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Abstract. Current media ISA extensions such as Sun’s VIS consist of
SIMD-like instructions that operate on short vector registers. In order to
exploit more parallelism in a superscalar processor provided with such in-
structions, the issue width has to be increased. In the Complex Streamed
Instruction (CSI) set exploiting more parallelism does not involve issu-
ing more instructions. In this paper we study how the performance of
superscalar processors extended with CSI or VIS scales with the amount
of parallel execution hardware. Results show that the performance of
the CSI-enhanced processor scales very well. For example, increasing the
datapath width of the CSI execution unit from 16 to 32 bytes improves
the kernel-level performance by a factor of 1.56 on average. The VIS-
enhanced machine is unable to utilize large amounts of parallel execution
hardware efficiently. Due to the huge number of instructions that need
to be executed, the decode-issue logic constitutes a bottleneck.

1 Introduction

In the last years multimedia applications started to play an important role in
the design of computing systems because they provide highly appealing and
valuable services to the consumers, such as video-conferencing, digital content
creation, speech recognition, virtual reality and many others. Applications like
JPEG image compression/decompression, MPEG video and MP3 players are
now common on most desktop systems. Multimedia applications impose high
requirements on the performance of computing systems because they need to
process huge amounts of data under stringent real-time constraints.

To meet these requirements, most processor vendors have extended their in-
struction set architectures (ISAs) with new instructions which allow key multi-
media algorithms to be implemented efficiently. Examples of such extensions are
Intel’s MMX and SSE [12,14], Motorola’s AltiVec [4] and Sun’s Visual Instruc-
tion Set (VIS) [15]. All of them are, essentially, load-store vector architectures
with short vector registers. These vector registers (also referred as multimedia
registers) are usually 64 bits wide and contain vectors consisting either of eight
8-bit, four 16-bit, or two 32-bit elements. Multimedia instructions exploit SIMD
parallelism by concurrently operating on all vector elements. More recent exten-
sions (SSE, AltiVec) increase the register size to 128 bits allowing to process up
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to 16 8-bit values in parallel. Multimedia extensions have proven to provide sig-
nificant performance benefits [13] by exploiting the data-level parallelism present
in multimedia codes. However, these extensions have several features which are
likely to hinder further performance improvements.

First, the fixed size of the multimedia registers limits the amount of paral-
lelism that can be exploited by a single instruction to at most 8 (VIS, MMX) or
16 (SSE, AltiVec) parallel operations, while more parallelism is present in multi-
media applications. In many important multimedia kernels, the same operation
has to be performed on data streams containing tens to hundreds of elements.
If existing ISA extensions are employed, such long data streams have to be split
into sections which fit in the multimedia registers to process one section at a
time. This results in a high number of instructions that need to be executed.
Second, implementations of multimedia kernels with short-vector SIMD exten-
sions require a significant amount of overhead for converting between different
packed data types and for data alignment, increasing the instruction count even
further. According to [13], for VIS up to 41% of the total instruction count
constitutes overhead.

With the number of instructions being fixed, more instructions have to be
fetched, decoded and executed in each cycle in order to increase performance.
It is generally accepted, however, that increasing the issue width requires a
substantial amount of hardware [5] and negatively affects the cycle time [11]. One
way to achieve higher performance without increasing the issue width is to reduce
the instruction traffic by increasing the size of the multimedia registers, but this
approach implies a change of the ISA and, therefore, requires recompilation
or even rewriting existing codes. Moreover, increasing the register size beyond
256 bits is not likely to bring much benefit, because many multimedia kernels
process small 2-dimensional sub-matrices and only a limited number of elements,
typically 8 or 16, are stored consecutively.

In order to overcome the limitations of short-vector SIMD extensions men-
tioned above, the Complex Streamed Instruction (CSI) set was proposed and has
proven to provide significant speedups [8]. A single CSI instruction can process
2-dimensional data streams of arbitrary length, performing sectioning, aligning
and conversion between different data formats internally in hardware.

In this paper we study how the performance of a superscalar processor en-
hanced with a short-vector SIMD extension (VIS) or with CSI scales with the
amount of parallel execution hardware. This study is motivated by current trends
in microprocessor technology, which exhibits growing levels of integration and
transistor budgets. For example, in a contemporary 0.15-micron CMOS tech-
nology, a 32-bit adder requires less than 0.05 mm2 of chip area [9], allowing
designers to put dozens of such units on a single chip. The challenge is to feed
these units with instructions and data. We explore the design space by varying
key parameters of the processor, such as the issue width and instruction window
size, in order to identify the performance bottlenecks.

This paper is organized as follows. In Section 2 we give a brief description of
the CSI architecture and some related proposals. Section 3 describes the simu-



Performance Scalability of Multimedia Instruction Set Extensions 851

lated benchmarks, the modeled processors and presents the experimental results.
Conclusions and areas of future research are presented in Section 4.

2 Background

2.1 The CSI Architecture

In this section we briefly sketch the CSI multimedia ISA extension. Further
details on the CSI architecture and a possible implementation can be found
in [8]. CSI is a memory-to-memory architecture for two-dimensional streams.
Usually, a CSI instruction fetches two input streams from memory, performs
simple arithmetic operations on corresponding elements, and stores the resulting
output stream back to memory. The streams follow a matrix access pattern, with
a fixed horizontal stride (distance between consecutive elements of the same row)
and a fixed vertical stride (distance between rows). The stream length is not
architecturally fixed. The programmer visible state of CSI consists of several
sets of stream control registers (SCR-sets). Each SCR-set consists of a several
registers that hold the base address, the horizontal and vertical strides, the
number of elements, etc., and completely specifies one stream.

The key advantages of the CSI architecture can be summarized as follows:

– High parallelism
CSI increases the amount of parallelism that can be exploited by a single
instruction. This is achieved by having no restriction on the stream length
and by supporting 2-dimensional streams.

– Reduced conversion overhead
CSI eliminates the overhead instructions required for converting between
different packed data types by performing it internally in hardware and by
overlapping it with useful computations.

– Decoupling of data access and execution
Because the data streams in CSI are fully described by the SCR-sets, address
generation, data access and execution can be decoupled. The CSI execution
unit can generate addresses and send them to the memory hierarchy well
before the data is used, thereby reducing the number of stalls due to late
data arrival.

– Compatibility
The same CSI code can be run without recompilation on a new implementa-
tion with a wider SIMD datapath and fully utilize it. This is possible because
the number of elements that are actually processed in parallel is not part of
the architecture.

2.2 Related Work

CSI instructions process two-dimensional data streams of arbitrary length stored
in memory. Several early vector architectures such as the TI ASC and the Star-
100 [6] were memory-to-memory as well. These architectures, however, suffered
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from a long startup time, which was mainly caused by execution of the overhead
instructions needed for setting up the vector parameters and by long memory
latency. The CSI implementation described in [8] does not suffer from these
limitations for the following reasons. First, since CSI is implemented next to
a fast superscalar core, the overhead instructions needed to set up the stream
control registers take very little time. Second, the stream data is accessed through
the L1 data cache. Because the L1 access time is short and the hit rates of the
considered benchmarks are high, the time between the request for stream data
and its arrival is short.

A related proposal that also exploits the 2-dimensional data-level parallelism
available in multimedia applications is the Matrix Oriented Multimedia (MOM)
ISA extension [2]. MOM instructions can be seen as vector versions of current
SIMD media extensions. Two key features distinguish MOM from CSI. First,
MOM is a register-to-register architecture (which implies sectioning when the
streams do not fit into the MOM registers). Second, MOM requires overhead
instructions for explicit data conversion.

Another related proposal is the Imagine processor [9], which has a load/store
architecture for one-dimensional streams of data records. The SIMD processing
hardware of Imagine consists of 8 arithmetic clusters. Each cluster is a VLIW
engine with 6 functional units. Data records are distributed one per cluster
and are processed in a SIMD fashion by executing the same sequence of VLIW
instructions at each cluster. Contrary to CSI, which is an ISA extension and
implemented in a CPU, Imagine is a stand-alone multimedia coprocessor.

3 Experimental Evaluation

The main goal of the experiments is to evaluate how the performance of a super-
scalar processor extended with VIS or CSI scales with the amount of SIMD ex-
ecution hardware and to identify the performance bottlenecks. The benchmark
set consists of MPEG-2 and JPEG codecs (mpeg2encode, mpeg2decode, cjpeg,
djpeg) from the Mediabench suite [10] and of several image processing kernels
(add8, scale8, blend8, convolve3x3 ) taken from the VIS Software Development
Kit (VSDK) [16].

3.1 Tools and Simulation Methodology

In order to evaluate the performance of the VIS-enhanced and CSI-enhanced
processors, we modified the sim-outorder simulator of the SimpleScalar toolset
(version 3.0) [1]. This is a cycle-accurate execution-driven simulator of an out-of-
order superscalar processor with a 5-stage pipeline based on the Register Update
Unit (RUU). A corrected version of the SimpleScalar memory model based on
the SDRAM specifications given in [3] was used.

VIS- and CSI-executables of each Mediabench benchmark were obtained by
manually rewriting the most time-consuming kernels in assembly. These are the
idct and Add Block routines in mpeg2decode, dist1 in mpeg2encode, idct and
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ycc rgb convert in djpeg, and rgb ycc convert and h2v2 downsample in cjpeg. VIS-
and CSI-executables of the VSDK kernels were obtained by completely rewriting
them in assembly. Whenever available, we used the vendor-provided assembly
codes for VIS.

We remark that out-of-order execution of CSI instructions is not allowed.
Out-of-order execution of a CSI instruction with a potentially conflicting memory
reference is also not allowed.

3.2 Modeled Processors

A wide range of superscalar processors was simulated by varying the issue width
from 4 to 16 instructions per cycle and the instruction window size (i.e, the
number of entries in the RUU unit) from 32 to 512. Table 1 summarizes the basic
parameters of the processors and lists the functional unit latencies. Processors
were made capable of processing VIS or CSI instructions by adding the VIS
functional units or the CSI unit. The CSI unit is interfaced to L1 cache as
described in [8].

Each time the issue width is doubled, the number of integer and floating-point
units is scaled accordingly. The number of cache ports is fixed at 2, however,
because multi-ported caches are expensive and hard to design (for example,
currently there are no processors with a 4-ported cache). Note, that the CSI-
enhanced processors do not require more ports to cache then the VIS-enhanced
ones. The CSI-enhanced processors use two cache ports, sharing loads and stores
generated by the CSI unit between them. The VIS- and the CSI-enhanced CPUs

Table 1. Processor parameters.

Clock frequency 666 MHz
Issue width 4/8/16 FU latency/recovery (cycles)
Instruction window size 16-512 Integer ALU 1/1
Load-store queue size 8-128 Integer MUL
Branch Prediction multiply 3/1
Bimodal predictor size 2K divide 20/19
Branch target buffer size 2K Cache port 1/1
Return-address stack size 8 FP ALU 2/2

Functional unit type and number FP MUL
Integer ALU 4/8/16 FP multiply 4/1
Integer MULT 1/2/4 FP divide 12/12
Cache ports 2 sqrt 24/24
Floating-point ALU 4/8/16 VIS adder 1/1
Floating-point MULT 1/2/4 VIS multiplier
VIS adder 2/4/8 multiply and pdist 3/1
VIS multiplier 2/4/8 other 1/1
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Table 2. Memory parameters.

Instruction cache ideal
Data caches
L1 line size 32 bytes
L1 associativity direct-mapped
L1 size 32 KB
L1 hit time 1 cycle
L2 line size 128 bytes
L2 associativity 2-way
L2 size 128 KB
L2 replacement LRU
L2 hit time 6 cycles

Main memory
type SDRAM
row access time 2 bus cycles
row activate time 2 bus cycles
precharge time 2 bus cycles
bus frequency 166 MHz
bus width 64 bits

were simulated with different amounts of SIMD-processing hardware by varying
the number of the VIS functional units and the width of the CSI unit’s datapath,
respectively.

The parameters of the cache and memory subsystems are summarized in
Table 2. The memory latencies are expressed in memory clock cycles. A memory
cycle is 6 ns, corresponding to a clock frequency of 166 MHz, which is typical
for contemporary DRAM chips. The system bus (between the L2 cache and the
memory controller) is also clocked at 166 MHz as in current PCs [7]. The ratio
of CPU clock frequency to memory clock frequency was set to 4, corresponding
to a CPU clock rate of 666 MHz.

3.3 Experimental Results

In this section we study the impact of the RUU size on the performance of the
CSI- and VIS-enhanced processors. Then we analyze the performance behavior
of these processors with respect to the number of SIMD functional units. After
this, the performance bottleneck of the VIS-enhanced processors is identified.
Finally, we present the speedups attained by CSI relative to VIS.

Increasing the Window Size. First, we study the influence of the instruction
window (RUU) size on the performance. Because the RUU is a rather costly re-
source, it is important to minimize its size. The results (which are not presented
here due to space limitations) show that for the studied kernels increasing the
window size has a positive effect on the performance of a VIS-enhanced pro-
cessor but does not influence the performance of a CSI-enhanced one. This is
not surprising for the following reason. The kernels usually operate on long data
streams, performing the same operation independently on all stream elements.
In VIS, long data streams are split into sections which fit into VIS registers
and a separate instruction is generated for each section. The instructions are
independent which means that the VIS translates the parallelism present in the
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kernels into instruction-level parallelism (ILP). Larger instruction windows allow
a VIS-enhanced superscalar CPU to expose and utilize larger amounts of ILP.
On the other hand, in CSI the parallelism is exposed by a single CSI instruc-
tion which processes the whole stream. Therefore, a CSI-enhanced CPU does
not need large instruction windows in order to exploit it. These results mean
that the CSI-enhanced CPUs can be implemented with smaller (and cheaper)
instruction windows then the VIS-enhanced ones.

The simulation results also show that, for each issue width, increasing the
RUU size beyond a certain limit yields diminishing returns. The speedup of the
4-way VIS-enhanced processor saturates when the RUU consists of 64 entries,
the 8-way machine when the RUU size is 128, and the 16-way processor reaches
its peak performance when the RUU size is 256. Therefore, we select these in-
struction window sizes both for VIS- and CSI-enhanced processors for all the
experiments presented in the rest of the paper.

Increasing the Amount of Parallel Execution Hardware. The next ques-
tion we consider is: how does the performance of the superscalar processors
equipped with VIS or CSI scale with the amount of parallel execution hard-
ware? This issue is important because of current trends in microprocessor tech-
nology. Larger scales of integration and, hence, growing transistor budgets allow
to put dozens of functional units on a chip. The challenge for the designer is
to keep these units utilized. The amount of SIMD processing hardware is char-
acterized by the number of bytes which can be processed in parallel. For VIS
this is determined by the number of VIS adders and multipliers. For example, to
operate on 16 bytes in parallel, the machines are configured with 2 VIS adders
and 2 VIS multipliers. For CSI, the amount of parallelism is determined by the
width of the datapath of the CSI execution unit. So, in order to process 32 or
64 bytes in parallel the number of VIS units of the VIS-enhanced processor is
doubled or quadrupled, whereas for CSI, the width of its datapath is increased
appropriately.

As the baseline processors, we considered the 4-, 8-, and 16-way superscalar
CPUs with instruction windows of 64, 128, and 256 entries, respectively. Each
baseline processor was equipped with sufficient SIMD hardware so that it can
process 16, 32, or 64 bytes in parallel. Let a VIS-extended processor with an
issue width of x, a window size of y, and a SIMD processing width of z bytes
be denoted by V IS(x, y, z). A similar notation will be used for CSI-enhanced
CPUs. Figure 1(a) depicts the speedups attained by all simulated VIS-enhanced
processors relative to VIS (4, 64, 16). The speedups achieved by all simulated
CSI-enhanced CPUs relative to CSI (4, 64, 16) are plotted in Figure 1(b). All VIS
and CSI kernels exhibited similar behavior and, therefore, we only present the
performance figures of four selected kernels. Figure 1(a) shows that, for a fixed
issue width, increasing the number of the VIS functional units does not yield
any benefit. Contrary to VIS, CSI is able to utilize additional SIMD execution
hardware (see Figure 1(b)), and its performance scales almost linearly with the
amount of SIMD resources. It can also be observed that the performance of the
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Fig. 1. Scalability of the CSI and VIS performance w.r.t. available SIMD hardware.

CSI-extended processors is insensitive to the issue width. This is expected since
CSI does not exploit instruction-level parallelism and, therefore, does not need
to issue a lot of instructions in parallel.

Figure 2 presents the speedups attained by CSI-enhanced processors with
respect to VIS-extended processors equipped with the same amount of SIMD
execution hardware, i.e., the figure shows the speedups of CSI (x, y, z) over
VIS (x, y, z) for various values of x, y, and z. It shows that CSI clearly out-
performs VIS, especially for the 4-way and 8-way configurations. We remark
that these processors are less costly and can probably achieve a higher clock
frequency than a 16-way one.

CSI/VIS speedups for kernels
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Fig. 2. Speedup of CSI over VIS for several kernels.

Identifying the Bottleneck. It is important to identify where the perfor-
mance bottleneck of the VIS-enhanced machines lies. Figure 1(b) shows that the
VIS-enhanced machines perform better when the issue width is increased. This
suggests that the issue width is the limiting factor for VIS. To investigate this,
we study the IPCs attained by the VIS-enhanced CPUs. For each issue width,
Figure 3 depicts the attained IPCs normalized to the corresponding ideal IPCs
(e.g., for a 4-way machine, the ideal IPC is 4). It shows that, for most kernels,
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Fig. 4. Speedup of CSI over VIS on VSDK kernels and MPEG/JPEG codecs.

the performance achieved by the 4-way and 8-way superscalar VIS-enhanced
processors is close to ideal. These CPUs achieve IPCs which are within 78% to
90% of the ideal IPC for all kernels except idct. This means that they cannot
be accelerated by more than 11-28% (1/0.9− 1/0.78) and, therefore, even when
they achieve the ideal IPC their performance will not approach that of the cor-
responding CSI-enhanced CPUs. This shows that the issue width indeed limits
the performance of the VIS-enhanced CPUs. The IPCs attained by the 16-way
machine are far from the ideal and are within 55% to 70% of the ideal IPC, for
all kernels except idct, meaning that the accelerations of 42-81% are possible.
However, to achieve such increases in IPC a very accurate branch predictor is
needed.

In conclusion, Figure 4 depicts the VSDK kernel and application speedups
achieved by CSI over VIS. Of course, the speedups achieved by CSI on MPEG-
2/JPEG codecs are smaller than those achieved on VSDK kernels due to Am-
dahl’s law. Still rather impressive application-level speedups are achieved by CSI,
especially for smaller (and more realistic) issue widths of 4 and 8. For example,
when the issue width is 4 and 32 bytes can be processed in parallel, CSI achieves
speedups ranging from to 1.08 (cjpeg) to 1.54 (djpeg) with an average of 1.24.
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4 Conclusions

In this paper we have evaluated how the performance of the CSI and VIS mul-
timedia ISA extensions scales with the the amount of SIMD parallel execution
hardware. We have also performed experiments to identify the bottlenecks of the
VIS-enhanced superscalar CPUs. Out results can be summarized as follows:

– The kernel-level performance of CSI increases almost linearly with the width
of CSI datapath. It improves by a factor of 1.56 when the width of the CSI
datapath doubled and by an additional factor of 1.27 when the width is
quadrupled. Furthermore, the performance of the CSI-enhanced processor is
not sensitive to the issue width.

– The VIS-enhanced CPUs do not perform substantially better when the num-
ber of VIS functional units is increased. The issue width is the limiting factor
and the decode/issue logic, therefore, constitutes a bottleneck.

These results have the following implications for multimedia ISA and proces-
sor design. To increase the performance of a CPU extended with a short-vector
media ISA there are two main options. The first one is to reduce the pressure
on the decode-issue logic by increasing the size of the multimedia registers. The
second one is to increase the issue width of the CPU. Both of them bear huge
costs: software incompatibility for the first and expensive hardware for the sec-
ond. CSI offers a solution which provides scalable performance without having
to increase the issue width as well as software compatibility.

We plan to further investigate the CSI paradigm in several directions. For ex-
ample, since the interface of the CSI execution unit with the memory subsystem
is not fixed, a designer has freedom in its implementation. The CSI execution
unit can be interfaced to the L1 cache, L2 cache or even main memory. We plan
to evaluate such implementations.
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