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Abstract— The ability to control the transport of individ-
ual electrons in SET technology introduces a broad range of
new possibilities and challenges for implementing computer
arithmetic circuits. In this paper, we first briefly discuss the
concept of electron counting based arithmetic. Second, we
introduce the types of building blocks that are required in
order to implement this concept in SET technology. These
blocks can be divided in three function categories: encoding
binary operands as quantities of charge, controlling charge
transport, and re-converting quantities of charge to binary
results. Finally, we propose possible SET based implemen-
tations of these building blocks, and demonstrate the designs
by means of simulation.
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I. INTRODUCTION

Feature size reduction in microelectronic circuits has
been an important contributing factor to the dramatic in-
crease in the processing power of computer arithmetic cir-
cuits. However, it is generally accepted that sooner or later
MOS based circuits cannot be reduced further in (feature)
size due to fundamental physical restrictions [9]. There-
fore, several emerging technologies are currently being in-
vestigated [5]. Single Electron Tunneling (SET) [2] is one
such technology candidate and offers greater scaling po-
tential than MOS as well as ultra-low power consumption.
Additionally, recent advances in silicon based fabrication
technology (see for example [8]) show potential for room
temperature operation. However, similar to other future
technology candidates, SET devices display a switching
behavior that differs from traditional MOS devices. This
provides new possibilities and challenges for implement-
ing digital circuits.

SET technology introduces the quantum tunnel junction
as a new circuit element for (logic) circuits. The tunnel
junction can be thought of as a "leaky” capacitor, such that
the ”leaking” can be controlled by the voltage across the
tunnel junction. Although this behavior at first glance ap-
pears similar to that of a diode, the difference stands in the
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scale at which switching occurs. Charge transport though
a tunnel junction can only occur in quantities of a single
electron at a time. Additionally, given the feature sizes an-
ticipated for such circuits, the transport of a single electron
can have a significant effect on the voltage across a tunnel
junction, such that transporting a few electrons through a
tunnel junction inhibits further charge transport, making it
possible to control the transport of charge in discrete and
accurate quantities.

The ability to control accurately the transport of individ-
ual electrons in SET technology introduces a broad range
of new possibilities and challenges for implementing com-
puter arithmetic circuits. One such possibility is the repre-
sentation of numerical values by a discrete amount of elec-
tron charges, such that individual digits can assume more
then 2 values (i.e., a non-binary number system). Such a
representation would be most beneficial for (addition re-
lated) arithmetic operations, as it would reduce the carry
chain (and hence potentially result in more compact so-
lutions with reduced area, delay and power consumption)
[4]. Resulting, the arithmetic operations can be performed
directly in charge by controlling the transport of individual
electrons. This methodology for implementing arithmetic
operations will be referred to as electron counting.

Assuming that both the operands and the result of
an arithmetic operations based on the electron counting
paradigm must be represented in the classical binary form,
we can identify that the utilization of the electron counting
paradigm requires basic blocks implementing the follow-
ing functionality:

1. The conversion of a binary number to a charge-encoded
(non-binary) format.

2. The controlled transportation of electron charges as a
function of (hon-Boolean) input variables.

3. The conversion of a charge-encoded number into a bi-
nary format.

The implementation of these basic blocks was left open in
our preliminary study of the electron counting paradigm
[4]. In this paper, we propose possible SET based imple-



mentations of these building blocks, and demonstrate the
designs by means of simulation.

The remainder of this paper is organized as follows.
Section Il briefly presents the SET background theory.
Section I introduces the concept of electron counting
based arithmetic and the types of building blocks required
for implementing electron counting based schemes. In
Section IV we propose implementations of these building
blocks which are demonstrated by means of simulation.
Finally, section V concludes the paper.

Il. BACKGROUND

Single Electron Tunneling technology introduces the
quantum tunnel junction as a new circuit element. A tun-
nel junction consist of two conductors separated by an ex-
tremely thin insulating layer. The insulating layer acts
as an energy barrier which inhibits charge transport un-
der normal (classical) physics laws. However, according
to quantum physics theory, charge transport of individual
electrons through this insulating layer can occur if this re-
sults in a reduction of the total energy present in the cir-
cuit. The transport of charge through a tunnel junction
is referred to as tunneling, while the transport of a sin-
gle electron is referred to as a tunnel event. Electrons are
considered to tunnel through a tunnel junction strictly one
after another.

Rather then calculating for each tunnel junction if a hy-
pothetical charge event results in a reduction of the cir-
cuit’s energy, we can calculate the critical voltage V.,
which is the voltage threshold needed across the tunnel
junction to make a tunnel event through this tunnel junc-
tion possible. For calculating the critical voltage of a junc-
tion, we assume a tunnel junction with a capacitance of
C;. The remainder of the circuit, as viewed from the tun-
nel junction’s perspective, has an equivalent capacitance of
C.. Given the approach presented in [6], we calculate V,
for the junction as

Vo= gra M

(Ce + Cj) )
In the equation above, as well as in the remainder of
this discussion, we refer to the charge of the electron as
e = 1.602 - 107'° C. Strictly speaking this is incorrect,
as the charge of the electron is of course negative. How-
ever, it is more intuitive to consider the electron as a posi-
tive constant for the formulas which determine if a tunnel
event takes place or not. We will of course correct for this
when we discuss the direction in which the tunnel event
takes place. Generally speaking, if we define the voltage
across a junction as V7, a tunnel event occurs through this
tunnel junction if and only if [V;| > V.. If tunnel events
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cannot occur in any of the circuit’s tunnel junctions, i.e.,
|V;| < V¢ for all junctions in the circuit, the circuit is in a
stable state. For our research we focus on circuits where
a limited number of tunnel events may occur, resulting in
a stable state. Each stable state determines a new output
value resulting from the distribution of charge throughout
the circuit.

Assuming that a tunnel event is possible, the orthodox
theory for single electron tunneling (see for example [6]
for a more extensive introduction) states that tunneling is a
stochastic process, in which the rate at which tunnel events
occur at 0K temperature is

V-V

r
eRt

)
where R; is the tunnel resistance (usually ~ 10°€). Note
that a non-0K temperature implies a lower event rate. As-
suming that an individual tunnel event can be described as
a Poisson process, we can calculate the required delay ¢ for
a single tunnel event to occur for a given error chance Pe,.

as.
_In(Pepr)eRy
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Given that the minimum amount of transportable charge
consists of a single electron, there exists a minimum en-
ergy threshold, called the Coulomb energy, which must
be present in the circuit so that the transport of a single
electron reduces the total amount of energy in the system.
Resulting, in order to utilize the electron tunneling phe-
nomenon, all other types of energy must be much smaller
then the Coulomb energy. For thermal energy, this implies
that, if we intend to add or remove charge to a circuit node
by means of tunnel events, the total capacitance attached
to such circuit nodes must be less then 900a F' for 1K tem-
perature operation, or less then 3a F' for 300K (room tem-
perature) operation [3]. This represents a major SET fabri-
cation technology hurdle as even for cryostat temperature
operation very small circuit features are required to im-
plement such small capacitors. Another major technology
challenge comes from the fact that thus far all experimen-
tal circuits have displayed a random offset charge (random
charge present on circuit nodes), which is assumed to be
the result of trapped charge particles in the tunnel junc-
tions themselves or in the substrate. This random charge
results in a random additional voltage across tunnel junc-
tions, which can cause errors in their switching behavior.
At the same time there are indications [2] that the offset
charge problem may reduce or even disappear entire for
the nanometer-scale feature size circuits required for room
temperature operations. Given this and the fact that in our
investigation we focus on the efficient utilization of the



SET behavioral properties we ignore the aspects related
to offset charge and its potential influence on SET based
computational structures.

I11. ELECTRON COUNTING BUILDING BLOCKS

Given that we can control the transport of individual
electrons, we have the possibility of encoding integer val-
ues X directly as a net extra charge X ¢, (X can assume
larger values then 1). Once integer values have been en-
coded as a number of electrons, we can perform arithmetic
operations directly in electron charges. Such an approach
is based on the transport of electron charges under the
control of input operands. This reveals a broad range of
novel computational schemes, which we generally refer to
as electron counting. A preliminary investigation [4] re-
vealed that such an approach results in extremely compact
schemes for implementing addition related operations.

When examining an arithmetic operation implemented
in accordance with the electron counting paradigm, we
assume the following. Electron counting circuitry will
most likely serve as specialized hardware alongside con-
ventional digital circuitry. As such it can be assumed that
the source operands of electron counting based arithmetic
operations are supplied in a binary format. As stated ear-
lier, and electron counting encoded operand with value X
is encoded as a net charge of X¢.. Therefore, an n-bit bi-
nary operand X can be transformed to charge encoded for-
mat by a circuit computing Xgq, = Z?:‘(}:ciziqe. In other
words, we require a Digital to Analog Conversion (DAC).

Once operands are converted to a charge encoded for-
mat as described above, addition and addition related op-
erations such as multiplication can be implemented using
a single type of building block [4], which we refer to as
an MV ke block. The MV ke block computes the product
V'kq, in the form of a charge encoded vale, where V' is a
charge encoded input value and & is an integer constant.

Finally, it can also be assumed that charge encoded re-
sults must also be converted back to a conventional binary
output y;, 7 = 0,1,...,n — 1,. In other words, we require
an Analog to Digital Conversion (ADC). One possible im-
plementation of a SET based ADC that converts a charge
encoded value Xg¢. to a binary format is based on PSF
building blocks. A PSF block implements a periodic
symmetric function and each bit y; can be described by
a periodic symmetric function with period 2¢*1 [4]. Thus
each output bit y; can be computed by a PSF block that
had been adjusted in order to have a transfer function that
copies the periodic symmetric function required for the bit
position 3.

The implementation of the building blocks described
above was left open in our preliminary study of the elec-
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tron counting paradigm [4]. In the next section we pro-
pose possible SET based implementations of these build-
ing blocks.

IV. POSSIBLE BUILDING BLOCK IMPLEMENTATIONS

In this section we propose possible SET based imple-
mentations of the building blocks introduced in the pre-
vious section. We briefly discuss the operation principle
of the proposed implementations, and demonstrate the be-
havior of the designs by means of simulation.

A. MT Building Block

i
i

—
CLK ¢

|
9
Fig. 1. Modified Turnstile (MT) building block.

An n-bit Digital to Analog Converter (DAC) is a circuit
with binary inputs z;, i = 0,1,...,n — 1, and an analog
output V,,. The DAC circuit can be utilized to convert an
n-bit binary input X into its charge encoded equivalent by
calculating an analog voltage V, as V,, = E?golxi2iqe /Cx,
where Cy is the total capacitance of the circuit’s output
node. A possible implementation of a SET DAC is based
the Modified Turnstile (MT) building blocks [1] as de-
picted in Figure 1. When enabled and triggered by a clock
signal CLK, the MT block adds a charge of ¢, to its out-
put node if the input z; = 1. An input bit z; in position
i has to contribute to the output voltage with z;2'q./Cs.
Thus an n-bit DAC can be implemented by multiple MT
blocks sharing a single output node, such that an input bit
x; drive 2! MT blocks in parallel as depicted in Figure 2.

As an example of the DAC scheme, we present a 3-bit
DAC, consisting of 7 MT blocks. The SIMON [7] simu-
lation results are displayed in Figure 3. In this figure, start-
ing from the top, the first two rows represent the enable and
clock control signals. The third, fourth, and fifth row rep-
resent the binary inputs Datag, Data1, and Datay. The
bottom row represents the circuit output. As can be ob-
served, due to the discrete nature of the charge stored the
circuit’s output the output values are exact multitudes of
ge/Cx, demonstrating that the MT block based conver-
sion process functions as desired.
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Fig. 3. Simulation results for the 3-bit DAC.
When enabled and triggered by a clock signal CLK, the
Enable .
MVke block transports a net charge Vkg. to its output
Clock = 0 ) Vo node Y, where V is a charge encoded operand and &k an
dy 2~ MT blocks L integer constant. Note that for V = 1,k = 1, the function
20 i of the MV ke building block corresponds with that of the
ST b k\ MT blocks discussed above in Section IV-A. Thus, the
d, T o S; I MV ke block can also be utilized as a building block for a
2 . DAC as depicted in Figure 2.
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Fig. 2. Implementation of an n-bit DAC. Cy I [
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C

Preliminary investigations revealed that electron count-
ing based addition and addition related operations such as
multiplication can be implemented using a single type of
building block [4], which we refer to as an M Vke block.

Fig. 4. MV ke block implementation.

A possible implementation of the MV ke block is dis-
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Fig. 5. MV ke block simulation results.

played in Figure 4. The circuit operates as follows. If
a clock pulse CLK arrives, the SET transistor (C; and
C —2) isopened if and only if £ = 1. When the transistor
opens, V x k x ¢, charge is added to the load capacitor
C;. As a result of this charge transport, an opposite charge
—V x k x e is stored on node 't’. The voltage result-
ing from this opposite charge cancels the effect of voltage
source V, inhibiting further charge transport. The circuit
is biased via the the DC input B. Given that the capacitor
C, acts as a weight factor for V', the desired multiplication
constant value & can be adjusted by changing the value of
Ck.

In order to demonstrate the proposed implementation of
the MV ke block, as depicted in Figure 4, we have sim-
ulated an instance of the circuit with SIMON. In this ex-
ample we set k, the multiplication factor, to & = 3. The
simulation results of the block are depicted in Figure 5. In
this figure, starting from the top, the first two rows rep-
resent the enable (E) and clock (E) inputs. The third row
represents the input value Vg.. The fourth row represents
the output value Y. It can be observed that the circuit be-
havior is as described above, such that the output Y only
responds to an input value V' when the circuit is enabled
and while a clock pulse is present. Also, one can observe

that the output Y is indeed Y = 3V¢,.

C. PSF Building Block

A Boolean symmetric function Fs(zg, z1,...,Zn—1) IS
a Boolean function for which the output depends on the
sum of the inputs X = S~ z;. A Periodic Symmetric
Function (PSF) F,,(X) is a symmetric function for which
F,(X) = F,(X + T), where T is the period. Any PSF
can be completely characterized by T, the value of its pe-
riod, and a,b, the values of X corresponding with the first
positive transition and the first negative transition, as dis-
played in Figure 6. Efficient implementation of periodic
symmetric functions is quite important as many functions
involved in computer arithmetic computations, e.g., parity,
belong to this class of functions.

A possible implementation of the PSF block is dis-
played in Figure 4. The circuit operates as follows. The
capacitor Cy and junction J; form an electron trap struc-
ture. The charge encoded input value V' serves as the input
to the electron trap. Given than an electron trap circuit has
a period output behavior, the electron trap’s output node T’
has a periodic response to input V. The voltage on node T’
is capacitively added to a biasing voltage B and then serves
as input for a SET inverter. The SET inverter behaves as a
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Fig. 6. Period symmetric function F,(X).

literal gate and transforms its input signal (within a limited
range) to either logic 0 of logic 1.

In order to demonstrate the proposed implementation of
the PSF block, as depicted in Figure 7, we have simulated
an instance of the circuit with SIMON. In this example we
set T', the period of the PSF gate, to T' = 2. This results
in F5(0) = Fp(2) = Fp(6) and F(1) = Fp(3) = Fp(5),
which corresponds with a parity function when F,(0) = 0
and F,(1) = 1. The simulation results of the block are
depicted in Figure 8. In this figure, starting from the top,
the first row represent the input value V. The seconds row
displays the voltage present on node T'. The last row rep-
resents the binary output Fp(V'). As can be observed, the
gate correctly implements a parity function. Note that the

Fp(V)

al
5

Vss

=
]

modified SET inverter

Fig. 7. PSF block implementation.

period of the PSF gate can be adjusted via the electron
trap’s circuit parameters. Likewise, the biasing voltage B
can be utilized to adjust which input values results in logic
0 and which in logic 1.

V. CONCLUSIONS

The ability to control the transport of individual elec-
trons in SET technology introduces a broad range of new
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possibilities and challenges for implementing computer
arithmetic circuits. In this paper, we first briefly discussed
the concept of electron counting based arithmetic. Sec-
ond, we introduced the types of building blocks that are
required in order to implement this concept in SET tech-
nology. These blocks can be divided in three function cat-
egories: encoding binary operands as quantities of charge,
controlling charge transport, and re-converting quantities
of charge to binary results. Finally, we proposed possible
SET based implementations of these building blocks, and
demonstrated the designs by means of simulation.
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