
SCISM IA-32 Binary Translator
Evgueni Koukourechkov, Nikolay Grozdanov, Georgi Gaydadjiev and Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology,
Delft, The Netherlands

{gusa, grozadanov, Georgi}@Dutepp0.ET.TUDelft.NL
http://ce.et.tudelft.nl

Abstract— With today’s IC technology approaching the
edge of the Moore’s law, it is emerging to obtain execu-
tion speed-ups by applying different methods rather than
future clock speed increases. The execution time can be
improved by exploiting the parallelism inherent in the bi-
nary code, i.e. Instruction Level Parallelism (ILP) [3]. In
such a way, designing a new architecture from scratch and
recompilation of the existing code (written and tested for
years) can be avoided. TheScalable Compound Instruction
Set Machine(SCISM) [6] organization addresses this prob-
lem by analyzing the instruction dependencies at execution
time and by compounding them together for parallel exe-
cution according to a pre-defined categorization based on
hardware utilization rather than opcode description. The
main SCISM advantage is that it provides a design that re-
mains binary compatible with the original instruction set ar-
chitecture. This paper introduces SCISM software simula-
tor able to read, translate and simulate parallel execution of
IA-32 legacy code. The main goal is to provide a tool for easy
exploration of the parallelism present in the native IA-32 bi-
nary code. The SCISM simulator is (open source) software
project written in C++ under Linux. The compounding rules
and all additional information, e.g. ISA description, hard-
ware implementation 1 details etc., are provided through a
set of plain text configuration files that can be easily modi-
fied. Preliminary results suggest that performance gains of
about 30 % are feasible.

Keywords—ILP, binary translation, SCISM.

I. I NTRODUCTION

The need for high performance computer systems is still
emerging. Researchers and designers do apply many dif-
ferent techniques on different design levels in order to im-
prove computer systems performance. One of the most
promising performance boosters is the future exploiting of
the instruction level parallelism since the Moore’s law is
expected to decelerate when the component sizes decrease
additionally.

Instruction-level parallelism (ILP) [3] is currently ex-
ploited in many modern computer architectures, e.g. IA-

1in this document architecture and implementation are used as de-
fined in [1]

64. The acceptance process of such systems in the mar-
ket is very difficult due to the huge amount of legacy code
(written and tested for years) and currently in use. Re-
design of all applications may require major effort and a
significant investment. Since it has been shown that for
a variety of reasons the performance gain of ILP aware
systems is lower than the theoretical maximum, a better
way to employ the parallelism inherent in the binary code
is suggested. In such a way, designing a new architec-
ture from scratch and recompilation/redesign of the exist-
ing code can be avoided. The Scalable Compound Instruc-
tion Set Machine (SCISM) [6] organization addresses this
problem by analyzing the instruction dependencies at exe-
cution time and by compounding them together for parallel
execution and provides designs that are binary compatible
with the original (targeted) architecture.

This paper presents a tool (simulator) for exploring the
SCISM advantages based on existing binary executables.
The first targeted is IA-32 binary code. The simulator in-
put consists not only of the binary (legacy) code to be an-
alyzed but also of configuration information about the tar-
geted instruction set and SCISM related information, e.g
instruction groups description, compounding rules, type
and count of functional units used etc., making the tool
easy extendable to any other ISA.

This paper is organized as follows: Section II describes
briefly the SCISM organization. Section presents the over-
all architecture of the binary translator and describes some
implementation issues. Section IV shows some prelimi-
nary results obtained from the translator and finally, Sec-
tion V concludes the paper.

II. T HE SCISM ORGANIZATION

SCISM is a machine organization suitable for RISC and
CISC architectures [6]. It improves significantly the
instruction-level parallelism by solving or diminishing the
problems every superscalar machine suffers from, such as
data interlocks (dependencies), branch instructions, and
interrupt handling. The main idea behind SCISM is that

501

all instructions are partitioned into several functional cate-
gories. This is done in order to minimize (optimize) the
number of dependency rules among concurrent instruc-
tions for the sake of efficient (hardware) implementation.
With other words, the grouping of instructions is based on
the hardware utilization rather than opcode description, as
used on other machines. For example, the total number
of dependency rules in an architecture withN instructions
and machine organization able to execute two instructions
in parallel isN x N. Theoretically such architecture can ex-
ploit the instruction level parallelism maximally but hard-
ware implementation of such amount of dependency rules
may turn prohibitive complex. This is especially the case
for CISC architectures.

All instructions inside one particular category in SCISM
are considered as ”unique”, and hence cannot be executed
concurrently since all members of a category use the same
hardware resources. Differences among category mem-
bers are considered as ”trivial” and are to be resolved by
the hardware. The number of instructions that cannot be
placed in any other category are lumped together in a sin-
gle group, even are assigned an individual category. The
former method simplifies the implementation by minimiz-
ing the total number of instruction categories, so it is often
preferred. Inside a group ofn instructions, wheren is large
(3 or more), it is very likely that dependencies will exist
between instructions. One good example of such group
are all arithmetic instructions utilizing the arithmetic logic
unit (ALU), e.g. add, subtract, logical AND, logical OR,
compare,and so forth.

High level abstraction of SCISM program execution
flow is presented in Figure 1. The program instruction
stream (Program) is processed by the compounding fa-
cility. This facility operates with an implementation-
dependent (predetermined) scope and generates thecom-
pound instruction program. Such a transformation is based
on a set of rules reflecting the system architecture, hard-
ware organization and the parallelism between different
instruction categories. These rules are referred ascom-
pounding rules.

Thecompound instruction programproduced can be ex-
ecuted by the execution engine, which handles every com-
pound instruction as a single instruction. The compound-
ing process may be positioned mainly at two places - on
compilation time and on execution time. Both approaches
know different pros and cons. In the context of this paper
the execution time compounding will be assumed.

The compound instruction should contain additional in-
formation for the purpose of parallel issuing and execu-
tion. In general such information can be incorporated in
the compound instruction in the form of decoding or tag-

Fig. 1. SCISM program execution flow

ging. Tagging, however is the preferred way since it has
been proven as mandatory technique for architectures that
allow variable-length instructions, or that allow data to be
intermingled with instructions [6], [5]. Please note, that in-
structions composing a compound instruction are not nec-
essary consecutive instructions in the original program, al-
lowing for out-of-order issue.

Figure 2 shows the compound instruction format for a
machine organization where up to four instructions can be
executed in parallel. To mark the compounding boundaries
of those instructions, four additional tag bits are required.
In this definition a tag equal to1 notifies that the next in-
struction can be executed in parallel with the previous one
(or more), while0 indicates the end of the current com-
pound instruction. In Figure 2, the instructionsIj are in
their original form andT fields represent the tags.

I1 T I2 T I3 T I4 T

Fig. 2. SCISM compound instruction

One fundamental property of SCISM machine organi-
zation is that it enables preprocessing to be detached from
instruction issue/decode. In order to achieve this, the com-
pounding must be ”permanent”, with permanency depend-
ing on the physical location of the compounding facil-
ity. Such static compounding is also the major difference
between SCISM and a superscalar machine that ”com-
pounds” its instructions dynamically. For example, the
compounding facility may be a software facility - in the
form of a post compiler [5] or it may be in the form of
hardware facility (preprocessor) located, for example, be-

502

tween the cache and the memory subsystems [6]. In such
hardware preprocessor, the instruction stream to be com-
pounded is the instruction text fetched during servicing of
a cache miss. The output, i.e. the stream of instructions
and their tags will be written in cache and will remain in-
tact as long as the line resides in the cache, and is thus rel-
atively ”permanent”. In case the line should be removed
from the cache for any of a number of reasons, the associ-
ated tags become invalid and the line must be preprocessed
again should it be required at some later moment.

III. T HE IA-32 BINARY TRANSLATOR ORGANIZATION

The purpose of the SCISM simulator is to perform bi-
nary translation and simulate parallelized execution of ex-
isting binary programs. Such binary programs (also re-
ferred as legacy code) are compiled and widely used ap-
plications for particular ISA, e.g. PowerPC or MIPS. Such
ISA will be referred astargeted architecturein the scope
of this document. The first targeted architecture is Intel IA-
32 due to its wide share in the personal computers. Several
clear steps are to be performed as a part of the simulation
process. They are as follows: input data preparation, bi-
nary translation, simulation and profiling, and report gen-
eration.

Fig. 3. The SCISM Simulator

The preparation stage performs several actions essen-
tial for the next stages of the simulation process. In more
details they are: loading of the ISA description, loading
of SCISM instruction groups definition, loading of the
SCISM compound rules table, load of the SCISM im-
plementation description and finally loading of the legacy
code (program). All of the above are external text and bi-
nary files required for the simulation process. In this text
we refer to this stage asFront Endand its position in the
overall organization is shown in Figure 3. The ISA de-
scription provides the information about each instruction
of the targeted architecture. The instruction group defini-
tion and the compound rules table determine the SCISM
organization to be used. The SCISM implementation de-
scription, e.g number and type of execution units, is need
mainly for the simulation stage. The binary file that is the
subject of simulation is disassembled in the first place. All
of the above configuration and input data information is

collected in dedicated internal representation containers.
The organization with external configuration files provides
high degree of flexibility and allows for rapid design space
exploration, e.g the same binary file can be simulated on
several different SCISM organizations.

Instruction Set

<Section>
-
type of data

Instruction(
 opcode
,
mnemo
)

Instruction Set

<Section>
-
type of data

Instruction(
 opcode
,
mnemo
)

Legacy

Code
 objdump
 Text
dasm

Legacy

Code
 objdump
 Text
dasm

Front End

1
Load Instruction Set

(parse input file)

2
Parse and Load

Legacy Code

Data

Rules

-
instr

-
config

-
cross table

Computation block

(Simulation)

Data

Rules

-
instr

-
config

-
cross table

Computation block

(Simulation)

Internal
Represenattion

of the binary (legacy code)

Internal
Represenattion

of instruction set
 -
info

Internal
Represenattion

of instruction groups

Configuration

ALU

FPU

BU

Instruction Fetch Unit

Configuration

ALU

FPU

BU

Instruction Fetch Unit

Compounding Rules

1

2

…

1
 2
 …

Compounding Rules

1

2

…

1
 2
 …

Instruction Groups

GID
 Mnemonics
 FUs

Instruction Groups

GID
 Mnemonics
 FUs

3
Parse and Load

Instruction Groups

4
Parse and Load

Compounding Rules

5
Parse and Load

Configuration

Fig. 4. Front End functionality
Figure 4 shows the main functions of the front end in

more detail. The Front End Block is performing the fol-
lowing preparation tasks for the simulation:
1. Loading from the input files the data for instruction set,
groups, compounding cross table rules and implementa-
tion to be simulated (types and count of storage and pro-
cessing units). The data is loaded into their internal repre-
sentation in the classesInstrSet, CompConds, InstrGroups.
2. Disassembly of the input binary file. In the current im-
plementation the external programobjdump(part of GNU
development tools) is used.
3. Loading disassembled binary as a sequence of exe-
cutable instructions in convenient for analysis internal rep-
resentation classInstrExec.

The binary translation phase consists of two main sub-
phases: Determination of inter-instruction dependencies
(data, control and resource) and Instruction Compound-
ing. The dependency determination is essential for the in-
struction compounding process and is envisioned to be a
complex process. Three basic dependency types need be
analyzed:
• Data dependencies, e.g. instructionn + 1 requires the
data produced byn and hence can not be executed in par-
allel
• Control dependencies, e.g. all branch instructions that
change the program flow heavily influence the com-
pounded program
• Resource dependencies, e.g. two instructions require the
same hardware resource simultaneously
In essence, three separate dependency graphs are imple-
mented in a suitable data structure optimized for memory
space.

503

Due to the fact that the internal dependencies of any
binary program of the targeted architecture can be con-
sidered ”permanent” and can be detached from the com-
pounding process, those two processes are assumed inde-
pendent. With other words there are more compoundings
possible for the same binary program (with the same in-
ternal dependencies). The actual compounding uses the
dependencies and compounds the original instructions to-
gether, based on the SCISM compounding groups and
rules definition. The result of this stage will be com-
pounded instruction program. The compounding instruc-
tions are of variable length with a maximum being the
maximum compound instruction width. Special internal
representation is used to represent the SCISM compound
instructions binary image. This stage will be referred as
Binary Translationfrom now on. In addition to the com-
pound instructions program, static code information is pro-
duced in the form of different instruction counts and other
statistical information.

During the Simulation and profiling phase, the dynamic
SCISM functional simulation is actually performed. The
functional simulation verifies the proper program execu-
tion after the transformation stage has been applied. In
addition dynamical statistic results and profiling informa-
tion are collected. The report generation actually formats
the collected static and dynamic data and produces a report
file. This file is meant for the designer and allows him an-
alyze and tune the SCISM compounding rules and/or im-
plementation.

In Figure 3 an overview of the steps as described above
above is presented. The simulator is designed using C++.

IV. PRELIMINARY RESULTS

The software project described in this paper is still on-
going. The current state of the project is as follows. The
Front End is ready and the Binary Translation is almost
finished. The data dependencies analyze and internal pre-
sentation turned to be more complex than previously esti-
mated, hence the longer time needed to complete it.

At this moment only small programs can be loaded, an-
alyzed and compounded. The maximum binary program
length is about 400 lines. Approximately 30 % decrease
of program lines was found, however, the compounding
results should be verified on real programs instead of the
currently used synthetic binaries. The functional simula-
tion part is completely open and will be initiated only after
all previous stages are completed.

A. Previous Work

The performance of IBM System/370 SCISM organiza-
tion with compounding facility placed between the cache

and the main memory was evaluated in [6]. A two-way
compounding scheme was used under real-life commer-
cial workloads. To avoid issues that clearly affect the
performance of the superscalar processors but are entirely
dependent on technology and implementation constraints,
the number of instructions that can be executed in parallel
where compared to the maximum performance of a the-
oretical superscalar machine which can issue and execute
all instruction in pairs. The performance gain prediction
was based on the number of instructions that can be exe-
cuted in zero time. The rationale behind was as follows:
If one instruction in a compound instruction executes inn
cycles and another instruction executes inm ≤ n, the later
appears to execute in zero time. This factor was denoted
as PZE (potential zero-cycle executions) and was used to
represent the number of instructions that can be ”removed”
from the instruction cycle time during the execution of a
program. For example, considering a two-way compound-
ing, PZE is 50%, since it is assumed that every instruction
is half of a pair. In reality the improvement will always be
lower due to factors such as cache size and branch predic-
tion accuracy. The results of this evaluation showed that
PZE in the range 35-43% can be achieved for the con-
sidered system. In addition a SCISM2 organization was
evaluated, where the branches where removed from the in-
struction stream improving the PZE to 41-49% very close
to the theoretical high-bound of 50%.

V. CONCLUSIONS

A tool that emulates the SCISM execution behavior on
IA-32 binary programs has been presented. The tool in-
ternal structure has been discussed and the most important
objects have been highlighted. In addition some prelimi-
nary results and the directions for future work where given.
Previous work indicates the potential parallelism present in
commercial workloads.

REFERENCES

[1] Gerrit Blaauw and Frederick Brooks Jr.,Computer architecture,
Addison-Wesley, One Jacob Way, 1997.

[2] R.J. Eickemeyer, S. Vassiliadis, and B. Blaner,An in-memory pre-
processor for SCISM instruction-level parallel processors, Techni-
cal Report TR-01 C407, IBM Glendale Laboratory, Endicott, NY,
May 1992.

[3] John L. Hennessy and David A. Patterson,Computer architectre a
quantative approach, third ed., Morgan Kaufmann, 2003.

[4] Intel, IA-32 Intel Architecture Software Developer’s Manual Vol-
ume 2: Instruction Set Reference, 2003.

[5] S. Vassiliadis and B. Blaner,Concepts of the SCISM organization,
Technical Report TR-01 C209, IBM Glendale Laboratory, Endi-
cott, NY, Jan 1992.

[6] S. Vassiliadis, B. Blaner, and R. J. Eickmeyer,SCISM: A scal-
able compound instruction set machine, IBM J. Res. Develop.38
(1994), no. 1, 59–78.

504

