
  

Computer Graphics and the MOLEN 
paradigm: a survey 

Humberto Calderón and Stamatis Vassiliadis  
Computer Engineering Laboratory  

Faculty of Electrical Engineering Mathematics and Computer Science  
Delft University of Technology  

Mekelweg 4, 2600 GA Delft, The Netherlands 
Phone: +31 (15) 2783664 Fax: +31 (15) 2784898 

E-mail:{H.Calderon|S.Vassiliadis}@ewi.tudelft.nl 
  
Abstract— Focusing in the advantages and drawbacks 

on the FPGA implementations vs. ASIC and pure 
software, this paper surveys the development of computer 
graphics. We start with the description of the theoretical 
problems related to computer graphics. Consequently, we 
present the most relevant industrial and academic 
solutions categorizing them from the point of view of their 
contribution in the speed up of Graphics Pipeline. Finally 
we introduce the MOLEN reconfigurable computer 
paradigm project and how the reconfigurable 
organizations based on this architecture could help in the 
establishment of an integral solution for computer 
graphics processing. 
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I. INTRODUCTION 
Since the introduction of the sketchpad interactive 
drawing system in the sixties by Sutherland [1], 
computer graphics has evolved with the creation of new 
algorithms and supporting hardware for this new 
functionalities and capabilities. Historically, the sixties 
and seventies saw the creation of the elementary and 
essential algorithms like the efficient scan converting 
lines [2], ray tracing [3], Catmull’s Z buffering [4], 
shading developed by Gouraud [5] and Phong [6], the 
characterization hidden-surface by Sutherland [7] and 
innovations and improvements presented by Blinn [8]. 
The eighties came with the introduction of accelerators 
for support 3D graphics primitives, improving in this 
way the algorithmic run time [9]. The film industry uses 
computer graphics into the creation of new effects [10], 
since those days, innovations has been created and 
virtual reality scenarios are part of currently films [11]. 

Nineties have had inherently the idea of photo realistic 
rendering, and the widespread of a more complex 
Application Specific Integrated Circuits (ASIC) [12]  
[13] for rendering acceleration. The massive introduction 
of hardware for the support of computer graphics into a 
personal computer (PC) world, oxygenated the research 
and development of computer graphics hardware, and 
the gap between PC rendering and the specialized 
graphics computer are diminishing every day [14][15]. 

  
Currently computer graphics are part of our life, we 
inhabit multimedia environments in the work, home and 
entertainment, even handheld devices like cellular 
phones and PDAs are being produced with specialized 
graphics processor and low power consumption 
characteristics like the pioneer Z3D [16] and the RAMP-
IV 3D mobile graphics IC [17]. The continuous creation 
of new functionalities diminishes the cycle of life of the 
computer graphics hardware due his obsolescence. More 
flexible and adaptable hardware for different 
functionalities could be achieved with Field 
Programmable Logic (FPL)[18] technologies using the 
Reconfigurable Computing paradigm [19].  

 
A reconfigurable computing machine called MOLEN 
ρµ-coded processor [20] was recently implemented in 
the Xilinx Virtex II PRO [21]. This configurable 
platform is intended for the development and 
improvements of processing including graphics.   
 
Our currently research involves the mapping of graphics 
functions to the MOLEN processor platform. The 
remainder of this paper discusses the basics in computer 
graphics pipeline, surveying some traditional researches 
and the MOLEN framework; consequently we present 
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computer graphics and reconfigurable computing, and 
conclude with some future work directions.  

#include "model3.h" 
 

void Draw_A_Frame(void) // Draw  frame 
 { 

glBegin(GL_QUADS) ; 
  glColor3f(0.0,1.0,0.0) ; II. BACKGROUND  
  glVertex2f(0.25,0.25) ; 

Performing a scene or rendering involves a series of 
tasks beginning with the creation of basic objects or 
primitives like points, lines, and triangles. Primitives are 
specified in a world with the use of homogeneous 
coordinates, a three-dimensional representation, and 
have to be rendering in a screen that can represent the 
data in two dimensions. A pipeline [22] processes the 
initial data, and converts through several mathematical 
transformations and additions into a representation of 
picture elements (pixels) to be displayed in a computer 
screen; this pipeline is known as graphics rendering 
pipeline or simply graphics pipeline [23][24][25]. 

  glColor3f(1.0,1.0,0.0) ; 
  glVertex2f(0.25,0.75) ; 
  glColor3f(1.0,0.0,0.0) ; 
  glVertex2f(0.75,0.75) ; 
  glColor3f(0.0,0.0,1.0) ; 
  glVertex2f(0.75,0.25) ; 
glEnd() ; 
} 

 
As can be seen in the above code, object’s vertices has 
associated three fundamental colors Red-Green-Blue 
(RGB-domain)[29], these primary colors are the base to 
construct the infinite palette available in the nature. 
Other functionalities not presented in the above code 
should be established, these includes the texturing 
coordinates and the computation of vertices normal- 
vectors. The primitives created in the application stage, 
are described in the affine space representations [23][24] 
for facility transformation purposes. Some systems are 
using another representations, like Euler [24] and 
Quaternion [30], accelerating in this way the rotations 
and orientations. After establishing the application 
framework, the Geometry Stage initiates the processing 
of the described data.   

 
The three fundamental stages of the graphics-pipeline 
are:  1) Application, 2) Geometry and 3) Rasterizer as is 
shown in figure 1.   

 
 
 
 

Figure 1: The basic Rendering Graphics Pipeline 
 

Computer Graphic primitives have inherently a lack of 
data-dependence, for this reason the pipeline can be 
implemented by a group of parallel pipelines in a space 
parallelism manner [26]. In the following we will 
describe the main stages of the pipeline.  

 

B. Geometry Stage 
The following five stages compose the geometry 
pipeline (figure 2). A description of these stages are 
presented  

A. Application Stage  
The scene construction is achieved with the use of an 
Application Programs Interfaces (APIs), like OpenGL 
[27] and Direct3D [28], helping us in the creation 
fundamental primitives, which are base of more complex 
objects. APIs functionalities includes: objects 
transforming, orientation modifications, re-sizing, 
viewing perspectives, projections creation, lighting 
scenes with different types of lights and, texturing and 
shading of objects in order to show them in a more 
realistic way. Summarizing, the previously described 
actions, establishes the tasks that will be carried out by 
the rest of the graphics pipeline. 

 
 
 
 
 
 
 

Geometry Rasterizer 

Model & view 
Transform 

Lighting Projection 

Clipping Screen 
Mapping 

Application 

Figure 2. Geometrical Pipeline 
 
 

Model and view transformation. The elaboration of a 
scene starts with the creation of the fundamental objects 
described in a model space with its own coordinates. In 
order to put all the objects that participate in the same 
scene into a common reference model, the model space 
has to be transformed into a world space. Some times, 
the eye of the viewer of the scene has to be positioned in 

 
The following code is an illustrative example of the 
quadrilateral creation with the OpenGL API  [27]. 
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different locations; in this case the world space has to be 
transformed into the eye space, the resultant model is 
ready to feed the next stage [24]. The mathematical 
operations for the transformations of the objects, and for 
the transformation between different models are carried 
out in the model and view transformation stage. Several 
scalar-vector multiplications between the vertices and 
the compound matrices transformation are performed, 
using a representation of floating-point numbers. 
Follows, three fundamental matrixes for translation, 
rotation and scaling are presented. 

 
The object’s movement is achieved with the translation 
matrix (1) 

     
 

 
 

where tx, ty, tx represent the amount of translation in 
each Cartesian coordinate.  

 

Rotations matrices, help us to rotates the body an angle φ 
in a three-dimensional environment, this movements 
matrixes are depicted by equations  (2), (3) and (4): 
 

  
 
 

 
  

 
 

 
 

  
 
 

 
The scale matrix (5), change the object relation into the 
x, y, and z coordinates. 
 
 

  
 

 
A detailed explanation of other matrices like shearing 
and compound can be found in  [23][31] 

 
Lightning. More realistic rendering are obtained using 
lights, different nature of the lights helps us to change 
the color of the objects in the modeled world; these 
colors are the result of the interaction of the light sources 
and the material that it impacts. The complete model of 
interaction of the light and the bodies that impacts, it is 

highly complex [32] and seems non-realistic for real 
time rendering and interactive environments. We use an 
equation instead of the approximation of the real 
behavior of the light; this equation is denominated the 
lighting equation (6). 
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where Ka, Kd and Ks are  ambient, diffuse and specular 
object reflectance respectively. Il denotes the incident 
light, N is the normal to the surface, H is indicating 
vector of maximum highlight direction, and Ns is the 
glossiness factor [33]. The first term in (6) model the 
Ambient Light and represents a far away light from the 
scene that irradiates in all directions; an example of this 
kind of light is the sun, this light it is also knew as global 
light [27] or directional light [24]. The second term 
modeled describes the interaction of the light with a 
diffuse reflection body, and the third term approximates 
the specular reflection of light [6].  
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Some helpful sources of light are the Point Light; this 
multidirectional light is located in some point of the 
scene. Another positional light in the Spot Light; instead 
of a multidirectional illumination characteristic this light 
has a conic irradiance )(2
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Projection. This stage delimits the scene to be rendered; 
the modeled world is transformed and delimited by cubic 
representation by means of the application of the 
orthographic projection, implemented with translation 
and scaling transformations.  Another more elaborated 
projection is called perspective projection, the resultant 
geometrical volume is not cubic instead of that, is a 
truncated pyramid volume, denominated frustum; this 
particular shape is caused by the representation of the far 
away objects with small sizes. Detailed information of 
projection matrices could be found in [27][23], and an 
introduction of projections and viewing transformations 
are established in [34].  
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Clipping. Objects outside the projection volume are 
dismissed because they are not visible; this action 
diminishes the processing time avoiding the scan 
conversion of not visible objects. One of basic 
algorithms developed by Cohen-Shutherland 
[35][23][25] computes the intersections of the lines and 
the viewing window, determining in this way the 
necessary information for the clipping; the searching 
area is split in nine regions, and the intersection of the 
object in a particular area is compared in a binary way. 
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An improvement of 36 % in processing time was 
achieved by Liang-Barsky algorithm, with the 
description of clipping in an exact mathematical form 
using a parametric representation [36]. Since then, have 
been developed specialized algorithms for the clipping 
of points, lines, polygons, texts and other objects 
[37][23][25]. The following figure schematizes the 
clipping action. 
 
 
 
 
 
 
 

Figure 3. Clipping  
 
 
Screen Mapping. Finally in the last s
geometry pipeline, the primitives are map
screen coordinates, usually these coor
expressed in an integer format, then a n
should be achieved in order to operate 
representation. The following figure sch
mapping operations indicated in equations 7-
 
 
 
 
 
 
 

 
                                                 

Figure 4. Mapping to screen coordin
 
 
 
 
 
 
 
 
 
The previous exposition of the Geomet
evidences his intensive floating-point data
Several improvements have been done 
accelerate the processing time. The 
multiplication operations have been stud
avoiding some unnecessary calculatio
researchers, diminishes the latency of m
(MAC) operations  [39][40][41], a com
operation into the processing; while a mor

innovations merge the arithmetic logic in the double 
MAC unit [42], accelerating in this way the processing 
time.  
 
Poor flexibility, high costs and rapid obsolescence are 
characteristic of ASICs, for this reason more specialized 
programmable processors have been created. These 
processors are using parallelism in time and space, 
achieving good performances like the represented ones 
of the following table. 

  Clipping  
 

Table I 
Geometry Processors - Coprocessors 

 

Name Parallelism ISA Performance 
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ormalization 
with integer 
ematize the 
9 [25]. 

Optimized 
Geometry 

Engine [43] 
12 units in Time 

Parallelism. 
Matrix, clipping, 

projection & others 5 MFLOPS 

TGPx4 [44] LIW Geometry Stage & 
others 

80 MFLOPS 
40 MHz 

FLOVA [45] VLIW SIMD 
Geometry Stage 

500 MFLOPS 
100MHz 

Emotion Engine 
[46] VLIW SIMD 

Geometry Stage 
5.52 GFLOPS 

300MHz 

VPU1 [47] 2 way VLIW 2 SIMD 
Geometry Stage 

2.5 GFLOPS 
250MHz 

Four Way -
VLIW 

Processor [48] 
VLIW SIMD 

Geometry Stage 
2.5 GFLOPS 

312MHz 

 ( )yx vv maxmax, Cost-effective oriented studies suggest the use of 
currently non-specialized processors for graphics 
processing  [49] [50] [51] [52]. Sacrificing performance 
instead cost, this processor incorporates new 
functionalities to his ISA, the new functionalities in 
 
 
 
• (X, Y)
 
 
• (Xv, Yv)
ates. 

ry Pipeline 
 processing. 
in order to 
scalar-vector 
ied in [38] 
ns. Others 

ultiply-add 
monly used 
e aggressive 

some processor includes special units for reciprocal and 
square root calculations [53]. Additional information of 
the challenges to combine GPP and multimedia can be 
found in [54]. 
 

)7( The processing of computer graphics with the low power 
constraints, lead us to diminish the use of big floating-
point units and emerge the idea of use different sized 
data [55]. Going further, other studies use integer 
arithmetic for real numbers representations [56], 
optimizing in this way the computer graphics   
bandwidth and consumed power [57]. Some commercial 
processors are actually using this approach of processing 
[58], a complementary information is  found in [59]  

)8(

)9(

 

C. Rasterization Stage 
The Rasterization stage is implemented with a pipeline 
that converts the primitives into an image, determining 
the final color of the pixels. The description of each part 
of the pipeline of the figure 5 is presented. 
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 1. Flat Shading [23]. The fastest and simple to 
implement, establishes a common color to the 
triangle, this color is obtained after averaging the 

 
Triangle 
 Setup 

S Fog & 
Alpha 

Antialiasing 

 
 
 
 
 
 
 

Figure 5. Rast
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For scan conversion pha
traverse the triangle have 
Differential Analyzer (D
traditional algorithms use
variations for traversing ar
[61][24][27]. 
 
Finalizing this stage, the
depth values for each pixel
in the scan procedure is ca
the Triangle Set-up and the

 
Shading.  Depending o
lightning model is evaluate
techniques widely used to 
 
 

hading & 
Texturing 
colors associated with the triangle vertices.   

Fragment 
Operation 

 

Display 

 
2. Gouraud Shading [5].  Interpolates color across 

the triangle, taking into account the colors 
associated with the vertices computed with 
equation (6).  The first interpolation occurs 
between the vertices and after a second 
interpolation occurs between the edges lines 
resulting in a more realistic scene compared with 
Flat Shading. 

erization Pipeline. 

 step in the rasterization stage 
g test [27]. This test computes 
le in order to discards the not 
t can also be made calculating 
d polygon [24]. The next step 
matical description of the 
nd widely applied algorithm 
.12)  

 
3. Phong Shading [6]. The third is the most costly 

algorithm in terms of processing time, can 
represent effects like spotlight, offering greater 
realism. Phong algorithm computes the normal 
vector in each point of the triangle (equation 6), 
interpolating the normal vectors at the vertices of 
the triangle, then a second interpolation occurs in 
the scan lines. This technique is similar as 
Gouraud; but instead of interpolate colors, the 
normal vectors are interpolated; finally the shading 
model is applied obtaining the final color. 
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Texturing. With the texels (pixels from the texture 
image) and the lightning equation a more realistic image 
is create; the following pipeline realizes this process. 

ineda [60] proposes an easy 
te the edge with equations 13  

Projector Corresponder 

Apply Value Illu   
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Figure 6. Textur

 
A Projector function translate
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translation is called mapping. 
mapping function denominated
the values u and v are translat
which are scaled with the Appl
to get finally the texture 
characteristic value into the Illu

 interpolation of colors, and 
 that has been created recently 
rried out, merging in this way 
 Shading functionalities.   

 
n the used technique some 
d, the main three fundamental 

shading are: 

 
All these operations are e
computation, memory use with
bandwidth in order to move
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different buffers of the graphics pipeline [26]. After 
mapping the image gets warped and should be filtered  
[62]; some of these filters have prohibitive processing 
times for real time applications. On the other hand, we 
can use some pre-filtering images as Lance Williams 
proposes with his Pyramidal data structures called Mip-
Mapping [63]. This technique creates multiple copies of 
the original texture image; each copy has exactly the half 
resolution on each axis of the previous one in both 
coordinates v and u, resulting a one-quarter size filtered 
image, this procedure follows recursively until the final 
image has size of one pixel. The obtained copies form a 
pyramid in which the new coordinate d is used to index 
the most adequate image resolution to be mapped into a 
desire pixel area. Figure 7 sketches this technique.    

Antialiassing.  Data represented into a raster display 
suffer the jagged effect due the inherent discrete 
characteristic of this device. But avoiding this 
unsolvable characteristic, aliased images can be affected 
by an inadequate sampling of the image made with lower 
rate than the Nyquist theorem [65] establishes; then it is 
infeasible to reconstruct an image if the sampling rate is 
less than twice the highest frequency of the image. There 
are two fundamental solutions into the image filtering 
denominated Pre-filtering and Post-filtering. 
 

1. Pre-filtering. This technique determines the color 
of the pixel based on the geometric description of 
the image; taking into account the description, a 
precise filter is applied in order to obtain a non-
aliased image. Breshman’s classical algorithms 
had been used [66], and also Pitheway [67] 
developed an improvement in the way of the 
incrementing of the shading area taking into 
account the slope of the edge. 

 
 

 

 
 
 
  

2. Post-filtering. The classical approach in Post-
filtering use the super-sampling [68] of the image, 
multiple pixel samples are took, and a filter is used 
to create a new sample by averaging of the 
samples. Barlett, box, Gaussian, and other discrete 
filters [62] can also used instead of the average 
filter in order to eliminate the high frequency 
components. 

 
 
 
 
 
 
 
 
 
 

Figure 7 MI
 

Bilinear and trilateral [63][
used to obtain an antialias
applied into the polygon.  
 
Fog. In order to create a mor
it is necessary to apply atmo
a heavy fog depending on the
by the Cf  color, and a fog 
resident in memory (frame
computes the final color CF: 

 
1(CF

FCF −+⋅=

 
the factor F is calculated from
 

 e dF −=

 
where  dF controls the fog d
of the pixel [64]. 
 

u

v

d

 
 

P- Mapping Alpha Blending. The RGB components have associated 
the α factor for the transparency and opacity control of 
the object; the blending of this factor with the processed 
color of the pixel determines the final opacity of the 
rendered pixel:   

23] interpolations are been 
ed-texturing pattern to be 

 e realistic image some times 
spheric effects like a mist or 
 scene. Fog is characterized 
factor F. If C is the color 
 buffer), the fog equation 

 )17()1( CCC PAB
αα −+⋅=

 
In (17) C is the color in the frame buffer, Cp and α are 
the color and alpha value of the incoming fragment to 
being processed. The final color to be written in the 
frame buffer is a blending of the actual color and the 
incoming color with different grades of transparency.  )        15()C f

 
Depth test. With this test it is possible to determine 
which pixels can be viewed and which are hidden behind 
objects. With the comparison of the depth value of the 
incoming processed fragment and the actual value stored 
in Z buffer (frame buffer) it is possible to discard the 
hidden object [23][24][25][27]. 

: 

)16(z PF

ensity, and zp is the z value 
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 Fragment Operation. Depending on the API 

technology, and if some functionalities were enabled, 
some additional test operations are carried out. Related 
information on fragment test can be found in [64]. 

 

Texture

Framebuffer

 0 -1.7 

1.6-6.4 

1-8 

Application 
 
 
 

   
Display. Finally this stage ends the pipeline; a 
specialized controller is in charge of the display 
actualization using the frame buffer information. A 
detailed reference of the functionalities of this stage 
could be found in [23][24]. 

 
 
 
 
 

  The quantity of processed data in the rasterization 
pipeline is higher than the processed in the geometry 
stage; the number of fragments produced by the 
primitive setup exceeds the number of primitives in at 
least 20 to 1. Even taking into account the use of integer 
data in the rasterization stage instead of the floating 
point utilized by the geometry stage, the amount of 
processing data reaches bigger amounts. 

 
 

Figure 8 Data bandwidths 
20M Vertices, 400M p

 
The necessary process
increasing the paralle
nevertheless more para
increment [75] and highe
more the inherently mem

 
The available technology evidences the use of different 
kind of parallelism and with different degrees by the 
geometry and rasterization stages. The following table 
shows some examples of rendering accelerators and 
processors.  

 

 
Table II 

Rendering Accelerators and Processors 
 

Name Parallelism Operation Performance 

4D/240GTX 
[69] 

Time parallelism in 
geometry and space in 

rasterization. 

Geometry and 
Rasterizer 

Stages 

100K lighted 
quadrilaterals 

per second 

InfinitiReality 
[70] 

4 Geometry Engine 
MIMD, 4x80 engines 

in raster boards  

Geometry and 
Rasterizer 

Stages 

710 M textured 
antialiased 

pixels/s 

Neon 
 [71] 

8 Pixel processor per 
Rasterizer, simgle chip 
with unified memory 

Rendering  4 Mvertices/s 
 

Truga001 [72] 
12 graphic processors 
and 7 functional units 

in a single chip 

MIMD structure 
Rendering 4 M vertices/s 

GeForce FX 
5800 
[73] 

Single chip 
Engines for 

Geometry and 
Rasterization. 

200 Mvertices/s
4 Billon texels/s

500MHz 

VISUALIZE  
fx 6 
[74] 

Scalable processor,  
3 Geometry up to 8,  

2 Raster and 
2 texture chips 

Array of units 
with Space and 

Time 
parallelism 

- 

Different approaches we
memory latency and ma
texture cache for fast 
primarily used [76] and
studied like multilevel 
caching architectures [77
could be found in [78]. 
prefetching and cach
performance are reached
obtained using paralle
hierarchy for texturin
parallelism benefits are a
different degrees. 
 
Molnar [82] proposes
exploiting the parallelism
[84][85] (image-oriented
(pixel-oriented), suggest
division establishes a sta
data between the parallel
the pipeline. The first tw
load balance due to the 
primitives. The sort las
functionalities enable in
also suffers of load im
sort-anywhere architect
connectivity between the
the distribution the data i

 
The large quantity of data involved in the graphics 
pipeline has to be taken into account in order to 
understand the used bandwidths and the necessary 
computational power. Figure 8 depicts a simplified 
pipeline with the data amounts moved between the 
principal stages, and between stages and memories; also 
are depicted the sort point for parallel organizations.  
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The FPL technology comes associated with the concept 
of Virtual Hardware, in which any application believes 
that has a sized engine to run on it, and it is possible to 
establish the hardware on demand paradigm, overcoming 
the hardware obsolescence imposed by other 
technologies. 

Other research lines improves the rendering through the 
use of adaptive rendering, in this sense, Bergman 
propose the adaptations of the image, generating an 
image rapidly without so many detail and then refining it 
when was necessary [89], in this way only the necessary 
pixels are Phong shaded, the rest of the pixels use the 
Gourard technique. Following this paradigm, Cho [90] 
improves the determination of which triangles should be 
Phong or Gourard shaded. Similar approaches diminish 
the processing time, using a multi-resolution model [91] 
and representing the objects with different level of 
details. Finally, taking into account the improvements in 
the technology of embedded memory  [92][93] with read 
cycles of 2.9 ns in DRAM [94], we hope the creation of 
multiple multimedia processors with higher bandwidths 
and less power consumption characteristics. One 
example of this approach with a sort middle architecture 
and a dynamic reconfigurable bus is presented in [95]. 

 
Reconfigurable technologies demonstrated a great 
flexibility and a good performance in order to replace 
the traditional solutions in high demand tasks [99], 
offering spatial and temporal parallelism characteristics 
[19] and also the inherently bit level parallelism [98]. 
Table III summarizes the principal characteristics of RC 
compared to traditional solutions. 

 
 

Table III 
 Reconfigurable advantages and drawbacks  

compared with other technologies. 
 

 Power Performance Flexibility Time to 
Market 

General Purpose 
Processor High Low Medium Low 

ASIC Low High Low High 
Re-Configurable

Processor High Medium High Low 

III. THE MOLEN PARADIGM   

A. Reconfigurable Computing 
The capacity to transform a hardware platform imposed 
and controlled by the software is denominated 
Reconfigurable Computing (RC). The reconfigurable 
computing was introduced four decades ago, but recently 
the last decade [96] has been the witness of the evolution 
and growth of this important field in the computer 
science, the catalyst of this development comes with the 
improved performance of the Field Programmable 
Logic, it usually assembles a general purpose core and a 
field programmable unit. This new hybrid architecture is 
referred like Field-Programmable Custom Computing 
Machine (FCCM) [97]. The following figure outlines 
this rationality [98]. 

 
Nevertheless, the main drawback of the RC is the 
necessary configuration time of the new hardware 
functionality. Several studies show the importance of the 
Run time reconfiguration [100][101][102], and some 
researchers looks for the hiding of the configuration 
latency time. One of this works proposes the use of 
matched common components for his use in different 
tasks, sharing in this way the same hardware [103] and 
diminishing the overall configuration time. Another 
approach proposes work with different contexts [104]; 
the dynamic of this solution is based on switching the 
context on demand, this solution consumes a less time 
compared with the configuring of the FPL. A similar 
approach [105] stores different configurations in the 
internal memory of the FPL, and has the capability to 
change context in a single cycle. The previously 
presented solutions constitutes the first approaches in 
order to hide the configuration time and fulfill the goal, 
nevertheless they suffer a memory overuse.   
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 FPL technology evolves and the configuration time of 

the devices are diminishing gradually. Table IV presents 
the configuration times for Virtex II PRO family, 
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The ARBITER partially decodes the fetched instruction, 
determining where will be issued for his execution; it 
has two alternatives the Core Processing Unit and the 
Reconfigurable units. A precise description involved in 
control tasks and functionalities of the ARBITER could 
be found in [109]  

Table IV 
Virtex II PRO sizes and Programming times [106] 

 
Device No. of  frames No.  of  bits Config.  Time 

XC2VP2 
XC2VP7 

XC2VP20 
XC2VP50 

884 
1,320 
1,756 
2,628 

1,305,440 
4,484,472 
8,214,624 
19,005,696 

3,26 ms 
11,21 ms 
20,54 ms 
47.55 ms   

 The currently implementation of MOLEN uses a 
PowerPC 405 [110] processor as the Core Processing 
Unit. The instructions issued to this unit are decoded and 
executed in a normal RISC way. This unit uses the 
Register File for hold the initial and resulting data, 
finally the Exchange Registers (XREGS) are an 
architectural support for the parameter passing between 
the core processing units and the reconfigurable unit.  

Additionally, we must emphasize that new FPL devices 
support the partial reconfiguration of the logic and 
routing characteristics. Also, the dynamic configuration 
is supported; this characteristic gives us the ability to 
update only a portion of the configuration memory in a 
FPL with a new configuration without stopping the 
functionality of other device sections [107].  
  

The Reconfigurable Unit consists of a Custom 
Computing Unit (CCU) and a ρµ-code unit. The 
particular ISA of the MOLEN is composed by three 
fundamental instructions distributed on the set phase and 
the execute phase: 

B. MOLEN Processor  
The MOLEN ρµ-coded processor presented in [108] 
constitutes an FCCM and it is merging a general-purpose 
processor and a reconfigurable processor. This FCCM 
uses micro code concept to carry out the configuration 
process of the augmented CCU, as well for the 
emulation of the execution of the core processing unit 
and the control of the execution of the reconfigurable 
unit.   

 
 

1. Set Phase. The set phase it is constituted by two 
sub phases: The first one is known as the partially 
set (p-set), and the second one is cited as complete 
set (c-set). In p-set sub-phase, the CCU is partially 
configured in order to perform common functions; 
these actions can be made during the loading of 
the program or even at chip fabrication time.  In 
the second subphase the c-set, as its name suggest, 
the microinstructions establish the final 
functionality of the CCU enabling to perform less 
frequent functions. 

 
The microcode is referred as ρµ-coded, and is located 
into the traditional µprogram memory. Figure 10 depicts 
the general architecture of MOLEN. 
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2. Execute Phase. Once it has been established the 

functionality of the hardware, the initiation and 
regulation of the execution is performed by this 
instruction. When an instruction is being executed 
into the CCU, the ARBITER interrupts the Core 
Processing Unit in order to regulate the bus 
access. 
 
 

Figure 10. MOLEN Organization  
 

REGS

Through the reconfigurable instructions utilization it is 
possible to control the whole MOLEN organization. 
Taking into account the instruction format of the chosen 
Core Processing Unit (CP), it has been created the 
reconfigurable instruction with the format presented in 
RECONFIGURABLE UNI
ata 
h/Store
figure 11, which is congruent with the PowerPC 
Instruction Set Architecture. 
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V. CONCLUSIONS AND FUTURE WORK 
From our point of view, reconfigurable computing and 
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  the MOLEN paradigm became in the framework for the 
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Graphics pipeline under the MOLEN paradigm can arise 
a flexible architecture, as much as the environment of 
processing requires. Custom computing machines in 
MOLEN can be adaptable and the different clusters into 
the pipeline will be created when be necessary, enabling 
the data sort in a demand paradigm. Also the embedded 
memory can be managed in a dynamic way, regulating 
in this way the bandwidth and resources. The following 
figure sketches this view. 
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paradigm. 
4. A classification of similar functionalities and the 

establishment of common basic reconfigurable 
hardware entities for the service of multiple 
functionalities. 

5. Determining of the appropriate granularity of 
reconfiguration in order to increase the 
functionalities of the MOLEN architecture.  

 
We believe that the MOLEN paradigm can help into the 
creation of a less expensive and adaptable processing to 
the multimedia environments. 
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