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Abstract – In this paper, we describe a way to extend 
the flexibility of hardware and provide the 
programmer with an arbitrary number of processing 
units to use. To achieve our goals, we present a new 
programming paradigm, a new instruction set 
architecture, a microcode-based microarchitecture, 
and a compiler methodology. The programming 
paradigm, in contrast with the conventional 
programming paradigm, mixes general-purpose 
conventional code with hardware descriptions and 
allows ultra complex instructions. The instruction set 
is designed such that it requires only a one-time 
extension for every family of computers. It requires 
only 8 instructions that are capable of invoking 
emulation. Emulation is combined with the micro-
architecture to allow high-speed reconfiguration and 
execution. Finally, it is indicated that a compiler can 
be built to automatically transform a program to 
conform with the described polymorphic processing 
paradigm. 
 

1. INTRODUCTION 
 
In processor design, two extremes exist in terms of 
flexibility and performance. In one extreme lie the 
application-specific integrated circuits that, at the 
expense of flexibility, achieve the highest possible 
performance. In the other extreme there are the general-
purpose processors that are designed to operate in a 
wide range of opcodes, i.e., providing high flexibility. 
This however limits their performance since they are 
designed to perform reasonably well for a wide range of 
operations. In this paper, we discuss another approach in 
processor design that is quickly gathering support and 
acceptance, namely reconfigurable computing. Further, 
we describe our view on how such a paradigm can be 
incorporated into the general-purpose computing. In 
reconfigurable computing as viewed in this paper, a 
general-purpose processor core is augmented with 
reconfigurable hardware. The general-purpose processor 
is intended to perform non-time-critical functions while 
time-critical functions are implemented on the 
reconfigurable hardware. An example approach is 

depicted in the right-most block of Figure 1. Traditionally, 
computer programs were executed on a general-purpose 
processor (depicted by ‘program P’ and the upper long 
arrow in Figure 1) operating on data stored in memory. This 
scenario has the following advantages: 
• Op-code space insensitivity: an arbitrary number of 

programs can be run without changing the interface, 
i.e., the instruction-set architecture (ISA), between 
programmers and designers; 

• Parallel execution support: performance-related ISA 
support can be present enabling parallel/concurrent 
execution of programs; 

• Modularity: the same program can be executed on an 
arbitrary number of computers without changes. 

 

 
Figure 1. Reconfigurable hardware combined with 
general-purpose processing. 
 
In the reconfigurable computing scenario, compute-
intensive operations are implemented on the reconfigurable 
hardware providing the following advantages: 
• inherent parallelism within the operations can be 

exploited and therefore the performance of the 
implemented operations is greatly increased; 

• temporary storage of (large amounts of) data can be 
kept in the same reconfigurable hardware and thereby 
greatly reducing data access latencies. 

The main benefit of utilizing reconfigurable hardware is that 
other (future) operations can be implemented on the 
reconfigurable hardware without requiring a re-design. 
However, each implementation on the reconfigurable 
hardware must be initialized and controlled by the general-
purpose processor core. This can be solved by introducing 
new instructions to the instruction-set architecture of the 
general-purpose processor core for each supported and 
future reconfigurable hardware implementations. However, 
this approach leads to at least on of the following issues that 
are resolved in general-purpose paradigms: 



• opcode space sensitive: in a number of 
reconfigurable schemes (Gokhale and Stone(1), 
Hauck et al(2), La Rosa(3)), anytime operations are 
to be executed in reconfigurable hardware, a new 
instruction for the operation in question has to be 
added. This restricts the operation to be executed in 
reconfigurable hardware and it restricts the program 
that can benefit from the reconfigurable hardware. 

• no parallel execution support: in most approaches 
(Sima et al (4)), there is no support for parallel 
issuing of reconfigurable operations. 

• no modularity: given that the reconfigurable 
operation are specific instruction set dependent, 
there are currently no generic methodology and 
tools that will allow to run the same program on 
multiple hardware reconfigurable platforms. 
Further, the compiler for a single application has to 
be extended on the “fly” assuming the hardware is 
properly set to accommodate the addition of new 
reconfigurable instructions. 

In this paper, we describe the virtual polymorphic 
processing approach which addresses reconfigurable 
issues in a unified manner. To provide the programmer 
with almost arbitrary hardware functionality, we present 
a programming paradigm, a processor architecture, a 
microarchitecture, and a compilation methodology. 
Furthermore, our approach largely maintains the 
advantages associated with general-purpose processors, 
namely op-code space insensitivity, parallel execution 
support, and modularity. This presentation is organized 
as follows. Section 2 introduces the research questions 
that facilitate our discussion. Section 3 discusses how 
existing program can be modified to support 
reconfigurable computing. Section 4 describes the 
Molen architecture that requires at most 8 new 
instructions to support any functionality on the 
reconfigurable hardware. Furthermore, reconfigurable 
microcode is introduced that controls both the 
reconfiguration and execution processes on the 
reconfigurable hardware. Section 5 discusses the 
compiling techniques needed to support our new 
programming paradigm and new processor architecture. 
In addition, we briefly present some experimental 
results showing the benefits of our approach. Section 6 
concludes this paper with some remarks. 
 

2. RESEARCH QUESTIONS 
 
In reconfigurable computing, the following scenario can 
be considered to be the general case. First (see Figure 
1), the original program P must be transformed into 
program P’ that incorporates support, i.e., containing  
instructions, to control the reconfigurable hardware. 
Secondly, program P’ is executed on both the general-
purpose processor (GPP) core and the reconfigurable 

hardware. As discussed in the previous section, several 
issues are associated with a straightforward approach in 
augmenting reconfigurable hardware to a general-purpose 
processor core. The result is that huge efforts must be made 
when adding support for future operations on the 
reconfigurable hardware. Therefore, a new approach must 
be investigated and established that overcomes all these 
issues. In order to facilitate the comprehension of the 
material presented here, we first clearly state the research 
questions we address. The first research question is: 
1. How can I change an existing program (without re-
developing it) so that I can speed it up on the reconfigurable 
hardware? 
The answer lies in proposing a new programming paradigm. 
The programming paradigm must require minimal changes 
when transforming the original program P to program P’ 
(see Figure 1), in which certain operations are implemented 
on the reconfigurable hardware. The second research 
question is: 
2. How can I provide flexibility without requiring a new ISA 
to be developed? 
The answer lies in defining a one-time instruction-set 
insensitive extension to existing processor architectures that 
is able to control the reconfigurable hardware in terms of 
reconfiguring it to future implementations and controlling 
those implementations. The third research question is: 
 3. How can I implement “arbitrary” program specified 
operations/functionalities? 
The answer lies in the proposal of a microarchitecture that is 
able to implement the one-time instruction-set extension 
discussed in research question 2 and that operate with 
emulation. Finally, the fourth research question is: 
4. How can I automatically target the “transformed” 
program to run on the reconfigurable computing platform? 
The answer lies in proposing compilation techniques that 
incorporate the new programming paradigm, target the new 
instruction-set extension, and is aware of the micro-
architecture. 

3. CANDIDATES FOR RECONFIGURATION 
 
In this section, we present the general concept of 
transforming an existing program to one that can be 
executed on a reconfigurable computing platform. 
Consecutively, we investigate in more detail the 
methodology involved in this transformation that introduces 
“ultra complex” instructions.  
 

 
Figure 2. Program transformation example. 



The conceptual view of how program P (intended to 
execute only on the general-purpose processor core) is 
transformed into program P’ (executing on both the 
GPP core and the reconfigurable hardware) is depicted 
in Figure 2. The purpose is to obtain a functionally 
equivalent program P’ from program P which (using 
specialized instructions) can initiate both the 
configuration processes of and execution processes on 
the reconfigurable hardware. The steps involved in this 
transformation are the following: 
1. identify code “α” in program P to be mapped in 

reconfigurable hardware. 
2. eliminate the identified code and add code to have 

an “equivalent” code (A) assuming that A “calls” 
the hardware with functionality “α”. 

3. show hardware feasibility of “α” in a current 
technology (e.g., field-programmable gate array 
(FPGA)) and map “α” into reconfigurable 
hardware. 

4. execute program P’ with original code plus code 
having functionality A (equivalent to functionality 
“α”) on the reconfigurable processor. 

The mentioned steps illustrate the new programming 
paradigm in which both software and hardware 
descriptions are present in the same program. It should 
also be noted that because the only constraint on “α” is 
implementability, it is also implied that the 
microarchitecture has to support emulation. This implies 
the utilization of microcode. We have termed this as 
reconfigurable microcode (ρ-µcode) as it is different 
from that traditional microcode. The difference is that 
such microcode does not execute on fixed hardware 
facilities. It operates on facilities  that itself “designs” to 
operate upon. 
The methodology in obtaining a program for the 
reconfigurable computing platform is depicted in Figure 

3. First, the code to be run on the reconfigurable hardware 
must be determined. This is achieved by high-level to high-
level instrumentation and benchmarking. This results in 
several candidate pieces of code. Second, we must 
determine which piece of code is suitable for 
implementation on the reconfigurable hardware. The 
suitability is solely determined by whether the piece of code 
is “hardware implementable”. This can be determined 
manually or automatically (Cardoso and Neto (8)). The end 
result will be a new program that comprises the following 
elements:  
• Repair code is inserted in order to communicate 

parameters and results to/from the reconfigurable 
hardware from/to the general-purpose processor core.  

• “VHDL”-code and emulation code are inserted to 
configure the reconfigurable hardware to perform the 
functionality that is initialized by the “execute code”.  

Instead of inserting explicit code into the new program, each 
piece of code can be initialized by special “ultra complex” 
instructions. It should be noted that in the programming 
paradigm, software code co-exists in the program with 
hardware (implemented in reconfigurable fabric) 
descriptions. 
 

4. ISA BEHAVIOR AND MICROARCHITECTURE 
 
In the previous sections, we have highlighted how existing 
programs (to be executed on general-purpose processors) 
can be transformed and then executed on a reconfigurable 
computing platform. We have argued that in order to 
achieve this, a new programming paradigm is needed.  
Consequently, we have shown a methodology to manually 
or (semi)-automatically obtain the new program. In this 
section, we present the MOLEN architecture (Vassiliadis et 
al (6)) that is able to support the new paradigm. Without 

Figure 3. Program transformation methodology for reconfigurable computing. 



delving into too much detail1, we highlight two 
important instructions (out of a possible 8) in this 
presentation, namely the set and execute instructions. 
The set instruction initializes the reconfiguration 
process on the reconfigurable hardware while the 
execute instruction initializes the execution process on 
the reconfigurable hardware.  
 

 
Figure 4. The MOLEN architecture. 

 
In its most general form, the MOLEN machine 
organization, which is augmented with a reconfigurable 
hardware processor, is depicted in Figure 4. In this 
organization, instructions are fetched from the main 
memory and are temporarily stored in the ‘Instruction 
Fetch’ unit. Subsequently, these instructions are fetched 
by the ‘Arbiter’ which decodes them before issuing 
them to their corresponding execution units. Instructions 
that have been implemented in fixed hardware are 
issued to the ‘Core Processing Units’, i.e., the regular 
functional units such as ALUs, multipliers, and dividers. 
The set and execute instructions relate to the 
reconfigurable processor and are issued to it 
accordingly. More specifically in our case, they are 
issued to the reconfigurable microcode unit or ‘ρµ-code 
unit’. As explained later, it provides fixed and pageable 
storage for reconfiguration and execution microcode 
that control the reconfiguration and execution processes 
on the ‘Custom Configured Unit’ (CCU), respectively. 
The loading of microcode to the ‘ρµ-code unit’ is 
performed via the ‘Arbiter’, which accesses the main 
memory through the ‘Data Fetch/Store’-unit. 
Similar to other load/store architectures, the proposed 
machine organization executes on data that is stored in 
the register file and prohibits direct memory data 
accesses by hardware units other than the load/store 
unit(s). However, there is one exception to this rule, the 
custom configurable unit (CCU) is also allowed direct 
memory data access via the ‘Data Fetch/Store’ unit 

(represented by a dashed two-ended arrow). This enables the 
CCU to perform much better when streaming data accesses 
are required, e.g., in multimedia processing. Finally, we 
introduce the exchange registers (XREGS) which are 
utilized to accommodate the mentioned input and output 
interface that is needed to communicate arguments and 
results between the implemented function(s) and the 
remainder of the application code. When only a small 
amount of data needs to be communicated, the register file 
suffices. However, by architecturally including the exchange 
registers, a more general communication framework is 
provided in order to communicate an arbitrary number of 
arguments and results.  
As mentioned earlier, the set and execute instructions 
initialize the reconfiguration and execution processes on the 
CCU. It must be clear that such processes are complex in 
nature. Therefore, they must be emulated and thus 
microcoded (Vassiliadis et al (7)). 
 

 
Figure 5. Microcode invocation. 

 
Furthermore, it is impractical to specify these two 
instructions for each and every operation that needs to be 
implemented on the CCU. Therefore, these instructions 
point to the needed microcode that is stored in either the 
main memory or in an on-chip storage facility. This is 
illustrated in Figure 5. The architectural descriptions of both 
instructions are depicted in Figure 6. It should be noted that 
in Figure 5, there is a dashed arrow in the final application 
code expressing the fact that set and execute instructions can 
be moved with the appropriate compile interface so that 
reconfiguration can be overlapped with the execution of the 
general-purpose code. 

                                                  
1 A complete description of the instructions and their 
sequence control can be found in Vassiliadis et al (5). Figure 6. Architectural support. 



In Figure 6, the opcode specifies the instruction. The 
ensuing bit determines whether the microcode is located 
in the main memory or inside an on-chip storage. 
Depending on this bit, the interpretation of the 
remaining bit is either a main memory address (α) or a 
ρControl Store address (ρCS-α). It should be noted that 
for a single program (assuming 32-bit instructions)    
232-(OPC+1)  reconfigurable operations can be supported 
providing the programmer with an almost arbitrary 
emulation capability. The ρControl Store is a specific 
storage facility within the ρµ-code unit. Also depicted 
in Figure 6 is an example of such microcode stored in 
the main memory at address α. It must be noted that in 
order to delimit the boundaries of such microcode, an 
end_op microinstruction is utilized to denote the end of 
microprograms.  
The on-chip storage of microcode inside the ρµ-code 
unit can be subdivided into two types of storage, namely 
fixed and pageable (depicted in Figure 7). The fixed 
storage is intended to store frequently used microcode in 
order to substantially diminish the loading time of such 
microcode. Finally, the pageable storage provides 
temporary storage for less frequently used microcode 
that is located in the main memory. Like regular caches, 
its purpose is to diminish the loading time of such 
microcode. It must be noted that the pageable storage is 
different from regular caches. 
 

 
Figure 7. Fixed versus pageable microcode storage. 

 

5. COMPILER AND EVALUATION 
 
In this section, we present in detail the compiler 
mechanisms and extensions required to implement the 
Molen programming paradigm. The compiler needs 
information regarding I/O parameter passing to the 
reconfigured operations, the addresses indicating where 
the microcode resides and dependencies in terms of area 
or data between multiple reconfigured operations.  We 
assume for simplicity in the rest of the paper that this 
information is provided in the form of a hardware 
description file (HDF). The current compiler system 
builds on the Stanford SUIF2 (Stanford University 

Intermediate Format) Compiler Infrastructure for the front-
end, while the back-end is built over the framework offered 
by the Harvard Machine SUIF. The last component has been 
designed with retargetability in mind. It provides a set of 
back-ends for general-purpose processors, powerful 
optimizations, transformations and analysis passes. These 
are essential features for a compiler targeting a 
reconfigurable computing platform. We have currently 
implemented the proposed extensions for the x86 processor 
and are working on a PowerPC version to be used on the 
Xilinx Virtex II pro. Some specifics of the compiler regards 
it dealing with the exchange register and set-execute and are 
described in the following. 
The Exchange Registers As explained above, exchange 
registers (XREGs) are used to pass parameters to the 
reconfigurable hardware and returning the computed values 
after the operation execution.  These registers guarantee 
independence between the reconfigurable processor and the 
GPP as they receive their data directly from the general-
purpose registers (GPRs). To this purpose, movetx and 
movefx instructions have to be provided to respectively put 
data from the GPR to these XREGs and from the XREG to 
the GPR.  For each implemented function, the HDF 
specifies what exchange register is associated with what 
function. This register will then contain the register number 
where the compiler will put the parameters and where the 
result to be returned by the compiler can be found.  All 
parameters of an operation will then be allocated by the 
compiler in consecutive XREGs forming a block of XREGs. 
SET-EXECUTE Configuring the reconfigurable hardware, 
i.e., the CCU, is extremely expensive in terms of cycles and 
therefore the compiler needs to hide this latency by starting 
it as soon as possible in the execution flow. The 
reconfiguration microcode, residing in a location specified 
in the HDF, will be called by the appropriate set instruction. 
During the execution phase, the defined microcode is 
responsible for taking the parameters of its associated 
operation from XREGs and returning the result(s). A single 
execute instruction does not pose any specific challenge, 
because the whole set of exchange registers is available. 
However, when executing multiple execute instructions in 
parallel, a number of issues need to be resolved first.  Only 
functions without data dependency and no area overlap can 
be executed in parallel.  The former can be (partially) 
resolved by applying dependency analysis, but area overlap 
is information, which again needs to be stored in the HDF. 
An example of the code generated by the extended compiler 
for the Molen programming paradigm is presented in Figure 
8. In the left part, the original C program is given. The 
function implemented in reconfigurable hardware is 
annotated with a pragma directive named call_fpga. It has 
incorporated the operation name, op1 as specified in the 
HDF. In the middle part of the picture,the code generated by 
the original compiler for the C program is depicted. The 
pragma annotation is ignored and a normal function call is 
included. The right part of the picture presents the code 
generated by the compiler extended for the Molen 



programming paradigm; the function call is replaced 
with the appropriate instructions for sending parameters 
to the reconfigurable hardware in XREGs, hardware 
reconfiguration, preparing the fix XREG for the 
microcode of the execute instruction, execution of the 
operation and the transfer of the result back to the GPP. 
The presented code is at medium intermediate 
represenation level and the register allocation pass has 
not been applied. 
 

 
Figure 8. Code example. 

 
In Figure 9, we present some experimental results based 
on running the mpeg2enc benchmark on a modified 
MIPS-based simulator by including support of the 
Molen architecture. In addition, we have shown the 
implementability of the targeted operations (DCT and 
SAD) and normalized their execution cycles to that of 
the general-purpose processor. 
 

 
Figure 9. Experimental results. 

In this figure, we can observe that the number of 
executed instructions and branches are greatly reduced 
(to about one third of the original). Furthermore, by 
better exploiting the memory bandwidth and temporary 
storage of intermediate results in the reconfigurable 
hardware, the number of loads can also be greatly 
reduced.  

6. CONCLUSIONS 
 
In this paper, we presented a unified approach for 
reconfigurable computing mixed with general-purpose 

computing. We described a programming paradigm, an 
architectural instruction set insensitive extension to support 
the programming paradigm, a generic microarchitecture 
based on emulation, and a compilation methodology to 
support the proposed polymorphic processing scheme. 
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