
Polymorphic Processors: How to Expose Arbitrary Hardware
Functionality to Programmers

S. Vassiliadis, S. Wong, G. Gaydadjiev, and K. Bertels
Computer Engineering Laboratory,
Delft University of Technology,
The Netherlands.
http://ce.et.tudelft.nl

Abstract – In this paper, we describe a way to extend
the flexibility of hardware and provide the
programmer with an arbitrary number of processing
units to use. To achieve our goals, we present a new
programming paradigm, a new instruction set
architecture, a microcode-based microarchitecture,
and a compiler methodology. The programming
paradigm, in contrast with the conventional
programming paradigm, mixes general-purpose
conventional code with hardware descriptions and
allows ultra complex instructions. The instruction set
is designed such that it requires only a one-time
extension for every family of computers. It requires
only 8 instructions that are capable of invoking
emulation. Emulation is combined with the micro-
architecture to allow high-speed reconfiguration and
execution. Finally, it is indicated that a compiler can
be built to automatically transform a program to
conform with the described polymorphic processing
paradigm.

1. INTRODUCTION

In processor design, two extremes exist in terms of
flexibility and performance. In one extreme lie the
application-specific integrated circuits that, at the
expense of flexibility, achieve the highest possible
performance. In the other extreme there are the general-
purpose processors that are designed to operate in a
wide range of opcodes, i.e., providing high flexibility.
This however limits their performance since they are
designed to perform reasonably well for a wide range of
operations. In this paper, we discuss another approach in
processor design that is quickly gathering support and
acceptance, namely reconfigurable computing. Further,
we describe our view on how such a paradigm can be
incorporated into the general-purpose computing. In
reconfigurable computing as viewed in this paper, a
general-purpose processor core is augmented with
reconfigurable hardware. The general-purpose processor
is intended to perform non-time-critical functions while
time-critical functions are implemented on the
reconfigurable hardware. An example approach is

depicted in the right-most block of Figure 1. Traditionally,
computer programs were executed on a general-purpose
processor (depicted by ‘program P’ and the upper long
arrow in Figure 1) operating on data stored in memory. This
scenario has the following advantages:
• Op-code space insensitivity: an arbitrary number of

programs can be run without changing the interface,
i.e., the instruction-set architecture (ISA), between
programmers and designers;

• Parallel execution support: performance-related ISA
support can be present enabling parallel/concurrent
execution of programs;

• Modularity: the same program can be executed on an
arbitrary number of computers without changes.

Figure 1. Reconfigurable hardware combined with
general-purpose processing.

In the reconfigurable computing scenario, compute-
intensive operations are implemented on the reconfigurable
hardware providing the following advantages:
• inherent parallelism within the operations can be

exploited and therefore the performance of the
implemented operations is greatly increased;

• temporary storage of (large amounts of) data can be
kept in the same reconfigurable hardware and thereby
greatly reducing data access latencies.

The main benefit of utilizing reconfigurable hardware is that
other (future) operations can be implemented on the
reconfigurable hardware without requiring a re-design.
However, each implementation on the reconfigurable
hardware must be initialized and controlled by the general-
purpose processor core. This can be solved by introducing
new instructions to the instruction-set architecture of the
general-purpose processor core for each supported and
future reconfigurable hardware implementations. However,
this approach leads to at least on of the following issues that
are resolved in general-purpose paradigms:

• opcode space sensitive: in a number of
reconfigurable schemes (Gokhale and Stone(1),
Hauck et al(2), La Rosa(3)), anytime operations are
to be executed in reconfigurable hardware, a new
instruction for the operation in question has to be
added. This restricts the operation to be executed in
reconfigurable hardware and it restricts the program
that can benefit from the reconfigurable hardware.

• no parallel execution support: in most approaches
(Sima et al (4)), there is no support for parallel
issuing of reconfigurable operations.

• no modularity: given that the reconfigurable
operation are specific instruction set dependent,
there are currently no generic methodology and
tools that will allow to run the same program on
multiple hardware reconfigurable platforms.
Further, the compiler for a single application has to
be extended on the “fly” assuming the hardware is
properly set to accommodate the addition of new
reconfigurable instructions.

In this paper, we describe the virtual polymorphic
processing approach which addresses reconfigurable
issues in a unified manner. To provide the programmer
with almost arbitrary hardware functionality, we present
a programming paradigm, a processor architecture, a
microarchitecture, and a compilation methodology.
Furthermore, our approach largely maintains the
advantages associated with general-purpose processors,
namely op-code space insensitivity, parallel execution
support, and modularity. This presentation is organized
as follows. Section 2 introduces the research questions
that facilitate our discussion. Section 3 discusses how
existing program can be modified to support
reconfigurable computing. Section 4 describes the
Molen architecture that requires at most 8 new
instructions to support any functionality on the
reconfigurable hardware. Furthermore, reconfigurable
microcode is introduced that controls both the
reconfiguration and execution processes on the
reconfigurable hardware. Section 5 discusses the
compiling techniques needed to support our new
programming paradigm and new processor architecture.
In addition, we briefly present some experimental
results showing the benefits of our approach. Section 6
concludes this paper with some remarks.

2. RESEARCH QUESTIONS

In reconfigurable computing, the following scenario can
be considered to be the general case. First (see Figure
1), the original program P must be transformed into
program P’ that incorporates support, i.e., containing
instructions, to control the reconfigurable hardware.
Secondly, program P’ is executed on both the general-
purpose processor (GPP) core and the reconfigurable

hardware. As discussed in the previous section, several
issues are associated with a straightforward approach in
augmenting reconfigurable hardware to a general-purpose
processor core. The result is that huge efforts must be made
when adding support for future operations on the
reconfigurable hardware. Therefore, a new approach must
be investigated and established that overcomes all these
issues. In order to facilitate the comprehension of the
material presented here, we first clearly state the research
questions we address. The first research question is:
1. How can I change an existing program (without re-
developing it) so that I can speed it up on the reconfigurable
hardware?
The answer lies in proposing a new programming paradigm.
The programming paradigm must require minimal changes
when transforming the original program P to program P’
(see Figure 1), in which certain operations are implemented
on the reconfigurable hardware. The second research
question is:
2. How can I provide flexibility without requiring a new ISA
to be developed?
The answer lies in defining a one-time instruction-set
insensitive extension to existing processor architectures that
is able to control the reconfigurable hardware in terms of
reconfiguring it to future implementations and controlling
those implementations. The third research question is:
 3. How can I implement “arbitrary” program specified
operations/functionalities?
The answer lies in the proposal of a microarchitecture that is
able to implement the one-time instruction-set extension
discussed in research question 2 and that operate with
emulation. Finally, the fourth research question is:
4. How can I automatically target the “transformed”
program to run on the reconfigurable computing platform?
The answer lies in proposing compilation techniques that
incorporate the new programming paradigm, target the new
instruction-set extension, and is aware of the micro-
architecture.

3. CANDIDATES FOR RECONFIGURATION

In this section, we present the general concept of
transforming an existing program to one that can be
executed on a reconfigurable computing platform.
Consecutively, we investigate in more detail the
methodology involved in this transformation that introduces
“ultra complex” instructions.

Figure 2. Program transformation example.

The conceptual view of how program P (intended to
execute only on the general-purpose processor core) is
transformed into program P’ (executing on both the
GPP core and the reconfigurable hardware) is depicted
in Figure 2. The purpose is to obtain a functionally
equivalent program P’ from program P which (using
specialized instructions) can initiate both the
configuration processes of and execution processes on
the reconfigurable hardware. The steps involved in this
transformation are the following:
1. identify code “α” in program P to be mapped in

reconfigurable hardware.
2. eliminate the identified code and add code to have

an “equivalent” code (A) assuming that A “calls”
the hardware with functionality “α”.

3. show hardware feasibility of “α” in a current
technology (e.g., field-programmable gate array
(FPGA)) and map “α” into reconfigurable
hardware.

4. execute program P’ with original code plus code
having functionality A (equivalent to functionality
“α”) on the reconfigurable processor.

The mentioned steps illustrate the new programming
paradigm in which both software and hardware
descriptions are present in the same program. It should
also be noted that because the only constraint on “α” is
implementability, it is also implied that the
microarchitecture has to support emulation. This implies
the utilization of microcode. We have termed this as
reconfigurable microcode (ρ-µcode) as it is different
from that traditional microcode. The difference is that
such microcode does not execute on fixed hardware
facilities. It operates on facilities that itself “designs” to
operate upon.
The methodology in obtaining a program for the
reconfigurable computing platform is depicted in Figure

3. First, the code to be run on the reconfigurable hardware
must be determined. This is achieved by high-level to high-
level instrumentation and benchmarking. This results in
several candidate pieces of code. Second, we must
determine which piece of code is suitable for
implementation on the reconfigurable hardware. The
suitability is solely determined by whether the piece of code
is “hardware implementable”. This can be determined
manually or automatically (Cardoso and Neto (8)). The end
result will be a new program that comprises the following
elements:
• Repair code is inserted in order to communicate

parameters and results to/from the reconfigurable
hardware from/to the general-purpose processor core.

• “VHDL”-code and emulation code are inserted to
configure the reconfigurable hardware to perform the
functionality that is initialized by the “execute code”.

Instead of inserting explicit code into the new program, each
piece of code can be initialized by special “ultra complex”
instructions. It should be noted that in the programming
paradigm, software code co-exists in the program with
hardware (implemented in reconfigurable fabric)
descriptions.

4. ISA BEHAVIOR AND MICROARCHITECTURE

In the previous sections, we have highlighted how existing
programs (to be executed on general-purpose processors)
can be transformed and then executed on a reconfigurable
computing platform. We have argued that in order to
achieve this, a new programming paradigm is needed.
Consequently, we have shown a methodology to manually
or (semi)-automatically obtain the new program. In this
section, we present the MOLEN architecture (Vassiliadis et
al (6)) that is able to support the new paradigm. Without

Figure 3. Program transformation methodology for reconfigurable computing.

delving into too much detail1, we highlight two
important instructions (out of a possible 8) in this
presentation, namely the set and execute instructions.
The set instruction initializes the reconfiguration
process on the reconfigurable hardware while the
execute instruction initializes the execution process on
the reconfigurable hardware.

Figure 4. The MOLEN architecture.

In its most general form, the MOLEN machine
organization, which is augmented with a reconfigurable
hardware processor, is depicted in Figure 4. In this
organization, instructions are fetched from the main
memory and are temporarily stored in the ‘Instruction
Fetch’ unit. Subsequently, these instructions are fetched
by the ‘Arbiter’ which decodes them before issuing
them to their corresponding execution units. Instructions
that have been implemented in fixed hardware are
issued to the ‘Core Processing Units’, i.e., the regular
functional units such as ALUs, multipliers, and dividers.
The set and execute instructions relate to the
reconfigurable processor and are issued to it
accordingly. More specifically in our case, they are
issued to the reconfigurable microcode unit or ‘ρµ-code
unit’. As explained later, it provides fixed and pageable
storage for reconfiguration and execution microcode
that control the reconfiguration and execution processes
on the ‘Custom Configured Unit’ (CCU), respectively.
The loading of microcode to the ‘ρµ-code unit’ is
performed via the ‘Arbiter’, which accesses the main
memory through the ‘Data Fetch/Store’-unit.
Similar to other load/store architectures, the proposed
machine organization executes on data that is stored in
the register file and prohibits direct memory data
accesses by hardware units other than the load/store
unit(s). However, there is one exception to this rule, the
custom configurable unit (CCU) is also allowed direct
memory data access via the ‘Data Fetch/Store’ unit

(represented by a dashed two-ended arrow). This enables the
CCU to perform much better when streaming data accesses
are required, e.g., in multimedia processing. Finally, we
introduce the exchange registers (XREGS) which are
utilized to accommodate the mentioned input and output
interface that is needed to communicate arguments and
results between the implemented function(s) and the
remainder of the application code. When only a small
amount of data needs to be communicated, the register file
suffices. However, by architecturally including the exchange
registers, a more general communication framework is
provided in order to communicate an arbitrary number of
arguments and results.
As mentioned earlier, the set and execute instructions
initialize the reconfiguration and execution processes on the
CCU. It must be clear that such processes are complex in
nature. Therefore, they must be emulated and thus
microcoded (Vassiliadis et al (7)).

Figure 5. Microcode invocation.

Furthermore, it is impractical to specify these two
instructions for each and every operation that needs to be
implemented on the CCU. Therefore, these instructions
point to the needed microcode that is stored in either the
main memory or in an on-chip storage facility. This is
illustrated in Figure 5. The architectural descriptions of both
instructions are depicted in Figure 6. It should be noted that
in Figure 5, there is a dashed arrow in the final application
code expressing the fact that set and execute instructions can
be moved with the appropriate compile interface so that
reconfiguration can be overlapped with the execution of the
general-purpose code.

1 A complete description of the instructions and their
sequence control can be found in Vassiliadis et al (5). Figure 6. Architectural support.

In Figure 6, the opcode specifies the instruction. The
ensuing bit determines whether the microcode is located
in the main memory or inside an on-chip storage.
Depending on this bit, the interpretation of the
remaining bit is either a main memory address (α) or a
ρControl Store address (ρCS-α). It should be noted that
for a single program (assuming 32-bit instructions)
232-(OPC+1) reconfigurable operations can be supported
providing the programmer with an almost arbitrary
emulation capability. The ρControl Store is a specific
storage facility within the ρµ-code unit. Also depicted
in Figure 6 is an example of such microcode stored in
the main memory at address α. It must be noted that in
order to delimit the boundaries of such microcode, an
end_op microinstruction is utilized to denote the end of
microprograms.
The on-chip storage of microcode inside the ρµ-code
unit can be subdivided into two types of storage, namely
fixed and pageable (depicted in Figure 7). The fixed
storage is intended to store frequently used microcode in
order to substantially diminish the loading time of such
microcode. Finally, the pageable storage provides
temporary storage for less frequently used microcode
that is located in the main memory. Like regular caches,
its purpose is to diminish the loading time of such
microcode. It must be noted that the pageable storage is
different from regular caches.

Figure 7. Fixed versus pageable microcode storage.

5. COMPILER AND EVALUATION

In this section, we present in detail the compiler
mechanisms and extensions required to implement the
Molen programming paradigm. The compiler needs
information regarding I/O parameter passing to the
reconfigured operations, the addresses indicating where
the microcode resides and dependencies in terms of area
or data between multiple reconfigured operations. We
assume for simplicity in the rest of the paper that this
information is provided in the form of a hardware
description file (HDF). The current compiler system
builds on the Stanford SUIF2 (Stanford University

Intermediate Format) Compiler Infrastructure for the front-
end, while the back-end is built over the framework offered
by the Harvard Machine SUIF. The last component has been
designed with retargetability in mind. It provides a set of
back-ends for general-purpose processors, powerful
optimizations, transformations and analysis passes. These
are essential features for a compiler targeting a
reconfigurable computing platform. We have currently
implemented the proposed extensions for the x86 processor
and are working on a PowerPC version to be used on the
Xilinx Virtex II pro. Some specifics of the compiler regards
it dealing with the exchange register and set-execute and are
described in the following.
The Exchange Registers As explained above, exchange
registers (XREGs) are used to pass parameters to the
reconfigurable hardware and returning the computed values
after the operation execution. These registers guarantee
independence between the reconfigurable processor and the
GPP as they receive their data directly from the general-
purpose registers (GPRs). To this purpose, movetx and
movefx instructions have to be provided to respectively put
data from the GPR to these XREGs and from the XREG to
the GPR. For each implemented function, the HDF
specifies what exchange register is associated with what
function. This register will then contain the register number
where the compiler will put the parameters and where the
result to be returned by the compiler can be found. All
parameters of an operation will then be allocated by the
compiler in consecutive XREGs forming a block of XREGs.
SET-EXECUTE Configuring the reconfigurable hardware,
i.e., the CCU, is extremely expensive in terms of cycles and
therefore the compiler needs to hide this latency by starting
it as soon as possible in the execution flow. The
reconfiguration microcode, residing in a location specified
in the HDF, will be called by the appropriate set instruction.
During the execution phase, the defined microcode is
responsible for taking the parameters of its associated
operation from XREGs and returning the result(s). A single
execute instruction does not pose any specific challenge,
because the whole set of exchange registers is available.
However, when executing multiple execute instructions in
parallel, a number of issues need to be resolved first. Only
functions without data dependency and no area overlap can
be executed in parallel. The former can be (partially)
resolved by applying dependency analysis, but area overlap
is information, which again needs to be stored in the HDF.
An example of the code generated by the extended compiler
for the Molen programming paradigm is presented in Figure
8. In the left part, the original C program is given. The
function implemented in reconfigurable hardware is
annotated with a pragma directive named call_fpga. It has
incorporated the operation name, op1 as specified in the
HDF. In the middle part of the picture,the code generated by
the original compiler for the C program is depicted. The
pragma annotation is ignored and a normal function call is
included. The right part of the picture presents the code
generated by the compiler extended for the Molen

programming paradigm; the function call is replaced
with the appropriate instructions for sending parameters
to the reconfigurable hardware in XREGs, hardware
reconfiguration, preparing the fix XREG for the
microcode of the execute instruction, execution of the
operation and the transfer of the result back to the GPP.
The presented code is at medium intermediate
represenation level and the register allocation pass has
not been applied.

Figure 8. Code example.

In Figure 9, we present some experimental results based
on running the mpeg2enc benchmark on a modified
MIPS-based simulator by including support of the
Molen architecture. In addition, we have shown the
implementability of the targeted operations (DCT and
SAD) and normalized their execution cycles to that of
the general-purpose processor.

Figure 9. Experimental results.

In this figure, we can observe that the number of
executed instructions and branches are greatly reduced
(to about one third of the original). Furthermore, by
better exploiting the memory bandwidth and temporary
storage of intermediate results in the reconfigurable
hardware, the number of loads can also be greatly
reduced.

6. CONCLUSIONS

In this paper, we presented a unified approach for
reconfigurable computing mixed with general-purpose

computing. We described a programming paradigm, an
architectural instruction set insensitive extension to support
the programming paradigm, a generic microarchitecture
based on emulation, and a compilation methodology to
support the proposed polymorphic processing scheme.

REFERENCES

1. M.B. Gokhale and J.M. Stone , 1998, “Napa C:

Compiling for a Hybrid RISC/FPGA Architecture”,
Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, pp. 126-137.

2. S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao,

1997, "The Chimaera Reconfigurable Functional Unit",
Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, pp.87-96.

3. A. La Rosa, L. Lavagno, and C. Passerone, 2003,

“Hardware/Software Design Space Exploration for a
Reconfigurable Processor”, Proc. of the DATE 2003,
00. 570-575.

4. M. Sima, S. Vassiliadis, S.D. Cotofana, J.T. van

Eijndhoven, and K. Vissers, “Field-Programmable
Custom Computing Machines – A Taxonomy”, 12th Int.
Conf. on Field Programmable Logic and Applications
(FPL2002), pp. 79-88.

5. S. Vassiliadis, G.N. Gaydadjiev, K. Bertels, and E.

Moscu Panainte, 2003, “The Molen Programming
Paradigm”, Proc. of the 3rd Int. Conf.Workshop on
Systems, Architectures, Modeling, and Simulation, pp.
1-7.

6. S. Vassiliadis, S. Wong, and S.D. Cotofana, 2001, “The

Molen ρµ-coded Processor”, 11th Int. Conf. on Field-
Programmable Logic and Applications (FPL2001),
Springer-Verlag Lecture Notes in Computer Science
(LNCS), vol. 2147, pp. 275-285.

7. S. Vassiliadis, S. Wong, and S.D. Cotofana, 2003,

“Microcode Processing: Positioning and Directions”,
IEEE Micro, vol. 23, no. 4, pp. 21-30.

8. J.M.P. Cardoso and H.C. Neto, 2003, “Compilation for

FPGA-Based Reconfigurable Hardware”, IEEE Design
& Test of Computers, pp. 65-75.

Direct questions and comments about this paper to Stamatis
Vassiliadis, Computer Engineering Laboratory, Electrical
Engineering Department, Delft University of Technology,
Delft, The Netherlands; S.Vassiliadis@ewi.tudelft.nl.

	1. INTRODUCTION
	2. RESEARCH QUESTIONS
	3. CANDIDATES FOR RECONFIGURATION
	4. ISA BEHAVIOR AND MICROARCHITECTURE
	5. COMPILER AND EVALUATION
	
	The Exchange Registers As explained above, exchange registers (XREGs) are used to pass parameters to the reconfigurable hardware and returning the computed values after the operation execution. These registers guarantee independence between the reconf
	SET-EXECUTE Configuring the reconfigurable hardware, i.e., the CCU, is extremely expensive in terms of cycles and therefore the compiler needs to hide this latency by starting it as soon as possible in the execution flow. The reconfiguration microcode, r

	6. CONCLUSIONS

