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Abstract—This paper investigates inverse quantization on
FPGA-augmented TriMedia processor. First, we outline
the extension of TriMedia architecture consisting of FPGA-
based Reconfigurable Functional Units (RFU) and associ-
ated generic instructions. Then we analyse an IQ-4 (RFU–
specific) instruction which can process four coefficients per
call, and propose a scheme to implement the IQ-4 operation
on the RFU. When mapped on an ACEX EP1K100 FPGA,
the proposed IQ-4 exhibits a latency of 18 and a recovery of
2 TriMedia-32@200 MHz cycles, and occupies 43% of the
device. By configuring the IQ-4 facility on the RFU at appli-
cation load-time, inverse quantization can be computed on
FPGA-augmented TriMedia with a speed-up of1:5� over
the standard TriMedia.

Keywords—Reconfigurable computing; inverse quantiza-
tion; VLIW processors; field-programmable gate arrays.

I. INTRODUCTION

Enhancing a general purpose processor with a recon-
figurable core is a common issue addressed by computer
architects [5], [12], [2]. The idea is to exploit both the
processor flexibility to achieve medium performance for
a large class of applications, and FPGA capability to im-
plement application-specific computations. An instance of
such enhanced processor is TriMedia+FPGA hybrid [7],
which proved promising results with respect to several ap-
plications: Inverse Discrete Cosine Transform [6], Entropy
Decoding [8], andY 0CbCr-to-R0G0B0 Converter [9].

Inverse Quantization is a computing-intensive stage of
MPEG decoding. Traditionally, IQ has been captured di-
rectly in customized hardware in Application-Specific In-
struction Processors, or carried out in software in media-
domain processors. In this paper, we describe a recon-
figurable IQ design for FPGA-augmented TriMedia, and
demonstrate that significant speed-up can be achieved over
standard TriMedia for an IQ application.

Since Inverse Quantization exhibits large data and
instruction-level parallelisms, it can be implemented on
standard TriMedia with high efficiency. Obtaining im-
provements for a task having a computational pattern
which TriMedia has been optimised for, is indeed chal-
lenging. The main idea in achieving speed-up is to config-
ure on FPGA a pipelined inverse quantizer and to build a

software pipeline routine calling this FPGA-mapped unit.
In particular, we provide reconfigurable-hardware support
for an IQ-4 operation which can process four coefficients
per call. When mapped on an ACEX EP1K100 FPGA, the
computing unit performing the IQ-4 has a latency of 18
and recovery of 2 TriMedia@200 MHz cycles, and occu-
pies 43% of the device.

The experimental results indicate that by configuring
the IQ-4 unit on FPGA at application load-time, inverse
quantization can be computed on FPGA-augmented Tri-
Media1:5� faster over the standard TriMedia. Given the
fact that the experimental TriMedia is a 5 issue-slot 64-bit
media-oriented VLIW processor [10], such an improve-
ment within the target media processing domain indicates
that TriMedia+FPGA hybrid is a promising approach.

Summarizing, the paper contributions are:
� The syntax and the semantics of the IQ-4 user-defined
operation.
� The IQ-4 computing unit implementation on an ACEX
EP1K100 FPGA from Altera.
� A high performance inverse quantization implementa-
tion on FPGA-augmented TriMedia.

The paper is organized as follows. We present several
issues related to inverse quantization in Section II. Sec-
tion III outlines the architectural extension of the TriMe-
dia processor. Several considerations regarding a pure-
software solution are made in Section IV The FPGA-based
implementation of the IQ-4 unit which dequantizes four
coefficients per call is discussed in Section V. The exper-
imental framework and the results are presented in Sec-
tion VI. Section VII concludes the paper.

II. BACKGROUND

Quantization is basically a process for reducing the pre-
cision of the DCT coefficients. Precision reduction is ex-
tremely important, since lower precision almost always
implies a lower bit rate in the compressed data stream.

The quantization process involves division of the inte-
ger DCT coefficient values by integer quantizing values.
The result is an integer and fraction, and the fractional part
must be rounded according to the rules defined by MPEG.
It is the quantized values that is transmitted to the decoder.
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For reconstruction, the decoder must firstdequantize
the quantized DCT coefficients, to reproduce the DCT co-
efficients computed by the encoder. Essentially, the In-
verse Quantization (IQ) algorithm scales every element by
a unique quantized weight. Since some precision was lost
in quantizing, the reconstructed DCT coefficients are nec-
essarily approximations to the values before quantization.

After entropy decoding, the two-dimensional array of
coefficients,QF [v][u], is inverse quantised to produce the
reconstructed DCT coefficients,F [v][u]. In MPEG2, In-
verse Quantisation (IQ) consists of three stages: Inverse
Quantisation Arithmetic, Saturation, and Mismatch Con-
trol [3]. The inverse quantisation arithmetic produces
F 00[v][u] coefficients. For DC coefficients in intra-coded
blocks, Equation 1 is used:

F
00[0][0] = intra dc mult�QF[0][0] (1)

where the factorintra dc mult is derived from the data
elementintra dc precision according to Table 7-4 of the
ITU-T Recommendation H.262 [3]. Basically, Equation 1
specifies a scaling-up by a factor of 8, 4, 2, or 1. For all
other coefficients, the following equation should be used:

F 00[v][u] = (2�QF [v][u] + k)�W [w][v][u]�
�quantizer scale=32

(2)

where

k =

�
0 intra blocks

sign(QF[v][u]) non-intra blocks
(3)

The factorquantizerscale is an unsigned integer and
is encoded as a 7-bit fixed-length code. Thus, it has val-
ues in the rangef1; : : : ; 31g, inclusive (0 is not allowed).
Each weighting coefficient,W [w][v][u]; w = 0 : : : 3; v =

0 : : : 7; u = 0 : : : 7, is represented on an 8-bit unsigned
integer, and extracted during the parsing of the sequence
header. The operator /’ represents the integer division with
truncation of the result toward zero.

The coefficients resulting from the Inverse Quantisation
Arithmetic are saturated to lie in the range[�2048 � � � +
2047]. Finally, the mismatch control operation toggles
the least significant bit ofF [7][7] if the double sum
7P

v=0

7P
u=0

F [v][u] of all DCT coefficients is even.

We would like to mention that MPEG defines rules
for changing the quantization of the DCT coefficients
from place to place in the image as follows. The factor
quantizerscale is derived from the data elementsquan-
tizer scalecodeandquantizerscaletypeaccording to Ta-
ble 7-6 of the ITU-T Recommendation H.262 [3], and

therefore can be changed per coded macroblock. How-
ever, the factorintra dc mult can be changed only per pic-
ture. Since we use only MP@ML MPEG conformance
bit-strings in all subsequent experiments, only two weight-
ing matrices (one for intra-coded blocks, and the other for
non-intra-coded blocks) are used for inverse quantization.
Thus,w = f0; 1g.

For the inverse quantization, all the mentioned values
should be regarded as parameters. Consequently, the in-
verse quantization routine has to read in both the DCT
coefficients to be dequantized and the following parame-
ters: the weighting arrayW , the quantizerscale, and an
intra/non-intra flag.

Before we present the FPGA–based implementation of
the IQ-4 computing facility, we outline the architectural
extension of the TriMedia processor.

III. A RCHITECTURAL EXTENSION FORTRIMEDIA

TriMedia–CPU64 is a processor which features a rich
instruction set optimized for media processing. Specif-
ically, it is a 5 issue-slot 64-bit VLIW engine, launch-
ing a long instruction every clock cycle [4]. Each of the
five operations in a single VLIW instruction can in prin-
ciple read two register arguments and write one register
result. The processor also supports double-slot operations,
or super-operations [11]. Such a super-operation occupies
two adjacent slots in the VLIW instruction, and maps to
a double-width functional unit. This way, operations with
more than two arguments and one result are possible. The
architecture supports subword parallelism: for example,
operations on 8-bit unsigned integer vectors, or on 16-bit
signed integer vectors are possible.

Following the methodology described in [6], [8], Tri-
Media can be augmented with an FPGA-based Reconfig-
urable Functional Unit (RFU). The RFU is embedded into
the TriMedia as any other hardwired functional unit, i.e.,
it receives instructions from the instruction decoder, reads
its input arguments from and writes the computed values
back to the register file. Even though only double-slot op-
erations are supported by the current TriMedia simulator,
we propose to extend the concept of super-operations and
provide RFU on which up to 5-slot operations can be ex-
ecuted. This extension will be very useful when vectorial
operations are mapped on the configurable hardware.

In order to use an RFU, new instructions are provided:
SET, andEXECUTE. Loading a new configuration into an
RFU is controlled by aSET instruction, whileEXECUTE
(generic) instructions launch the operations performed by
the computing resources configured on the FPGA. With
such architectural extension, the user is given the freedom
to define and use any computing facility subject to the
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FPGA size and TriMedia organization. For more details
regarding this issue we refer the reader to bibliography [7].

Several considerations about the latency of an RFU-
configured computing resource are worth to be provided.
Due to layout constraints, the RFU is likely to be located
far away from the Register File (RF) in the floorplan of
the TriMedia. The immediate effect is that there will be
large delays in transferring data between the RFU and RF.
Consequently,read andwrite back cycles have explicitely
to be provided. In such circumstances, the latency of an
RFU-based computing resource is composed of 1 cycle for
read, the number of cycles corresponding to the FPGA de-
lay, and 1 cycle forwrite back.

Next, a pure-software implementation of inverse quan-
tization is discussed.

IV. IQ PURE-SOFTWARE IMPLEMENTATION

After variable-length decoding, each DCT coefficient is
represented on a 16-bit signed integer. Thus, the8 � 8

matrix can be thought as being stored in 16 four-element
vectors. In this way, the IQ implementation can intensively
use four-way SIMD operations.

In the pure-software solution, all 64 coefficients are first
inverse quantised with the general Formula 2, and then sat-
urated. In parallel, the intra DC coefficient is scaled-up
according to Equation 1. Next, if the block is intra-coded,
the top left-handed DCT coefficient of the8 � 8 block is
replaced with this DC coefficient. Finally, mismatch sum
is computed and the least significant bit ofF [7][7] is up-
dated accordingly. We would like to mention that a sep-
arate IQ routine has been designed for dequantizing each
of the intra-coded and non-intra-coded information. The
rationale behind this strategy is to bypass the computation
of thesignum function ofQF [7][7], and also the addition
of the termk � 0 for intra-coded blocks.

After developing C-level code that makes intensively
use of TriMedia–CPU64 custom operations, compiling it,
and running the executable on a cycle-accurate simulator,
we determined that an8 � 8 matrix can be dequantized in
39 cycles for intra-coded blocks, and 52 cycles for non-
intra-coded blocks (LOAD andSTORE operations are taken
into account). 26NOPs are inserted by the TriMedia sched-
uler in the 39-cycle routine for intra-coded blocks, which
translates to an average utilization of 4.33 out of 5 oper-
ations per VLIW instruction. For non-intra-coded blocks,
30NOPs are inserted in the 52-cycle routine, which means
that 4.41 out of 5 operations are issued per instruction.
Since the average utilization of the issue slots reaches such
a large value, we can state that the TriMedia–CPU64 runs
close to its full processing speed, and the pure-software
IQ implementation on TriMedia–CPU64 constitutes a real

challenge for an FPGA-based solution.
In inverse quantization of an8�8 block, each and every

pixel but the bottom right-hand one (which is subject to the
mismatch operation) is dequantized independently of any
other pixel in the block. Thus, IQ is mostly a feed-forward
task that exhibits a large data-level parallelism. Conse-
quently, the entire IQ computation can benefit from recon-
figurable support if sufficient reconfigurable hardware is
available. This way, the VLIW core will have only to load
new data from and write the computed data back to main
memory. In the next section, a number of details regarding
IQ implementation on FPGA are outlined.

V. IQ IMPLEMENTATION ON FPGA

As mentioned, the number of pixels that can simultane-
ously be inverse quantized on FPGA is subject to the raw
hardware logic capacity. On an ACEX EP1K100 FPGA,
we succeeded to map an IQ-4 unit that can process four
coefficients per call. This way, a burst of sixteen IQ-4 op-
erations has to be launched in order to dequantize an entire
8 � 8 block. As depicted in Figure 1, the IQ-4 circuitry
is structured as follows: the first part implements the IQ
arithmetic (which is defined by Equations 1 and 2) and
subsequent saturation, while the last part is a finite state
machine implementing the mismatch control operation.

I_flag
qs
W

...

...

.  .  .I II VII

IQ Arithmetic & Saturation

QF

D Q

.  .  . 1 11 0 1 1

Mismatch

VIII F

Fig. 1. The IQ-4 implementation on FPGA.

The reduction modules corresponding to multiplications
by W [v][u] (8-bit unsigned integer) andquantizer scale

(7-bit unsigned integer) have been splitted-up in order
to fit into an 100 MHz pipeline. No special optimiza-
tion technics to reduce the partial product matrices have
been employed; instead, we rely on the FPGA map-
ping tools in detectingcarry-propagate(which is fast
on FPGA) primitive. The factorsintra dc mult and
quantizer scale are generated inside FPGA from the
MPEG data elementsintra dc precision, respectively
quantizer scale code andq scale type.

In addition to the feed-forward circuitry for IQ arith-
metic and saturation computation, the IQ unit also includes
a finite state machine that co ntrols the processing of the
DC component in intra-coded blocks, as well as the mis-
match operation as follows:
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� During the first out of sixteen IQ-4 calls needed for pro-
cessing an8� 8 block, the fourth element of the QF[3..0]
vector (i.e., the DC component) is dequantized according
to Equation 1 for intra-coded blocks, and Equation 2 for
non-intra-coded blocks.
� The mismatch information is accumulated during six-
teen successive IQ-4 calls, and updates the last DCT co-
efficient accordingly at the end of each 16th call.
Thus, the IQ-4 unit we propose is a circuitry with state
(non-re-entrant functional unit). In order to ensure a cor-
rect response, a block should be completely processed be-
fore a new one is being considered. Furthermore, the
64-bit word containing the DC component should be pro-
cessed firstly, and the 64-bit word containing the highest
spatial frequency component should be processed lastly.

By writing and synthesizing VHDL code, we deter-
mined that 8 pipeline stages are needed to implement the
IQ-4 unit on an ACEX EP1K100 FPGA, which translates
into a latency of8 � 2 + 1 + 1 = 18 and a recovery of
2 TriMedia@200 MHz cycles. It worth to mention that
IQ-4 unit occupies 43% of the logic cells, and 171 out of
333 I/O pins of the mentioned reconfigurable device.

We would also like to mention that, on the same device,
we did not succeed to map an IQ-8 unit that processes eight
coefficients per call. Although about 80% of the logic cells
of the ACEX EP1K100 array would be occupied by the IQ-
8 unit, the FPGA mapping tools did not succeed to map the
circuitry mainly due to the large numbers of I/O pins that
are needed. Indeed, 331 out of 333 I/O pins would be used
by IQ-8. The pin limitation in FPGA-based circuitry is a
known problem – see for example [1]. A way to overcome
this limitation is to provide for a larger FPGA having more
I/O pins (and, implicitly, more raw hardware). However,
this solution is more expensive in terms of silicon area for
the same number of I/O pins, since the logic capacity in-
creases with the square root of the chip edge, while the
number of I/O pins increases only linearly with the chip
edge. A second solution is to emulate an IQ-8 unit pro-
cessing two8 � 8 blocks by two IQ-4 units each mapped
on a smaller RFU, and each processing a separate8 � 8

block.
In the next section, we present a routine that contain

calls to FPGA-mapped IQ computing unit, and compare
the performance achieved on FPGA-augmented TriMedia
over the standard TriMedia.

VI. EXPERIMENTAL RESULTS

Since the FPGA-mapped IQ is a circuitry with state, two
operations are needed to control the unit: one that resets
the finite state machine, and the other that launches the
proper IQ operation. Assuming an IQ-4 unit, the syntax of

each operation is:

EXECUTE <RESET-IQ-4>!

EXECUTE <IQ-4> R QF, R W, R qs, R param! R F

The first operation has a latency of 3 cycles, while, as men-
tioned, the later (2-slot) operation has a latency of 18 cy-
cles and a recovery of 2 cycles. For reasons that will be-
come relevant later on, the inverse quantization is carried
out at slice level. That is, the entire slice is inverse quan-
tized by means ofEXECUTE<IQ� 4> instructions be-
fore a reconfiguration of the RFU to implement a different
function may be considered.

To inverse quantize an8 � 8 block of coefficients, six-
teenIQ� 4 operations are launched in a row. Before and
after the RFU calls,LOAD andSTORE operations fetch the
input operands from main memory into register file, and
store the results back into memory, respectively. Since the
code is very simple and symmetrical, generating a tight
software-pipeline loop by programming directly in assem-
bly is indeed feasible, as depicted in Figure 2. As it can
be observed, the loop is folded at Cycles 4 and 35, thus
a throughput of 1/32 IQ/cycle is achieved. The first two
LOAD operations that are executed during the previous loop
iteration, and the last 9STORE operations that are exe-
cuted during the next loop iterations generate an overhead
for firing-up and flushing the software pipeline of 24 cy-
cles. In addition, loading theW [w][v][u]; w = 0 : : : 1; v =

0 : : : 7; u = 0 : : : 7 array from memory into register file
needs 16LOAD operations, that is, 8 cycles. Thus, the total
overhead for firing-up and flushing the software pipeline is
32 cycles.

In order to assess the implications of the loop prologue
and epilogue in a real case, we have focused on the av-
erage number of coded blocks per slice for a number of
MPEG-conformance bit-strings. If all the blocks in an
MPEG slice are first reconstructed and only then trans-
formed as a single batch, then the lowest average batch
size is 38 blocks/slice (B frames in thepopplen scene).
This figure translates into the worst case penality associ-
ated to the prologue and epilogue of the software pipeline
loop of 32=38 � 0:84 cycles/block. Since this overhead
represents about 2.5% of the 32 cycle/block throughput in
the most disadvantageous case, it can be neglected.

Thus, the global occupancy figure is 74 out of32� 5 =

160, which means that 2.31 out of 5 issue-slots are filled
in with operations. There are plenty of free slots that can
be utilized for other purposes, e.g., implementing an ad-
ditional pure-software IQ. Thus, the throughput figure of
1/32 blocks/cycle represents the lower bound of the per-
formance improvement.
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3 4

back to Instruction 4

JUMP

1 2 98765

folded into the software pipeline loop

LATENCY = 54 cycles

THROUGHPUT = 1 / 32 block/cycle

SOFTWARE PIPELINE LOOP: 35−4+1 = 32 cycles

2x
WRRD1xLD

2x

1xST1xLD
2x

WR

folded into the loop

2x
RD

171615141310 11 12

IQ−4

36 41 42 43 44 45 46 47 48 49 50 51 52 53 544018 19 20 21 22 232425 26 27 28 29 30 31 32 33 34 35 37 38 39

Fig. 2. Schedule result for the IQ-4 unit (LD stands forLOAD, RD for read, WR for write, and ST for STORE).

VII. C ONCLUSIONS AND FUTURE WORK

We have described an inverse quantizer on FPGA-
augmented TriMedia. For such a task, the performance
improvement over the standard TriMedia is approx. 50%
in terms of speed. The major lesson learned is that deep
pipelines implemented on the RFU can provide signifi-
cant improvements even for a performant VLIW processor
within its target media domain.
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