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Abstract—Historically compiler optimizations have been used
mainly for improving embedded systems performance. However,
for a wide range of today’s power restricted, battery oper-
ated embedded devices, power consumption becomes a crucial
problem that is addressed by modern compilers. Biomedical
implants are one good example of such embedded systems. In
addition to power, such devices need to also satisfy high reliability
levels. Therefore, performance, power and reliability optimiza-
tions should all be considered while designing and programming
implantable systems. Various software optimizations, e.g., during
compilation, can provide the necessary means to achieve this
goal. Additionally the system can be configured to trade-off
between the above three factors based on the specific application
requirements. In this paper we categorize previous works on
compiler optimizations for low power and fault tolerance. Our
study considers differences in instruction count and memory
overhead, fault coverage and hardware modifications. Finally,
the compatibility of different methods from both optimization
classes is assessed. Five compatible pairs that can be combined
with few or no limitations have been identified.
Keywords- compiler optimization, low power, fault toler-
ance.

I. INTRODUCTION

Microprocessors are used in an expanding range of appli-
cations, and the requirements for the hardware and software
components are changing continuously. Biomedical implants
are an interesting instance of such systems. Due to the im-
portance of their application, reliability is the most significant
design issue. Moreover, the limited battery capacities of such
devices, make power consumption another important factor,
while computational performance remains a valid concern.

Traditional hardware techniques for reliability optimization,
performance improvements and power reduction usually con-
flict with each other: one factor may have negative impact on
the remaining two. In fields with multiple design constraints
such as biomedical implants aiming at reliability, low power
and performance at the same time, the deployment of such
techniques is not straightforward.

The advantage of software solutions over hardware ones is
the portability to different hardware platforms without requir-
ing significant (or any) hardware modifications. Furthermore,
by using software optimizations, the instruction flow at run-
time can be adjusted to achieve a desirable trade-off between
reliability, power and performance based on dynamic applica-
tion needs. However, at the software level, not all optimization
methods are fully compatible. The compatibility between

compiler-optimization techniques for low power and reliability
depends on criteria such as performance and memory over-
heads. The goal of this paper is to highlight the compatibility
of reliability- and power-optimization techniques. In a nutshell,
the contributions of this work are:

• Categorising reliability-related optimizations based on the
targeted errors, level of abstraction and checking method;

• Categorising optimization methods for power reduction
based on power-consumption sources;

• Analysis and quantitative comparison of each technique
in terms of performance (instruction count) overhead,
memory overhead and hardware modifications;

• Proposing hybrid optimizations for power reduction and
reliability based on the results of this analysis.

The rest of the paper is organized as follows: Section II
introduces reliability-optimization schemes for hardening the
program execution against transient hardware faults. The
methods for optimizing power consumption are explained in
Section III while Section IV discusses the compatible and
contradictory methods between reliability and power opti-
mizations and Section V concludes the paper and discusses
promising directions for future research.

II. RELIABILITY OPTIMIZATIONS

Reliability of embedded processors is threatened by perma-
nent and transient faults. End-of-production testing is used to
detect permanent faults, while run-time testing is required to
cope with transient faults. In this paper, transient faults are
targeted and Single-Event Upset (SEU) used as fault model.
The consequence of SEUs can be two error types in the
executing program; Data errors and Control-flow errors. The
consequence of data errors is storage of erroneous data in the
memory or a register, while the consequence of control-flow
errors is a change in the correct order of program-execution
flow [1]. Related work on reliability optimization targeting one
of the two or both types of errors hereafter are explained and
are analyzed in Table II.

A. Control-flow checking

Software control-flow checking ensures the correct
program-execution order. These methods use signature
monitoring (SM) schemes.

Definitions: In SM methods, two notions are used; program
Basic Blocks (BB) and Control-Flow Graphs (CFG).
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Fig. 1: Different targeted error types in signature monitoring.

Basic blocks: are branch-free sections of the program [2];
a set of consequent instructions or statements where only the
last instruction (statement) can be a branch, and only the first
instruction (statement) can be a branch destination.

CFG: of a program represents the correct order of basic-
block execution. In the CFG, each node corresponds to a BB
and an edge between two nodes denotes a jump from one BB
to another. SM methods check BBs execution order using the
program’s CFG.

Targeted errors: There are four error types affecting the
program control flow as depicted in Figure 1. Type (1) includes
errors which cause skipping the initial part of a block. In type
(2) faults, the epilogue section of a BB is omitted. Faults of
type (3) cause erroneous jumps from one BB to an illegal BB.
Faults affecting the conditional-branch argument are of type
(4). These type of faults cause faulty branches1.

Signature monitoring methods: The basic idea of SM
techniques is to have a static signature for each BB and only
one global dynamic or Run-time Signature (RS). The content
of the static signatures is defined before run-time (at compile
time), while the dynamic signature is calculated at run-time
whenever the program execution reaches to a new BB in the
CFG. By comparing the two signatures after each control-
flow transfer, the correct run-time execution order of BBs
is checked. RS can be calculated by a dedicated hardware
(e.g., a watchdog processor) or by software (e.g., compiler
or a watchdog task). Compiler-assisted version embeds ded-
icated functions for RS calculation in predefined points of
the BB, the so-called Signature-Generating Function (SGF).
After updating the RS, a function called Signature-Monitoring
Function (SMF) checks the consistency between the current
BB signature and the RS. Depending on the SGF and SMF,
some methods require storage of static parameters for each
BB at compile time holding information about successors or
predecessors of each BB. These parameters affect the memory
and performance overheads.

Well-known, previously proposed SM methods with the
selected SGFs, SMFs and the corresponding static parameters
are presented in Table I. The static signature of the current BB
is denoted by “i“ (Si). Predecessors signatures are denoted by
“pre1“ or “pre2“ (e.g., Spre1); and successors signatures are
denoted by “nxt1“ or “nxt2“ subscripts (e.g., Snxt1). Static
parameters stored at compile time are indicated with “P“.
Static parameters may belong locally to a BB. In this case, they

1They exist in the CFG, but the wrong edge is taken due to a faulty
conditional argument.

are also denoted by an “i“ subscript (Pi). Static parameters that
are global do not have an “i“ subscript (e.g., P2 in CFCSS [2]).

B. Data-value-checking

Two types of methods are proposed for checking data errors;
data-duplication-with-comparison and executable assertions.

Targeted errors: Data-value errors affect the system in
three ways; (a) Erroneous data stored in memory or registers;
(b) Erroneous instruction execution due to change of opcode;
(c) Errors in conditional branches due to faulty data value of
the condition argument. This data-value error causes type(4)
control-flow errors (Figure 1(d)).

1) Data-duplication-with-comparison: The basic idea of
these methods is to save a duplicate version of the original data
at compile time, called shadow [8], and to compare the origi-
nal and shadow versions at run-time in critical points. Critical
points are places where the program output is written to the
memory or the execution flow of the program is determined.
Thus, three points in the program to insert comparisons are:
Before ”store” instructions; before ”branch” instructions and
before system calls (external libraries). Well-known methods
proposed in this category are EDDI [8] at instruction level and
( [9] and [6]) at source-code level.

2) Executable assertions: By adding extra statements to
the program, the validity of specific constraints is tested. The
added statements for testing are called executable assertions.
An example is to check outputs and state variables with exe-
cutable assertions [10]. Compile time assertions with AND/OR
operatots proposed in [11] mask errors and protect variables
with statically known values.

C. Data and control-flow checking

The methods targeting both data and control-flow errors are
either using Error-Capturing Instructions (ECI) or combine
data-value and control-flow checking as a hybrid technique.

1) Error-capturing instructions (ECI): ECIs are special
instructions residing in memory locations which are not reach-
able during normal program execution. Targeted control-flow
errors by ECIs are errors causing execution to diverge tem-
porarily/permanently from the correct execution and targeted
data errors, are the ones causing a read/write to a wrong
location of the memory. ECIs proposed in [7] are of two
types: A software-interrupt instruction or a branch instruction
forming an infinite-loop along with a watchdog timer.

2) Hybrid fault-detection: detects both data and control-
flow errors, [12], [13] and [6]. Hardware support can also
be used to reduce the performance overhead and code size
by reducing the amount of data duplication ( [12] and [13]).
SWIFT [12], combines a modified version of EDDI [8] for
data-error checking and a modified version of CFCSS [2] for
control-flow checking. This method protects memory elements
by ECC and parity bits, thus the need for duplicating “store“

2Pi contains the signatures product of all legal successors of the BB.
3P3i contains the signatures product of all legal predecessors of the BB.



SM METHODS SGF SMF ADDITIONAL STATIC PARAMETERS
CFCSS [2] RS = RS ⊕ P1i ifRS! = Si br error P1i = Si ⊕ Spre1

RS = (RS ⊕ P1i)⊕ P2 P2 =

{
0000 in predecessor 1
Spre1 ⊕ Spre2 in predecessor 2

ECCA [3] RS = Pi + (RS − Si) RS = Si

RS%Si·(RS%2)
Pi =

∏
Snxt

2

YACCA [4] RS = (RS & P1i)⊕ P2i If (P3i%RS) error () P1i = Spre1⊕̄Spre2

P2i = Spre1 & (Spre1⊕̄Spre2)⊕ Si

P3i =
∏

Spre
3

CCA [5] setRS1 = S1i dequeueRS2

enqueueS2i ifRS1! = S1i error() not required
ifRS2! = S2i error()

[6] setRS = Si ifRS! = Si error() not required
ACFC [1] RS = RS ⊕MASK ifRS! = CONSTANT error() not required

BSSC [7](SM part) call entry routine call exit routine not required

TABLE I: SGFs, SMFs and additional static parameters of SM methods for RS generation

METHODS OVERHEADS DETECTED FAULTS
memory (bytes) inst. count

CFCSS [2] 2.5 22 CF(1,3)
ECCA [3] 3.5 76 CF(1,2,3)

YACCA [4] 4.5 48 CF(2,3)
CCA [5] 2 216 CF(1,2,3)

Rebaudengo [6] 28 51 data & CF(1,4)
ACFC [1] 0 7 CF(1,3)
EDDI [8] 28 33 data & CF(4)

SWIFT [12] 2 76 data & CF(1,2,3)
Rebaudengo [9] 20 35 data & CF(4)
ECI&BSSC [7] - - CF(1,2,3,4) & data

TABLE II: Analysis of reliability optimization methods

instructions is eliminated. By having CFCSS for control-
flow checks, the duplicated branch instructions are also not
necessary. Moreover, SMFs for control-flow checking are
applied only in BBs with “stores“.

D. Analysis of reliability optimizations

Table II depicts the overheads and fault coverage of the re-
lated works presented in Section II. Without loss of generality,
we have used a PowerPC (PPC405) as our target architecture
when calculating the overheads.

1) Signature-monitoring overhead analysis: In Table II the
memory and instruction-count overhead of applying different
SM methods are estimated for the code presented in Fig-
ure 2(a). The equivalent assembly code of this snippet has
4 BBs, thus the calculated instruction count and memory
overhead for each BB is multiplied by 4. The memory
overhead of signature-monitoring schemes is estimated based
on the number of bits required to store the static signatures
and parameters4. Instruction-count overhead is calculated by
counting the corresponding instructions to SGF/SMF.

2) Data-value check overhead analysis: For estimat-
ing instruction-count overhead of data-duplication-with-
comparison methods at instruction level, the code in the Figure
is compiled to PPC405 instructions and the method is applied
to the obtained instructions, and finally, added instructions are
counted. Figure 2(b) is the optimized code at source-code
level using the method in [9]. This code is also compiled
for PPC405 and the total number of extra instructions are
calculated. Memory overhead is estimated by counting the

4The details over all calculations can be obtained from [14].

int main(int x)

{ int c=3;

      if (x== 5)

             x= c+2;

      else

             x= c-2;

      c= x;}

int main(int x0, int x1)

{ int c0=3;       int c1=3;

     if(x0==5)

        if(x0 != x1)      error();

        x0= c0+2;       x1= c1+2;

        if(c0 != c1)      error();

     else

        x0= c0 - 2;      x1= c1 - 2;

        if(c0 != c1)      error();

        c0= x0;           c1= x1;

        if(x0 != x1)      error();

return 0;}

     

(a) (b)

Fig. 2: (a) Source code, (b) Modified code based on [9]

total number of “store“ instructions. The reason for counting
“store“ is that with each shadow “store“ instruction an extra
memory location is required.

III. POWER CONSUMPTION OPTIMIZATIONS

Dynamic power consumption in CMOS circuits is the major
source of power dissipation (given by: Pdyn = α ·C · V 2 · f )
[15]. The total energy consumption in a system is the product
of the consumed power and the execution time (t) [16];
(Edyn = Pdyn · t = Pdyn · N · T ). N is the number of clock
cycles that the device is operating and T is the clock period.
Thus the dynamic energy consumption is calculated as:

Edyn = α · C · V 2 ·N , (T = 1/f) (1)

This formula shows the total energy can be reduced in three
ways; reduction of the transition density (α); reduction of the
operating voltage (V) and reduction of the number of cycles
the device is operating (N). A figure of merit describing the
density of bit transitions in a processor executing a consecutive
set of instructions is the Hamming distance.

Based on measurements performed in [16], three sub-
systems are identified as the main sources of power consump-
tion in the system: (1) Bus lines driving the off-chip storage
elements; (2) Processing units and (3) Pipeline latches.

In the rest of this section, related work is organized in two
main categories; the ones requiring special hardware support
(or modification) and the ones that are independent of the
underlying hardware. At the end of the section, Table III shows
the targeted source of power consumption and the targeted
factor to minimize (in formula 1) in each related work.



A. Hardware-dependent

1) Coding: Transmitted data on the buses can be coded
in order to decrease bus-lines transitions. Gray coding is a
well-known coding for which the Hamming distance between
two consequent codes is constant and always equals one. It
can be used to address the instructions in the memory since
instructions in the memory are most of the time contiguous and
the execution of programs is sequential. To use Gray-coding
for addressing, memory should have Decimal to Gray-code
decoder and encoder.

2) Sub-system shut-down: In order to decrease the number
of active clock cycles of the processor or memory (N factor in
equation 1), some compiler methods partially shut down idle
parts of the module ( [17] and [18]). However, this scheme is
useful only when the corresponding parts are idle for a long
period. There is a need for executing look-ahead algorithms
at compile time to predict the periods in which the processing
units or memory are active.

3) Dynamic Voltage Scheduling: schedules instruction exe-
cution while the operating voltage (V) is changed in Variable-
Voltage Processors (VVP). In VVPs the voltage level can be
tuned to high for high performance and to low for idle periods.
The main challenge is to find a scheduling algorithm without
significant performance overhead. In order to schedule the
tasks, the Worst-Case-Execution-Time is considered. But in
real execution, the tasks are executed faster and the slack time
should be divided between other tasks, [19] and [20].

B. Hardware independent

1) Increasing locality: Proper mapping of data into the
memory reduces the accesses to the external memory and bus
transitions. An example of re-mapping data in the memory
is interleaving array elements of multiple arrays into a single
array, [21]. Mapping two arrays A and B to D is shown below:

For(i = 1, i ≤ N, i++)
C[i] = A[i] +B[i];

=⇒ For(i = 1, i ≤ N, i++)
C[i] = D[2i− 1] +D[2i];

The result is clustered data storage in the memory which is also
useful in partial shut-down of inactive parts of the memory.
Increasing locality is also possible by making the loops linear.
Techniques for making the loops linear are: (1) loop unrolling;
(2) loop fusion and (3) loop fission [22].

2) Scheduling: Instruction re-scheduling performed by the
compiler changes the order of instruction execution. Data-
(DDG) and control-dependency graphs (CDG) of the ap-
plication source code have data and instructions as nodes,
respectively. By using the information in the graphs, the
scheduler reorders the instructions to reduce the Hamming
distance. The scheduling introduced in [23] is dealing with
VLIW instructions.

C. Analysis of Power-Optimizations

Table III compares the presented techniques for power
optimization. Please note that precise results on overheads as
in the earlier case for reliability optimizations, cannot be easily
obtained without implementation of all proposed techniques

METHODS OVERHEAD Power Source Minimized Factor
[24] compile time Bus α
coding
[21] none Bus α
locality increase
[23] performance Processing α
scheduling units and latches
[19] performance Overall V
DVS
[18] performance Overall N
part./compl. shutdown

TABLE III: Analysis of power optimization methods

on the same platform. This is out of the scope of this paper.
However all methods should at least satisfy the constraint of
P (Compiler Optimizations) ≫ P (HW Overheads).

IV. DISCUSSION

Based on the methods characteristics, techniques for power
reduction and fault tolerance can be combined to form new
hybrid optimization methods, some under certain limitations
and some without any limitation.

A. Fully compatible methods:

• Instruction re-scheduling and duplication Added data-
check instructions (shadow and compare instructions) for
reliability optimization can be re-scheduled to reduce
the Hamming distance. However, compare instructions
should be scheduled before critical points of the program,
such as “store“ and “branch“ instructions;

• Loop flattening (unrolling or fusing) and signature
monitoring: SM schemes add extra SGF and SMF, which
has an overhead in terms of power and performance.
Loop-unrolling and -fusing, reduces the number of BBs.
Thus, the overhead of added SGF and SMF will decrease.

B. Compatible methods with limitations:

• Loop-fissing and signature monitoring: In processors
with small cache sizes, loop-fissing divides bigger loops
not fitting in the cache, into smaller loops. However,
by breaking a loop into several smaller loops, additional
SGFs and SMFs are needed in each new loop. If SGFs
and SMFs have memory references, extra SGFs and
SMFs causes extra memory accesses. This issue plus the
execution of SGF and SMF instructions cause an extra
overhead in terms of power consumption;

• Instruction re-scheduling and signature-monitoring
(or executable assertions): Re-scheduling the instruc-
tions for power reduction reorders instruction execution
based on the minimal Hamming distance between the
binary forms of consecutive instructions. Thus, it should
be done when the binary format of the instructions
are known (after the assembler/linker). In signature-
monitoring and also executable-assertion techniques, spe-
cial instructions for run-time execution are added in
specific points of the code. But if these methods and
instruction re-scheduling are implemented on the same
code, the special added instructions may be reordered
by instruction re-scheduling. A possible solution to this



limitation is to apply signature-monitoring (or executable-
assertions) at later phases of compilation (after re-
scheduling). Another solution is to restrict signature-
monitoring instructions, and prohibit the scheduler to
reorder them;

• Partial shut down of memory and ECI (Error-
Capturing-Instruction): In order to detect control-flow
errors, ECIs are placed in un-used memory locations.
However, by shutting-down un-used locations of memory,
[21], ECIs will not be executed. Possible solution for
this issue is to remember memory locations that ECIs
are added and mark them as active memory locations.

V. CONCLUSIONS

In this paper we have surveyed different compiler opti-
mization methodologies for increasing reliability and reducing
system power consumption. The techniques for improving
the reliability were categorized into: signature-monitoring
schemes, error-capturing-instructions, data-redundant meth-
ods and executable assertions. Power optimization methods
were divided into scheduling, coding, increasing locality, sub-
system shut-down and dynamic voltage scaling. Each of the
optimization techniques from both classes was analyzed in
terms of overheads and implementation issues. Furthermore,
we investigated the compatibility of different methods from
both classes. Based on our analysis, two promising com-
binations for embedded systems requiring both power and
reliability optimizations are: instruction re-scheduling with
instruction duplication and loop flattening (unrolling or fusing)
with signature monitoring. These methods can be implemented
in a compiler and do not require additional hardware support.
Three additional pairs have also been identified with certain
limitations: loop-fissing and signature monitoring, instruc-
tion re-scheduling and signature monitoring (or executable-
assertions) and partial shut down of memory and ECI. Future
work involves the implementation a new compiler optimiza-
tion method considering both power and reliability. Our new
method will exploit the above mentioned combinations.
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