Data Cache Optimization in Multimedia Applications

AM. Molnos® %) M.J.M. Heijligers(**), S.D. Cotofana®™,

J.T.J. van Eijndhoven**), B. Mesman(**)

() Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands
Phone: 015-2786196 Fax: 015-2784898
email:{ancutza, sorin} @dutepp0.et.tudelft.nl
(*) Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
email:{marc.heijligers, jos.van.eijndhoven, bart.mesman } @philips.com

Abstract—

Cache memories are a widely used approach to fill the
processor-memory speed gap such that the bandwidth re-
quirements of today’s data intensive multimedia applica-
tions can be achieved. The performance of the system is
strongly related with the performance of the memory hier-
archy.

In this paper we address the problem of improving per-
formance of the memory hierarchy at system level for mul-
titasking data intensive applications. Our proposed new
method separates the problems of intra task data cache
misses and inter-task data communication cache misses by
using cache partitioning.

For the intra-task data cache misses compiler-like meth-
ods can be used for optimization.

For inter-task data communication we propose a new an-
alytical method to find a static task execution order that op-
timizes the number of inter-task data cache misses for a sin-
gle processor architecture. Our analytical method is based
on solving the Integer Linear formulation of the problem.

Keywords— multimedia applications, shared data cache,
task scheduling

I. INTRODUCTION

To cope with the increase in complexity and size of
signal-processing applications, more computational power
is required in order to fulfil the real time constraints of their
implementation.

The increase in computational power implies more data
traffic from computational units to storage. The increase
in bandwidth to off-chip memories is not growing as fast
as the increase in speed of computation power, leading to
a 50% processor/memory speed gap, as shown in [4]. An
approach to deal with memory bandwidth bottlenecks is to
use memory hierarchies (caches) [4]

In state of the art system design data cache misses opti-
mizations are usually done at compiler level. For applica-
tions that exhibit task level parallelism there is additional

529

freedom for optimization. The task schedule gives the mo-
ment and order of productions and consumptions of com-
municated data. Depending on these access orders and
times different performances of the memory system mea-
sured in number of cache misses can be obtained.

This paper proposes a new method that tackles the gen-
eral problem of minimizing data cache misses at system
level for parallel data intensive applications. We separate
this general problem into two parts corresponding to the in-
side task cache conflicts and the inter-task communication
cache conflicts. This decoupling is done by using a cache
partitioning method that assigns different exclusive cache
parts to tasks and one share cache pool for the communi-
cation data. In [8] a task level cache partitioning method
is presented and can be easily extended with a share cache
pool for the communication data.

For the intra-task case compiler methods like the ones
for the sequential applications can be used to improve data
cache behavior [4].

For inter-task communication we present a new analyti-
cal method to find a static task execution order for a single
processor architecture such that the number of inter-task
data misses is optimized, given are the cache parameters
and for every communication data the start address (as set
number) and the size in cache.

The outline of this paper is as follows. In section II re-
lated work is presented, in III a short overview on poten-
tial optimization opportunities for multimedia applications
and our new optimization general method for parallel ap-
plications are presented, then in section IV we propose our
new method to find a static task execution order. In sec-
tion V the experiments done for our method are presented
and finally the conclusions and lines for future research are
drawn in section V1.

II. RELATED WORK

In the problem of optimizing data cache misses for the
sequential applications case a lot of research has been
done. For the case of multidimensional arrays a global
approach is taken in [2]. In [2] both of the problems of
improving spacial locality (by proper array address assign-
ment) and improving temporal locality (by proper instruc-
tion scheduling) are tackled. For the optimization, all op-
erations and loop nestings are taken into account but the
approach is restricted to sequential applications.

For parallel applications in [9] a thread scheduling
method that improves cache locality is presented. The only
case tackled there is the case of threads without data de-
pendencies.

III. OVERVIEW

In this section we present the ingredients used to build
our method of minimizing data cache misses at system
level. We identify two types of multimedia data intensive
applications: applications that have explicit parallelism at
task level (task level parallel applications, figure 1) and ap-
plications where data dependencies impose that tasks are
executed in a sequential way (sequential applications, fig-
ure 2).

Fig. 1. Parallel application example. Tasks: T1-T6; Communi-
cation buffers: A-G

T1 T2 T3 T4
O=-0O=0==0
A B C

Fig. 2. Sequential application example. Tasks: T1-T4; Com-
munication buffers: A-C

In the followings the methods for optimizing data cache
misses corresponding to the two types of applications are
presented.

A. Sequential applications

For sequential applications we rely on work already
published in literature. These optimizations are compiler-

530

based and are done by pipelining, parallelising and chang-
ing execution order of the code at instruction level. For this
optimizations data flow analysis and lifetime of variables
analysis are suitable [3] [2].

Improvements can be obtained using software tech-
niques which reorder the program loops structure in order
to increase spatial data locality and reuse [7], [1], [5] and
data layout techniques which change the memory layout of
multi-dimensional arrays and data structures from the de-
fault specification (for example row major for C) such that
the spatial locality is improved [6]. Usually these types of
optimizations are performed simultaneously.

Techniques that do aggressive loop pipelining and
schedules productions as close as possible to consump-
tions can be used as well at this level of sequential applica-
tions [3]. In [3] loop pipelining is actually done implicitly
because of the “as soon as possible’ used schedule.

B. Task level paralld applications

For the parallel applications besides the misses caused
by task’s internal execution path (called intrinsic misses
in [10]) there are extra misses caused by inter task cache
interference (called extrinsic misses in [10]). This last type
of interference is depending not only on task’s behavior
but also on task scheduling. At this level our new method
comes into place.

Using partitioning every task gets an exclusive cache
part for its private data [8], Because of this cache parti-
tioning the intrinsic misses are ’isolated’ for every task and
same type of optimizations as in III-A can be applied.

A distinct cache partition is assigned for shared inter-
task communication data. The extrinsic misses problem is
reduced to the interference between shared communication
data. At this level the cache optimization is done at task
scheduling level as will be presented in details in section
Iv.

IV. ANALYTICAL METHOD

In this section we present the analytical method used to
optimize the inter-task data cache misses.

We consider the application described as a directed
acyclic graph G(V, E) where the nodes V' represent the
tasks of the system and the edges E represent the data de-
pendencies between tasks and are oriented from the node
that produces the data to the node that consumes it.. Ev-
ery edge e € F is augmented with the start address in
cache and with the size of the correspondent communica-
tion buffer. Let n be the number of nodes and let m be the
number of edges of the graph G.

Given the cache parameters and the graph G describing
the application the problem is to find the starting times ()

(with 2 = 0..n — 1) for the n tasks of the system such that
the inter task data dependencies constraints are satisfied
and the number of cache misses at communication buffers
level is optimized. We formulate this problem as an Integer
Linear Problem (ILP).

The execution time of every task can be considered to
be equal to 1 because the task schedule is assumed non-
preemptive. Every communication data is assumed to be
produced once and consumed once during one execution
of the producer and consumer tasks (this model corre-
sponds to FIFO communication).

In order to express the execution order of the tasks in
ILP we use a n X n precedence matrix P where every ele-
ment:

1

For every two nodes ¢ and j p; ; = 1 — p; ;, because the
graph is acyclic. If in the graph G there is a path between
nodes 7 and j then p; ; = 1 and it will not be considered as
a decision variable for our ILP formulation.

After the precedence matrix elements are computed the
starting times for the tasks are easily deduced.

The cache conflicts between edges are described by the
m % m reload matrix R, where every element:

1

For every edge e we define two functions source and
sink, that give the node that produces respectively con-
sumes the data corresponding to the edge e:

source(e) : [0,m — 1IN = [0,n — 1] N

sink(e) : [0,m —1]N — [0,n —1]N

A cache conflict causing misses between two edges ex-
ists if the correspondent communication buffers have over-
lapping address in the cache and their lifetimes overlap.

Temporally it is possible that an edge e can cause reload
for the edge f if e’s corresponding data is accessed be-
tween the production and the consumption of f’s corre-
sponding data.

if node 1 is executed before node j
otherwise

if edge e causes reload for edge f
otherwise

Te,f = le tsource(f) < tsource(e) < tsink(f)or
tsource(f) < tsink(e) < tsink(f)

Using the precedence matrix, if an edge e causes reload
to the edge f then at least one of the following properties
hold:

« the source of f precedes the source of e and the source

of e precedes the sink of f

Te,f > Psource(f),source(e) +psource(e),sink(f) —1

531

o the source of f precedes the sink of e and the sink of
e precedes the sink of f:
Te,f > Psource(f),sink(e) +p5ink(e),sink(f) -1
By means of the example in figure 1 we show how the
cost function represented by the number of misses is com-
puted. In the graph in figure 1 the edges D, E, F' can
conflict in the cache. Let’s assume that the image in the
shared data communication cache of the three edges is the
one in figure 3.

set 0 max number cache sets

o

[— —
5 A O
. K H—
Fooo
1
X ~ .

Tz
Fig. 3. Placement of edges D, E and F in the cache space

From the point of view of edge D in interval z it can be
flushed out of the cache by edge F, in interval y it can be
flushed out of the cache by edges F and F' and in interval
z it can be flushed out of the cache by edge F.

For every edge the cache part occupied by its data is
divided in a number of parts equal with the different num-
ber of cache intervals in which the edge can interfere with
other edges. The cost for every edge is the sum of its costs
for the cache intervals defined as previously.

If the cache is direct mapped, for our example the cost
for the edge D is defined as follows:

cost(D) =z *rgp+y*maz(re,p,Trp) + 2 *TED

For the general case of N ways associative cache the
cost for an edge e in a cache interval z where e overlaps
with other edges fr (k = 1..M) is

L1 e —N>0
“T 1 0 otherwise

Using two extra variables, 7, , can be linearly defined.

The overall cost of an solution is the sum of the costs
for every edge of the graph and it is the objective to be
minimized when computing the precedence matrix P.

V. EXPERIMENTS

The orthogonal separation of the general problem of
cache misses for parallel communicating applications into
intra- and inter- task data misses problems made separate
reasoning of the performance possible for the two cases.

The intra-task cache performance depends on compiler
optimization techniques used at that level.

To test the effectiveness of our inter-task scheduling
method a number of examples were made. Randomly gen-
erated graphs of tasks were studied to test the robustness
of the method. The task execution order found is optimal
because the underlying mathematical model is based on
ILP. For up to twenty nodes the searching time is in or-
der of magnitude of seconds and for hundred of nodes the
searching time is in order of magnitude of tens of minutes.
The execution time for the solution search depends heav-
ily also on the number of edges in the task graph (more
edges showing dependences - less decision variables for
the execution order of tasks).

Our method abstracts from all operation level details
that has to be modelled for the methods as in III-A so it
can be applied for big sets of tasks, independent of their
size.

VI. CONCLUSIONS

For the problem of optimizing cache behavior for par-
allel applications new task scheduling techniques are re-
quired. We proposed a new general method for improv-
ing the cache performance for parallel applications. Our
method allows use of others existing compiler’s cache opti-
mization methods for the intra-task case and optimizes the
inter-task communication misses by changing the sched-
ule. The task execution order found using our method is
optimal with respect to number of cache misses at inter-
task communication data level.

First experiments showed the viability of the new data
cache misses optimization approach for the applications
that exhibit enough freedom of reordering task execu-
tion. Anyway for existing multimedia applications com-
piler methods for sequential code case can bring more gain
in optimize the caches because of lack freedom in reorder-
ing task execution.

Future work will be oriented towards rewriting tech-
niques that improve freedom of reordering task execution.
Preemptive scheduling techniques will also be studied be-
cause they can bring more freedom for optimization in the
execution order of the application.

REFERENCES

[1] D.Bacon, S. Graham, and O. Sharp. Compiler transforma-
tions for high performance computing. ACM Computing

Survey, pages 345420, 1994.) .
[2] R.Clout. Periodic scheduling for cache-miss minimisation.

PhD Thesis, Eindhoven University of Technology, 2001.
[3] M.J. M. Heijligers and A. Hogenhuis. Analysing architec-

tural aspects of behavioral descriptions. Conf. on Embed-
ded System Design, pages 239-250, 2000.

532

[4] J.L.Hennesy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,

San Fransisco, CA, 2003.
[5] C.-H.HsuandU. Kremer. A stable and efficient loop tiling

algorithm. Mid-Atlantic Student Workshop on Program-

ming Languages and Systems, Newark, DE,, 2000.
[6] N. Manjikian and A. T. Array data layout for the reduc-

tion of cache conflicts. In Proceedings of the 8th Interna-
tional Conference on Parallel and Distributed Computing

steml%.1995. .

[71 K. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations. ACM Transactions
on Programming Languages and Systems, pages 424-453,
JullK/[1996. o y

A. Molnos, M. Heijligers, J. v. Eijndhoven, and S. Coto-
fana. Cache partitioning with guaranteed performance.
Submitted for Design Automation and Test in Europe,

Paris, 2004. .
[9] J. Philbin, J. Edler, O. Anshus, C. Douglas, and K. Li.
Thread scheduling for cache locality. In Proc. of the Sev-
enth International Conference on Architectural Support for
Programming Languages and Operating Systems, Cam-

bridge, MA, October 1996. .
F. Sebek. The state of the art in cache memories and real-

time systems. Technical Report MRTC, (01/37), Oct. 2
2001.

—
—
(=}

=

