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Abstract. The advent of microprocessors in embedded systems has significantly
contributed to the wide-spread utilization of embedded systems in our daily lives.
Such embedded systems can be found in devices ranging from simple controllers
found in power plants to sophisticated multimedia set-top boxes found in our
homes. This is due to the fact that microprocessors, called embedded processors
in this setting, are able to perform huge amounts of data processing required by
embedded systems. In addition and equally important, embedded processors are
able to achieve this at affordable prices. This has resulted in the fact that much
effort must be placed in the design of embedded processors. In the last decade, we
have been witnessing several changes in the embedded processors design fueled
by two conflicting trends. First, the industry is dealing with cut-throat competi-
tion resulting in the need for increasingly faster time-to-market times in order
to cut development costs. At the same time, embedded processors are becoming
more complex due to the migration of increasingly more functionality to a single
embedded processor in order to cut production costs. This has led to the quest
for a flexible and reusable embedded processor which must still achieve high
performance levels. As a result, embedded processors have evolved from simple
microcontrollers to digital signal processors to programmable processors. We
believe that this quest is leading to an embedded processor that comprises a pro-
grammable processor augmented with reconfigurable hardware. In this paper, we
highlight several embedded processors characteristics and discuss how they have
evolved over time when programmability and reconfigurability were introduced
into the embedded processor design. Finally, we describe in-depth one possible
approach that combines both programmability and reconfigurability in an inte-
grated manner by utilizing microcode.

1 Introduction

A technology turning point that made embedded consumer electronics systems an ev-
eryday reality has to be the advent of microprocessors. The technological developments
that allowed single-chip processors (microprocessors) made the embedded systems in-
expensive and flexible. Consequently, microprocessor-based embedded systems have
been introduced into many new application areas. Currently, embedded programmable
microprocessors in one form or another, from8-bit micro-controllers to32-bit digital
signal processors and64-bit RISC processors, are everywhere, in consumer electronic



devices, home appliances, automobiles, network equipment, industrial control systems,
etc. Interestingly, we are utilizing more than several dozens of embedded processors in
our day-to-day lives without actually realizing it. For example, in modern cars such as
the Mercedes S-class or the BMW 7-series, we can find over 60 embedded processors
that control a multitude of functions, e.g., the fuel injection and the anti-lock braking
system (ABS), that guarantee a smooth and foremost safe drive. The employment of
embedded processors appear to grow in an exponential curve. Furthermore, it has been
postulated [22] that the sales trend of embedded processors (microprocessors in this
setting) will significantly outperform the sales of general-purpose PC processors.

In this positional paper, we describe several characteristics of embedded processors
and investigate how these characteristics have changed over time driven by market re-
quirements such as faster time-to-market times and development costs reductions. We
will show that two strategies have been widely used to meet such market requirements,
namely programmability and reconfigurability. Finally, we show a possible future direc-
tion in the embedded processor design that merges both strategies and thereby providing
flexibility in both software and hardware design at the same time.

This paper is organized as follows. Section 2 introduces a general definition of em-
bedded systems, discusses the characteristics of embedded systems that follow from
the definition, and provides an in-depth discussion of traditional embedded processors
characteristics. Section 3 discusses the need for programmability and several examples
of such an approach. Section 4 discusses the use for reconfigurability and discusses
how it affected the embedded processor’s characteristics. Section 5 continues our dis-
cussion by describing what we think is the direction for future embedded processor that
combines programmability and reconfigurability. Furthermore, we show an example of
such an approach called the microcoded reconfigurable MOLEN embedded processor.
Section 6 concludes this paper by stating several key observations in this paper.

2 Traditional Embedded Processor Characteristics

Embedded processors are a specific instance of embedded systems in general and there-
fore adhere to the characteristics of embedded systems. In this section, we provide a
more traditional view on embedded processors by stating their characteristics deduced
from our general definition of embedded systems:

Definition: Embedded systems are (inexpensive) mass-produced elements of a larger
system providing a dedicated, possibly time-constrained, service to that system.

Before we highlight the main characteristics of embedded systems, we would like
to comment on our one sentence definition of them. In most literature, the definition of
embedded systems only states that they provide a dedicated service – the nature of the
service is not relevant in this context – to a larger (embedding) system. However, we be-
lieve that all the issues related to the specification and design of embedded systems are
very much anchored in the market reality. Consequently, in our opinion when we refer
to embedded systems as mass-produced elements we draw the separation line between
application-specific systems and embedded systems. We are aware that the separation



line is quite thin in the sense that embedded systems are mostly indeed application-
specific systems. However, we believe that low-production application-specific systems
can not be considered as embedded systems, because they represent a niche market
with very different set of requirements. For example, in low-production scenarios cost
is usually not important while it is almost paramount for embedded systems to achieve
low cost. Finally, we include the possibility for time-constrained behavior in our defini-
tion, because even if it is not characteristic to all the embedded systems it constitutes a
particularity of a very large class of them, namely the real-time embedded systems.

The precise requirements of an embedded system is determined by its immediate
environment. However, we still can classify the embedded system requirements in:

– Functional requirements are defined by the services that the embedded system
has to perform for its immediate environment1. Such services usually include data
gathering and some kind of data transformation/processing.

– Temporal requirements are the result of the time-constrained behavior of many
embedded systems thereby introducing deadlines (explained later) for the service(s).

– Dependability requirements relates to the reliability, maintainability, and avail-
ability of the embedded system in question.

In the light of the previously stated embedded systems definition and requirements,
we briefly point out what we think are the main characteristics of more traditional em-
bedded processors and discuss in more detail the implications that these characteristics
have on their specification and design processes. The first and probably the most im-
portant characteristic of embedded processors is that they areapplication-specific2.
Given that the service (or application in processor terms) is known a priori, the em-
bedded processor can be and should be optimized for its targeted application. In other
words, embedded processors are definitely not general-purpose processors which are
designed to perform reasonably for a much wider range of applications. Moreover, the
fact that the application is known beforehand opens the road forhardware/software
co-design, i.e., the cooperative and concurrent design of both hardware and software
components of the processor. It is misleading to think that application-specific proces-
sors can not be programmed, because the signals controlling the processor can be per-
ceived as rudimentary processor instructions, e.g., firmware or microcode [29], which
could be re-arranged thus programmed. The hardware/software co-design style is very
much particular to embedded processors and has the goal of meeting the processor level
objectives by exploiting the synergism of hardware and software.

Another important characteristic of embedded processors is theirstatic structure.
When considering an embedded processor, the end-user has very limited access to soft-
ware programming. The utilized software is provided by the processor integrator and/or
application developer, resides on ROM memories, and is not visible to the end-user. The

1 The immediate environment of an embedded systems can be either other embedded systems
in the larger system or the world in which the larger system is placed.

2 In accordance with our embedded systems definition, embedded processors are mass-produced
application-specific processors. Therefore, we consider graphics processors in game consoles
to be embedded processors. On the other hand, graphics processors intended for military sim-
ulators are not since they are not mass-produced.



end-user can not change nor reprogram the basic operations of the embedded processor,
but he is usually allowed to program a (different) sequence of basic operations.

Embedded processors are essentially non-homogeneous processors and this char-
acteristic is induced by theheterogeneouscharacter of the process within which the
processor is embedded. Designing a typical embedded processor does not only mix
hardware design with software design, but it also mixes design styles within each of
these categories. To put more light on the heterogeneity issue, we depicted in Figure 1
(from [16]) an example signal processing embedded processor. The heterogeneous char-
acter can be seen in many aspects of the embedded processor design as follows:

– both analog and digital sub-processors may be present in the system;
– the hardware may include microprocessors, microcontrollers, digital signal proces-

sors (DSPs), application-specific integrated circuits (ASICs);
– the topology of the system is rather irregular;
– various software modules as well as a multitasking real-time operating system.
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Fig. 1. Signal Processing Embedded Processor Example (from [16]).

Generally speaking, the intrinsic heterogeneity of embedded processors largely con-
tributes to the overall complexity and management difficulties of the design process.
However, one can say that heterogeneity is in the case of embedded processors design a
necessary evil. It provides better design flexibility by providing a wide range of design
options. In addition, it allows each required function to be implemented on the most
adequate platform that is deemed necessary to meet the posed requirements.

Embedded processors are alsomass-producedelements separating them from (low-
production) application-specific processors. This characteristic imposes a different set
of requirements for the embedded processor design, because embedded processor ven-
dors face fierce competition in order to gain more market capitalization. An example re-
quirement involves the cost/performance sensitiveness of embedded processors making
low cost almost always an issue. Other related design issues include: high-production
volume, small time-to-market window, and fast development cycles.

A large number of embedded processors performsreal-time processing introducing
the notion ofdeadlines. Roughly speaking, deadlines can be classified in: hard real-time



deadlines and soft real-time deadlines. Missing hard deadline can be catastrophic while
missing soft deadline only results in some non-fatal glitches. Both types of deadlines
are known a priori much like that the functionality is known beforehand. Therefore,
deadlines determine the minimum level of performance that must be achieved. When
facing hard deadlines, special attention must also be paid to other systems connected to
the embedded processor since they can negatively influence its behavior.

3 The Need for Programmability

In the early nineties, we were witnessing a trend in the embedded processors market
that was reshaping the characteristics of traditional embedded processors as introduced
in Section 2. Driven by market forces, the lengthy embedded processors design cycles
had to be shortened in order to keep up with or stay in front of competitors. In addi-
tion, production and development costs had to be reduced in order to stay competitive.
By highlighting the traditional embedded processors design, we discuss ”large scale”
programmability3 which has been used to address these two issues.

The heterogeneity of the embedded systems demanded a multitude embedded pro-
cessors to be designed for a single system. This was further strengthened by the disabil-
ity of the semiconductor technology at that time to produce large chips. As a result, the
multitude of embedded processors requires lengthy design and verification times, espe-
cially for their interfaces. On the other hand, subsequent design cycles could be signif-
icantly reduced if only a small number of the embedded processors requires redesign.
This delicate balance between long initial design cycles and possibly shortened subse-
quent design cycles was disturbed when advancing semiconductor technology allowed
increasingly more gates to be put on a single chip. Fueled by the need to incorporate
increasingly more functionality into (in order to distinguish yourself from competitors)
and to decrease the cost of embedded systems, the functionalities of embedded proces-
sors were expanded. More complex and larger embedded processors did not decrease
the initial design cycles. However, the subsequent redesign cycles were increased, be-
cause we are dealing with highly optimized circuits meaning that subsequent designs
are not necessarily easier than the initial ones.

In the search for design flexibility in order to decrease design cycles and reduce
subsequent design costs, functions were separated into time-critical functions and non-
time-critical ones. One could say that the embedded processors design paradigm has
shifted from one that is based on the functional requirements to one that is based on
the temporal requirements. The collection of non-’time-critical’ functions could then
be performed on a single chip4. The remaining time-critical function are to be imple-
mented in high-speed circuits achieving maximum performance. The main benefit of
this approach is that the large (possibly slower) chip can be reused in subsequent designs
resulting in shorter design cycles. Moreover, the large chip also exhibits a more general-
purpose behavior and its design becomes more like the design of general-purpose pro-

3 One could argue that programmability has always been part of embedded processors. However,
programmability introduced in this section significantly differs from the limited (low-level)
programmability of traditional embedded processors.

4 Possibly implemented in a slower technology in order to reduce cost.



cessors. The design of general-purpose processors can be divided into three distinct
fields [14]: architecture5, implementation, and realization.

In Section 2, we stated that more traditional embedded processors are application-
specific and static in nature. However, in this section we also stated that increasingly
more functionality is embedded into a single embedded processor. Is such a processor
still application-specific and can we still call such a processor an embedded processor?
The answer to this question is affirmative since such a processor is still embedded if
the other constraints (mass-produced, providing a dedicated service, etc.) are observed.
Given that increasing functionality usually implies more exposure of the processor to
the programmer, embedded processor have become indeed less static as they can now
be reused for other applications areas due to their programmability. In this light, two
scenarios in the design of programmable embedded processors can be distinguished:

– Adapt an existing general-purpose architectureand implement such an archi-
tecture. This scenario reduces development costs albeit such architectures must be
licensed. Furthermore, since such architectures were not adapted to embedded pro-
cessors still some development times is needed to modify such architectures.

– Build a new embedded processor architecturefrom scratch. In this scenario, the
embedded processor development takes longer, but the final architecture is more
tuned towards the specific application the embedded processor is intended for.

Several examples of the first scenarios can be found. A well-known example is the
MIPS architecture [4]. In this case, the architecture has been adapted towards embedded
processors by MIPS Technologies, Inc. which develops the architecture separately from
other embedded systems vendors. Another well-known example is the ARM architec-
ture [1]. It is a RISC architecture that was firstly intended for low-power PCs (1987), but
has been quickly adapted to become an embeddable RISC core (1991). Since then the
ARM architecture has been subject to numerous modifications and/or extensions in or-
der to optimize it for targeted applications. A well-known implementation is the Stron-
gARM core which was jointly developed by then Digital Semiconductor and ARM Ltd.
This core was intended to provide high performance at extreme low-power. The most
current implementation of this core developed by Intel Corp. is called the Intel PCA
Application Processor [3] intended for PDA handhelds. Other example general-purpose
architectures that have been adapted include: IBM PowerPC [2], Sun UltraSPARC [8],
the Motorola 68000/Coldfire [5], and many more. An example of the second scenario is
the Trimedia VLIW architecture [9] from Trimedia technologies, Inc. which was origi-
nally developed by Philips Electronics. Its application area was multimedia processing
and can now be found in many televisions, digital receivers, and other digital video
editing boards. Figure 2 shows a block diagram of the Trimedia TM-1300 processor. It
contains a VLIW processor core that controls the other specialized hardware cores and
performs other functions that do not need real-time performance.

Summarizing, the characteristics mentioned in Section 2 can be easily reflected in
the three processor design stages (architecture, implementation, and realization). The
characteristic of embedded processors being application-specific is exhibited by the

5 The architecture of any computer system is defined to be the conceptual structure and func-
tional behavior as seen by its immediate user.
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Fig. 2. The Trimedia TM-1300.

fact that the architecture only contains those operations that really need support from
the applications set. The static structure characteristic exhibits itself by having a fixed
architecture, a fixed implementation, and a fixed realization. The heterogeneity char-
acteristic exhibits itself by the utilization of programmable processor core with other
specialized hardware units. In addition, a multitude of different functional units exist
on the programmable processor core. The mass-produced characteristic is exhibiting
itself in the realization process by only utilizing proven technology that is therefore
cheap and reliable. The requirement of real-time processing exhibits itself by requiring
architectural support for frequently used operations, extensively parallel (if possible)
implementations, and realization incorporating high-speed components.

Finally, a wide variety of design issues also have their impact on the architecture,
implementation, and realization of an embedded processor. However, due to the vast
variety of design issues, such as cost, performance, cost/performance ratio, high/low
production volume, fast development, and small time-to-market windows, we refrain
ourselves from discussing these issues in the light of architecture, implementation, re-
alization of embedded processors. However, it must be clear that each design issue has
a certain level of impact on the architecture, implementation, and realization of an em-
bedded processor.

4 Early Time Reconfigurability

In the mid-nineties, we were witnessing a second trend in the embedded processors
design that was reshaping the design methodology of embedded processors and conse-
quently redefined some of their characteristics. Previously, in the design of embedded



processors application-specific integrated circuits (ASICs) were still commonplace and
the design of ASICs required lengthy design cycles. It requires several roll-outs of the
embedded processor chips in question in order to test/verify all the functional, temporal,
and dependability requirements. Therefore, design cycles of 18 months or longer were
commonplace rather than exceptions. A careful step towards reducing such lengthy de-
sign cycles is to use reconfigurable hardware, also referred to as fast prototyping. This
allows embedded processor designs to be mapped early on in the design cycle to re-
configurable hardware, in particular field-programmable gate arrays (FPGAs), enabling
early functionality testing and thereby reducing the number of chip roll-outs. However,
such hardware initially were limited in size and therefore only small parts of embedded
processor designs could be tested. Consequently, still roll-out(s) of the complete chip
(implemented in ASICs) were still required in order to test the overall functionality.

In recent years, the reconfigurable technology has progressed in a fast pace and it
has currently arrived at the point that embedded processor designs requiring million(s)
of gates can be implemented on such structures. In addition, the performance gap that
existed between FPGAs and ASICs is rapidly decreasing. This development in tech-
nology has also changed the role of reconfigurable hardware in embedded processors
design. Instead of only serving fast prototyping purposes, embedded processors im-
plemented in reconfigurable hardware are actually being shipped in final products. An
additional benefit of this development is that bugs found in such embedded processors
can be easily rectified resulting in much higher user satisfaction. Furthermore, design
improvements can also be easily incorporated during maintenance sessions. In the fol-
lowing, we revisit the embedded processor characteristics mentioned in Section 2 and
investigate whether they still hold in case embedded processors are build using FPGAs.

application-specific Embedded processors built utilizing reconfigurable hardware
are still application-specific in the sense that the implementations are still targeting such
applications. Utilizing such implementations for other purposes will prove to be very
hard or it will not achieve the required performance levels.

static structure This characteristic has been affected the most by the utilization
of reconfigurable hardware. From a pure technical perspective, the structure of a recon-
figurable embedded processor is not static since its functionality can be changed, either
during maintenance or during operation. However, we have to consider the frequency
of this happening. In most cases, an implementation is chosen for the reconfigurable
embedded processor and it is not changed anymore between maintenance intervals.
Therefore, from the user’s perspective the structure of the embedded processor is still
static. In the next section, we will explore the possibility that the functionality of an
embedded processor needs to be changed even during operation.

heterogeneous This characteristics is still very much present in the case of recon-
figurable embedded processors. We have added an additional technology into the mix
in which embedded processors can be realized. For example, the latest FPGA offering
from both Altera Inc. (Stratix [7]) and Xilinx Inc. (Virtex II [10]) integrates on a single
chip the following: memory, logic, I/O controllers, and DSP blocks.

mass-produced This characteristic is still applicable to reconfigurable hardware.
Early on, reconfigurable hardware has only been used to verify the functionality of
design and therefore were not implemented in actual shipped embedded processors. As



the technology progressed, it allowed reconfigurable hardware to be produced at much
lower costs and therefore opening the possibility of actually shipping reconfigurable
hardware in actual products. This is actually the case at this moment.

real-time In the beginning, we were witnessing the incorporation of reconfigurable
hardware only for non-’time-critical’ functions. As the technology of reconfigurable
continue to progress and making reconfigurable hardware much faster, we are also wit-
nessing their incorporation in actual products where real-time performance is required,
such as multimedia decoders.

5 Future Embedded Processors

In Sections 3 and 4, we have shown that both programmability and reconfigurability
have been introduced into the embedded processor design trajectory born out of the
need to reduce design cycles and reduce development costs. Programmability allows
the utilization of high-level programming languages (like C) and thereby easing ap-
plication development. Reconfigurability allows designs to be tested early on in terms
of functionality and diminishes the need for expensive chip roll-outs. The merging of
both strategies in the embedded processor design (if possible) will result in two main
advantages. First, the design flexibility is hugely increased, because it allows easy de-
sign space exploration in both software and hardware. Second, it allows rapid applica-
tion development since the software and hardware can be realized utilizing high-level
programming and hardware description languages. When correctly incorporated, the
combination of programmability and reconfigurability allows embedded processors to
change their functionality dynamically during operation (in run-time).

The mentioned advantages and enabling FPGA technologies have even resulted in
that programmable processor cores are under consideration to be implemented in the
same FPGA structures, e.g., Nios from Altera [6] and MicroBlaze from Xilinx [11].
However, the utilization of programmable embedded processors that are augmented
with reconfigurable hardware also poses several issues that must be addressed:

– Long reconfiguration latencies:When considering dynamic run-time reconfigu-
rations, such latencies may greatly penalize the performance, because any compu-
tation must be halted until the reconfiguration has finished.

– Limited opcode space:The initiation and control of the reconfiguration and exe-
cution of various implementations on the reconfigurable hardware require the in-
troduction of new instructions. This puts much strain on the opcode space.

– Complicated decoder hardware:The multitude of newly introduced instructions
greatly increased the complexity of the decoder hardware.

In the following, we discuss one possible approach [28] (introduced by us) in merg-
ing programmability with reconfigurability in the design of embedded processors. The
approach utilizes microcode to alleviate the mentioned problems. Microcode consists
of a sequence of (simple) microinstructions that, when executed in a certain order, per-
forms “complex” operations. This approach allows “complex” operations to be per-
formed on much simpler hardware. In this section, we consider the reconfiguration
(either off-line or run-time) and execution processes as complex operations. The main
benefits of our approach can be summarized as follows:



– Reduced reconfiguration latencies:Microcode used to control the reconfiguration
process allows itself to be cached on-chip. This results in faster access times to the
reconfiguration microcode and thus in turn reduces the reconfiguration latencies.

– Reduced opcode space requirements:By only pointing to microcode (explained
later), we only require (at most) three new instructions and not separate instructions
for each and every supported operation.

– Reduced decoder hardware complexity:Due to the inclusion of only a few in-
structions, complex instruction decoding hardware is no longer required.

In Section 5.1, we revisit microcode from its beginnings to its current implementa-
tion within a high-level microprogrammed machine. In Section 5.2, we discuss in-depth
our proposed MOLEN embedded processor. Finally, in Section 5.3, we briefly highlight
several other approaches in this field that are comparable in one way or another.

5.1 Revisiting Microcode

Microcode, introduced in 1951 by Wilkes [29], constitutes one of the key computer en-
gineering innovations. Microcode de facto partitioned computer engineering into two
distinct conceptual layers, namely: architecture and implementation. This is in part
because emulation allowed the definition of complex instructions which might have
been technologically not implementable (at the time they were defined), thus project-
ing an architecture to the future. That is, it allowed computer architects to determine a
technology-independent functional behavior (e.g., instruction set) and conceptual struc-
tures providing the following possibilities:

– Define the computer’s architecture as a programmer’s interface to the hardware
rather than to a specific technology dependent realization of a specific behavior.

– Allow a single architecture to be determined for a “family” of implementations
giving rise to the important concept of compatibility. Simply stated, it allowed pro-
grams to be written for a specific architecture once and run at “infinitum” indepen-
dent of the implementations.

Since its beginnings, as introduced by Wilkes, microcode has been a sequence of
micro-operations (microprogram). Such a microprogram consists of pulses for operat-
ing the gates associated with the arithmetical and control registers. Figure 3 depicts the
method of generating this sequence of pulses. First, a timing pulse initiating a micro-
operation enters the decoding tree and depending on the setup register R, an output is
generated. This output signal passes to matrix A which in turn generates pulses to con-
trol arithmetical and control registers, thus performing the required micro-operation.
The output signal also passes to matrix B, which in its turn generates pulses to control
the setup register R (with a certain delay). The next timing pulse will therefore generate
the next micro-operation in the required sequence due to the changed register R.

Over the years, the Wilkes’ model has evolved into a high-level microprogrammed
machine as depicted in Figure 46. In this figure, the control store contains microin-
structions (representing one or more micro-operations) and the sequencer determines

6 The memory address register (MAR) is used to store the memory address in the main memory
from which data must be loaded of to which data is stored. The memory data register (MDR)
stores the data that is communicated to or from the main memory.
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the next microinstruction to execute. The control store and the sequencer correspond to
Wilkes’ matrices A and B respectively. The machine’s operation is as follows:

1. The control store address register (CSAR) contains the address of the next microin-
struction located in the control store. The microinstruction located at this address
is then forwarded to the microinstruction register (MIR).

2. The microinstruction register (MIR) decodes the microinstruction and generates
smaller micro-operation(s) accordingly that need to be performed by the hardware
unit(s) and/or control logic.

3. The sequencer utilizes status information from the control logic and/or results from
the hardware unit(s) to determine the next microinstruction and stores its control
store address in the CSAR. It is also possible that the previous microinstruction
influences the sequencer’s decision regarding which microinstruction to select next.

It should be noted that in microcoded engines not all instructions access the control
store. As a matter of fact, only emulated instructions have to go through the microcode
logic. All other instructions will be executed directly by the hardware (following path
(α) in Figure 4). That is, a microcoded engine is as a matter of fact a hybrid of the
implementation having emulated instructions and hardwired instructions7.

5.2 Microcoded Reconfigurable MOLEN Embedded Processor

In this section, only a brief description of the MOLEN embedded processor is given,
We refer to [28] for a more detailed description. In its more general form, the pro-
posed machine organization can be described as in Figure 5. In this organization, the

7 That is, contrary to some believes, from the moment it was possible to implement instructions,
microcoded engines always had a hardwired core that executed RISC instructions.
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I BUFFER stores the instructions that are fetched from the memory. Subsequently, the
ARBITER performs a partial decoding on these instructions in order to determine where
they should be issued. Instructions that have been implemented in fixed hardware are is-
sued to the core processing (CP) unit which further decodes them before sending them
to their corresponding functional units. The needed data is fetched from the general-
purpose registers (GPRs) and results are written back to the same GPRs. The control
register (CR) stores other status information.
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Fig. 5. The proposed machine organization.

The reconfigurable unit consists of a custom configured unit (CCU)8 and theρµ-
code unit. An operation9 performed by the reconfigurable unit is divided into two dis-

8 Such a unit could be for example implemented by a Field-Programmable Gate Array (FPGA).
9 An operation can be as simple as an instruction or as complex as a piece of code of a function.



tinct process phases:setandexecute. Thesetphase is responsible for configuring the
CCU enabling it to perform the required operation(s). Such a phase may be subdivided
into two sub-phases: partialset (p-set) and completeset (c-set). Thep-set sub-phase
is envisioned to cover common functions of an application or set of applications. More
specifically, in thep-set sub-phase the CCU ispartially configured to perform these
common functions. While thep-set sub-phase can be possibly performed during the
loading of a program or even at chip fabrication time, thec-setsub-phase is performed
during program execution. In thec-setsub-phase, the remaining part of the CCU (not
covered in thep-setsub-phase) is configured to perform other less common functions
and thuscompletingthe functionality of the CCU. The configuration of the CCU is
performed by executing reconfiguration microcode10 (either loaded from memory or
resident) in theρµ-code unit. In the case that partial reconfigurability is not possible or
not convenient, thec-setsub-phase can perform the entire configuration. Theexecute
phase is responsible for actually performing the operation(s) on the (now) configured
CCU by executing (possibly resident) execution microcode stored in theρµ-code unit.

OPC R/P ρCS-α/α

p-set / c-set / execute

opcode
resident/pageable

address

(0/1)

Fig. 6. Thep-set, c-set, andexecuteinstruction formats.

In relation to these three phases, we introduce three new instructions:c-set, p-set,
and execute. Their instruction format is given in Figure 6. We must note that these
instructions donot specifically specify an operation and then load the corresponding
reconfiguration and execution microcode. Instead, thep-set, c-set, andexecuteinstruc-
tions directly point to the (memory) location where the reconfiguration or execution
microcode is stored. In this way, different operations are performed by loading different
reconfiguration and execution microcodes. That is, instead of specifying new instruc-
tions for the operations (requiring instruction opcode space), we simply point to (mem-
ory) addresses. The location of the microcode is indicated by the resident/pageable-bit
(R/P-bit) which implicitly determines the interpretation of the address field, i.e., as a
memory addressα (R/P=1) or as aρ-CONTROL STORE addressρCS-α (R/P=0) indi-
cating a location within theρµ-code unit. This location contains the first instruction of
the microcode which must always be terminated by anendopmicroinstruction.
The ρµ-code unit: The ρµ-code unit can be implemented in configurable hardware.
Since this is only a performance issue and not a conceptual one, it is not considered
further in detail. In this presentation, for simplicity, we assume that theρµ-code unit
is hardwired. The internal organization of theρµ-code unit is given in Figure 7. In
all phases, microcode is used to perform either reconfiguration of the CCU or control
the execution on the CCU. Both types of microcode are conceptually the same and
no distinction is made between them in the remainder of this section. Theρµ-code
unit comprises two main parts: the SEQUENCER and theρ-CONTROL STORE. The

10 Reconfiguration microcode is generated by translating a reconfiguration file into microcode.
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SEQUENCER mainly determines the microinstruction execution sequence and theρ-
CONTROL STORE is mainly used as a storage facility for microcodes. The execution
of microcodes starts with the SEQUENCER receiving an address from the ARBITER
and interpreting it according to the R/P-bit. When receiving a memory address, it must
be determined whether the microcode is already cached in theρ-CONTROL STORE
or not. This is done by checking the RESIDENCE TABLE which stores the most fre-
quently used translations of memory addresses intoρ-CONTROL STORE addresses
and keeps track of the validity of these translations. It can also store other information:
least recently used (LRU) and possibly additional information required for virtual ad-
dressing11 support. In the cases that aρCS-α is received or a valid translation into a
ρCS-α is found, it is transferred to the ’determine next microinstruction’-block. This
block determines which (next) microinstruction needs to be executed:

– When receiving address of first microinstruction: Depending on the R/P-bit, the
correctρCS-α is selected, i.e., from instruction field or from RESIDENCE TABLE.

– When already executing microcode: Depending on previous microinstruction(s)
and/or results from the CCU, the next microinstruction address is determined.

The resultingρCS-α is stored in theρ-control store address register (ρCSAR) before
entering theρ-CONTROL STORE. Using theρCS-α, a microinstruction is fetched from
theρ-CONTROL STORE and then stored in the microinstruction register (MIR) before
it controls the CCU reconfiguration or before it is executed by the CCU.

11 For simplicity of discussion, we assume that the system only allows real addressing.



Theρ-CONTROL STORE comprises two sections12, namely aset section and an
executesection. Both sections are further divided into afixed part andpageablepart.
The fixed part stores the resident reconfiguration and execution microcode of theset
and executephases, respectively. Resident microcode is commonly used by several
invocations (including reconfigurations) and it is stored in the fixed part so that the per-
formance of thesetandexecutephases is possibly enhanced. Which microcode resides
in the fixed part of theρ-CONTROL STORE is determined by performance analysis
of various applications and by taking into consideration various software and hardware
parameters. Other microcodes are stored in memory and the pageable part of theρ-
CONTROL STORE acts like a cache to provide temporal storage. Cache mechanisms
are incorporated into the design to ensure the proper substitution and access of the mi-
crocode present in theρ-CONTROL STORE.

5.3 Other reconfigurability approaches

In the previous section, we have introduced a machine organization where the hardware
reconfiguration and the execution on the reconfigured hardware is done in firmware
via theρ-microcode (an extension of the classical microcode to include reconfigura-
tion and execution for resident and non-resident microcode). The microcode engine is
extended with mechanisms that allow for permanent and pageable reconfiguration and
execution microcode to coexist. We also provide partial reconfiguration possibilities for
“off-line” configurations and prefetching of configurations. Regarding related work we
have considered more than 40 machine proposals. We report here a number of them that
somehow use some partial or total reconfiguration prefetching. It should be noted that
our scheme is rather different in principle from all related work as we use microcode,
pageable/fixed local memory, hardware assists for pageable reconfiguration, partial re-
configurations, etc.. As it will be clear from the short description of the related work,
we differentiated from them in one or more mechanisms.

TheProgrammable Reduced Instruction Set Computer (PRISC)[25] attaches a Pro-
grammable Functional Unit (PFU) to the register file of a processor for application-
specific instructions. Reconfiguration is performed via exceptions. In an attempt to
reduce the overhead connected with FPGA reconfiguration, Hauck proposed a slight
modification to the PRISC architecture in [20]: an instruction is explicitly provided to
the user that behaves like a NOP if the required circuit is already configured on the array,
or is in the process of being configured. By inserting the configuration instruction be-
fore it is actually required, a so-calledconfiguration prefetchingprocedure is initiated.
At this point the host processor is free to perform other computations, overlapping the
reconfiguration of the PFU with other useful work. TheOneChipintroduced by Wittig
and Chow [30] extends PRISC and allows PFU for implementing any combinational or
sequential circuits, subject to its size and speed. The system proposed by Trimberger
[27] consists of a host processor augmented with a PFU,Reprogrammable Instruction
Set Accelerator(RISA), much like the PRISC mentioned above. Concerning the man-
agement and control of the reprogramming procedure, Trimberger mentions that the
RISA reconfiguration is under control of a hardwired execution unit. However, it is

12 Both sections can be identical, but are probably only differing in microinstruction wordsizes.



not obvious if an explicit SET instruction is available. TheReconfigurable Multimedia
Array Coprocessor(REMARC) proposed by Miyamori and Olukotun [24] augments
the instruction set of a MIPS core. As the coprocessor does not have a direct access
to the main memory, the host processor has to write the input data to the coprocessor
data registers, initiate the execution, and finally read the results from the coprocessor
data registers. An explicit reconfiguration instruction is provided.Garp designed by
Hauser and Wawrzynek [21] is another example of a MIPS derived Custom Comput-
ing Machine (CCM). The FPGA-based coprocessor has a direct access to the standard
memory. The MIPS instruction set is augmented with several non-standard instructions
dedicated to loading a new configuration, initiating the execution of the newly config-
ured computing facilities, moving data between the array and the processor’s own regis-
ters, saving/retriving the array states, branching on conditions provided by the array, etc.
The coprocessor is aimed to run autonomously with the host processor. In theOneChip-
98 introduced by Jacob and Chow[23], the computing resources are loadedon-demand
when a miss is detected.Alternatively, the resources arepre-loadedby using compiler
directives. Several comments regarding these assertions are worth to be provided. If an
on-demand loading strategy is employed, then the user has no control on the reconfig-
uration procedure. In the pre-loading strategy, an explicit reconfiguration instruction is
provided to the user and the reconfiguration procedure is indeed under the control of the
user. PRISM (Processor Reconfiguration Through Instruction-Set Metamorphosis) one
of the earliest proposed CCM [12][13], was developed as a proof-of-concept system, in
order to handle the loading of FPGA configurations, the compiler inserts library func-
tion calls into the program stream [13]. From this description, we can conclude that an
explicit reconfiguration procedure is available. Gilson [17] CCM architecture consists
of a host processor and two or more FPGA-basedcomputing devices. The host con-
trols the reconfiguration of FPGAs by loading new configuration data through a Host
Interface into the FPGA Configuration Memory. The reconfiguration process can be
performed such that when one computing device is being reconfigured and, therefore,
is idle, the others continue executing. The write into the configuration memory instruc-
tion can play the role of an explicit reconfiguration instruction. Therefore, apre-loading
strategy is employed. Schmit [26] proposes a partial run-time reconfiguration mecha-
nism, calledpipeline reconfigurationor striping, by which the FPGA is reconfigured at
a granularity that corresponds to a pipeline stage of the application being implemented.
An application which has been broken up into pipeline stages can be mapped to a striped
FPGA. The pipeline stages are known asstripes; the stages of the application are called
virtual stripes, and the hardware stages which the virtual stages are loaded into are
calledphysical stripes. The PipeRench coprocessor developed by a team with Carnegie
Mellon University [15][18] is focused on implementing linear (1-D) pipelines of arbi-
trary length. PipeRench is envisioned as a coprocessor in a general-purpose computer,
and has direct access to the same memory space as the host processor. The virtual stripes
of the application are stored into an on-chip configuration memory. A single physical
stripe can be configured in one read cycle with data stored in such a memory. The con-
figuration of a stripe takes place concurrently with execution of the other stripes. The
Reconfigurable Data Path Architecture(rDPA) is also a self-steering autonomous re-
configurable architecture. It consists of a mesh of identical Data Path Units (DPU)[19].



The data-flow direction through the mesh is only from west and/or north to east and/or
south and is also data-driven. A word entering rDPA contains a configuration bit which
is used to distinguish the configuration information from data. Therefore, a word can
specify either a SET or an EXECUTE instruction, the arguments of the instructions be-
ing the configuration information or data to be processed. A set of computing facilities
can be configured on rDPA.

6 Conclusions

In this positional paper, we have described several characteristics of embedded pro-
cessors that were logically deduced from embedded systems characteristics in general.
Driven by market requirements, two strategies were followed in order to reduce design
cycles and development costs. First, programmability was introduced as a means to
combine all non-’time-critical’ functions to be performed by a ’general-purpose’-like
embedded processor. Such an embedded processor could then be reused in subsequent
design and thereby greatly reducing design cycles. Second, reconfigurability was ini-
tially only utilized as fast prototyping. Over time, technological advances in reconfig-
urable hardware in terms of size and performance have led to the fact the reconfig-
urable embedded processors are actually incorporated in shipped embedded systems.
We believe that the future of embedded processors design lies in the merging of both
strategies. Programmability allows the utilization of high-level programming languages
(like C) and thereby easing application development. The utilization of reconfigurable
hardware combines design flexibility and fast prototyping. At the same time, the pro-
cessing performance of reconfigurable hardware is nearing that of application-specific
integrated circuits. Finally, in this paper we have highlighted one possible framework
in which future embedded processor design can be performed. The proposed MOLEN
embedded processor combines software programming (by utilizing a programmable
processor core) with hardware programming (utilizing microcode to control the recon-
figurable hardware). Such an approach provides possibilities in combatting several is-
sues associated with reconfigurable hardware.
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