy 2 148 4,482

TABLE II
PERFORMANCE OF VARIOUS PARALLELIZATION

STRATEGIES ONCVP

The first strategy’s performance is moderate since we
have to spend additional cycles on the SHUFFLING oper-
ation (about 80 cycles for shuffling 6 16*1 input vectors).
However, this strategy can be applied to a wide range of
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decimation filters with different decimation factors. Fur-
thermore, this strategy can also be applied for interpolation
filers (simply by reversing the processing order). Unfortu-
nately, the performance of this strategy decreases linearly
as the decimation factors increase due to the shuffling op-
eration.

V. CONCLUSIONS

We explored and studied two of the most important dig-
ital filtering algorithms in details. Different approaches to
vectorize the algorithms have been investigated and imple-
mented for CVP without loss of generality. The following
issues were highlighted: The Vertical vectorization strat-
egy for FIR filters not only guarantees the efficiency of its
implementations but it can also be applied for FIR filters of
arbitrary lengths. Although the number of inputs (or out-
puts) for the strategy should be a multiple-of-16 number, it
does not affect the generality since zero-padding can be ap-
plied. Two vectorization approaches for Decimation filters
with small factors were investigated . It has been shown
how decimation filters with arbitrary large factors can be
decomposed into multiple stages. In addition the proposed
strategies where implemented on CVP. The performance
of the presented implementations outperforms previously
reported results.
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