System-Level Exploration of Association
Table Implementations in Telecom
Network Applications

CH. YKMAN-COUVREUR and J. LAMBRECHT
IMEC, Leuven

A. VAN DER TOGT

Technische Universiteit Delft

and

F. CATTHOOR and H. DE MAN

IMEC, Leuven and Katholieke University, Leuven

We present a new exploration and optimization method at the system level to select customized im-
plementations for dynamic data sets, as encountered in telecom network, database, and multimedia
applications. Our method fits in the context of embedded system synthesis for such applications,
and enables to further raise the abstraction level of the initial specification, where dynamic data
sets can be specified without low-level details. Our method is suited for hardware and software
implementations. In this paper, it mainly aims at minimizing the average memory power, although
it can also be driven by other cost functions such as memory size and performance. Compared with
existing methods, for large dynamic data sets, it can save up to 90% of the average memory power,
while still saving up to 80% of the average memory size.

Categories and Subject Descriptors: B.3.3 [Memory Structures]: Performance Analysis and
Design Aids

General Terms: Memory, Performance

Additional Key Words and Phrases: System-level exploration, memory management

1. INTRODUCTION

To cope with the increasing complexity, the drastic increase in communication
speed, and the shortened time-to-market of modern telecom network appli-
cations, new system synthesis approaches are needed. The challenge is now to
design systems efficiently, fast, and first-time right. To this end, the abstraction

This paper describes work undertaken in the context of the IST-1999-11419 Protocol Processor
Project, a 2.5 years research and development project. The IST program is partially funded by the
Commission of the European Union.

Authors’ addresses: Ch. Ykman-Couvreur, J. Lambrecht, F. Catthoor, and H. De Man, IMEC,
Kapeldreef 75, B3001 Leuven, Belgium; A. van der Togt, Technische Universiteit Delft, the
Netherlands.

Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 1539-9087/02/0011-0106 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002, Pages 106-140.

System-Level Exploration . 107

ASSOCIATION TABLE

Insert (key1, key2, dat
key1 | key2 At / nsert (key1, key2, data)

Je———— Remove (key1, key2)

™ Locate (key1, key2)

Push (data)

data
Pull

LIST

Fig. 1. Typical dynamic data sets.

Put (position, data)

Get (position, data)

level of the initial system specification must be raised, so that the designer is
not burdened unnecessarily by low-level details in the final design. Also in view
of embedded implementations, more efficient system designs must be achieved.
This implies that efficient exploration and specification refinement must be pro-
vided at the system level where the impact on area, performance, and power is
the most important.

For telecom network applications, as encountered in middle-layer protocol
processing, the behavior is often characterized by algorithms that operate on
large and irregular data structures, dynamically allocated and stored in sets, as
dynamic queues, lists, association tables, and timer pools. Such behavior is also
encountered in database and multimedia applications. These sets, illustrated
in Figure 1, are called dynamic data sets in the sequel.

In embedded implementations of such telecom network applications, a dom-
inant bottleneck is the implementation of the dynamic data sets used. Indeed:

(1) For many ofthese applications, major area and power are not involved in the
data paths and the controllers, but in global communication and memory
organization [Catthoor et al. 1994; Wuytack et al. 1994]. Indeed, to store
these sets, large storage capacities are required, and a large part of the chip
area is due to memory units [Boudec 1992; Therasse et al. 1993]. Hence,
area optimization in system design should mainly concentrate on the area
optimization of the memory storing such dynamic data sets.

(2) Telecom network applications also involve a number of basic services such
as (1) memory management to dynamically (de)allocate memory, to detect
memory overflow, and to prevent one dynamic data set from consuming
all available memory; (2) set management to insert, locate, or remove data

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

108 o Ch. Ykman-Couvreur et al.

from a set, whatever the set may be; (3) timer management to increment all
active timers, check them for expiration, and generate timeouts for expired
timers. These services also play a very important role, and may consume
up to 80% of the processing time of the chip [Clark et al. 1989; Watson and
Mamrak 1987]. For each of these services, many mechanisms are possible,
whose efficiency depends on the application characteristics. To preserve
high speed in telecom networks, an intelligent implementation of these
services is required [Heddes 1995; Meleis and Serpanos 1992]. To this end,
parallelism can be significantly exploited, since many operations in these
services can occur in parallel.

(3) Finally, due to intensive data storage and transfer required by these ser-
vices, the power of the chip is dominated by the huge amount of memory
accesses, as demonstrated by recent work at IMEC [Catthoor et al. 1994],
at Princeton University [Tiwari et al. 1996], at Stanford University [Meng
et al. 1995], and in the IRAM project [Patterson et al. 1997]. This yields a
significant amount of heat dissipation, which is a major problem in network
switches. Moreover, all these memory accesses cannot be performed sequen-
tially without violating the real-time requirements. Very high I/O memory
bandwidth is needed, and some memory accesses need to be done in par-
allel through either multiple memories or a multiport memory [Wuytack
et al. 1999]. Also, using heterogeneous memory architectures with small
memories for frequently accessed data enables drastic reduction in power.

Houwever, this bottleneck is not sufficiently addressed in a systematic way in
current system design practice.

Association tables of records indexed by keys are typical dynamic data sets
encountered in telecom network applications. They can be implemented in
many different ways. Primitive data structures (i.e. array, pointer array, linked
list, and binary tree) can be used. These can also be combined into more complex
layered implementations. More details can be found in Wuytack et al. [1996].
In terms of area, performance, power, and depending on the application charac-
teristics, a huge difference in cost between all these implementations has been
experienced. Therefore, to find the best implementation for an association table
in terms of some cost function, the designer has to explore the complete search
space. This is not possible without system-level estimations based on the ap-
plication characteristics, an efficient exploration and optimization method, and
tool support.

To overcome this bottleneck, we propose a new exploration and optimization
method at the system level to select customized implementations for dynamic
data sets, especially oriented to association tables of records indexed by keys.
This method is suited for both hardware and software implementations. It ex-
tends the preliminary approach [Wuytack et al. 1996]. It fits in both system
synthesis approaches, Matisse [da Silva Jr. et al. 1998; Verkest et al. 1999; and
Ykman-Couvreur et al. 1999], where it is shown that incorporating dynamic
data set synthesis enables us to achieve more efficient system designs. Several
real-life telecom network applications are used to illustrate the efficiency of our

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 109

method. Two of them are components in ATM switches: the multiplexer (MUX)
core [Horn 1998], and one operation and maintenance component [Hemani et al.
1995], called F4. The third one is an important component in ATM backbone
networks: the Segment Protocol Processor (SPP) [Therasse et al. 1993]. The
fourth one is a base station component that implements the Automatic Repeat
ReQuest (ARQ) protocol for error control in modern telecom systems [Schuler
and Mateescu 1999]. Our method can be applied not only to telecom network
applications, but also in many other domains, such as database and multimedia
applications, where dynamic data sets are used to specify the data storage at a
high abstraction level.

The article is organized as follows. Section 2 summarizes the related work.
Section 3 presents the MUX core and describes its association table, which is
used to illustrate our method in the next sections. Section 4 overviews the cost
function driving our exploration and optimization method. Section 5 charac-
terizes the association table implementations considered in our search space.
Section 6 presents our method, and Section 7 discusses the results. Section 8
applies our method to the other applications mentioned previously: F4, the SPP,
and the ARQ component. Finally, conclusions are drawn in Section 9.

2. RELATED WORK

Apart from Matisse [da Silva Jr. et al. 1998; Verkest et al. 1999; Ykman-
Couvreur et al. 1999], mentioned previously, and which integrated our method,
very little support for dynamic data set synthesis is provided in current system
design practice. We have found only two approaches for dynamic data set syn-
thesis, presented in more detail later. The first one is followed in programming
theory, whereas the second one is a preliminary method for telecom network
applications, which we extend in this article.

In programming theory [Aho et al. 1983], the primitive data structures (i.e.
array, pointer array, linked list, and binary tree) and hashing considered in our
search space are well-known. They are used to reach software implementations
either with high performance or with low memory size, but not with low memory
power. Moreover, neither exploration nor optimization is automated. The cost
factor in programming theory is different with our application domains, where
memory size and power are more dominant cost factors, and performance must
be treated as a hard constraint. This heavily influences the required exploration
and optimization method.

For telecom network applications, a preliminary exploration and optimiza-
tion method is presented in Wuytack et al. [1996]. This method selects lay-
ered implementations for association tables of records indexed by keys. These
layered implementations are obtained by combining the primitive data struc-
tures previously mentioned and optimized for power. The proposed method is
suitable for hardware and software implementations. However, this has sev-
eral major limitations. First, the search space in the method is too restric-
tive, and in several telecom network applications, the selected implementa-
tion is far from being optimal. Hashing and key splitting/merging are not
supported by the method, and the maximum number of layers in the derived

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

110 o Ch. Ykman-Couvreur et al.

implementations is limited by the number of keys in the initial application
specification. Moreover, the method supports at most three keys in practice.
Second, the cost of any implementation in the search space is incorrectly esti-
mated, and erroneous decisions are made through the exploration. This is due
to the following reasons: (1) Dependencies between keys in the initial applica-
tion specification are not taken into account. (2) All key values are assumed
to be uniformly distributed. If not, keys must be hashed before applying the
method. (3) A key (resp. a pointer) used in the data structures is assumed to
occupy one memory word. This assumption has become unnecessary. Indeed,
our dynamic data set synthesis fits in the context of Matisse, and relies on
the subsequent synthesis step for data splitting/merging into memory words
[Ellervee et al. 1999], before generating an optimized distributed memory ar-
chitecture wherein dynamic data sets are stored. (4) The cost function relies
too much on storage efficiency, compared to memory accesses. It does not model
the power of the memories to be used in the final architecture. Hence, it is not
really suited for power-driven exploration. (5) The cost function does not take
all relevant application characteristics into account, that is, it assumes that the
major operation on the association table is only locating a record given its key.
Nevertheless, other operations, e.g., iterating on all records, may also have an
important impact on the cost function.

2.1 Our Contribution

In this article, a new exploration and optimization method is proposed, which
extends the previous method [Wuytack et al. 1996] as follows. It supports hash-
ing and key splitting/merging, takes key dependencies and key value distri-
butions into account, handles any number of keys, and removes all previous
assumptions on the keys. All the extensions supported by our method give rise
to a huge search space. Hence, to efficiently implement our method, we charac-
terize it by a minimization problem that can be potentially solved using tools
such as Matlab, Simulated annealing, Tempered annealing, Hill climbing, etc. In
this article, this minimization problem is solved using a symbolic formulation
in Matlab [MathWorks].

Our method is driven by a cost function that estimates the average memory
power of each explored table implementation. To this end, the cost function
takes all relevant application characteristics into account, to accurately esti-
mate the needed memory size and the number of memory accesses. It also
extrapolates at the system level the low-level power model of the memories to
be used in the final embedded system design. Nevertheless, our method can
also be driven by other cost functions such as memory size and performance.

The implementation of the services related to memory (e.g., allocation, mem-
ory overflow detection, and garbage collection) and set management (e.g., insert,
locate, remove data) of these dynamic data sets, and the generation of a cus-
tomized distributed memory architecture to meet the required performance,
are part of subsequent synthesis steps in Matisse. They are outside the scope
of this article. More details about these steps can be found in Wuytack et al.
[1999].

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 111

—] MUX core —
ATM cells [2[s[x |[2[1] v | . port1]in — 4 out [port 2 w B x 1[R[v]
key1 key2 key3 record
VPl-in VCl-in port_in VPI-out, VCl-out, port-out
8 bits 16 bits 8 bits 32 bits
2 =0000 0010 | 5=0000 0000 0000 0101 1 =0000 0001 4 = 0000 0100, 7 = 0000 0000 0000 0111, 2 = 0000 0010
2 =0000 0010 | 1 =0000 0000 0000 0001 1 =0000 0001 2 =0000 0010, 5 = 0000 0000 0000 0101, 2 = 0000 0010

Association table of active connections

Fig. 2. MUX core overview.

3. MUX CORE DESCRIPTION

We now describe one component in the ATM switches, the MUX core, whose
association table is used to illustrate our exploration and optimization method
in the next sections.

The MUX core constitutes one block of a network terminal interfacing to
both public access network and private Customer Premise Network (CPN). A
detailed description of the MUX core can be found in Horn [1998]. As shown in
Figure 2, the MUX core receives ATM cells, translates the connection identifiers
(VPI, VCI) in their headers, and deliver them to their correct destination on
either the CPN side or the access network side. ATM cell header translation and
delivery are performed by looking up the association table, which stores infor-
mation about all active connections. This table is indexed by the VPI (8 bit size),
the VCI (16 bit size), and the input port (8 bit size) of the incoming ATM cells.

The following operations are performed on the table: locate a record with
given keys to check whether a connection is already established or not; insert
a new record with given keys whenever a new connection is established; erase
a record with given keys whenever a connection is released; is_empty_VPI for a
given VPI to check whether no further connection exists for the considered VPI;
and get_destination for a given record to read information about the considered
connection and to translate an incoming ATM cell header. These operations
must be executed in real time: since the transmission rate in an ATM network
is 155 Mb per sec, and since an ATM cell consists of 53 bytes, the timing budget
to handle an incoming ATM cell and to execute all related operations is 2734 ns.

This table, if storing information about all possible active connections, would
have one entry for each possible VPI/VCl/port combination, that is, 28 %2628 =
232 entries. Assuming that each entry consists of at least the VPI, the VCI, and
the output port identification (i.e., 8 + 16 + 8 = 32 bits = 4 bytes), the size of
the complete table would therefore be 232 % 4 bytes ~ 17000 MB. To execute

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

112 o Ch. Ykman-Couvreur et al.

all needed operations previously mentioned at real time, from simulation and
profiling, about 12 memory accesses per ns would be performed.

Evidently, this table constitutes a major bottleneck for an embedded design of
the MUX core. Optimization is required to generate an efficient implementation
of the table. To this end, characteristics of the network where such MUX cores
are implemented and characteristics of the needed operations must be taken
into account in the optimization.

4. COST FUNCTION

4.1 System-Level Cost Parameters

In our embedded application domain, as explained in Section 1, memory perfor-
mance must be treated as a hard constraint, whereas memory size and power
are crucial cost factors and must be optimized.

For on-chip memories, the energy consumption of one memory access in-
creases with the memory size, that is, bit-width and number of words. The
dependency is between linear and logarithmic, depending on the library used.
Several power models such as capacitance models [Landman and Rabaey 1994]
and empiric models, provided by memory manufacturers, exist. The power of
the internal interconnect and of the address calculation is still small (less than
20%) compared to that of the internal memories. Hence, it can be neglected in
the system-level power estimations and taken into account only at the processor
level. For off-chip memories, the energy consumption of one memory access can
be considered more or less independent of the memory size, and a significant
portion goes into the off-chip communication. Hence, power can be saved either
by reducing the number of memory accesses or by storing data into smaller
on-chip memories [Catthoor et al. 1998; Wuytack et al. 1999].

To this end, in the synthesis of the dynamic data sets, system-level op-
timizations should mainly aim at minimizing memory size, memory access,
and memory power. Moreover, processor-level optimizations should mainly aim
at further minimizing the power of the memories, of the internal intercon-
nect, address calculation, and meeting the real-time requirements. Meeting
the performance is taken at the processor level as follows: (1) To preserve
high speed in telecom networks, the dynamic data sets require a hardware
implementation. An intelligent implementation of the services accessing data
is also needed by exploiting operation parallelism. (2) Due to intensive data
storage and transfer required by these services, all memory accesses can-
not be performed sequentially without violating the strict real-time require-
ments. Very high I/O memory bandwidth is needed, and some memory accesses
need to be done in parallel through either multiple memories or a multiport
memory.

4.2 System-Level Memory Power Model

In this article we assume that on-chip SRAMs, in 0.35 micron CMOS technology
with one read/write port, are used in the final embedded system design. For this
memory type, we use the following memory power model extrapolated from

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 113

data sheets [STMicroelectronics]:

power = acc * 1072 % (9.93 x bw + 0.0203 * w + 0.017 x bw * w
+ 6.73 xlogy(bw * w + 18.5)), @8]

where bw is the bit-width of the used memory, w is the number of words in the
memory, acc is the number of memory accesses per second, and the power unit
is mW.

We focus on average memory power optimization at the system level. Our
cost function is defined by Eq. (1), where we assume that bw = 32, w is the
needed memory size (in bits) divided by dbw, and acc is the average number
of memory accesses in the execution of the needed operations. Nevertheless,
any other memory model can also be used. In Ykman-Couvreur et al. [2002],
a multiobjective cost function is used, and the exploration method not only
optimizes memory power, but it trades off the average memory size, number of
memory accesses, and memory power.

For any association table of records indexed by keys, the main application
characteristics relevant for this cost function are: (1) the record size and the av-
erage number of records stored in the table; (2) the number of keys in the initial
application specification, their size, their value distribution, the average num-
ber of their active values in the table, and the key dependencies; (3) the
operations performed on the table and the number of operation executions per
second; (4) for any table implementation explored and for each operation, the
average number of memory accesses in accessing the table. These characteris-
tics are available either in early documents or in profiling information at the
system level. This information is automatically generated using the simulation
environment of our Matisse system synthesis approach.

MUX core application. In this representative application (see Section 3),
one table is used, wherein records (32 bit size) are indexed by three keys inde-
pendently of each other: the VPI (8 bit size), the VCI (16 bit size), and the port
(8 bit size). We assume that the MUX core is used in a network where only the 10
least significant bits are used in the VCI, and only one port is needed. Both VPI
and VCI (restricted to 10 bits) values are uniformly distributed. From profiling
information, for each operation performed on the table, the average number
of executions per second is as follows: 205925 for locate, 1829 for insert, 1829
for erase, 1463 for is_empty _VPI, and 155084 for get_destination. The average
number of memory accesses per operation in accessing the table is of course
dependent on the table implementation. This is considered in Section 5. In the
sequel, experiments are reported relative to two different telecom networks
where such MUX cores are implemented: In network 1, the table stores 21°
records, whereas in network 2, the table stores 216 records on average. Hence,
at most 10 bits (resp. 16 bits) are needed to specify a pointer of any table imple-
mentation in network 1 (resp. network 2). All these application characteristics
are required to estimate the average memory power from Eq. (1).

5. TABLE IMPLEMENTATIONS

This section characterizes the layered implementations considered in our
search space, with their respective costs computed from Eq. (1). To this end,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

114 o Ch. Ykman-Couvreur et al.

® L4 o— .. NULL
LL(key) key key key key
record record record record
PA(key) ° NULL ° ° NULL NULL °

record | record |record record |

AR(key) | record | l record ‘ record | ‘ ‘ l record |

Fig. 3. One-layer implementations.

Table I. Memory Sizes for One-Layer
Implementations in MUX Core

One-Layer Average Memory Size (Mb)
Implementation || network 1 network 2
LL(k) 0.06 4.3
PA(k) 2.7 6.3
AR(k) 8.4 8.4

the following notation is used: size,.. = the record size; avg,,. = the average
number of records stored in the table; size, = the size of key k; max, = the
maximum number of possible £ values in the table; avg, = the average number
of active k values in the table; avg; ,, = the average number of active £ values
per ko value in the table; and size,;, = the record pointer size. We also assume
that the size unit is the bit.

5.1 One-Layer Implementations

Currently in our search space, the one-layer implementations cover the follow-
ing primitive data structures: unordered linked lists, pointer arrays, or arrays
(see Figure 3). In the future, ordered linked lists and binary trees will also be
considered.

In the unordered linked list, denoted LL(k), elements are dynamically
(de)allocated. Each of them stores the key value, the record itself, and a pointer
to the next element of the linked list. Within a long linked list, a large number
of memory accesses can be required to locate a record. The average memory
size is (sizeps + Sizep + SiZerec) * AVG e

The pointer array, denoted PA(k), is an array of pointers to records. The
pointer array stores a record pointer for each active key value. Key values do
not need to be stored since the key value corresponds to the position of the
pointer in the array. The average memory size is size e * QUG + 257 * sizep.

The array, denoted AR(k), reserves memory for each record it can store.
Hence, many memory locations are wasted if the average number of records
stored in the array is relatively small. The memory size is 252 x size..

MUX core application. First, for each one-layer implementation, the av-
erage memory size in both network 1 and network 2 is given in Table I. Then,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 115

Table II. Memory Accesses for One-Layer Implementations in MUX Core

Average Memory Accesses

Operation LL(k) PA(R) AR(k)
locate AUZree — 1 1 1
insert 2 2 1
erase avgrec +1 1 1

sizeVPI 1 zsizek —sizeypy—1 2sizek —sizeypr—1
sizey,
get_destination 1 1 1

is_empty _VPI QUEpec *

Table III. Memory Power for One-Layer Implementations in MUX Core

Average Memory Power (mW)
network 1 network 2
Operation LL(k) | PA(k) | AR(k) LL(k) PA(k) | AR(k)
locate 317.7 9.7 30.6 1035663.9 | 22.9 30.6
insert 0.006 0.2 0.3 0.03 0.4 0.3
erase 2.8 0.09 0.3 9198.9 0.2 0.3
is_empty_VPI 1.3 354 111.2 4087.6 83.5 111.2
get_destination 0.2 7.3 23.0 11.9 17.3 23.0
Total || 322.0 | 52.7 165.4 1048962.3 | 124.3 | 165.4

for each one-layer implementation and for each operation performed on the
MUX core table, the average number of memory accesses in accessing the table
is given in Table II. For example, the average number of memory accesses in
the locate operation is avg,,./2 key accesses + (avg,../2 — 1) pointer accesses
(i.e., avg,,. — 1, for the LL(k) implementation) and only one access to check
whether the record is empty or not in both PA(k) and AR(k) implementations.
Also, the average number of memory accesses in the erase operation for the
LL(k) implementation is the number of accesses to locate the record + 2 pointer
accesses, that is, avg,,. + 1. Finally, for each one-layer implementation and for
each operation, again, the average memory power derived from Eq. (1) in both
network 1 and network 2 is given in Table III. Evidently, LL(k) may not even
be implemented using on-chip SRAMs.

Hence, among these three primitive data structures, finding the best im-
plementation relative to memory power is already not evident. This is due to
trade-offs between needed memory size and memory accesses. Moreover, these
trade-offs depend heavily on the application characteristics.

5.2 Two-Layer Implementations

In our search space, two-layer implementations are obtained by combin-
ing primitive data structures, as illustrated in Figure 4. AR(ke)LL(k4),
AR(k9)PA(k,), and AR(k3)AR(k,) are not considered: they are indeed equiv-
alent or even worse than those shown in Figures 3 and 4.! AR(ky)LL(k,)
is equivalent to PA(ks)LL(k,). If only %k is known in the application spec-
ification, and ks and k; must be computed, then AR(ky)PA(k1) is worse

1AR(k9)LL(k1) is the same as PA(ko)LL(k1). AR(ko)PA(k1) is the same as PA(ko)PA(k1).
AR(ko)AR(R1) is equivalent to AR(ko+kq), but it needs more control logic to calculate two keys
instead of only one.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

116 . Ch. Ykman-Couvreur et al.
LL(k2)LL(k1) LL(k2)PA(k1) LL(k2)AR(k1)
® o1 - ® *t—» . ®
k2 k2 k2
. PA(K1) AR(Kk1)
LL(L)
PA(K2)LL(k1) PA(k2)PA(k1) PA(k2)AR(k1)

PA(K2) PA(k2) PA(k2)

L[] | LI - | L]

LLl(k1) PAlk1) ARl(H)
Fig. 4. Two-layer implementations.
Table IV. LL(VPI)PA(VCI) Cost in MUX Core
Average Power
Operation Average Memory Accesses in network 1 (mW)
locate avgypr 22.4
: av8vpr
insert = * (avgypr + D+ 0.05
avsypr
1- =)« 2xav +4)
SSiZeypy SVPI

erase avgypr 0.2

is_empty _VPI avgypr — 1 0.2

get_destination 1 0.8

Total 23.7

than PA(k), and AR(k3)JAR(k,) is worse than AR(k). Otherwise they are
equivalent.

For each two-layer implementation, the cost can be easily derived. Let us
illustrate it for LL(ko)PA(k1). Its average memory size is (sizepy + sizep, +
average size of PA(k1)) * avgy,, that is, (1 + 252k) ¥ sizepy + Sizep,) * avgp, +
Si2€rec * QUG gp-

MUX core application. For the two-layer implementation LL(VPI)
PA(VCI), substantial cost reductions can already be observed compared to
one-layer implementations. For example, in network 1, and assuming that
avgypr = 22, the average memory size in network 1 is only about 0.3 Mb. Esti-
mations about average memory accesses and power are shown in Table IV. For
example, the average number of memory accesses in the insert operation is de-
rived as follows. We must check whether LL(VPI) contains an element with the
given VPI. If yes (the probability is avgyp;/2"F7), the check requires avgyp; — 1
memory accesses on average to locate it, and two additional memory accesses
are needed to insert the record in PA(VCI). Otherwise, the check through the
complete linked list requires 2 * avgyp; memory accesses, and four additional
memory accesses are needed to insert a new element in the linked list and to
insert the record in the associated PA(VCI).

5.3 r-Layer Implementations

r-layer implementations, r > 2, are obtained by combining primitive data struc-
tures similar to the two-layer implementations. A three-layer implementation

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 117

® [> *~—> 0
LL(key1) key1 key1 key1 key1
' ? . ’
]]]

PA(key2) [0 | o] [o[o[e|e]e]

Y|

AR(key3) |record |record | |record | |record |
AR(key3) | [record [Trecord [- Jrecord |

Fig. 5. A three-layer implementation.

is illustrated in Figure 5. A general r-layer implementation is denoted L, (%,)
L, 1(k._1) ... Li(k1), where Li(k;) is the lowest layer; L,(k,) is the high-
est one; Lq(k) is LL(kq), PA(k1), or AR(kq); and L;(k;),2 < j < r, is
either LL(k;) or PA(k;); (AR(k;) is not considered for the two-layer imple-
mentations. Its cost can be recursively derived taking into account that: (1)
Its average memory size is the average size of L,(k.) whose stored records
are the (r-1)-layer subimplementations L, 1(k._1) ... Li(k1). (2) For each
operation op, the average number of memory accesses per execution is in
general the average number of memory accesses to execute a locate oper-
ation in L,(k.)+ the average number of memory accesses to execute op in
L, 1(k,_1)...L1(k1). A systematic way to derive the number of memory accesses
for each operation and for each possible r-layer implementation is detailed in the
Appendix.

6. EXPLORATION AND OPTIMIZATION METHOD

For any association table of records indexed by n keys k1, ko, . . ., k, in the initial
application specification, the problem is to find the best r-layer implementation
in terms of the cost function characterized in Section 4. Several degrees of free-
dom must be considered: selecting the number r of layers, choosing a primitive
data structure for each layer, hashing, ordering, splitting, and conversely merg-
ing the keys in the initial application specification to generate the r keys in the
r-layer implementation. This gives rise to a huge search space, as is illustrated
later.

MUX core application. For anetwork making full use of the 8 VPI bits, the
16 VCI bits, and the 8 port bits, we first make the following observations. From
the three initial keys, VPI, VCI, and port, there are 3! = 6 possible key orderings.
Each key ordering, after having merged the intial keys, gives rise to a super-key
of 32 bits. This super-key can be split into r keys in 31!/((32 —r)!(r — 1)!) possible
ways. Hence, the search space for the table consists of (1) three one-layer imple-
mentations, being the three primitive data structures defined in Section 5.1;
(2) the 1116 two-layer implementations, taking into account the six possible
combinations of primitives defined in Section 5.2, the six possible key orderings,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

118 o Ch. Ykman-Couvreur et al.

and the 31 possible key splittings; (3) the 33480 three-layer implementations;
647280 four-layer implementations, and so on; (4) that is, 182" 1%31!/((32—r)!
(r — 1)!) r-layer implementations, for » > 2, taking into account the 3 % 27!
possible combinations of primitives, the six possible key orderings, and the
31!/((32 — r)!(r — 1)!) possible key splittings.

Exhaustive exploration of the complete search space of layered implementa-
tions is not possible for the following reasons. First, such a search space must be
explored for each dynamic data set of the application. Second, dynamic data set
synthesis fits in the context of embedded system synthesis, as does our Matisse
approach, which is based on fast and successive explorations at all levels of the
complete design flow to achieve efficient system designs. Finally, the more re-
fined the application specification becomes in the design flow, the more complex
and slower the explorations. Since dynamic data set synthesis is one of the first
system-level synthesis steps in the design flow, exploration in this step must be
extremely fast.

Hence, an efficient exploration and optimization method based on heuristics
and tool support is needed to derive at least near-optimal solutions. In the
following, we first overview our method for solving this problem in Section 6.1,
and then describe its various steps in detail in Section 6.2.

6.1 Method Overview

The first three steps initialize the search space exploration by ordering, hashing
and concatenating the keys in the initial application specification. This enables
us to form one super-key from which the r keys in any r-layer implementa-
tion of the search space are generated. The next steps successively explore
one-layer implementations, two-layer, three-layer ones, and so on, until either
the optimal or a near-optimal implementation is reached. Let Space, denote
the search subspace of r-layer implementations explored in our method. Each
Space, is exhaustively explored, but for reasons given later, Space, becomes
more and more restricted while r increases: (1) As illustrated in our applica-
tions, the probability is very high that the optimal implementation is a one-,
or a two-, or a three-layer implementation. Hence, for 1 < r < 3, Space, con-
sists of all possible r-layer implementations. (2) From r > 4, even when the
r-layer implementation cost can still be minimized, the decrease is no longer
significant. Indeed, the memory access number is still increasing, and is hardly
compensated by a sufficient decrease in memory size. Hence, exhaustive explo-
ration becomes useless. (3) Moreover, the number of all possible r-layer imple-
mentations increases exponentially with r, as shown previously. Depending on
sizer,, 1 <i < n, Space, must be restricted accordingly to keep our exploration
fast.

MUX core application. Ranges for needed memory size, average memory
accesses per second, and average memory power, among all r-layer (1 <r < 6)
implementations of the table in network 1 are shown in Figure 6. This illus-
trates that the exploration can stop when no better implementation is reached.
The best implementation reached is the optimal one.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 119

- — 1000 —

10 — 1078 — —

1 1077 — -

01— Leol SN SN R S 1006~ N i B

1
1layer 2 layers 3 layers 4 layers 5 layers 6 layers 1 layer 2 layers 3 layers 4 layers 5 layers 6 layers 1layer 2 layers 3 layers 4 layers 5 layers 6 layers

AVERAGE MEMORY SIZE (Mbits) AVERAGE MEMORY ACCESSES PER SECOND AVERAGE MEMORY POWER (mW)

Fig. 6. Cost ranges in search space of the MUX core table.

6.2 Method Description

Our method is characterized by a minimization problem that can be potentially
solved using tools such as Matlab, Simulated annealing, Tempered annealing,
Hill climbing, etc. In this article, this minimization problem is solved using a
symbolic formulation in Matlab [MathWorks], because it is fast and gives very
good results (see Section 7). We now describe the different steps of our method,
whose global flow is illustrated in Figure 7.

Step 1. Taking into account that, in layered implementations, higher keys
are accessed before lower ones while accessing records in the table, order %;, 1 <
I <n,intoo,,...,09, 01 as follows:

(1) o; depends ono; =i < j. This key ordering® naturally yields fewer memory
accesses to locate records in the table.

(2) avg,,/max,; > avg,, /maxe, =i <j. With this key ordering the memory al-
located for the implementation of the lower layers is used as efficiently as
possible. Since lower layers generally store more data than higher layers,
this reduces the needed memory size of the table.

MUX core application. In the is_empty_VPI operation, VPI is the only
accessed key. In the other operations the keys are independent of each other,
and their values are uniformly distributed. Hence, the selected higher key is
VPI, whereas the ordering between VCI and the port remains irrelevant.

Step 2. Hash each key 0;, 1 <i < n, whose max,, < 25%2¢; or whose values
are not uniformly distributed in the interval [0, 25%¢i].3 Let h;, 1 < i < n, denote

2For simplicity, in the article it is assumed that the key dependency is an anti-symmetric relation.
3In this case further research is still needed to systematically derive the mostsuitable hash
function.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

120 o Ch. Ykman-Couvreur et al.

Initialization:

super-key creation

r=1
Space_r BestImp_r, BestCost_r
exploration
Space_r+1 BestImp_r+1 BestCost_r+1 < — sop
exploration BestCost_r+1 BestCost_r?

r++

Fig. 7. Exploration and optimization method.
the hashed keys such that 25%® = max,,, and any h; value is in the interval
[0, 2Sizehi] .

MUX core application. In both networks 1 and 2, only 10 bits are used in
the VCI, and only one port is needed. Hence the VCI and the port are hashed as
follows: 0 < hash(VCI) < 21°, and hash(port) = constant. This implies that the
hash(port) can be left out in the next steps of the method. Also from now on,
to simplify the notation, VCI refers to this hashed VCI, rather than to the one
used in the initial MUX core specification.

Step 3. Concatenate all keys h,,, ..., hg, by to form one super-key K whose
sizeg = sizep, + - - + sizep, + sizep,, and avgx = avg,... At the same time, for
each h;, 1 <i < n, derive sparse,, such that*

avgh”hn,...,hHl = 281Z€hi/sparsehi’ 1 < I < n,
avg, = 2si2ehn /sparsey,,
n ki
taking into account that avg,,, = avgy, *---*avgy,, p, * QU8 ... hy» Which
can be derived from the application characteristics. These sparse; ,1 <i < n,
4See notation introduced in Section 5.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 121

Table V. Selected Implementations in Step 4

Selected Average Average Average
Network Table Memory | Memory Accesses Memory
Characteristics Implementation Size (Mb) per sec Power (mW)

network 1 PA(18) 2.7 1.12 %10° 53.0
PA(12)PA(6) 0.14 0.59 %108 1.69
PA(9)PA(5)PA(4) 0.08 0.79 * 10° 1.49
network 2 PA(18) 6.29 1.12 %10° 125
PA(14)AR(4) 3.12 0.63 * 10° 35.1
PA(10)PA(5)AR(3) 2.90 0.79 %108 40.9

are needed to compute the cost of any r-layer implementation. They indicate
how sparse the ith layer of the table implementation is.

MUX core application. sizex = 18 bits. Since VPI and VCI values are
independent of each other and uniformly distributed, sparseyp, = sparseyc, = p,
and for any splitting of K into %, ..., ks, k1, sparse,,,1 < i < r,= p, too. In
network 1, avg,,, = 210 = 28/P x 219/P 5o that p = 18/10 = 1.8, whereas in
network 2, avg,,, = 216 = 28/P x 219/P 50 that p = 16/13 = 1.2.

Step 4. Step 4 successively explores Space,, Space,, and Spaces;, which con-
sist respectively of all one-, two-, and three-layer implementations.

First explore the one-layer implementations among LL(K), PA(K), and
AR(K), as defined in Section 5.1, and select the best one. Then explore the
two-layer implementations L(ko)L(k1), as defined in Section 5.2, and select the
best one, which is the solution to the following minimization problem:

MINsizek2 +sizek1 =sizeg

{cost(LL(ko)LL(k1)), cost(LL(ks)PA(k1)), cost(LL(ky)AR(k:)),
cost(PA(ko)LL(k1)), cost(PA(ks)PA(k1)), cost(PA(ks)AR(R1))},

where the cost function is the one defined in Section 4.2. Finally, explore the
three-layer implementations L(ks)L(ko)L(k1), as defined in Section 5.3, and
select the best one. This is also the solution of a minimization problem, similar
to the previous one, where sizey, + sizep, + sizer, = sizeg.

Let BestImp and BestCost denote the best implementation reached so far
and its cost. If BestImp is a two-layer implementation, then the exploration
stops and outputs BestImp as the best implementation reached. If BestImp is
a three-layer implementation, then the exploration goes further, and Step 5 is
performed.

MUX core application. The best one-, two-, and three-layer implementa-
tions for both networks 1 and 2 are reported in Table V. For network 1, the
exploration needs to go further, whereas for network 2, it stops and selects
PA(14)AR(4) as the table implementation. It can be shown by exhaustive ex-
ploration of the complete search space that this implementation is the optimal
one for network 2.

Step 5. Assume that the selected two- and three-layer implementations
from Step 4 are L(ko)L(k1) and L(l3)L(I3)L(I;). Then in contrast to Step 4, Space,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

122 o Ch. Ykman-Couvreur et al.

Table VI. Best Reached implementations for Network 1 in Step 5

Reached Average Average Average
Table Memory | Memory Accesses Memory
Implementation Size (Mb) per sec Power (mW)
PA(7)PA(5)PA(3)PA(3) 0.073 1.01 x10° 1.72
PA(8)PA(4)PA(4)PA(2) 0.074 1.00 %108 1.72
PA(6)PA(6)PA(3)PA(3) 0.074 1.01 %108 1.74
PA(7)PA(5)PA(4)PA(2) 0.074 1.01 %108 1.74

becomes restricted and consists only of the four-layer implementations:

—generated from L(ky)L(k1), by simultaneously replacing L(k;),i = 1,2, into
two-layer implementations L(k;2)L(k;1), where sizey,, + sizer,, = sizey,;

—generated from L(l3)L(l3)L(l1), by successively replacing L(;),i = 1,2, 3,
into a two-layer implementation L(l;5)L(l;1), where size;,, + size;,, = sizey,.

Select the best implementation in Space, also by using Matlab to solve a
minimization problem similar to the previous one. If the cost is > BestCost,
then the exploration stops and outputs BestImp as the best reached implemen-
tation. If the cost is <BestCost, then BestImp and BestCost are updated, and
the selected four-layer implementation is the next starting point for further
exploration in Step 6.

MUX core application. For network 1, the following implementations are
explored:

L(j2)L(j1)L(i2)L(i1), where size ;2 + size;1 = 12 bits and size;s + size;; = 6 bits,
L(j2)L(j1)PA(5)PA(4), where size jo + size 1 = 9 bits,
PA(9)L(j2)L(j1)PA(4), where size ;o + sizej1 = 5 bits,
PA(9)PA(5)L(j2)L(j1), where size 3 + sizej1 = 4 bits.

The best implementations reached are reported in Table VI. The memory size
is still decreasing, but only slightly, whereas the number of memory accesses
is also increasing, so that the power cannot be decreased any more. Hence, the
exploration stops and outputs PA(9)PA(5)PA(4) for network 1. Again, it can be
shown by exhaustive exploration of the complete search space that this selected
implementation is the optimal one for network 1.

Step 6. For any r > 4, assume that BestImp is an r-layer implementation.
Then Space, ., is restricted to the (r + 1)-layer implementations generated from
BestImp, by successively replacing each layer into a two-layer implementation.
It is explored similarly to the previous step. The exploration stops when no
better implementation is found. However, in practice it is observed that the
exploration always stops before executing this step, and the optimal implemen-
tation is always reached for cases where an exhaustive search is still feasible
to verify this.

7. DISCUSSION OF THE RESULTS

To illustrate that optimized implementations are strongly dependent on the
network characteristics, let us compare the average memory power of the best

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 123

Table VII. Impact of Network Characteristics

Best Selected Average Average Average
Network Table Memory | Memory Accesses Memory
Characteristics | Implementation || Size (Mb) per sec Power (mW)
network 1 PA(9)PA(5)PA(4) 0.08 0.79 % 108 1.49
PA(14)AR(4) 0.28 0.66 106 34
network 2 PA(14)AR(4) 3.12 0.63 % 10° 35.1
PA(9)PA(5)PA(4) 3.66 0.79 %108 51.1

Table VIII. Impact of Operation Characteristics

Best Selected Average Average Average
Operation Table Memory | Memory Accesses Memory
Characteristics | Implementation Size (Mb) per sec Power (mW)
case 1 PA(9)PA(5)PA(4) 0.083 0.79%10° 1.49
PA(10)PA(5)PA(3) 0.084 1.58 %106 3
case 2 PA(10)PA(5)PA(3) 0.084 0.79 % 10° 1.5
PA(9)PA(5)PA(4) 0.083 1.07 %108 2

Table IX. Comparison with Existing Method

Best Selected | Average Average Average
Network Exploration Table Memory [Memory Accesses| Memory
Characteristics Method Implementation |Size (Mb) per sec Power (mW)
network 1 Hash + PA(VPHAR(VCl) | 0.72 1.33%10° 174
[Wuytack et al. 1996]
Our method PA(9)PA(5)PA(4)| 0.08 0.79 % 10° 1.49
network 2 Hash + PA(VCIHAR(VPI) 3.9 1.11x108 115.6
[Wuytack et al. 1996]
Our method PA(14)AR(4) 3.12 0.63x10° 35.1

selected implementations when used in both networks 1 and 2. Results are
reported in Table VII. Between both implementations, a difference of 56% (resp.
31%) is observed (resp. network 2).

Then to illustrate that optimized implementations are also strongly depen-
dent on the operation characteristics, let us compare the average memory power
of the best selected implementations when used in network 1, but with different
operation characteristics: (1) the first case is based on the operations charac-
terized in Section 4.2; (2) the second case is based on the is_empty VCI (instead
of is_empty_VPI) operation with the same average number of executions per
second. Results are reported in Table VIII. Observe that VPI is the higher key
in PA(9)PA(5)PA(4), whereas VCI becomes the higher key in PA(10)PA(5)PA(3).
Here again, between the two implementations, there is a difference of 50%
(resp. 25%) in average memory power observed for (resp.) network 2.

To illustrate the efficiency of our method, let us compare it with the one
presented in Wuytack et al. [1996]. Results are reported in Table IX. After
hashing both VCI and port, the best implementations reached by the method
[Wuytack et al. 1996] are PA(VPDAR(VCI) for network 1, and PA(VCDAR(VPI)
for network 2. A difference of 91% (resp. 70%) is observed (resp. network 2) be-
tween the two methods. Moreover, in current MUX core design, PA(VPDHAR(VCI)
is the table implementation used whatever the network characteristics are.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

124 o Ch. Ykman-Couvreur et al.

Table X. F4 Exploration and Comparison with Existing Method

Best Selected Average Average Average
Table Memory | Memory Accesses Memory
Implementation Size (Kb) per sec Power (mW)
PA(8) 3.3 0.41%10° 0.19
PA(7)-AR(1) 2.7 0.59 % 10° 0.26
[Wuytack et al. 1996] AR(8) 14.3 0.37+10°8 0.24

This experiment shows that systematic exploration of key splitting/merging in
selecting optimized implementations is really a must in our telecom network
applications.

To illustrate the efficiency of our method, CPU time to run the corresponding
Matlab script on a HP 9000 Series workstation has been measured. For net-
work 1, up to four-layer implementations must be explored, and the exploration
takes 11.5 sec to output the optimized implementation. For network 2, only up
to three-layer implementations must be explored, and the exploration takes
6.7 sec.

8. OTHER APPLICATIONS

This section summarizes the results of our method applied to association ta-
bles used in telecom network applications, such as F4, the SPP, and the ARQ
component.

8.1 Operation and Maintenance Component (F4)

The OAM functionality [Hemani et al. 1995] of an ATM switch is organized into
five hierarchical layers, denoted F1-F5 by ITU. F1-F3 operate at the physical
layer, F4 operates at the virtual path layer, and F5 at the virtual channel layer.
F4 and F5 are very similar, and in this article we address F4.

F4 operates on both the forward cell-stream from the network to the ATM
switch and on the backward cell-stream from the ATM switch to the network.
All incoming ATM cells and signals are processed in view of fault manage-
ment (including alarm surveillance, failure localization in the physical layer
and testing), performance monitoring (related to cell loss ratio, cell insertion
rate, and effective use of the network resources), or activation/deactivation of
performance monitoring. In F4, a small table is used, whose records (56 bit
size) are indexed by the virtual path identifier VPI (8 bit size). This table stores
status information for all active connections. Since the MUX core and F4 are
both ATM switch components, network 1 from MUX core experiments can also
be considered here.

The VPI should not be hashed, and from Section 6.2 sparse,p, = 1.8 in net-
work 1. For this F4 table, our method is again compared with the one presented
in Wuytack et al. [1996]. Results are reported in Table X. To use our method, we
need the average number of executions per second for the different operations
on the table. These are 133005 for locate, including record reading; 49877 for
insert; and 49877 for erase. The best implementation reached by our method is
a pointer array, which also happens to be the optimal implementation.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 125

Table XI. SPP Exploration and Comparison with the Existing Method

Best Selected Average Average Average
Network Table Memory |Memory Accesses| Memory
Characteristics Implementation Size (Mb) per sec Power (mW)

network 1 PA(17) 24.5 0.20 %108 87.0
PA(7)-AR(10) 22.4 0.29 %108 116
PA(7)-PA(1)-AR(9) 22.4 0.38 108 152
[Wuytack et al.1996] PA(LID)-AR(MID)| 22.4 0.29 %108 116
network 2 PA(17) 1.2 0.20 %108 4.2
PA(11)-PA(5) 0.17 0.31 %108 1.1
PA(10)-PA(3)-LL(4) 0.13 0.46 %108 1.2
[Wuytack et al.1996] PAIMID)-PA(LID)| 0.21 0.31 %10° 1.3

8.2 Segment Protocol Processor (SPP)

The SPP [Therasse et al. 1993] is an important component in ATM backbone
networks, whose functionality is to store and forward user and internal ATM
cells, to perform several checks, to issue requests (e.g., routing requests), to
process routing replies, and to make garbage collection. In addition, internal
ATM cells are exchanged with a coprocessor, and communication takes place
with a supervising microprocessor for error and performance monitoring. The
ATM cells carry various fields for control and management purposes. Among
others, two fields are the local identifier LID (7 bit size) and the multiplexing
identifier MID (10 bit size). The LID identifies a connection from a user to a
server. The MID identifies a program making use of that connection.

In the SPP, one large table is used, whose records (384 bit size) are indexed
by two keys: the MID and the LID. Experiments are also done relative to two
different telecom networks: in network 1, the table stores 216 records on average,
whereas in network 2, the table stores 28 records on average. From profiling
information at the system level, it is observed that all MID values and only half
of LID values are active simultaneously. Also, the profiled average number of
executions per second for the different operations on the table are 73153 for
locate, including record reading, 18288 for insert, and 18288 for erase.

The selected key ordering is LID, MID, but none of the keys need to be hashed,
sizex = 17 bits. Since only half (i.e., 26) of LID values and all MID values are used.
(1) In network 1, avg,,, = 216 = 26 x 219/sparsewn 50 that sparse p = 7/6 = 1.2
and sparseyp = 10/10 = 1. (2) In network 2, avg,,, = 28 = 26 x 210/sparsewn g0
that sparse |p = 7/6 = 1.2 and sparsey,p = 10/2 = 5. Exploration results com-
pared with those obtained from Wuytack et al. [1996] are reported in Table XI,
similarly to Table X.

8.3 ARQ Component

In a mobile network, the part of the base station that implements the reliable
transmission of data coming from multiple mobile terminals having multiple
connections with different priorities presents several design bottlenecks, es-
pecially when moving to very high data rates. The Automatic Repeat ReQuest
(ARQ) protocol is the most robust approach, ensuring reliable data transmission
in mobile communications. It consists of both loss detection and loss recovery.
For each new up-link connection (from a mobile terminal to the base station)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

126 o Ch. Ykman-Couvreur et al.

with a given priority, the mobile terminal dynamically starts up a sender ARQ
process and the base station starts up a receiver ARQ process. For a down-link
connection (from the base station to a mobile terminal), the roles of the mobile
terminal and the base station are exchanged. Hence, if the base station must
be able to communicate with 64 mobile terminals, and if each mobile termi-
nal can have four connections with their own priorities, the base station may
need to implement up to 256 concurrent ARQ processes, whose current status
information must be stored dynamically in the base station.

Several ARQ protocols are available, and in this article we consider the Slot
Based Selective Repeat ARQ protocol (SBSA) [Schuler and Mateescu 1999]. The
ARQ component experimented with in the following consists of the receiver ARQ
processes in up-link connections. It uses three tables: (1) The first table keeps
track of the active receiver ARQ processes, identified by two keys: the mobile
terminal identifier MT-ID (6 bit size) and the connection identifier CID (2 bit size).
In this table, each record occupies 266 bits, and the average number of records
(64 in the experiment) depends on the average number of active connections.
The average number of executions per second for the different operations on
this table are 42857 for locate, 14286 for insert, 14286 for erase, and 28571 for
read. (2) The second table stores timing information about lost packets for each
active receiver ARQ process. This allows us to order the packets in the packet
stream. In this table, each record is identified by four keys: MT-ID, CID, a wrap
counter WC (4 bit size), and a sequence number SN (4 bit size). Each record
occupies 64 bits, and the average number of records (128 in the experiment)
depends on the channel quality. The average number of executions per second
for the different operations on this table are 12500 for insert, 12500 for erase,
and 37500 iterations through the whole table. (3) For each connection, whenever
a lost packet is detected, packets following a lost packet are blocked in the base
station: they cannot be forwarded because the correct packet ordering must
be preserved. To this end, a third table stores these blocked packets (392 bit
size) for each active receiver ARQ process. In this table, each record is also
identified by the four keys, MT-ID, CID, WC, and SN. The average number of
blocked packets (256 in the experiment) also depends on the channel quality.
The average number of executions per second for the different operations on
this table are 350 for insert, 350 for erase, and 28000 for look up through the
whole table with a given MT-ID and CID.

As for the previous applications, exploratory results compared with those
obtained from Wuytack et al. [1996] are reported in Table XII. Nevertheless,
since Wuytack et al. [1996] support at most three keys, it can only be applied
to the first table. Observe the use of the linked list primitive in the selected
implementations for both of the last tables. This is due to the significant number
of iteration operations.

9. CONCLUSIONS

Generally, major bottlenecks in embedded implementations of telecom network
applications are memory size and power. Indeed, a large part of the chip area
is due to memory units storing the dynamic data sets of the application, and

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 127

Table XII. ARQ Exploration and Comparison with the Existing Method

Best Selected Average Average Average
Table Memory | Memory Accesses Memory
Table Implementation Size (Kb) per sec Power (mW)
Table I PA(8) 18.6 0.11 %108 0.08
PA(7)-AR(1) 21.0 0.17 %108 0.13
[Wuytack et al. 1996] PA(8) 18.6 0.11 %10° 0.08
Table II LL(16) 11.14 16.04 %10° 9.70
LL(5)-LL(11) 10.58 15.49 %10° 9.21
PA(1)-PA(4)-LL(11) 10.59 15.54 %10° 9.24
PA(1)-PA(1)-PA(3)-LL(11) 10.61 15.68 x10° 9.33
[Wuytack et al. 1996] — - - -
Table III LL(16) 106.5 14.9 %108 34.3
PA(8)-LL(8) 106.5 0.96 %108 2.2
PA(8)-PA(1)-LL(7) 106.4 0.2027 %108 0.468
PA(8)-PA(1)-PA(2)-LL(5) 106.7 0.2013 %108 0.465
PA(8)-PA(1)-PA(2)-PA(1)-LL(4) 107.2 0.2013 %108 0.467
PA(8)-PA(1)-PA(1)-PA(1)-PA(1)-LL(4) 107.3 0.2020 108 0.469
[Wuytack et al. 1996] — - - -

the power consumption of the chip is heavily dominated by the huge amount of
memory accesses. Hence, the storage of the dynamic data sets in the application
needs to be already optimized at the system level, where the impact on area,
performance, and power is the most important.

To overcome this bottleneck, we have proposed in this article a new explo-
ration and optimization method at the system level, to select customized imple-
mentations for dynamic data sets, especially oriented to association tables of
records indexed by keys, commonly encountered in telecom network, database,
and multimedia applications. Our method fits in the context of embedded sys-
tem synthesis for such applications and enables us to further raise the abstrac-
tion level of the initial system specification, where dynamic data sets can be
specified without low-level details. The implementation of the services related
to memory (e.g., allocation, memory overflow detection, and garbage collection)
and set management (e.g., insert, locate, remove data) of these dynamic data
sets, and the generation of a customized distributed memory architecture, to
meet the required performance, is not in the scope of our method. They are
part of subsequent synthesis steps of our Matisse system synthesis approach,
wherein our method fits.

In this article, our method is driven by a cost function that estimates at
the system level the average memory power, although it can also be driven by
any other cost functions such as memory size and performance. Our method is
heuristic, but in practice it always reaches the optimal implementation. Com-
pared with existing methods for large dynamic data sets, it can save up to 90% of
the average memory power, while still saving up to 80% of the average memory
size. As required by system synthesis approaches based on fast and stepwise
explorations, our method is very fast. In the future, we intend to extend our
method to dynamic data sets encountered in Internet multimedia applications
that must run on various platforms (e.g., PCs, laptops, and GSMs).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

128 o Ch. Ykman-Couvreur et al.

APPENDIX A: MEMORY ACCESS ANALYSIS

This appendix is organized as follows. First, the number of memory accesses is
derived for each operation in each possible one-layer implementation. See Ap-
pendix A.1. Then, how to systematically derive the number of memory accesses
for each operation is illustrated for some possible two-layer implementations.
See Appendix A.2. Finally, how to systematically derive the number of memory
accesses for each operation in an r-layer implementation, assuming the ones
for an (r-1)-layer implementation are known, is described in Appendix A.3.

Remember that avgy e = %%?;fc.
2

In the following, the memory access analysis is done for the following opera-
tions: locate, insert, erase, get_destination, is_empty_key(k), iterate(k)
(i.e. one look-up inside each record whose first bits of the key are k), with &
characterized by the first bits of the super-key sk, and complete_iterate.

A.1. One-Layer Implementations
A.1.1. LL(sk)implementation

locate — % (1 read key + 1 read next) —1
= QU8 pec — 1
insert — 1 write next + 1 write record
=2
erase — locate accesses + (1 read next + 1 write next) to remove
the element from the list
= QUG T+ 1
get_destination — 1 read record
is_empty_key — locatq accesses for given &
_ QUZ . SiZer
sizeg,
iterate — aQug,,. (read key + read next) + %ggri‘? read record
AU rec

= 2avgrec + avg,

complete_iterate — avg,,. (read record + read next)
= 2avg rec

A.1.2. PA(sk)implementation

locate — 1 read PA[sk]

insert — 1 write record + 1 write PA[sk]
=2

erase — 1 write PA[sk]=NULL

get_destination — 1 read record
9sizeg, —sizey,

is_empty key — =—5—— read PA[sk]

_ zsizesk —sizep—1

. o i av,
iterate — 28zesk—sizer pagd PA[sk] + ai)éiéec read record
k
— Slzegp, —Slzep, rec
= 2% + avg,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 129

complete_iterate — Zfizesk read PA[sk] + avg,,. read record
= Qsizesk avg ..

A.1.3. AR(sk)implementation

locate — 1 read AR[sk] to check whether the record is empty or
not

insert — 1 write record

erase — 1 write AR[sk] =0

get_destination — 1 read record

9sizeg, —sizey,

is_empty key — =—5—— read AR(sk) to check whether the record is
empty or not
— 2sizeskfsizek71

iterate — 2sizes—sizer yaqd AR[sk] + %‘(fg":f read record
— 2sizesk—sizek + a;l%ec
k
complete_iterate — 2?‘”8’8 read AR[sk] + avg,,, read record
= 2512k 4 avg e

A.2. Two-Layer Implementations
A.2.1 LL(VPI)PA(VCI) implementation

locate — locate accesses in LL(VPI) + locate accesses in
PA(VCD)
= (avgypy — D+ 1
= av8ypr
insert —
(1) If an LL(VPI) element exists (probability = ZY8VPL —

9VPI
8
2 =0.08),
= locate accesses in LL(VPI) + insert accesses in
PA(VCI)
=avgypr— 1+ 2
= avgyp; + 1
(2) If not,
= Accesses to check that no LL(VPI) element exists
+ insert accesses in LL(VPI) + insert accesses in
PA(VCI)
= avgyp; (read key + read next) + 2 + 2
= 2avgyp; + 4

— Total = GZ%YIPI (aUgVPI + 1) + (1 — azlg[‘flpl)(2angPI + 4)

erase — locate accesses in LL(VPI) + erase in PA(VCI)
=avgypr—1+1
= av8ypr

is_empty VPI — is_empty _VPI accesses in LL(VPI)
= avgypr — 1

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

130 o Ch. Ykman-Couvreur et al.

get_destination — 1 read record

A.2.2. LL(R2)LL(k1) implementation

locate

insert

erase

is_empty key

get_destination
iterate

— locate accesses in LL(k2) + 1 read pointer in LL(k2)+
locate accesses in LL(k1)

= (avgro — 1+ 1+ (avgy; — 1

= augpp +avg, — 1

—

(1) Ifan LL(k2)element exists (probability = al2)g o= 2P ,:';
=locate accesses LL(k2) + 1 read pointer in LL(k2) +
insert accesses in LL(k1)
=avgp —1+1+4+2
= QU89 + 2

(2) If not,
= Accesses to check that no LL(k2) element exists +
insert accesses in LL(k2) + insert accesses in LL(k1)
= avg,s (read key + read next) + 2 4 2
= 2avgy, + 4

— Total = a;’i“ (avgs +2)+ (1 — a;’i“)(2avgyy +4)

— locate accesses in LL(k2) + 1 read pointer in LL(k2) +

erase accesses in LL(k1)

=avgpy — 1+ 1+4+avg, +1

= avgpy +avg, +1

—

(1) Ifsizep, < sizeps,
= is_empty_key accesses in LL(k2)

size, _

size,,
(2) If sizep, > sizepo,

= locate accesses in LL(k2) + 1 read pointer in LL(k2)

+ is_empty _key(k2) accesses in LL(k1)
_ _ QU8 e SiZE,—Si2€s
=(avg — D+ 1+ avg™ o 2 1

QaUg, . Size,—Size;
=av + rec . -1
Er2 T avg,, sizen

= av8r2

— 1 read record

—

(1) If sizep, < sizeps,
= iterate accesses in LL(k2) + for each element with
correct &, 1 read pointer + complete_iterate accesses
in LL(k1)
= 2avgy,y + for each element with correct &, 1+2avg},q 2

= 2avg;s + av%z(l + 20841 k2)

(2) Ifsizep, > sizepo,
=locate accesses in LL(k2) + 1 read pointer in LL(k2)
+ iterate(k — k2) accesses in LL(k1)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 131

= (al)gk2 — 1) +1+ 2avgk1‘k2 + aal;)l?r:c

= augpg + 2aU8p1 2 + avE,

complete_iterate — complete_iterate accesses in LL(k2) + for each ele-

ment, complete_iterate accesses in LL(k1)
= 2avgpy + avgy2(2av8) 1 p2)
= 2avgo(1 + avgp o)

A.2.3. LL(k2)PA(k1) implementation

locate

insert

erase

is_empty key

get_destination
iterate

— locate accesses in LL(k2) + locate accesses in PA(k1)
=(avgp — 1D +1
= aU8 e
N
: - avg Ya
(1) Ifan LL(k2) element exists (probability = —5* = 5%),
= locate accesses in LL(k2) + insert accesses in
PA(R1)

=avgyy — 1+2
=avgye +1
(2) If not,

= Accesses to check that no LL(k2) element exists +
insert accesses in LL(k2) + insert accesses in PA(k1)
= avgys (1 read key + 1 read next) + 2 + 2

= 2avgy, +4
— Total = “;’ikz (avgre + 1+ (1 — ‘“2’5“ N(2avgps +4)
— locate accesses in LL(k2) + erase acceses in PA(k1)
=avg, —1+1
= aU8 e

%
(1) If size, < sizeps,
= is_empty_key accesses in LL(k2)

size,
= Q. —_— —
8251265,

(2) If size, > sizepo,
= locate accesses in LL(k2) + is_empty key(k2) ac-
cesses in PA(k1)))
= (augpy — 1) + 2512€n-Size1+512€1-1
—avgy, — 1+ 9size, —size,-1

— 1 read record

—

(1) If size, < sizepo,
= iterate accesses in LL(k2) + for each element with
correct £, complete_iterate accesses in PA(k1)

= 2avg,, + for each element with correct &, 2512€ 4+
avgrec

avg,
= 2avg;y + %%fﬁzzekl " %

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

132 o Ch. Ykman-Couvreur et al.

(2) Ifsizep, > sizeps,
= locate accesses in LL(k2) + iterate(k2) accesses in
PA(k1)

_ _ Size,,—Size,+812€,, | AU8rec
= (avgya 1+ 2 + avg,

o ot av
= avg,, — 1+ 251%€u-size; | alféic

complete_iterate — complete_iterate accesses in LL(k2) + for each ele-
ment, complete_iterate accesses in PA(k1)

= avgy + avgk2261261@1 + Qv e,

A24. LL(kE2)AR(k1)implementation

locate — locate accesses in LL(k2) + locate accesses in AR(k1)
=(avg,y — 1D +1
= av8p2
insert —
k2
(1) Ifan LL(k2)element exists (probability = ‘”2’%2 = 227‘”2),
= locate accesses in LL(k2) + insert accesses in
AR(k1)
=avg, —1+1
= av8p2
(2) If not

= Accesses to check that no LL(k2) element exists +
insert accesses in LL(k2) + insert accesses in AR(k1)
= avgyy (1 read key + 1 read next) + 2 + 1

= 2avgyy + 3
2
— Total = 22822 (1 — 8i2)(2avg,, + 3)
erase — locate accesses in LL(k2) + erase accesses in AR(k1)
=avgpy —1+1
= av8ro

is_empty _key —
(1) Ifsizep, < sizepo,
= is_empty_key accesses in LL(k2)

size,
= Q. + —
Ek2 Sizes

(2) If size, > sizeys,
= locate accesses in LL(k2) + is_empty _key(k2) ac-
cesses in AR(k1) ' _
= (augyy — 1) + 2512€n-size,+sizen—1

= avgy, — 1 + (9S1ze,—size;—1)

get_destination — 1 read record

iterate —
(1) Ifsize, < sizeps,
= iterate accesses in LL(k2) + for each element with
correct £, complete_iterate accesses in AR(k1)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

complete_iterate

System-Level Exploration . 133

= 2avg;,y + for each element with correct %, gsizen 4

QU8 rec
avg,
— avg, sizekl QU8 rec
= 2(1ng2 + avg, 2 + avg,

(2) If size, > sizeys,
= locate accesses in LL(k2) + iterate(k2) accesses in

AR(k1) . . .
= (avgyy — 1) + 2512€n—Size,+size;s 4 %
=avgyy — 1+ 28izegkfsizek + %

— complete_iterate accesses in LL(k2) + for each ele-
ment, complete_iterate accesses in AR(k1)

= QU8 + avngZSLZek1 + QU8 .

A.2.5. PA(R2)LL(k1) implementation

locate

insert

erase

is_empty key

— locate accesses in PA(k2) + locate accesses in LL(k1)
=1+ (avgy; — 1

= aU8p1

=

k2
(1) If a PA(k2) element exists (probability = Y552 = 27),
= locate accesses in PA(k2) + insert accesses in
LL(k1)
=1+2
=3
(2) If not,
= Accesses to check that no PA(k2) element exists + 1
write pointer in PA(k2) + insert accesses in LL(k1)
=14+1+4+2
=4
— Total = 39812 4 4(1 — WEw)
—4-%En

k2

— locate accesses in PA(k2) + erase accesses in LL(k1)
=1+avg,; +1
=avg,; +2
N
(1) Ifsize, < sizeps,
= is_empty key accesses in PA(k2)
— 98iZe;s—-Size;—1
(2) If size, > sizeyo,
= locate accesses in PA(k2) + is_empty _key(k2) ac-

cesses in LL(k1)
QaU8 .. Size,—size
=1 + rec k k2 _]
avg,, sizey,
size,—Size,
size,avg,,

=1+ QU8 ec

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

134 o Ch. Ykman-Couvreur et al.

get_destination — 1 read record

iterate

complete_iterate

—

(1) Ifsize, < sizeys,
= iterate accesses in PA(k2) + for each element with
correct £, complete_iterate accesses in LL(k1)

= 281%€n-Slzér | for each element with correct &,
avgrec

av8rik2 + avg,

__ osize,-size, | AUS, AU8rec
=2 + avg, avgkllkZ + avg,

(2) If size, > sizepo,
= locate accesses in PA(k2) + iterate(k2) accesses in
LL(k1)

=1 + 2avgk1‘k2 + QU8 rec

avg,
— complete_iterate accesses in PA(k2) + for each non
null pointer, complete_iterate accesses in LL(k1)

__oSiZeyy | AU8rec __ oSize. QAU8rec
=2 + avg.s (2avgype) = 2 + 208 aV8k1 ke

A.2.6. PA(R2)PA(k1) implementation

locate

insert

erase

is_empty_key

— locate accesses in PA(k2) + locate accesses in PA(k1)
—1+1
=2

—

k2
(1) If a PA(k2) element exists (probability = Y052 = 27)),
= locate accesses in PA(k2) + insert accesses in
PA(k1)
=1+2
=3
(2) Ifnot,
= Accesses to check that no PA(k2) element exists + 1
write pointer in PA(k2) + insert accesses in PA(k1)
=1+1+4+2
=4

— Total = 39582 1 4(1 — Y8w)

—4— avg,,
= k2
— locate accesses in PA(k2) + erase accesses in PA(k1)
=1+1
=2
—>
(1) Ifsize, < sizeps,
= is_empty_key accesses in PA(k2)
— 9Size,-size,—1
(2) Ifsize, > sizeps,
= locate accesses in PA(k2) + is_empty key(k2)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 135

accesses in PA(k1)
_ 1 4 9SiZen-Size,+Size,—1 _ 1 4 9Sizey—size,-1

get_destination — 1 read record

iterate

complete_iterate

—
(1) If size, < sizepo,
= iterate accesses in PA(k2) + for each element with
correct £, complete_iterate accesses in PA(k1)
= 2sizera—sizer | for each element with correct k&, 25%%¢ +

av8rec
avg,

; —si avg ; avg
— Osizepy—Sizey, k2 ©Sizep1 rec
=2 + avg, 2 + avg,

(2) If size, > sizeps,
= locate accesses in PA(k2) + iterate(k2) accesses in
PA(R1) ' ' avg
=1 + 2stzek1—szzek+stzek2 + avgric
=14+ 9sizes, —sizey, + a:l}gric

— complete_iterate accesses in PA(k2) + for each non

null pointer, complete_iterate accesses in PA(k1)

 osi avg ; avg

— 2Slzek2 + avg!:; * ZSLZEkl + avngC

A.2.7. PA(R2)AR(k1) implementation

locate

insert

erase

is_empty key

— locate accesses in PA(k2) + locate accesses in AR(k1)
=1+1

=2

N

k2
(1) If a PA(k2) element exists (probability = a;’ﬁkz = 22%),
= locate accesses in PA(k2) + insert accesses in
AR(k1)
=1+1
=2
(2) If not,
= Accesses to check that no PA(k2) element exists + 1
write pointer in PA(k2) + insert accesses in AR(k1)
=1+1+1
=3
— Total = 2982 4 3(1 — X8w)

242
avg,
— 3 ot 2

— locate accesses in PA(k2) + erase accesses in AR(k1)
=1+1
=2
N
(1) Ifsize, < sizeps,
= is_empty key accesses in PA(k2)

— 2sizek2 —sizep—1

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

136 .

iterate

complete _iterate

Ch. Ykman-Couvreur et al.

(2) Ifsize, > sizeps,

—

= locate accesses in PA(k2) + is_empty key(k2) ac-
cesses in AR (k1)

=14+ 2Si28k1*8i26k+8i28k2*1 =14+ 23izeskfsizek71

(1) If size;, < sizepo,

= iterate accesses in PA(k2) + for each element with
correct £, complete_iterate accesses in AR(k1)
= 2szein—sizex | for each element with correct &, 25%¢1
avgrec
avg,
rens—si av iz avg,
— 9Qsizera—sizer 4 av%k: Qsizep1 4 al«)géic

(2) If sizep, > sizeps,

= locate accesses in PA(k2) + iterate(k — k2) accesses
in AR(k1)

_ sizep1—sizey, +Sizeps QU8 rec

=1+2 + g
120 —Si avg,

— sizesy, —sizey, rec

=1+2 + o

— complete_iterate accesses in PA(k2) + for each non

null pointer, complete_iterate accesses in AR(k1)
 osi avg ; avg
f— 2SLZ€k2 + avg{:‘; 2Sl28k1 + avg’"ic

A.3. r-Layer Implementations

In the following, we assume that r > 3, and I(r — 1) denotes a (r-1)-layer
implementation.

A3.1.

locate

insert

LL(kr)I(r — 1) implementation with L(kr — 1) being LL

— locate accesses in LL(kr) + 1 read pointer in LL(kr) +
locate accesses in I(r — 1)

=avg,, — 1+ 1 + locate accesses in I(r — 1)

= avg;, + locate accesses in I(r — 1)

—

(1) If an LL(kr) element exists (probability = 455k,

= locate accesses in LL(kr) + 1 read pointer in LL(kr)
+ insert accesses in I(r — 1)

=avg,, — 1+ 1 + insert accesses in I(r — 1)

= avg;, + insert accesses in I(r — 1)

(2) Ifnot,

= Accesses to check that no LL(kr) element exists +
insert accesses in LL(kr) + insert accesses in I(r — 1)
=avg,, (lread key + 1 read next) + 2 + insert accesses
nlIr-1)
= 2avgy,, + 2 + insert accesses in I(r — 1)
avg,,
2 r

— Total = =2 (avg,, + insert accesses in I(r — 1))
+(1- %‘g;i) (2avg;,, + 2 + insert accesses in I(r — 1))

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

erase

is_empty key

get_destination
iterate

complete_iterate

System-Level Exploration . 137

— locate accesses in LL(kr) + 1 read pointer in LL(kr) +
erase accesses in I(r — 1)
= avg,, —1 +1+4 erase accesses in I(r — 1)
= avg;, + erase accesses in I(r — 1)
N
(1) If size, < sizep,,
= is_empty key accesses in LL(kr)

size,
= Q. —_—
82 size,,

(2) Ifsize, > sizep,,
= locate accesses in LL(kr) + 1 read pointer in LL(kr)
+ is_empty key(k — kr) accessesin I(r — 1)
= (avg,, — 1) +1+ is_empty key(k — kr) accesses in
Ir-1)
= augy, + is_.empty key(k — kr) accessesin I(r — 1)
— 1 read record
—
(1) If size, < sizep,,
= iterate accesses in LL(kr) + for each element with
correct &, 1 read pointer + complete_iterate accesses

inlI@r-1)
= 2avgy, + Z%%f (1 + complete_iterate accesses in
Ir —1))

(2) If size, > sizey,,
= locate in LL(kr) + 1 read pointer in LL(kr) +
iterate(k — kr) accessesin I(r — 1)
= (avg;, — 1) +1+ iterate(k — kr) accesses in I(r — 1)
= aquvgy, + iterate(k — kr) accesses in I(r — 1)

— complete_iterate accesses in LL(kr) + for each ele-
ment, complete_iterate accesses in I(r — 1)
= 2avg;, + avgy, *complete_iterate accesses in I(r — 1)

A.3.2. LL(kr)I(r — 1) implementation with L(kr — 1) not being LL

locate

insert

— locate accesses in LL(kr) + locate accesses in I(r — 1)

= avg;, — 1 + locate accesses in I(r — 1)

N

(1) If an LL(kr) element exists (probability = 4584),
=locate accessesin LL(kr) + insert accessesin I (r—1)
= avgy, — 1 + insert accesses in I(r — 1)

(2) If not,
= Accesses to check that no LL(kr) element exists +
insert accesses in LL(kr) + insert accesses in I(r — 1)
=avg;, (1read key + 1 read next) + 2 + insert accesses
mnIr-1)
= 2avg;, + 2 + insert accesses in I(r — 1)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

138 o Ch. Ykman-Couvreur et al.

erase

is_empty key

get_destination
iterate

complete _iterate

— Total = agg’” (avgy, — 1 + insert accesses in I(r — 1)) +
(1 _ avgkr

=) (2avg;,, +2 + insert accesses in I(r — 1))

— locate accesses in LL(kr) + erase accessesin I(r — 1)
= avg,, — 1 + erase accesses in I(r — 1)

—

(1) If size, < sizeg,,
= is_empty key accesses in LL(kr)

(2) Ifsize, > sizep,,
= locate accesses in LL(kr) + is_empty key(k — kr)
accesses in I(r — 1)
= (avgy, — 1) + is_empty key((k —kr)) accessesin I (r —
1)

— 1 read record
—

(1) Ifsize, < sizep,,
= iterate accesses in LL(kr) + for each element with
correct £, complete_iterate accesses in I(r — 1)

=2avgy,+ av%z * complete_iterate accessesin I(r—1)

(2) Ifsize, > sizep,,
=locate accessesin LL(kr) + iterate(k —kr)inI(r —1)
= (avg;, — 1) +iterate(k — kr) accesses in I(r — 1)

— complete_iterate accesses in LL(kr) + for each ele-
ment, complete_iterate accesses in I(r — 1)
= 2avg;,+avg;, *complete_iterate accesses in I(r — 1)

A.3.3. PA(kr)I(r — 1) implementation

locate

insert

— locate accesses in PA(kr) + locate accesses in I(r — 1)
=1 + locate accessesin I(r — 1)

—

(1) If a PA(kr) element exists (probability = 2§k'),
=locate accesses in PA(kr) + insert accessesin I(r—1)
=1 + insert accesses in I(r — 1)

(2) If not,
= Accesses to check that no PA(kr) element exists + 1
write pointer in PA(kr) + insert accesses in I(r — 1)
=1+ 1+ insert accesses in I(r — 1)
= 2 + insert accesses in I(r — 1)

— Total = agg’" (1+insertaccessesin I(r—1))+(1— ‘“2’§kr)

(2 + insert accesses in I(r — 1))

=1+ insert accessesin I(r — 1) + (1 — %

avg,,

T ok

= 2 + insert accessesin I(r — 1) —

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

System-Level Exploration . 139

erase — locate accesses in PA(kr) + erase accesses in I(r — 1)
=1 + erase accesses in I(r — 1)
is_empty key —
(1) If size, < sizep,,
= is_empty key accesses in PA(kr)
— 9Size,—size,-1
(2) If size, > sizey,,
= locate accesses in PA(kr) + is_empty key(k — kr)
accessesin I(r — 1)
=1+ is_empty key(k — kr) accesses in I(r — 1)
get_destination — 1 read record
iterate —
(1) Ifsize, < sizep,,
= iterate accesses in PA(kr) + for each element with
correct £, complete _iterate accessesin I(r — 1)

ze. —si av . .
= 25l —Size; 4 ng’” * complete_iterate accesses in
k
Ir-1)

(2) If size, > sizey,,
= locate accesses in PA(kr) + iterate(k — kr) accesses
inlI(r—1)
=1 + iterate(k — kr) accesses in I(r — 1)

complete_iterate — complete_iterate accesses in PA(kr) + for each ele-
ment, complete_iterate accesses in I(r — 1)

— gsizew | avg,,*complete_iterate accesses in I(r — 1)

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of all their colleagues
involved in the project from Lucent Technologies, Hyperstone electronics,
IMEC, National Technical University of Athens and Ellemedia Technologies.

REFERENCES

Amno, A., HopcrorT, dJ., AND ULLMAN, J. 1983. Data Structures and Algorithms, Addison-Wesley,
Reading, MA.

Boupkc, J. L. 1992. The asynchronous transfer mode: A tutorial. Comput. Networks and ISDN
Systems 24, 279-309.

CATTHOOR, F., FRANSSEN, F., WUYTACK, S., NACHTERGAELE, L., AND MaN, H. D. 1994. Global commu-
nication and memory optimizing transformations for low power signal processing systems. In
VLSI Signal Processing, vol. 7, IEEE Press, New York, 178-187.

CATTHOOR, F., WUYTACK, S., GREEF, E. D., BaLAsA, F., NACHTERGAELE, L., AND VANDECAPPELLE, A. 1998.
Custom Memory Management Methodology—Exploration of Memory Organisation for Embedded
Multimedia System Design, Kluwer, Boston.

CLARK, D., JAcOBSON, V., ROMKEY, J., AND SALWEN, H. 1989. An analysis of TCP processing overhead.
IEEE Communications Magazine (June 1989), 23-29.

DA SILVA JR., J., YKMAN-COUVREUR, C., MIRANDA, M., CroES, K., WUYTACK, S., DE JONG, G., CATTHOOR,
F.,, Verkest, D., Six, P., anD Man, H. D. 1998. Efficient system exploration and synthesis of
applications with dynamic data storage and intensive data transfer. In Proceedings of the Design
Automation Conference.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

140 o Ch. Ykman-Couvreur et al.

ELLERVEE, P., MIRANDA, M., CATTHOOR, F., AND HEMANT, A. 1999. Exploiting data transfer locality in
memory mapping. In Proceedings of the EUROMICRO, 14-21.

Heppes, M. 1995. A hardware/software codesign strategy for the implementation of high-speed
protocols. Ph.D. thesis, Technische Universiteit Eindhoven.

Hewmani, A., Lazraq, T., PostuLa, A., SvanTEssoN, B., anp TENHUNEN, H. 1995. Design of operation
and maintenance part of the ATM protocol. Journal on Communications, Special Issue on ATM
networks. Hungarian Scientific Society for Telecommunications.

Horn, W. 1998. Modelling of an ATM multiplexer in a network terminal for a mixed hard-
ware/firmware implementation. M.S. thesis, ESDLab/KTH, Royal Institute of Technology, Kista,
Sweden.

Lanpman, P. aND RaBAEY, J. 1994. Black-box capacitance models for architectural power analysis.
In Proceedings of the International Workshop on Low Power Design, 165-170.

MataWorks. http:/www.mathworks.com.

MEeLEIs, H. AND SERPANOS, D. 1992. Designing communication subsystems for high-speed networks.
IEEE Network (July 1992), 40—46.

MEenNg, T., Gorpon, B., TsErN, E., aND Hung, A. 1995. Portable video-on-demand in wireless com-
munication. [EEE Proceedings, Special Issue on Low Power Electronics 83, 4, 659-680.

PartERSON, D., ANDERSON, T., CARDWELL, N., FrRoMM, R., KeeTON, K., KozyRrAKIS, C., THOMAS, R., AND
Yerick, K. 1997. Intelligent RAM (IRAM): Chips that remember and compute. In Proceedings
of the International Conference on Solid-State Circuits, 224—-225.

ScHULER, C. AND MATEESCU, M. 1999. Performance evaluation of ARQ protocols for realtime ser-
vices in IEEE 802.11 and wireless ATM. In Proceedings of the ACTS Mobile Communications
Summit. Sorrento, Italy.

STMICROELECTRONICS. http://us.st.com/stonline.

THERASSE, Y., PETIT, G., AND DELvAUX, M. 1993. VLSI architecture of a SDMS/ATM router. Ann.
Telecommunications 48, 3—4.

Trwart, V., MaLIK, S., WoLFE, A., AND LEg, M. 1996. Instruction-level power analysis and optimiza-
tion of software. J. VLSI Signal Process. 13, 223-238.

VERKEST, D., DA Stiva JR., J., YrMAN, C., CroEs, K., MiranDA, M., WUYTACK, S., DE JONG, G., CATTHOOR,
F.,, anp Man, H. D. 1999. Matisse: A system-on-chip design methodology emphasizing dynamic
memory management. J. VLSI Signal Process. 21, 3, 277-291.

Wartson, R. AND MAMRAK, S. 1987. Gaining efficiency in transport services by appropriate design
and implementation choices. ACM Trans. Comput. Syst. 5, 2, 97-120.

WUYTACK, S., CATTHOOR, F., FRANSSEN, F., NACHTERGAELE, L., AND MaN, H. D. 1994. Global commu-
nication and memory optimizing transformations for low power systems. In Proceedings of the
International Workshop on Low Power Design, 203—208.

WUvYTACK, S., CATTHOOR, F., AND MaN, H. D. 1996. Transforming set data types to power optimal
data structures. IEEE Trans. Computer-Aided Design 15, 6, 619—628.

WUYTACK, S., DA S1ivA JR., J., CATTHOOR, F., DE JoNG, G., AND YKMAN, C. 1999. Memory management
for embedded network applications. IEEE Trans. Computer-Aided Design 18, 5, 533-544.

YxMAN-COUVREUR, C., LAMBRECHT, J., VAN DER ToGT, A., AND CATTHOOR. 2002. Multi-objective abstract
data type refinement for mapping tables in telecom network applications. In ACM SIGPLAN
Workshop on Memory System Performance. Berlin, Germany.

Y&MAN-COUVREUR, C., LAMBRECHT, J., VERKEST, D., SVANTESSON, B., KUMAR, S., HEMANI, A., AND WOLF, F.
1999. System exploration and synthesis from SDL of telecom network components. In Proceed-
ings of the EMMSEC, 792-798.

Received January 2002; revised June 2002; accepted July 2002

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, November 2002.

