

Computer Graphics and the MOLEN
paradigm: a survey

Humberto Calderón and Stamatis Vassiliadis
Computer Engineering Laboratory

Faculty of Electrical Engineering Mathematics and Computer Science
Delft University of Technology

Mekelweg 4, 2600 GA Delft, The Netherlands
Phone: +31 (15) 2783664 Fax: +31 (15) 2784898

E-mail:{H.Calderon|S.Vassiliadis}@ewi.tudelft.nl

Abstract— Focusing in the advantages and drawbacks

on the FPGA implementations vs. ASIC and pure
software, this paper surveys the development of computer
graphics. We start with the description of the theoretical
problems related to computer graphics. Consequently, we
present the most relevant industrial and academic
solutions categorizing them from the point of view of their
contribution in the speed up of Graphics Pipeline. Finally
we introduce the MOLEN reconfigurable computer
paradigm project and how the reconfigurable
organizations based on this architecture could help in the
establishment of an integral solution for computer
graphics processing.

Keywords— Computer graphics, graphics pipeline;

accelerators; MOLEN; reconfigurable computing; 3D
pipeline; VirtexII PRO

I. INTRODUCTION
Since the introduction of the sketchpad interactive
drawing system in the sixties by Sutherland [1],
computer graphics has evolved with the creation of new
algorithms and supporting hardware for this new
functionalities and capabilities. Historically, the sixties
and seventies saw the creation of the elementary and
essential algorithms like the efficient scan converting
lines [2], ray tracing [3], Catmull’s Z buffering [4],
shading developed by Gouraud [5] and Phong [6], the
characterization hidden-surface by Sutherland [7] and
innovations and improvements presented by Blinn [8].
The eighties came with the introduction of accelerators
for support 3D graphics primitives, improving in this
way the algorithmic run time [9]. The film industry uses
computer graphics into the creation of new effects [10],
since those days, innovations has been created and
virtual reality scenarios are part of currently films [11].

Nineties have had inherently the idea of photo realistic
rendering, and the widespread of a more complex
Application Specific Integrated Circuits (ASIC) [12]
[13] for rendering acceleration. The massive introduction
of hardware for the support of computer graphics into a
personal computer (PC) world, oxygenated the research
and development of computer graphics hardware, and
the gap between PC rendering and the specialized
graphics computer are diminishing every day [14][15].

Currently computer graphics are part of our life, we
inhabit multimedia environments in the work, home and
entertainment, even handheld devices like cellular
phones and PDAs are being produced with specialized
graphics processor and low power consumption
characteristics like the pioneer Z3D [16] and the RAMP-
IV 3D mobile graphics IC [17]. The continuous creation
of new functionalities diminishes the cycle of life of the
computer graphics hardware due his obsolescence. More
flexible and adaptable hardware for different
functionalities could be achieved with Field
Programmable Logic (FPL)[18] technologies using the
Reconfigurable Computing paradigm [19].

A reconfigurable computing machine called MOLEN
ρµ-coded processor [20] was recently implemented in
the Xilinx Virtex II PRO [21]. This configurable
platform is intended for the development and
improvements of processing including graphics.

Our currently research involves the mapping of graphics
functions to the MOLEN processor platform. The
remainder of this paper discusses the basics in computer
graphics pipeline, surveying some traditional researches
and the MOLEN framework; consequently we present

23

computer graphics and reconfigurable computing, and
conclude with some future work directions.

#include "model3.h"

void Draw_A_Frame(void) // Draw frame
 {

glBegin(GL_QUADS) ;
 glColor3f(0.0,1.0,0.0) ; II. BACKGROUND
 glVertex2f(0.25,0.25) ;

Performing a scene or rendering involves a series of
tasks beginning with the creation of basic objects or
primitives like points, lines, and triangles. Primitives are
specified in a world with the use of homogeneous
coordinates, a three-dimensional representation, and
have to be rendering in a screen that can represent the
data in two dimensions. A pipeline [22] processes the
initial data, and converts through several mathematical
transformations and additions into a representation of
picture elements (pixels) to be displayed in a computer
screen; this pipeline is known as graphics rendering
pipeline or simply graphics pipeline [23][24][25].

 glColor3f(1.0,1.0,0.0) ;
 glVertex2f(0.25,0.75) ;
 glColor3f(1.0,0.0,0.0) ;
 glVertex2f(0.75,0.75) ;
 glColor3f(0.0,0.0,1.0) ;
 glVertex2f(0.75,0.25) ;
glEnd() ;
}

As can be seen in the above code, object’s vertices has
associated three fundamental colors Red-Green-Blue
(RGB-domain)[29], these primary colors are the base to
construct the infinite palette available in the nature.
Other functionalities not presented in the above code
should be established, these includes the texturing
coordinates and the computation of vertices normal-
vectors. The primitives created in the application stage,
are described in the affine space representations [23][24]
for facility transformation purposes. Some systems are
using another representations, like Euler [24] and
Quaternion [30], accelerating in this way the rotations
and orientations. After establishing the application
framework, the Geometry Stage initiates the processing
of the described data.

The three fundamental stages of the graphics-pipeline
are: 1) Application, 2) Geometry and 3) Rasterizer as is
shown in figure 1.

Figure 1: The basic Rendering Graphics Pipeline

Computer Graphic primitives have inherently a lack of
data-dependence, for this reason the pipeline can be
implemented by a group of parallel pipelines in a space
parallelism manner [26]. In the following we will
describe the main stages of the pipeline.

B. Geometry Stage
The following five stages compose the geometry
pipeline (figure 2). A description of these stages are
presented

A. Application Stage
The scene construction is achieved with the use of an
Application Programs Interfaces (APIs), like OpenGL
[27] and Direct3D [28], helping us in the creation
fundamental primitives, which are base of more complex
objects. APIs functionalities includes: objects
transforming, orientation modifications, re-sizing,
viewing perspectives, projections creation, lighting
scenes with different types of lights and, texturing and
shading of objects in order to show them in a more
realistic way. Summarizing, the previously described
actions, establishes the tasks that will be carried out by
the rest of the graphics pipeline.

Geometry Rasterizer

Model & view
Transform

Lighting Projection

Clipping Screen
Mapping

Application

Figure 2. Geometrical Pipeline

Model and view transformation. The elaboration of a
scene starts with the creation of the fundamental objects
described in a model space with its own coordinates. In
order to put all the objects that participate in the same
scene into a common reference model, the model space
has to be transformed into a world space. Some times,
the eye of the viewer of the scene has to be positioned in

The following code is an illustrative example of the
quadrilateral creation with the OpenGL API [27].

24

different locations; in this case the world space has to be
transformed into the eye space, the resultant model is
ready to feed the next stage [24]. The mathematical
operations for the transformations of the objects, and for
the transformation between different models are carried
out in the model and view transformation stage. Several
scalar-vector multiplications between the vertices and
the compound matrices transformation are performed,
using a representation of floating-point numbers.
Follows, three fundamental matrixes for translation,
rotation and scaling are presented.

The object’s movement is achieved with the translation
matrix (1)

where tx, ty, tx represent the amount of translation in
each Cartesian coordinate.

Rotations matrices, help us to rotates the body an angle φ
in a three-dimensional environment, this movements
matrixes are depicted by equations (2), (3) and (4):

The scale matrix (5), change the object relation into the
x, y, and z coordinates.

A detailed explanation of other matrices like shearing
and compound can be found in [23][31]

Lightning. More realistic rendering are obtained using
lights, different nature of the lights helps us to change
the color of the objects in the modeled world; these
colors are the result of the interaction of the light sources
and the material that it impacts. The complete model of
interaction of the light and the bodies that impacts, it is

highly complex [32] and seems non-realistic for real
time rendering and interactive environments. We use an
equation instead of the approximation of the real
behavior of the light; this equation is denominated the
lighting equation (6).

)6(





 •+•+

→→
∗∗












 →→
∗∗∗= HNIKLNIKIKI

NS

lSldaa

where Ka, Kd and Ks are ambient, diffuse and specular
object reflectance respectively. Il denotes the incident
light, N is the normal to the surface, H is indicating
vector of maximum highlight direction, and Ns is the
glossiness factor [33]. The first term in (6) model the
Ambient Light and represents a far away light from the
scene that irradiates in all directions; an example of this
kind of light is the sun, this light it is also knew as global
light [27] or directional light [24]. The second term
modeled describes the interaction of the light with a
diffuse reflection body, and the third term approximates
the specular reflection of light [6].

)1(

1000
100
010
001

),,()(



















==
tz
ty
tx

zyxTtT

Some helpful sources of light are the Point Light; this
multidirectional light is located in some point of the
scene. Another positional light in the Spot Light; instead
of a multidirectional illumination characteristic this light
has a conic irradiance)(2

1000
0)cos()sin(0
0)sin()cos(0
0001

)(


















−

=
φφ
φφ

φRx

Projection. This stage delimits the scene to be rendered;
the modeled world is transformed and delimited by cubic
representation by means of the application of the
orthographic projection, implemented with translation
and scaling transformations. Another more elaborated
projection is called perspective projection, the resultant
geometrical volume is not cubic instead of that, is a
truncated pyramid volume, denominated frustum; this
particular shape is caused by the representation of the far
away objects with small sizes. Detailed information of
projection matrices could be found in [27][23], and an
introduction of projections and viewing transformations
are established in [34].

)3

1000
0)cos(0)sin(
0010
0)sin(0)cos(

)((Ry



















−
=

φφ

φφ

φ

(4)

1000
0100
00)cos()sin(
00)sin()cos(

)(

















 −

=
φφ
φφ

φRz

(5)

1000
000
000
000

)(



















=
s

s
s

z

y

x

sS

Clipping. Objects outside the projection volume are
dismissed because they are not visible; this action
diminishes the processing time avoiding the scan
conversion of not visible objects. One of basic
algorithms developed by Cohen-Shutherland
[35][23][25] computes the intersections of the lines and
the viewing window, determining in this way the
necessary information for the clipping; the searching
area is split in nine regions, and the intersection of the
object in a particular area is compared in a binary way.

25

An improvement of 36 % in processing time was
achieved by Liang-Barsky algorithm, with the
description of clipping in an exact mathematical form
using a parametric representation [36]. Since then, have
been developed specialized algorithms for the clipping
of points, lines, polygons, texts and other objects
[37][23][25]. The following figure schematizes the
clipping action.

Figure 3. Clipping

Screen Mapping. Finally in the last s
geometry pipeline, the primitives are map
screen coordinates, usually these coor
expressed in an integer format, then a n
should be achieved in order to operate
representation. The following figure sch
mapping operations indicated in equations 7-

Figure 4. Mapping to screen coordin

The previous exposition of the Geomet
evidences his intensive floating-point data
Several improvements have been done
accelerate the processing time. The
multiplication operations have been stud
avoiding some unnecessary calculatio
researchers, diminishes the latency of m
(MAC) operations [39][40][41], a com
operation into the processing; while a mor

innovations merge the arithmetic logic in the double
MAC unit [42], accelerating in this way the processing
time.

Poor flexibility, high costs and rapid obsolescence are
characteristic of ASICs, for this reason more specialized
programmable processors have been created. These
processors are using parallelism in time and space,
achieving good performances like the represented ones
of the following table.

 Clipping

Table I
Geometry Processors - Coprocessors

Name Parallelism ISA Performance

()yx maxmax,

()yx vv minmin,()yx minmin,

()
minmax

minmax
maxmin xx

xxxxxx vv
vv −

−
−+=

minmax

minmax
maxmin yy

yyyyyy vv
vv −

−





 −+=

()
minmax

minmax
maxmin zz

zzzzzz vv
vv −

−
−+=
tage of the
ped into the
dinates are
ormalization
with integer
ematize the
9 [25].

Optimized
Geometry

Engine [43]
12 units in Time

Parallelism.
Matrix, clipping,

projection & others 5 MFLOPS

TGPx4 [44] LIW Geometry Stage &
others

80 MFLOPS
40 MHz

FLOVA [45] VLIW SIMD
Geometry Stage

500 MFLOPS
100MHz

Emotion Engine
[46] VLIW SIMD

Geometry Stage
5.52 GFLOPS

300MHz

VPU1 [47] 2 way VLIW 2 SIMD
Geometry Stage

2.5 GFLOPS
250MHz

Four Way -
VLIW

Processor [48]
VLIW SIMD

Geometry Stage
2.5 GFLOPS

312MHz

 ()yx vv maxmax, Cost-effective oriented studies suggest the use of
currently non-specialized processors for graphics
processing [49] [50] [51] [52]. Sacrificing performance
instead cost, this processor incorporates new
functionalities to his ISA, the new functionalities in

• (X, Y)

• (Xv, Yv)
ates.

ry Pipeline
 processing.
in order to
scalar-vector
ied in [38]
ns. Others

ultiply-add
monly used
e aggressive

some processor includes special units for reciprocal and
square root calculations [53]. Additional information of
the challenges to combine GPP and multimedia can be
found in [54].

)7(The processing of computer graphics with the low power
constraints, lead us to diminish the use of big floating-
point units and emerge the idea of use different sized
data [55]. Going further, other studies use integer
arithmetic for real numbers representations [56],
optimizing in this way the computer graphics
bandwidth and consumed power [57]. Some commercial
processors are actually using this approach of processing
[58], a complementary information is found in [59]

)8(

)9(

C. Rasterization Stage
The Rasterization stage is implemented with a pipeline
that converts the primitives into an image, determining
the final color of the pixels. The description of each part
of the pipeline of the figure 5 is presented.

26

 1. Flat Shading [23]. The fastest and simple to
implement, establishes a common color to the
triangle, this color is obtained after averaging the

Triangle
 Setup

S Fog &
Alpha

Antialiasing

Figure 5. Rast

Triangle Setup. The first
executes a back face-cullin
the sign area of the triang
visible primitives. This tes
the normal of the projecte
approximates the mathe
primitive. The simplest a
uses the edge function (equ

y =∆

x =∆

 ()0),(−= xxyxE

Based on this equation P
way to increment and upda
and 14.
)1,(+yxE

),1(+ yxE

For scan conversion pha
traverse the triangle have
Differential Analyzer (D
traditional algorithms use
variations for traversing ar
[61][24][27].

Finalizing this stage, the
depth values for each pixel
in the scan procedure is ca
the Triangle Set-up and the

Shading. Depending o
lightning model is evaluate
techniques widely used to

hading &
Texturing
colors associated with the triangle vertices.

Fragment
Operation

Display

2. Gouraud Shading [5]. Interpolates color across

the triangle, taking into account the colors
associated with the vertices computed with
equation (6). The first interpolation occurs
between the vertices and after a second
interpolation occurs between the edges lines
resulting in a more realistic scene compared with
Flat Shading.

erization Pipeline.

 step in the rasterization stage
g test [27]. This test computes
le in order to discards the not
t can also be made calculating
d polygon [24]. The next step
matical description of the
nd widely applied algorithm
.12)

3. Phong Shading [6]. The third is the most costly

algorithm in terms of processing time, can
represent effects like spotlight, offering greater
realism. Phong algorithm computes the normal
vector in each point of the triangle (equation 6),
interpolating the normal vectors at the vertices of
the triangle, then a second interpolation occurs in
the scan lines. This technique is similar as
Gouraud; but instead of interpolate colors, the
normal vectors are interpolated; finally the shading
model is applied obtaining the final color.

)10(
01 yy −

)11(01 xx −

())12(0 ∆∆ ∗−−∗ xyyy

Texturing. With the texels (pixels from the texture
image) and the lightning equation a more realistic image
is create; the following pipeline realizes this process.

ineda [60] proposes an easy
te the edge with equations 13

Projector Corresponder

Apply Value Illu

)13(),(∆−= xyxE

)14(),(∆+= yyxE

 se, different algorithms for

been established. The Digital
DA) [23] is one of the

d in scan conversion; others
e also proposed and studied in

Figure 6. Textur

A Projector function translate
into a parameter space with
translation is called mapping.
mapping function denominated
the values u and v are translat
which are scaled with the Appl
to get finally the texture
characteristic value into the Illu

 interpolation of colors, and
 that has been created recently
rried out, merging in this way
 Shading functionalities.

n the used technique some
d, the main three fundamental

shading are:

All these operations are e
computation, memory use with
bandwidth in order to move

27
Change
mination
e pipeline.

s the texture coordinates
 values u and v, this
With the use of another
 Corresponder function,
ed to the texture values,
y value function in order
pixel that modify the
mination equation [24].

xpensive in terms of
 the texture images, and
 this data between the

different buffers of the graphics pipeline [26]. After
mapping the image gets warped and should be filtered
[62]; some of these filters have prohibitive processing
times for real time applications. On the other hand, we
can use some pre-filtering images as Lance Williams
proposes with his Pyramidal data structures called Mip-
Mapping [63]. This technique creates multiple copies of
the original texture image; each copy has exactly the half
resolution on each axis of the previous one in both
coordinates v and u, resulting a one-quarter size filtered
image, this procedure follows recursively until the final
image has size of one pixel. The obtained copies form a
pyramid in which the new coordinate d is used to index
the most adequate image resolution to be mapped into a
desire pixel area. Figure 7 sketches this technique.

Antialiassing. Data represented into a raster display
suffer the jagged effect due the inherent discrete
characteristic of this device. But avoiding this
unsolvable characteristic, aliased images can be affected
by an inadequate sampling of the image made with lower
rate than the Nyquist theorem [65] establishes; then it is
infeasible to reconstruct an image if the sampling rate is
less than twice the highest frequency of the image. There
are two fundamental solutions into the image filtering
denominated Pre-filtering and Post-filtering.

1. Pre-filtering. This technique determines the color
of the pixel based on the geometric description of
the image; taking into account the description, a
precise filter is applied in order to obtain a non-
aliased image. Breshman’s classical algorithms
had been used [66], and also Pitheway [67]
developed an improvement in the way of the
incrementing of the shading area taking into
account the slope of the edge.

2. Post-filtering. The classical approach in Post-
filtering use the super-sampling [68] of the image,
multiple pixel samples are took, and a filter is used
to create a new sample by averaging of the
samples. Barlett, box, Gaussian, and other discrete
filters [62] can also used instead of the average
filter in order to eliminate the high frequency
components.

Figure 7 MI

Bilinear and trilateral [63][
used to obtain an antialias
applied into the polygon.

Fog. In order to create a mor
it is necessary to apply atmo
a heavy fog depending on the
by the Cf color, and a fog
resident in memory (frame
computes the final color CF:

1(CF

FCF −+⋅=

the factor F is calculated from

 e dF −=

where dF controls the fog d
of the pixel [64].

u

v

d

P- Mapping Alpha Blending. The RGB components have associated
the α factor for the transparency and opacity control of
the object; the blending of this factor with the processed
color of the pixel determines the final opacity of the
rendered pixel:

23] interpolations are been
ed-texturing pattern to be

 e realistic image some times
spheric effects like a mist or
 scene. Fog is characterized
factor F. If C is the color
 buffer), the fog equation

)17()1(CCC PAB
αα −+⋅=

In (17) C is the color in the frame buffer, Cp and α are
the color and alpha value of the incoming fragment to
being processed. The final color to be written in the
frame buffer is a blending of the actual color and the
incoming color with different grades of transparency.) 15()C f

Depth test. With this test it is possible to determine
which pixels can be viewed and which are hidden behind
objects. With the comparison of the depth value of the
incoming processed fragment and the actual value stored
in Z buffer (frame buffer) it is possible to discard the
hidden object [23][24][25][27].

:

)16(z PF

ensity, and zp is the z value

28

 Fragment Operation. Depending on the API

technology, and if some functionalities were enabled,
some additional test operations are carried out. Related
information on fragment test can be found in [64].

Texture

Framebuffer

 0 -1.7

1.6-6.4

1-8

Application

Display. Finally this stage ends the pipeline; a
specialized controller is in charge of the display
actualization using the frame buffer information. A
detailed reference of the functionalities of this stage
could be found in [23][24].

 The quantity of processed data in the rasterization
pipeline is higher than the processed in the geometry
stage; the number of fragments produced by the
primitive setup exceeds the number of primitives in at
least 20 to 1. Even taking into account the use of integer
data in the rasterization stage instead of the floating
point utilized by the geometry stage, the amount of
processing data reaches bigger amounts.

Figure 8 Data bandwidths
20M Vertices, 400M p

The necessary process
increasing the paralle
nevertheless more para
increment [75] and highe
more the inherently mem

The available technology evidences the use of different
kind of parallelism and with different degrees by the
geometry and rasterization stages. The following table
shows some examples of rendering accelerators and
processors.

Table II

Rendering Accelerators and Processors

Name Parallelism Operation Performance

4D/240GTX
[69]

Time parallelism in
geometry and space in

rasterization.

Geometry and
Rasterizer

Stages

100K lighted
quadrilaterals

per second

InfinitiReality
[70]

4 Geometry Engine
MIMD, 4x80 engines

in raster boards

Geometry and
Rasterizer

Stages

710 M textured
antialiased

pixels/s

Neon
 [71]

8 Pixel processor per
Rasterizer, simgle chip
with unified memory

Rendering 4 Mvertices/s

Truga001 [72]
12 graphic processors
and 7 functional units

in a single chip

MIMD structure
Rendering 4 M vertices/s

GeForce FX
5800
[73]

Single chip
Engines for

Geometry and
Rasterization.

200 Mvertices/s
4 Billon texels/s

500MHz

VISUALIZE
fx 6
[74]

Scalable processor,
3 Geometry up to 8,

2 Raster and
2 texture chips

Array of units
with Space and

Time
parallelism

-

Different approaches we
memory latency and ma
texture cache for fast
primarily used [76] and
studied like multilevel
caching architectures [77
could be found in [78].
prefetching and cach
performance are reached
obtained using paralle
hierarchy for texturin
parallelism benefits are a
different degrees.

Molnar [82] proposes
exploiting the parallelism
[84][85] (image-oriented
(pixel-oriented), suggest
division establishes a sta
data between the parallel
the pipeline. The first tw
load balance due to the
primitives. The sort las
functionalities enable in
also suffers of load im
sort-anywhere architect
connectivity between the
the distribution the data i

The large quantity of data involved in the graphics
pipeline has to be taken into account in order to
understand the used bandwidths and the necessary
computational power. Figure 8 depicts a simplified
pipeline with the data amounts moved between the
principal stages, and between stages and memories; also
are depicted the sort point for parallel organizations.

29
Sort First

Geometry
1.1-2.1
Sort middle
Texture

Rasterization

4.0

8.0-17.6

S t

in
i

i
li
l

r
o

r
n
l

],
A

in
.
l
g
l

)
ed
r

 p
o
u
t

b
ur

n
ort las

Fragment

Display

0.5-0.9

 GHz for 60MComands of input,
xels and 120Msamples[26].

ng power is achieved by
sm and the clock rate,
lelism causes a bandwidth
clock rates also evidence even
ry latency problem [22].

e made in order to hide the
age bandwidths. The use of a
ocal retrieval of textures is
different organizations were

texturing instead of simple
 a detail architectural analysis
lso was shown that merging

g [79], improvements in
Even better performance was
 distributions of different
 memory [80][81]. The

so exploited in other stages in

three main approaches to
: sort first [83], sort middle
, and sort last [86][87][88]
 in the figure 8. This basic

ting point of redistribution of
rocessors at different levels of
 sort schemes suffer of lack in
nknown number and sizes of
is highly dependent on the

the fragment processing and
alance. Eldridge presents the
e [26], based on a high
processing clusters improving
a more balanced way.

The FPL technology comes associated with the concept
of Virtual Hardware, in which any application believes
that has a sized engine to run on it, and it is possible to
establish the hardware on demand paradigm, overcoming
the hardware obsolescence imposed by other
technologies.

Other research lines improves the rendering through the
use of adaptive rendering, in this sense, Bergman
propose the adaptations of the image, generating an
image rapidly without so many detail and then refining it
when was necessary [89], in this way only the necessary
pixels are Phong shaded, the rest of the pixels use the
Gourard technique. Following this paradigm, Cho [90]
improves the determination of which triangles should be
Phong or Gourard shaded. Similar approaches diminish
the processing time, using a multi-resolution model [91]
and representing the objects with different level of
details. Finally, taking into account the improvements in
the technology of embedded memory [92][93] with read
cycles of 2.9 ns in DRAM [94], we hope the creation of
multiple multimedia processors with higher bandwidths
and less power consumption characteristics. One
example of this approach with a sort middle architecture
and a dynamic reconfigurable bus is presented in [95].

Reconfigurable technologies demonstrated a great
flexibility and a good performance in order to replace
the traditional solutions in high demand tasks [99],
offering spatial and temporal parallelism characteristics
[19] and also the inherently bit level parallelism [98].
Table III summarizes the principal characteristics of RC
compared to traditional solutions.

Table III
 Reconfigurable advantages and drawbacks

compared with other technologies.

 Power Performance Flexibility Time to
Market

General Purpose
Processor High Low Medium Low

ASIC Low High Low High
Re-Configurable

Processor High Medium High Low

III. THE MOLEN PARADIGM

A. Reconfigurable Computing
The capacity to transform a hardware platform imposed
and controlled by the software is denominated
Reconfigurable Computing (RC). The reconfigurable
computing was introduced four decades ago, but recently
the last decade [96] has been the witness of the evolution
and growth of this important field in the computer
science, the catalyst of this development comes with the
improved performance of the Field Programmable
Logic, it usually assembles a general purpose core and a
field programmable unit. This new hybrid architecture is
referred like Field-Programmable Custom Computing
Machine (FCCM) [97]. The following figure outlines
this rationality [98].

Nevertheless, the main drawback of the RC is the
necessary configuration time of the new hardware
functionality. Several studies show the importance of the
Run time reconfiguration [100][101][102], and some
researchers looks for the hiding of the configuration
latency time. One of this works proposes the use of
matched common components for his use in different
tasks, sharing in this way the same hardware [103] and
diminishing the overall configuration time. Another
approach proposes work with different contexts [104];
the dynamic of this solution is based on switching the
context on demand, this solution consumes a less time
compared with the configuring of the FPL. A similar
approach [105] stores different configurations in the
internal memory of the FPL, and has the capability to
change context in a single cycle. The previously
presented solutions constitutes the first approaches in
order to hide the configuration time and fulfill the goal,
nevertheless they suffer a memory overuse.

 Core
 Processor

Custom
Computing

Unit

80 % of the code, 20 % of computing time
20 % of the code, 80 % of computing time

Conflictive Code

 •
 •
•

 Conflictive Code

 FPL technology evolves and the configuration time of

the devices are diminishing gradually. Table IV presents
the configuration times for Virtex II PRO family,

 Application

 Programs M

Figure 9. Rationality behind

FCC
 working with a 50MHz clock.

 the FCCM

30

The ARBITER partially decodes the fetched instruction,
determining where will be issued for his execution; it
has two alternatives the Core Processing Unit and the
Reconfigurable units. A precise description involved in
control tasks and functionalities of the ARBITER could
be found in [109]

Table IV
Virtex II PRO sizes and Programming times [106]

Device No. of frames No. of bits Config. Time

XC2VP2
XC2VP7

XC2VP20
XC2VP50

884
1,320
1,756
2,628

1,305,440
4,484,472
8,214,624
19,005,696

3,26 ms
11,21 ms
20,54 ms
47.55 ms

 The currently implementation of MOLEN uses a
PowerPC 405 [110] processor as the Core Processing
Unit. The instructions issued to this unit are decoded and
executed in a normal RISC way. This unit uses the
Register File for hold the initial and resulting data,
finally the Exchange Registers (XREGS) are an
architectural support for the parameter passing between
the core processing units and the reconfigurable unit.

Additionally, we must emphasize that new FPL devices
support the partial reconfiguration of the logic and
routing characteristics. Also, the dynamic configuration
is supported; this characteristic gives us the ability to
update only a portion of the configuration memory in a
FPL with a new configuration without stopping the
functionality of other device sections [107].

The Reconfigurable Unit consists of a Custom
Computing Unit (CCU) and a ρµ-code unit. The
particular ISA of the MOLEN is composed by three
fundamental instructions distributed on the set phase and
the execute phase:

B. MOLEN Processor
The MOLEN ρµ-coded processor presented in [108]
constitutes an FCCM and it is merging a general-purpose
processor and a reconfigurable processor. This FCCM
uses micro code concept to carry out the configuration
process of the augmented CCU, as well for the
emulation of the execution of the core processing unit
and the control of the execution of the reconfigurable
unit.

1. Set Phase. The set phase it is constituted by two
sub phases: The first one is known as the partially
set (p-set), and the second one is cited as complete
set (c-set). In p-set sub-phase, the CCU is partially
configured in order to perform common functions;
these actions can be made during the loading of
the program or even at chip fabrication time. In
the second subphase the c-set, as its name suggest,
the microinstructions establish the final
functionality of the CCU enabling to perform less
frequent functions.

The microcode is referred as ρµ-coded, and is located
into the traditional µprogram memory. Figure 10 depicts
the general architecture of MOLEN.

Instruction
Fetch

ARBITER

ρµ-code

unit

CCU

X

T

Core Processing
Units

Register
File

D
Fetc

Main Memory

2. Execute Phase. Once it has been established the

functionality of the hardware, the initiation and
regulation of the execution is performed by this
instruction. When an instruction is being executed
into the CCU, the ARBITER interrupts the Core
Processing Unit in order to regulate the bus
access.

Figure 10. MOLEN Organization

REGS

Through the reconfigurable instructions utilization it is
possible to control the whole MOLEN organization.
Taking into account the instruction format of the chosen
Core Processing Unit (CP), it has been created the
reconfigurable instruction with the format presented in
RECONFIGURABLE UNI
ata
h/Store
figure 11, which is congruent with the PowerPC
Instruction Set Architecture.

31

V. CONCLUSIONS AND FUTURE WORK
From our point of view, reconfigurable computing and

T
o
e
i
c
t
c
b
w
c

A
M
f
a

T
d
g
c
r
e
g
[

T
r
c
r
t
o
o
i
t

F
t
g
q
r
q
(

 0 5 6 29 30

31

 the MOLEN paradigm became in the framework for the
 000110

Figure 11 Reconfig

OPC = 6 00- comp

he delay introduce
f the instructions
ncouraged in the f
nstructions, we c
ontrol the executio
he same delay an
omplexity. This is
it address of the
hich constitute it

urrent reconfigurab

dditional informa
OLEN including

acilities and also
rchitecture and par

IV. RELATED WO
RECONF

he utilization o
evelopment of p
raphics pipeline
haracteristic of FP
apid changes into
ncouraged the d
raphics stages
114][115][116].

he survey shows

elating computer
omputing. One
econfigurable syste
ransformations; an
rder to perform the
f reconfigurable u
mprovements of
raditional processin

inally we want to
he line of adaptive
raphics, and rela
uality. This rese
endering environm
uality algorithms
HVP) is less than a
24-bit microcode address
development of the new fully adaptable and
reconfigurable graphics pipeline.

urable instruction encoding: R-form

lete set; 10 – partial set; 01 -execute

Graphics pipeline under the MOLEN paradigm can arise
a flexible architecture, as much as the environment of
processing requires. Custom computing machines in
MOLEN can be adaptable and the different clusters into
the pipeline will be created when be necessary, enabling
the data sort in a demand paradigm. Also the embedded
memory can be managed in a dynamic way, regulating
in this way the bandwidth and resources. The following
figure sketches this view.

d by the ARBITER in the decoding
 is insignificant [106]. Therefore,
unctionalities of the set and execute
an create multiples CCU, and to
ns of instructions for these units with
d without increasing the decoder

 achieved through the use of the 24-
reconfigurable instructions R-form,

the first µinstructions address of the
le instruction service.

Geo

Ras.

Text Text Text

Texture
Memory

g

Framebuffer

reconfigurable
bus

Geo Geo

Ras. Ras. •••

g g

•••

•••

In demand bandwidth
re configuration

In demand
CCU

•••

Application

tion regarding the functionalities of
 the memory hierarchy, CACHE
 an accurate description of the
adigm could be found in [108]

RK IN COMPUTER GRAPHICS AND
IGURABLE COMPUTING

 f the FPL technology into the

articular stages of the computer
was foreseeable. The intrinsic

L technology in fast prototyping and
 the design without highest costs
evelopment of several computer
using FLP [111] [112] [113]

 that few works were presented
 graphics and reconfiguration
interesting work utilize the M1

m [117] for mapping the geometrical
 algorithm distributes the load in
 vector-scalar operations in the array
nits that conform this architecture,

this approach with respect to the
g were reported in [118].

Figure 12

Finally, in
the follow
necessary:

1. The
nec
the
stag

mention another interesting work, in
 shading, power-aware 3D computer
tionship of energy and perceptual
arch reports an -energy efficient
ent-, achieved with the use of low
when Human Visual Perceptions

 pre-established threshold. [119]

2. Stu
hie
like

3. The
rec

32
Fra
D p D p D p •••

r

o

is
 Sort in

order t
ing r

 eva
essary
graphi
es for

dy of
archie
 the V
 nece
nfigur
Fra

 demand pa

o reach th
esearches

luation an
 amount of
cs pipeline
different ap
the perform
s in system
irtex II PRO
ssary grad
able buse
Fra
is
e

s

is
radigm support architecture

 sort in demand paradigm
and studies should be

d quantification of the
 computing parallelism into
 in principal stages and sub
plications, and systems.
ances of different memory
s with embedded memory
.

e of connectivity of the
 in order to support the

paradigm.
4. A classification of similar functionalities and the

establishment of common basic reconfigurable
hardware entities for the service of multiple
functionalities.

5. Determining of the appropriate granularity of
reconfiguration in order to increase the
functionalities of the MOLEN architecture.

We believe that the MOLEN paradigm can help into the
creation of a less expensive and adaptable processing to
the multimedia environments.

REFERENCES
[1] Ivan E. Sutherland, Sketchpad A Man-Machine Graphical

Communication System, Proceedings –Spring Joint Computer
Conference, pag. 507- 524, USA 1963,

[2] J. E. Bresenham, Algorithm for computer control of a digital
plotter, IBM System Journal, Volume 4, Number 1, Page 25
(1965), Non topical Issue

[3] Appel, A, Some Techniques for Shading Machine Renderings of
solids, 1968 SJCC, pp 37-45

[4] E. Catmull, A Subdivision Algorithm for Computer Display of
Curved Surfaces, PhD thesis, University of Utah, 1974.

[5] Gouraud H, Continius Shading of curved surfaces, IEEE
Transactions on Computers, C-20 (6), 623-629, June 1971

[6] Bui Tuong Phong, Illumination for Computer Generated
Pictures, Communications of the ACM, Volume 18 Issue 6,
June 1975.

[7] Evan E. Sutherland, Robert F. Sproull, Robert A. Schumacker,
A characterization of ten hidden-surface algorithms, ACM
Computing Surveys (CSUR), Volume 6 Issue 1

[8] James F. Blinn, Martin E. Newell, texture and reflexion in
computer Generated images, Communications of the
ACM, Volume 19 Issue 10, October 1976.

[9] H. M. Levy, Vax Station, A General Purpose Raster Graphics
Architecture, ACM Transactions on Graphics (TOG), Volume 3
Issue 1, January 1984.

[10] Richard Rouse, Columns: Gamming and Graphics: looking for
some art amidst the technology, ACM SIGGRAPH Computer
Graphics, Volume 33 Issue 1, February 1999.

[11] Tom Porter, Galyn Susman, On Site: creating lifelike characters
in Pixar movies, January 2000, Communications of the ACM,
Volume 43 Issue 1, Pages: 25-29

[12] Juhola, T.; Tenhunen, H.; Nielsen, I.R.; Adoption and
utilization of ASIC technologies in European SMIs, ASIC
Conference and Exhibit, 1994. Proceedings., Seventh Annual
IEEE International , 19-23 Sept. 1994 , Page(s): 240 -244

[13] Michael F. Deering, Scott R. Nelson, Leo: a system for cost
effective 3D shaded graphics, Proceedings of the 20th annual
conference on Computer graphics and interactive
techniques, September 1993

[14] Macedonia, M.; The computer graphics wars heat up,
Computer, Volume: 35 Issue: 10, Oct. 2002
Page(s): 97 –99

[15] Mark J. Harris, Greg Coombe, Thorsten Scheuermann, Anselmo
Lastra, Physically-Based Visual Simulation on Graphics
Hardware, Proceedings of the conference on Graphics hardware
2002, September 2002

[16] Masatoshi Kameyama, Yoshiyuki Kato, Hitoshi Fujimoto,
Hiroyasu Negishi, Yukio Kodama, Yoshitsugu Inoue, Hiroyuki
Kawai, 3D Graphics LSI Core for Mobile Phone Z3D, 2003
Graphics Hardware Workshop, July 26 to July 27, 2003, in San
Diego, California

[17] Ramchan Woo, Sungdae Choi, Ju-Ho Sohn, Seong-Jun Song,
Young-Don Bae and Hoi-Jun Yoo, A Low-Power and High-
Performance 2D/3D Graphics Accelerator for Mobile
Multimedia Applications, HotChips 2003;
http://ssl.kaist.ac.kr/ramp/

[18] Krupnova, H.; Saucier, G.; FPGA technology snapshot:
current devices and design tools, Rapid System Prototyping,
2000. RSP 2000. Proceedings. 11th International Workshop on,
21-23 June 2000, Page(s): 200 -205

[19] DeHon, A.; Wawrzynek, J.; Reconfigurable computing:
what, why, and implications for design automation,
Design Automation Conference, 1999. Proceedings. 36th , 21-25
June 1999, Page(s): 610 –615

[20] Stamatis Vassiliadis, Stephan Wong and Sorin Cotofana, The
MOLEN ρµ-coded processor, Proceedings of the 11th
International Conference on Field-Programmable Logic and
Applications 2001 (FPL2001), Belfast, Northern Ireland, UK,
August 2001

[21] Xilinx, Virtex II Pro Platform FPGA Handbook, Xilinx Inc.
UG012 (v1.0) January 2002.USA.

[22] John L. Hennessy and David A. Patterson, Computer
Architecture: A Quantitative Approach, Morgan Kaufmann
Publisher, 1990 USA

[23] James D. Foley, Andries van Dam, StevenK. Feiner and John F.
Hughes, Computer Graphics Principles and Practice, Addison-
Wesley Publishing Company, 1997, USA ISBN: 0201848406.

[24] Tomas Moller and Eric Haines, Real Time Rendering, A K
Peters 1999, USA, ISBN: 1-56881-101-2

[25] Edward Angel, Interactive Computer Graphics a Top-Down
Approach with OpenGL, Addison Wesley, 2000, USA, ISBN: 0-
201-38597-X

[26] Matthew Eldridge; Designing Graphics Architectures Around
Scalability and Communication, Ph.D. dissertation, Stanford
University, June 2001.

[27] Mark Segal,Kurt Akeley, The OpenGL Graphics System: A
Specification (version 1.4) , Silicon Graphics Inc., 2002,

[28] http://msdn.microsoft.com/library/
[29] Michael W. Schwarz, William B. Cowan, John C. Beatty, An

experimental comparison of RGB, YIQ, LAB, HSV, and
opponent color models, ACM Transactions on Graphics
(TOG), Volume 6 Issue 2, April 1987.

[30] Ken Shoemake, Animating Rotation with Quaternion Curves,
ACM SIGGRAPH Computer Graphics, Proceedings of the 12th
annual conference on Computer graphics and interactive
techniques, Volume 19 Issue 3, July 1985

[31] F.S. Hill, Computer Graphics using OpenGL, Prentice Hall,
2001,USA, ISBN: 0-20-354856-8

[32] Wolfgang Heidrich, High-quality Shading and Lighting for
Hardware-accelerated Rendering, Ph.D. dissertation, University
of Erlangen - Nurnberg, 1999

[33] Hyun-Chul Shin; Jin-Aeon Lee; Lee-Sup Kim; A hardware
cost minimized fast Phong shader, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, Volume: 9
Issue: 2, April 2001, Page(s): 297 –304

[34] Ingrid Carlbom, Joseph Paciorek, Planar Geometric Projections
and Viewing Transformations, ACM Computing Surveys
(CSUR), Volume 10 Issue 4, December 1978

[35] Newman, W. M. and R. F. Sproull, Principles of Interactive
Computer Graphics, 2nd ed. McGraw-Hill, New York, 1979.

33

[36] You Dou Liang and Brian A Barsky, A New Concept and
Method for Line Clipping, ACM Transactions on Graphics
(TOG), Volume 3 Issue 1, January 1984

[37] Tina M. Nicholl, D. T. Lee, Robin A. Nicholl, An new efficient
Algorithm for 2D line clipping: its development and analysis.
ACM SIGGRAPH Computer Graphics, Proceedings of the 14th
annual conference on Computer graphics and interactive
techniques, Volume 21 Issue 4, August 1987.

[38] Karagianni, K.; Stouraitis, T.; A vector processor for 3-D
geometrical transformations, Circuits and Systems, 2001.
ISCAS 2001. The 2001 IEEE International Symposium on,
Volume: 4, 6-9 May 2001, Page(s): 482 -485 vol. 4

[39] An embedded 32-b microprocessor core for low-power
and high-performance applications, Clark, L.T.; Hoffman,
E.J.; Miller, J.; Biyani, M.; Luyun Liao; Strazdus, S.; Morrow,
M.; Velarde, K.E.; Yarch, M.A.; Solid-State Circuits, IEEE
Journal of, Volume: 36 Issue: 11 , Nov. 2001, Page(s): 1599 -
1608

[40] Lang, T.; Bruguera, J.D.; Floating-point fused multiply-add
with reduced latency,Computer Design: VLSI in Computers
and Processors, 2002. Proceedings. 2002 IEEE International
Conference on, 16-18 Sept. 2002, Page(s): 145 –150

[41] Michael J. Flynn and Stuart F. Oberman, Advanced Computer
Arithmetic Design, John Wiley & Sons, Inc, 2001 USA, ISBN:
0-471-41209-0

[42] N. Yaday, M.J. Schulte, C. J. Glossner, Parallel Saturating
Fractional Arithmetic Units, Proceedings of the Ninth Great
Lakes Symposium on VLSI, pp. 214-217, Ypsilanti, MI, USA,
March 1999, Projectcode: ET01-05

[43] James H. Clark, The Geometry Engine: A VLSI Geometry
System for graphics, Proceedings of the 9th annual conference
on Computer graphics and interactive techniques, July 1982.

[44] Awaga, M.; Ohtsuka, T.; Yoshizawa, H.; Sasaki, S.; 3D
graphics processor chip set, Micro, IEEE, Volume: 15 Issue:
6, Dec. 1995, Page(s): 37 -45

[45] Sang-Joon Nam; Byoung-Woon Kim; Yeon-Ho Im; Young-Su
Kwon; Jun-Hee Lee; Young-Wook Cheon; Sung-Jae Byun;
Dae-Hyun Lee; Chong-Min Kyung; FLOVA: A four-issue
VLIW geometry processor with SIMD instructions and
lighting acceleration unit, Custom Integrated Circuits
Conference, 2000. CICC. Proceedings of the IEEE 2000, 21-24
May 2000, Page(s): 551 -554

[46] Kunimatsu, A.; Ide, N.; Sato, T.; Endo, Y.; Murakami, H.;
Kamei, T.; Hirano, M.; Ishihara, F.; Tago, H.; Oka, M.; Ohba,
A.; Yutaka, T.; Okada, T.; Suzuoki, M.; Vector unit
architecture for emotion synthesis, Micro, IEEE, Volume:
20 Issue: 2 , March-April 2000 , Page(s): 40 -47

[47] Suzuoki, M.; Kutaragi, K.; Hiroi, T.; Magoshi, H.; Okamoto, S.;
Oka, M.; Ohba, A.; Yamamoto, Y.; Furuhashi, M.; Tanaka, M.;
Yutaka, T.; Okada, T.; Nagamatsu, M.; Urakawa, Y.; Funyu,
M.; Kunimatsu, A.; Goto, H.; Hashimoto, K.; Ide, N.;
Murakami, H.; Ohtagu, A microprocessor with a 128-bit
CPU, ten floating-point MAC's, four floating-point
dividers, and an MPEG-2 decoder, Solid-State Circuits,
IEEE Journal of, Volume: 34 Issue: 11, Nov. 1999, Page(s):
1608 –1618

[48] Kubosawa, H.; Higaki, N.; Ando, S.; Takahashi, H.; Asada, Y.;
Anbutsu, H.; Sato, T.; Sakate, M.; Suga, A.; Kimura, M.;
Miyake, H.; Okano, H.; Asato, A.; Kimura, Y.; Nakayama, H.;
Kimoto, M.; Hirochi, K.; Saito, H.; Kaido, N.; Nakagawa, Y.;
Shimada, T.; A 2.5-GFLOPS, 6.5 million polygons per
second, four-way VLIW geometry processor with SIMD
instructions and a software bypass mechanism, Solid-State

Circuits, IEEE Journal of, Volume: 34 Issue: 11, Nov. 1999,
Page(s): 1619 –1626,

[49] Lempel, O.; Peleg, A.; Weiser, U.;Intel's MMX technology-a
new instruction set extension, Compcon '97. Proceedings,
IEEE, 23-26 Feb. 1997 Page(s): 255 –259

[50] Peleg, A.; Weiser, U.; MMX technology extension to the Intel
architecture, Micro, IEEE, Volume: 16 Issue: 4, Aug. 1996,
Page(s): 42 -50

[51] Thakkur, S.; Huff, T.; Internet Streaming SIMD
Extensions, Computer, Volume: 32 Issue: 12, Dec. 1999
Page(s): 26 –34

[52] Diefendorff, K.; Dubey, P.K.; Hochsprung, R.; Scale, H.;
AltiVec extension to PowerPC accelerates media
processing, Micro, IEEE, Volume: 20 Issue: 2 , March-April
2000, Page(s): 85 -95

[53] Oberman, S.; Favor, G.; Weber, F.; AMD 3DNow!
Technology: architecture and implementations,
Micro IEEE, Volume: 19 Issue: 2, March-April 1999, Page(s):
37 –48

[54] Conte, T.M.; Dubey, P.K.; Jennings, M.D.; Lee, R.B.;
Peleg, A.; Rathnam, S.; Schlansker, M.; Song, P.; Wolfe,
A.; Challenges to combining general-purpose and
multimedia processors, Computer, Volume: 30 Issue: 12,
Dec. 1997, Page(s): 33 –37

[55] Lee, R.B.; Accelerating multimedia with enhanced
microprocessors, Micro, IEEE, Volume: 15 Issue: 2, April
1995, Page(s): 22 –32.

[56] Daniel Menard, Daniel Chillet, François Charot, Olivier
Sentieys, Automatic Floating-point to Fixed-point Conversion
for DSP Code Generation, Proceedings of the international
conference on Compilers, architecture, and synthesis for
embedded systems, October 2002, New Orleans-USA

[57] Tang, K.C.; Wu, A.K.M.; Fong, A.S.; Pao, D.C.W.; Integrated
partition integer execution unit for multimedia and
conventional applications, Electronics, Circuits and Systems,
1998 IEEE International Conference on, Volume: 2, 7-10 Sept.
1998, Page(s): 103 -107 vol.2

[58] Clark, L.T.; Hoffman, E.J.; Miller, J.; Biyani, M.; Luyun Liao;
Strazdus, S.; Morrow, M.; Velarde, K.E.; Yarch, M.A.; An
embedded 32-b microprocessor core for low-power and high-
performance applications, Solid-State Circuits, IEEE Journal of,
Volume: 36 Issue: 11, Nov. 2001, Page(s): 1599 –1608

[59] Gopi K. Kolli, Kyle Fox, Haim Barad and Stephen Junkins, 3D
Graphics Optimizations for Intel PCA Applications Processors
with Intel XScale Technology, Solutions Journal, Volume 3,
spring 2002, www.intel.com/pca/developernetwork.

[60] Juan Pineda, A Parallel Algorithm for Polygon Rasterization,
ACM SIGGRAPH Computer Graphics, Proceedings of the 15th
annual conference on Computer graphics and interactive
techniques, Volume 22 Issue 4, June 1988

[61] W. Jack Bouknight, A Procedure for Generating of Three-
dimensional Half –toned Computer Graphics Presentation,
Communications of the ACM, Volume 13 Issue 9, September
1970.

[62] Alan V. Oppenheim, Discrete Time Signal Processing, Prentice
Hall PTR, I1999 USA, SBN: 0137549202

[63] Lance Williams, Pyramidal Parametrics, Proceedings of the
10th annual conference on Computer graphics and
interactive techniques, July 1983

[64] Keith Cok, Roger Corron, Bob Kuehne and Tomas True,
Developing efficient graphics Software, SIGGRAPH 2000
Course, http://www.sgi.com/events/siggraph00/gfxapps

34

http://www.intel.com/pca/developernetwork

[65] B.P Lathi, Modern Digital and Analog Communications
Systems, Oxford University Press, 1998, New York. ISBN 0-19-
511009-9.

[66] Don P. Mitchell, Generating Antialiased Images at low sample
densities, ACM SIGGRAPH Computer Graphics, Proceedings
of the 14th annual conference on Computer graphics and
interactive techniques, Volume 21 Issue 4, august 1987.

[67] M. L. V. Pitteway, D. J. Watkinson, Bresenham's Algorithm
with gray Scale, Communications of the ACM, Volume 23 Issue
11, November 1980.

[68] Norman P. Jouppi, Chun-Fa Chang, Z3: an economical
hardware technique for high-quality antialiasing and
transparency, Proceedings of the 1999
Eurographics/SIGGRAPH workshop on Graphics hardware,
July 1999

[69] Akeley, K.; The Silicon Graphics 4D/240GTX
superworkstation, Computer Graphics and Applications,
IEEE, Volume: 9 Issue: 4, July 1989, Page(s): 71 –83

[70] John S. Montrym, Daniel R. Baum, David L. Dignam,
Christopher J. Migdal, InfiniteReality: a real-time graphics
system, Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, August 1997

[71] Joel McCormack, Robert McNamara, Christopher Gianos, Larry
Seiler, Norman P. Jouppi, Ken Correll, Todd Dutton, and John
Zurawski, Neon: A Big, Fast, 3D Workstation Graphics
Accelerator, WRL Research Report 98/1, July 1999.

[72] Ikedo, T.; Ma, J.; The Truga001: a scalable rendering
processor, Computer Graphics and Applications, IEEE,
Volume: 18 Issue: 2, March-April 1998, Page(s): 59 –79

[73] Technical Brief, NVIDIA GeForce FX GPUs Cinematic
Computing for every User:
http://www.nvidia.com/object/overview_tb.html

[74] Noel D. Scott, Daniel M. Olsen and Ethan W. Gannett, An
Overview of the VISUALIZE fx Graphics Accelerator
Hardware, The Hewlett-Packard Journal Article 4 • 1998

[75] Burger, D.; Goodman, J.R.; Kagi, A.; Limited bandwidth to
affect processor design, Micro, IEEE, Volume: 17 Issue: 6,
Nov.-Dec. 1997, Page(s): 55 –62

[76] I. Antochi, B.H.H. Juurlink, A. G. M. Cilio, P. Liuha, Trading
efficiency for energy in a texture cache architecture, Proceedings of
the 2002 Euromicro conference on Massively-parallel
computing systems, pp. 189-196, Ischia, Italy, April 2002

[77] Michael Cox, Narendra Bhandari, Michael Shantz, Multi-Level
Texture Caching for 3D Graphics Hardware, ACM SIGARCH
Computer Architecture News, Proceedings of the 25th annual
international symposium on Computer architecture, Volume 26
Issue 3, April 1998

[78] Ziyad S. Hakura, Anoop Gupta, The Design and analysis of a
Cache Architecture for Texture Mapping, ACM SIGARCH
Computer Architecture News, Proceedings of the 23rd annual
international symposium on Computer architecture, Volume 24
Issue 2, may 1992

[79] Homan Igehy, Matthew Eldridge, Kekoa Proudfoot, Prefetching
in a Texture Cache Architecture, Proceedings of the 1998
EUROGRAPHICS/SIGGRAPH workshop on Graphics
hardware

[80] Alexis Vartanian, Jean-Luc Bechennec, Nathalie Drach-Temam,
The Best Distribution for a Parallel OpenGL 3D Engine with
Texture Caches, High-Performance Computer Architecture,
2000. HPCA-6. Proceedings. Sixth International Symposium on,
8-12 Jan. 2000, Page(s): 399 –408

[81] Homan Igehy, Matthew Eldridge, Pat Hanrahan, Parallel
Texture Caching, Proceedings of the 1999, Eurographics /
SIGGRAPH workshop on Graphics hardware, July 1999

[82] Molnar, S.; Cox, M.; Ellsworth, D.; Fuchs, H.; A sorting
classification of parallel rendering, Computer Graphics and
Applications, IEEE, Volume: 14 Issue: 4, July 1994, Page(s): 23
–32

[83] Mueller, C.; Hierarchical graphics databases in sort-first,
Parallel Rendering, 1997. PRS 97. Proceedings. IEEE
Symposium on, 20-21 Oct. 1997, Page(s): 49 -57, 117

[84] Vartanian, A.; Bechennec, J.-L.; Drach-Temam, N.; The best
distribution for a parallel OpenGL 3D engine with texture
caches, High-Performance Computer Architecture, 2000.
HPCA-6. Proceedings. Sixth International Symposium on, 8-12
Jan. 2000, Page(s): 399 -408

[85] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack
Goldfeather, David Ellsworth, Steve Molnar, Greg Turk, Brice
Tebbs, Laura Israel, Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced
Memories, ACM SIGGRAPH Computer Graphics, Proceedings
of the 16th annual conference on Computer graphics and
interactive techniques, Volume 23 Issue 3, July 1989

[86] Tong-Yee Lee; Raghavendra, C.S.; Nicholas, J.B.; Image
composition schemes for sort-last polygon rendering on 2D
mesh multicomputers, Visualization and Computer Graphics,
IEEE Transactions on, Volume: 2 Issue: 3, Sept. 1996, Page(s):
202 –217

[87] Don-Lin Yang; Jen-Chih Yu; Yeh-Ching Chung; Efficient
compositing methods for the sort-last-sparse parallel
volume rendering system on distributed memory
multicomputers, Parallel Processing, 1999. Proceedings.
1999 International Conference on, 21-24 Sept. 1999, Page(s):
200 –207

[88] Bor-Sung Liang, Yuan-Chung Lee, Wen-Chang Yeh, and
Chein-Wei Jen,"Index Rendering: A Hardware-Efficient
Architecture for 3-D Graphics", Proceeding, The 10th VLSI
Design/CAD Symposium, p.p.137-140, Nantou, Taiwan,

[89] Larry Bergman, Henry Fuchs, Eric Grant, Susan Spa,Image
Rendering by Adaptive Refinement, ACM SIGGRAPH
Computer Graphics , Proceedings of the 13th annual conference
on Computer graphics and interactive techniques, Volume 20
Issue 4, August 1986

[90] Youngkwan Cho; Neumann, U.; Jongwook Woo; Improved
Specular Highlights with Adaptive Shading, Computer
Graphics International, 1996. Proceedings, 24-28 June 1996,
Page(s): 38 –46

[91] Paul Heckbert and Michael Garland, Multiresolution Modeling
for Fast Rendering, Graphics Interface’94

[92] Atwood, B.; Ishii, T.; Osabe, T.; Mine, T.; Murai, F.; Yano, K.;
SESO memory: a CMOS compatible high density embedded
memory technology for mobile applications, VLSI Circuits
Digest of Technical Papers, 2002. Symposium on, 13-15 June
2002, Page(s): 154 –155

[93] Yong-Ha Park; Ramchan Woo; Sun-Ho Han; Jung-Su Kim; Se-
Joong Lee; Jeong-Hun Kook; Jae-Woon Lim; Hoi-Jun Yoo; 7.1
GB/sec bandwidth 3D rendering engine using the EML
technology, VLSI and CAD, 1999. ICVC '99. 6th International
Conference on, 26-27 Oct. 1999, Page(s): 277 –280

[94] Chomg-Lii Hwang; Kirihata, T.; Wordernan, M.; Fifield, J.;
Storaska, D.; Pontius, D.; Fredernan, G.; Ji, B.; Tomashot, S.;
Sang Dhong; A 2.9ns random access cycle embedded DRAM
with a destructive-read, VLSI Circuits Digest of Technical
Papers, 2002. Symposium on, 13-15 June 2002
Page(s): 174 –175

[95] Chi-Weon Yoon; Ramchan Woo; Jeengheon Kook; Se-Joong
Lee; Kangmin Lee; Hoi-Jun Yeo; An 80/20-MHz 160-mW

35

http://ce.et.tudelft.nl/person.php?id=10
http://ce.et.tudelft.nl/person.php?id=47
http://ce.et.tudelft.nl/person.php?id=127
http://ce.et.tudelft.nl/person.php?id=295
http://ce.et.tudelft.nl/publicationfiles/653_10_antochi.ps
http://ce.et.tudelft.nl/publicationfiles/653_10_antochi.ps

multimedia processor integrated with embedded DRAM,
MPEG-4 accelerator and 3-D rendering engine for mobile
applications, Solid-State Circuits, IEEE Journal of, Volume: 36
Issue: 11, Nov. 2001, Page(s): 1758 –1767

[96] Reiner Hartenstein, A Decade of Reconfigurable Computing: a
Visionary Retrospective, Proceedings of the Design,
Automation, and Test in Europe (DATE '01), March 2001

[97] Lew, A.; Halverson, R., Jr.; A FCCM for dataflow
(spreadsheet) programs, FPGAs for Custom Computing
Machines, 1995. Proceedings. IEEE Symposium on, 19-21 April
1995, Page(s): 2 -10

[98] Bernardo Kastrup, Automatic Synthesis of Reconfigurable
Instruction Set Accelerators, Promoters: prof. dr. ing. J.A.G.
Jess, prof.dr.ir. J.L. van Meerbergen. TU/e, ISBN 90-74445-50-
0, 22 May 2001, pp. 1-129.

[99] Villasenor, J.; Hutchings, B.; The flexibility of configurable
computing, Signal Processing Magazine, IEEE, Volume: 15
Issue: 5 , Sept. 1998, Page(s): 67 –84

[100] Jose O. Cadenas, Graham M. Megson and Toomas P Plaks.
Quantitative evaluation of three reconfiguration strategies on
FPGAs: A case study. In HPC-Asia 2000. Proc. of the Fourth
Int. Conf. on High-Performance Computing in the Asia-Pacific
Region, 14--17 May, 2000, Beijing, China. Vol. I, pages 337--
342. IEEE Computer Society Press, 2000.

[101] Heron, J.P., Woods, R., Sezer, S., and Turner, R. H.,
Development of a Run-Time Reconfiguration System with low
reconfiguration overhead, the Journal of VLSI Signal
Processing, Special issue on Re-configurable Computing, vol.
28 (1/2), pp 97-113, May 2001.

[102] Wirthlin, M.J.; Hutchings, B.L.; Improving functional
density using run-time circuit reconfiguration [FPGAs]
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, Volume: 6 Issue: 2, June 1998
Page(s): 247 -256

[103] Michael Flynn, Technology trends and adaptive Computing,
FPL 2001,LNCS 2147, pp 1-5, 2001

[104] Scalera, S.M.; Vazquez, J.R.; The design and implementation of
a context switching FPGA, FPGAs for Custom Computing
Machines, 1998. Proceedings. IEEE Symposium on, 15-17 April
1998 Page(s): 78 –85

[105] S. Trimberger, D. Carberry, A. Johnson, J. Wong Xilinx Inc., A
time-multiplexed FPGA, 5th IEEE Symposium on FPGA-Based
Custom Computing Machines (FCCM ’97), April 16-18 , 1997,
Napa Valley, CA.

[106] G.K. Kuzmanov, G. N. Gaydadjiev, S. Vassiliadis, Loading rm-
code: Design Considerations, Proceedings of the Third
International Workshop on Systems, Architectures, Modeling,
and Simulation, pp. 8-11, Samos, Greece, July 2003

[107] Scott McMillan and Steven A. Guccione. Partial Run-Time
Reconfiguration Using JRTR. In R. W. Hartenstein and H.
Grunbacher, editors, Field-Programmable Logic and
Applications, pages 352-360. Springer-Verlag, Berlin, August
2000. Proceedings of the 10th International Workshop on Field-
Programmable Logic and Applications, FPL 2000

[108] James Stephen Soe Mein Wong, Microcoded Reconfigurable
Embedded Processors, Thesis dissertation, TUDelft- The
Netherlands, December 2002, ISBN: 90-9016380-8

[109] Georgi Kuzmanov and Stamatis Vassiliadis, Arbitrating
Instructions in an ρµ-coded CCM, 13th International
Conference on Field Programmable Logic and Applications
Lisbon - Portugal, September 1-3, 2003

[110] IBM, PowerPC 405 Core, Publication Number: SA14-2339-04,
Revision Date: 12/03/01, IBM Corporation, 2001.

[111] P. L. Watten, J. P. Ewins, M. White, M. D. J. McNeill and P. F.
Lister, 'A Digital Arithmetic ToolKit for Graphics Hardware

Design ‘, submitted to The Twelfth International Symposium on
Computers and Information Sciences (ISCIS-XII), Antalya,
Turkey, pp85-91, November 1997.

[112] M.MeiBner, U.kanus et al, VIZARD II: A reconfigurable
Interactive Volume Rendering System, Proceedings of the
conference on Graphics hardware, September 2002

[113] Pavel Zemcik, International Conference on Computer Graphics
and Interactive Techniques, Proceedings of the 18th spring
conference on Computer graphics Budmerice, Slovakia. 2002
ISBN:1-58113-608-0

[114] Shih-Ching Ou; Li-Hong Shiu; Sung-Jung Hsiao; Wen-Tsai
Sung; Accelerate the calculation of NURBS curves and surfaces
based on parallel architecture, Parallel and Distributed Systems,
2002. Proceedings. Ninth International Conference on , 17-20
Dec. 2002 ,Page(s): 245 –250

[115] Laurent Moll, AlanHeirich and Mark Shand, Sepia: scalable 3D
compositing using PCI pamette, Field-Programmable Custom
Computing Machines, 1999. FCCM '99. Proceedings. Seventh
Annual IEEE Symposium on, 21-23 April 1999
Page(s): 146-155

[116] Heirich, A.; Moll, L.; Scalable distributed visualization
using off-the-shelf components, Parallel Visualization and
Graphics Symposium, 1999. Proceedings. 1999 IEEE, 25-26
Oct. 1999, Page(s): 55 –118

[117] Guangming Lu; Singh, H.; Ming-Hau Lee; Bagherzadeh, N.;
Kurdahi, F.J.; Filho, E.M.C.; Castro-Alves, V.; The
MorphoSys dynamically reconfigurable system-on-chip,
Evolvable Hardware, 1999. Proceedings of the First NASA/DoD
Workshop on, 19-21 July 1999, Page(s): 152 –160

[118] I. Damaj, and H. Diab, “Performance analysis of linear
algebraic functions using reconfigurable computing,” The
Journal of Supercomputing, Vol. 24, No. 1, pp. 91-107, 2002.

[119] Jeongseon Euh, Power-Aware 3D Computer Graphics
Rendering System, Ph.D. dissertation, University of
Massachusetts Amherst, August 2002.

36

http://ce.et.tudelft.nl/person.php?id=9
http://ce.et.tudelft.nl/person.php?id=19
http://ce.et.tudelft.nl/person.php?id=2
http://ce.et.tudelft.nl/publicationfiles/771_9_SAMOSIII.pdf
http://ce.et.tudelft.nl/publicationfiles/771_9_SAMOSIII.pdf

	INTRODUCTION
	Background
	Application Stage
	Geometry Stage
	Rasterization Stage

	The MOLEN Paradigm
	Reconfigurable Computing
	MOLEN Processor

	Related Work in Computer Graphics and Reconfigurable Computing
	Conclusions and future work

