FPGA-Based Variable Length Decoders

Jari Nikara'*, Stamatis Vassiliadis*, Jarmo Takalaf, and Petri Liuha®

tInst. of Digital and Computer Systems
Tampere University of Technology
Tampere, Finland
{jari.nikara, jarmo.takala} @tut.fi

Abstract

A straightforward and fair comparison of variable
length decoders is extremely difficult due to different im-
plementation approaches, e.g., different codeword tables,
IC technologies, design styles, and compression ratios.
On the other hand, reconfigurable platforms provide
fast design iteration times to change the design vari-
ables. Therefore, the variable rate symbol-parallel Vari-
able Length Decoding (VLD) approach has been com-
pared to FPGA-based variable length decoders presen-
ted in literature. The behavioural non-optimized VHDL
model of the decoder has been mapped onto the FPGAs
used in the references in order to guarantee same tech-
nological features. The variable rate symbol-parallel de-
coder provides 16-100 % better throughput at 2-3.6 times
lower frequencies than the referenced designs.

1. Introduction

In data compression, a set of symbols is represented
with reduced number of bits. Variable Length Coding
(VLO), e.g., Huffman code [1], is a lossless compression
technique where frequently occurring symbols are repres-
ented with shorter codewords without explicit boundary
information between codewords. Therefore, in Variable
Length Decoding (VLD), the length of the current code-
word should be known before the next codeword can be
decoded. This feature complicates the decoder design
substantially and limits the performance.

A traditional VLD method is to decode one symbol at
a time in symbol-serial fashion using either bit-serial tree-
based processing as in [2] or bit-parallel approach as in
[3-6]. In symbol-parallel schemes like [7, 8], the major
design issue is to break data dependencies between code-
words. Another issue is the management of the increasing
hardware and control complexity, especially when large
codeword tables and long codewords are used.

A straightforward and fair comparison of variable
length decoders is practically impossible due to differ-
ent implementation approaches. Standards and different
codeword tables distinguish decoders from each other.
Furthermore, input data with different compression ratios

tComputer Engineering Lab.
Delft University of Technology
Delft, The Netherlands
S.Vassiliadis @et.tudelft.nl

437

$Nokia Research Center
Tampere, Finland
petri.liuha@nokia.com

affect decoders with variable output rate. Implementation
platform, e.g., ASIC vs. FPGA, arises technology depend-
ency while design styles (synchronous vs. asynchronous)
set up different restrictions to decoders. Altogether the de-
coding performance of the used technique is not directly
comparable although all the previous aspects can be con-
sidered as critical design issues as well.

In this paper, VLD scheme proposed earlier in [8]
is compared to FPGA-based variable length decoders
presented in literature by using uniform implementation
approaches. Short design iteration times on FPGA allow
the configuration of the decoder based on the scheme to
match the reference decoders or to provide at least the
same features with references. In other words, the uni-
formity is guaranteed with same codeword tables, com-
pression ratios, implementation platform, and synchron-
ous design style. Briefly, the decoder based on [8]:

e has variable output rate, 1-6 symbols per cycle;

e provides 16-100% better throughput than references;

e operates at 2-3.6 times lower frequencies than refer-

enced decoders.

The remaining of the discussion is organized as fol-
lows. The background is overviewed in Section 2. In Sec-
tion 3, the reported FPGA-based variable length decoders
are introduced with the given performance figures. The
presented decoders are compared and discussed in Sec-
tion 4. Finally, the conclusions are presented in Section 5.

2. Background

In VLD, the incoming variable length coded input
stream is buffered and a codeword length is detected from
a block of the input stream as illustrated in Fig. 1. The
detected codeword or corresponding pseudocode is used
to determine the actual symbol with the aid of predefined
codeword values, i.e., codeword table. Depending on the
decoding approach the symbols may be buffered, e.g., for
managing variable processing rate. The input stream is
then aligned for the next decoding iteration according to
the length of the codeword.

In general, there is no explicit boundary information
for detecting the end or beginning of the codeword in the
variable length coded data stream. This implies that the
length of the current codeword should be known before

Variable Length |:> |:> |
Coded Data Codeword(s) Symbol(s)

Input BUffging Codeword
—> > .
Detection

Alignment
T length

Figure 1. Block diagram of generalized VLD.

Symbol gutput

Look-up > Buffering

the next codeword can be decoded. This introduces data
dependency, which complicates the decoder design sub-
stantially. Therefore, a traditional VLD method is to de-
code one symbol at a time in symbol-serial fashion by us-
ing either bit-serial or bit-parallel processing. In bit-serial
decoding as in [2], input stream is compared bit-by-bit to
a binary tree starting at the root of the tree until the en-
tire codeword is detected in the leaf node. Instead in bit-
parallel processing used in [3-6], the longest codeword
length bits are buffered in order to guarantee a symbol for
each cycle.

Due to the recursive dependencies between the code-
words bit-serial processing is not applicable for symbol-
parallel decoding when processing a single data stream.
In symbol-parallel decoding schemes in [7, 8], the major
design issue is to break the data dependencies between
the codewords. Another issue is the management of the
increasing hardware and control complexity, especially
when large codeword tables and long codewords are used.
The increasing complexity can be managed by either de-
coding only short codewords concurrently or limiting the
number of symbols.

The performance of the variable length decoders de-
pend not only on the chosen decoding technique but also
implementation approach. Standards, like JPEG [9] or
MPEG-2 [10], with different codeword tables set their
own requirements for the decoder. Furthermore, input
data with different compression ratios, i.e., ratios of the
compressed data to original uncompressed data, affect de-
coders with variable output rate; the less compression, the
longer codewords resulting in decreased throughput.

One main issue in comparing performance of differ-
ent decoder implementations is how to equalize the ef-
fects of the different ASIC technologies or how to make
different FPGAs and their specific features equivalent to
each other or even to ASICs. However, the characteristic
figures about the performance of the decoder are mostly
given only for the chosen technology and without detailed
variables. In other words, the results are technology de-
pendent and consequently the performance of the chosen
decoding technique is hidden behind technology.

3. Variable Length Decoders

In this section, the FPGA-based variable length de-
coders reported earlier are presented in three classes ac-
cording to the decoding technique. All the decoders pro-
cess data in bit-parallel manner but from symbol parallel-
ism point of view they are different. In order to emphasize

alignment Variable Length Coded Data

information

Accumulator|

length

Buffer

Symbol

Figure 2. Symbol-serial decoder.

the difficulties in comparison with different technologies,
let us remark the huge variation in the descriptive figures
of the following decoders.

3.1. Symbol-Serial Approach

Symbol-serial variable length decoders to be presen-
ted in this paper are based on the approach presented by
Lei and Sun in [3]. A principal block diagram of the de-
coders is depicted in Fig. 2. Briefly, the block of encoded
bitstream is buffered and matched with the stored prespe-
cified codewords in a Look-Up Table (LUT). The code-
word length is accumulated by the accumulator and its
value is used as a pointer to the correct location in buf-
fered bitstream. Furthermore, the accumulator triggers the
reloading of buffer with new data.

In the symbol-serial approach, a symbol is produced
in every clock cycle regardless of the codeword length.
The increased hardware complexity compared to bit-serial
decoding is compensated by the constant output rate and
guaranteed operation speed. However, the approach does
not exploit the fact that most probably a block of bits in
the input stream contains more than one codeword.

Aspar et al. reported a symbol-serial variable length
decoder implemented on Altera’s Flex 10K20RC240-4
and Flex 10K20RC240-3 FPGAs [4]. The decoder has
been designed to support up to 16-bit codewords accord-
ing to JPEG standard [9]. The achieved operation frequen-
cies are 9.91 MHz for 10K20RC240-4 and 11.54 MHz for
10K20RC240-3. In both platforms, the utilization of logic
cells is 1145 out of 1152 logic cells.

Another FPGA-based symbol-serial variable length de-
coder is proposed by Jeon et al. in [5]. In order to reduce
the processing time in the critical path, the decoder ex-
ploits plane separation technique where input plane and
OR plane performing the data buffering operate in paral-
lel. The consecutive PLA-based matching process uses
exactly the same method as previous decoder, i.e., the
block of encoded bitstream is matched with all possible
codewords stored into LUT.

The decoder using the plane separation technique has
been realized on Altera’s Flex 8000 FPGA. When apply-
ing the presented technique to MPEG-2 intra-frame de-
coding [10], the throughput of 15 million symbols per
second has been achieved. From logical resources point
of view, about 30 % performance improvement from Lei’s
approach doubles the required resources.

Variable Length
Coded Data

Group
Decoders

—>|

HMUX Symbol_previous
] 6:1

>

Group Detector

——>|
—>Mux
——>|

| 6:

Group

Decoders —> Symbol_current

Group Detector &
Length Estimator [T Length_current

:::Mux
19:

Figure 3. Constant rate symbol-parallel decoder.

Length

Estimators Length_next

.
——>|

3.2. Constant Rate Symbol-Parallel Approach

Sima et al. [6] introduced a scheme to improve the per-
formance of the general purpose processor by augmenting
it with an FPGA-based symbol-serial variable length de-
coder. In order to achieve higher throughput, the previous
scheme has been extended with a constant rate symbol-
parallel VLD on the FPGA-augmented processor in [7].
With such a VLD technique, the output rate is kept con-
stant but in every cycle more than one symbol is produced.

The principal block diagram of the MPEG-2 decoder
returning two symbols per cycle is illustrated in Fig. 3.
Using the terms previous, current, and next in chronolo-
gical order, the main idea is to determine the symbol and
the length for the current codeword, and only the length
for the next codeword during the same VLD call. Concur-
rently, the symbol for the previous codewords are determ-
ined. In other words, the generation of the next symbol
is postponed to the subsequent cycle and the series of de-
coding cycles results in symbol-parallel decoding.

In more details, the operation can be described as fol-
lows. A codeword table is partitioned into LUTs referred
as group decoders. The decoding is started by forwarding
bit fields from the block of encoded bitstream to paral-
lel group decoders and performing parallel matching with
codewords in group decoders. Each group decoder returns
the symbol value as if the generated symbol would have
been valid. The selection of the proper symbol is done ac-
cording to leading bits in group detector, which determine
the correct group. Simultaneously, length estimators de-
termine the length of the current codeword and the length
candidates for the next codeword. The valid length is se-
lected according to the current length.

Sima et al. considered an FPGA-augmented TriMe-
dia processor running at 200 MHz [7, 11]. When mapped
onto Altera’s ACEX EP1K100 FPGA, the approach re-
turning one symbol exhibits seven TriMedia cycles while
two symbols can be returned in eight TriMedia cycles.
The MPEG-2 compliant two-symbol decoder with con-
stant output rate yields the throughput of about 50 Msym-

439

Variable Length
Coded Data

Parallel Codeword Detectors \
MUX . H—>XL
w7

Memory Address Generator ‘

‘ Parallel Symbol Memories ‘
Symbols

Figure 4. Variable rate symbol-parallel decoder.

bols/s or 275 Mbits/s. The implementation requires all 12
Embedded Array Blocks, i.e. RAM blocks, and 51 % of
the logic cells supporting either codeword table B.14 or
B.15 in MPEG-2 standard.

3.3. Variable Rate Symbol-Parallel Approach

Nikara et al. introduced a variable rate symbol-parallel
VLD technique in [8]. The approach exploits the fact that
most probably a block of bits in input stream contains
more than one codeword. Consequently, the technique
is capable of decoding multiple symbols from arbitrary
length buffer with variable rate. The decoding can be de-
composed into two stages: parallel/serial codeword detec-
tion and symbol look-up. In addition, the symbol look-up
can be performed in two stages: address generation and
symbol fetch.

The operation of the decoder illustrated in Fig. 4 is
as follows. A block of encoded bitstream is stored into
a N-bit codeword buffer and codeword detection is per-
formed by parallel matching units referred as parallel
codeword detectors. All the matching units detect code-
words simultaneously and return the lengths of the de-
tected codewords. The procedure results in redundant
number of codeword lengths from which incorrect val-
ues are removed by recursive selection; the length of the
first codeword defines the index to the second codeword,
the lengths of the first and second codeword define the in-
dex to the third codeword, etc. Such a recursive selection
is realized with the aid of Multiplexed Add (MA) units,
which perform addition and the selection of the proper
length simultaneously.

The symbol look-up is started with determining the ad-
dress for each symbol corresponding the detected code-
word. The length is used to determine the page in the
symbol table and the partial codeword, which can be ex-
tracted from the codeword buffer, defines the offset in the
symbol table. The symbol look-up can be performed in-
dependently from symbol memory. The sum of the valid
codeword lengths is provided to an external shifter align-
ing the encoded input stream for a new decoding cycle.

The variable rate symbol-parallel decoding scheme
presented in [8] has been applied to MPEG-2 variable
length code in [12]. The block diagram of MPEG-2 de-
coder returning up to six symbols per cycle is depicted

B 31

0 Y2)3)4)5)6)17)8)9)10)11)12)13)14)15)16)17 J18 19)20)21 22 23)24)25)26)27 28)29
vicf CD|CD

chrf

pre_bnr
pre_chr_ctrl=

nxt_bnr
J-L:‘%—*» nxt_chr_ctrl

pre_EOB =

= R

= —
21>1 rm

B B
EOB&L1 EOB&L4 EOB&L5

EOB&Ln EOB&L]
‘ MEMORY ADDRESS GENERATION ‘
1 ZIWLGJ()dL’O 1 IILI}inodal 1 ZIWLGJ()daz 1 ZIWLGJ()daz 1 IIWLGJoda A 1 ZIWLGJ()(/L’_S 1 }“?C?S'wn 1 gOBs
\ SYMBOL FETCH \
I A L L L
Ey S, E, S, E, S, E; S5 Ey Sy Eg S5

Figure 5. Variable rate symbol-parallel MPEG-2 decoder.

in Fig. 5. The codeword detection consists of 29 Code-
word Detectors (CD), which have inputs from the 31-
bit buffer B. Each CD returns three End-of-Block (EOB)
statuses and codeword lengths from the location shown
above the CD. The returned values are candidates for
the DC coefficient (luminance and chrominance) and AC
coefficient according to VLC format parameter vicf (intra
or non-intra). Chrominance Format Counter (CFC) se-
lects between luminance and chrominance candidates ac-
cording to chrominance format chrf (4:2:0, 4:2:2, 4:4:4,
or non-intra) and macroblock number pre_bnr. The se-
lection of the proper codeword length from DC and AC
candidates is controlled by previous EOB status pre_EOB.
The VLC format vicf, chrominance controls chr_ctrl, the
EOB statuses, and lengths of the codewords are forwar-
ded to the memory address generation with the interme-
diate sums in order to generate the memory address and
sign referred as MAG_code for each codeword. Apart from
MAG _codes, the possible escape value ESC_Sym and the
EOB statuses EOBs are returned. The symbol fetch is
trivial read operation from parallel symbol memories.
Behavioural VHDL model of the decoder has been
mapped onto Xilinx Virtex-II FPGA where 2 940 CLBs
out of 23 040 were allocated in addition to three dual-port
memories of 160 rows with 11-bit words. The decoder
can decode at most six codewords per cycle at 22MHz
frequency. When decoding data stream with 30% com-
pression ratio, the average throughput of 585 Mbits/s, 105
Msymbols/s, or 4.8 symbols per cycle has been achieved.

4. Comparison

In order to compare the variable rate symbol-parallel
decoding technique, the non-optimized model of the de-
coder in [12], where the specific features of implementa-
tion platform are not exploited, is mapped onto the same
FPGA technologies as the references but without paral-
lel symbol memories. The characteristics of the vari-
able length decoders in [4, 5, 7] and the results of the
decoder [12], which are obtained by using Exemplar

440

LeonardoSpectrum, are summarized into three columns
labeled as Altera Flex10K, Altera Flex8K, and Altera
ACEX1K100 according to used FPGA in Table 1.

Although our original objective has been to uniform the
decoders based on different decoding approaches, clear
differences and restrictions still exist. The symbol-parallel
decoders in [7, 12] require clearly more hardware re-
sources than symbol-serial decoders in [4, 5]. Further-
more, the decoders in [4, 5] are independent whereas de-
coders in [7, 12] are clearly targeted to embedded system
providing external resources for data buffering and alig-
ment. The decoder in [12] does not compete in hardware
resources with other decoders due to the high degree of
parallelism and it does not fit into all FPGAs that are used
in the references. On the other hand, there are already
enough resources available in state of the art FPGAs and
the integration density is increasing.

In the symbol-parallel decoding approaches used in de-
coders [7, 12], the critical path can be adjusted with re-
quirements of the application by processing more data in
a cycle; more time, more symbols per cycle. Therefore,
they are advantageous when cycle time is specified ac-
cording to environment. The critical path in decoder [12]
is dominated by recursive selection of proper codewords
and therefore, codeword properties reflecting to codeword
detection delay have minor effect in total cycle time. In
other words, the increase in codeword detection delay has
relatively small part in total cycle time.

The decoders in [4, 5, 7] have constant output rate
resulting in constant throughput in terms of symbols
whereas source data statistics reflect to throughput in the
decoder [12]. The decoder is sensitive to compression ra-
tio due to variable processing rate, i.e., the worse compres-
sion ratio implies longer codewords and thus less code-
words in the buffer returning less symbols per cycle. The
throughput values in Table 1 are estimated by assuming
the average codeword length of 5.5 bits.

The properties of the decoders on Altera Flex10K

supporting JPEG standard are collected into column
labeled as Altera Flex10K in Table 1. The decoder in [12]

Table 1. Comparison of FPGA-based variable length decoders

Altera Flex10K Altera Flex8K Altera ACEX1K100
Aspar etal. [4] | Nikara et al. Jeon et al. [5] | Nikara et al. [12] | Simaetal.[7] | Nikara et al. [12]
Standard JPEG JPEG MPEG-2 Intra MPEG-2 MPEG-2 MPEG-2
CWT K.5 K.3-K.6 Not known B.12-B.15" B.14 or B.15 B.14 or B.15
Logic cells 1145 5833 Not known 6397 51 % 35 %
Frequency 11.54 MHz 4.8 MHz 15 MHz 4.2 MHz 25 MHz 12.1 MHz
Throughput Constant Variable 1-6 S/C Constant Variable 1-6 S/C Constant Variable 1-6 S/C
1S/C avg. 4.8 S/C 1S/C avg. 4.8 S/C 2S/C avg. 4.8 S/C
11.54 MS/s 23.04 MS/s 15 MS/s 20 MS/s 50 MS/s 58 MS/s
63 Mbits/s 127 Mbits/s 82 Mbits/s 111 Mbits/s 275 Mbits/s 319 Mbits/s

CWT: Codeword tables. S/C: Symbols per cycle. MS/s: Million symbols per second. * Support for 4:2:0, 4:2:2, and 4:4:4 chrominance formats.

is configured to support JPEG standard and is referred as
Nikara et al. in the column. The structure of the decoder
follows the structure of the MPEG-2 decoder in Fig. 5,
only codeword tables are assumed to be typical Huff-
man tables from the standard [9]. The decoder requires
about five times more hardware without symbol memories
providing double throughput in time domain. In addition,
the decoder supports four codeword tables.

The characteristics of the MPEG-2 decoders on Al-
tera’s Flex8K are summarized into the column Altera’s
Flex8K in Table 1. The MPEG-2 symbol-parallel de-
coder [12] illustrated in Fig. 5 is used in comparison al-
though decoder in [5] supports only intra-frame decoding.
This difference reflects to the critical path due to the dif-
ferent complexities of the codeword tables in LUT and
CDs and larger multiplexers and MA units. However, the
symbol-parallel decoder results in better throughput than
symbol-serial decoder assuming 5.5-bit codewords on av-
erage, i.e., compression ratio of about 30%.

When comparing symbol-parallel decoders on ACEX
EP1K100 FPGAs supporting codeword table B.14 or
B.15 in MPEG-2, we assume again the compression ratio
of 30%. The decoder in [12] is simplified to support only
a single codeword table, which is reflected in the required
resources. The achieved results are given in the column
ACEX EP1K100 FPGAs in Table 1. The throughput of
the decoder in [7] is constant, two symbols per cycle. In-
stead the decoder in [12] is capable of returning up to
six symbols per cycle although less symbols would imply
shorter cycle time.

5. Conclusions

In this paper, FPGA-based variable length decoders
have been reviewed and compared. When presenting the
method and estimating its performance with the aid of cer-
tain implementation, the performance of the method is
extremely difficult to distinguish from the technological
performance. Therefore, exact design variables or char-
acteristics that are independent from technology should
be also provided. Without these independent facts, the
results can always be speculated. However, according to
experimental results, the performance of the variable rate
symbol-parallel approach can be considered promising for
future applications.

441

6. References

[1] D. A. Huffman, “A method for the construction of
minimum-redundancy codes,” Proc. IRE, vol. 40, no. 9, pp.
1098-1101, Sept. 1952.

A. Mukherjee, N. Ranganathan, and M. Bassiouni, “Effi-
cient VLSI designs for data transformation of tree-based
codes,” IEEE Trans. Circuits Syst., vol. 38, no. 2, pp. 306—
314, Mar. 1991.

(2]

[3] S.M. Lei and M. T. Sun, “An entropy coding system for di-
gital HDTV applications,” IEEE Trans. Circuits Syst. Video

Technol., vol. 1, no. 1, pp. 147-155, Mar. 1991.

Z. Aspar, Z. M. Yusof, and 1. Suleiman, “Parallel Huffman
decoder with an optimized look up table option on FPGA,”
in Proc. TENCON 2000, vol. 1, Kuala Lumpur, Malaysia,
Sep. 24-27 2000, pp. 73-76.

J. H. Jeon, Y. S. Park, and H. W. Park, “A fast variable-
length decoder using plane separation,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 10, no. 5, pp. 806-812, Aug.
2000.

M. Sima, S. Cotofana, S. Vassiliadis, J. T. J. van Eijnd-
hoven, and K. Visser, “MPEG macroblock parsing and
pel reconstruction on an FPGA-augmented TriMedia pro-
cessor,” in Proc. IEEE Int. Conf. Comput. Design, Austin,
Texas, USA, Sep. 24-26 2001, pp. 425-430.

(4]

(3]

(6]

[7] ——, “MPEG-compliant entropy decoding on FPGA-
augmented TriMedia/CPU64,” in Proc. IEEE Symp. Field-
Programmable Custom Computing Machines, Napa Val-

ley, CA, USA, Apr. 21-24 2002, pp. 261-270.

J. Nikara, S. Vassiliadis, J. Takala, M. Sima, and P. Li-
uha, “Parallel multiple-symbol variable-length decoding,”
in Proc. IEEE Int. Conf. Comput. Design, Freiburg, Ger-
many, Sept. 1618 2002, pp. 126-131.

(8]

[9] International Telecommunication Union, “Informa-
tion technology - Digital compression and coding
of continuous-tone still images — requirements and

guidelines, CCITT Recommendation T.81,” Sept. 1992.

[10] ——, “Information technology — Generic coding of mov-
ing pictures and associated audio information: Video, ITU-
T Recommendation H.262,” Feb. 2000.

(11]
[12]

M. Sima, personal correspondence, Apr. 2003.

J. Nikara, S. Vassiliadis, J. Takala, , and P. Liuha,
“Multiple-symbol parallel decoding for variable length
codes,” accepted to IEEE Trans. VLSI Syst.

