
Entropy Decoding on TriMedia/CPU64

Mihai Sima1;2, Evert-Jan Pol2, Jos T.J. van Eijndhoven2,
Sorin Cotofana1, and Stamatis Vassiliadis1

1 Delft University of Technology, Department of Electrical Engineering,
Mekelweg 4, 2628 CD Delft, The Netherlands,

fM.Sima,S.D.Cotofana,S.Vassiliadisg@et.tudelft.nl
2 Philips Research Laboratories, Department of Information and Software Technology,

Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands,
fevert-jan.pol,jos.van.eijndhoveng@philips.com

Abstract. The paper describes a software implementation of an MPEG–compli-
ant Entropy Decoder on a TriMedia/CPU64 processor. We first outline entropy
decoding basics and TriMedia/CPU64 architecture. Then, we describe the refer-
ence implementation of the entropy decoder, which consists mainly of a software
pipelined loop. On each iteration, a set of look-up tables partitioning the Variable-
Length Codes (VLC) table defined by the MPEG standard are accessed in order
to retrieve the run-level pair, or detect an end-of-block or error condition. An
average of 21.0 cycles are needed to decode a DCT coefficient according to this
reference implementation. Then, we focus on software techniques to optimize the
entropy decoding software pipelined loop. In particular, we propose a new way
to partition the VLC table such that by exposing the loop prologue to the com-
piler, testing each of the end-of-block and error conditions within the prologue
becomes superfluous. This is based on the observation that either an end-of-block
or error condition will never occur within the first table look-up. For the proposed
implementation, the simulation results indicate that an average of 16.9 cycles are
needed to decode a DCT coefficient. That is, our entropy decoder is more than
20% faster than its reference counterpart.

1 Introduction

The introduction of digital audio and video was the starting point of multimedia because
it enabled audio and video, as well as text, figures, and tables, to be used in a digital form
in a computer and be held in the same manner. However, digital audio and video require
a tremendous amount of information bandwidth unless compression technology is used,
which in turn calls for a large amount of processing. For example, National Television
Systems Committee (NTSC) resolution MPEG-2 [1] decoding requires more than 400
MOPS, and 30 GOPS are required for encoding.

TriMedia/CPU64 is a VLIW core targeted for real-time processing of multimedia
streams [2]. Although its processing power allows significant processing of video data,
the VLIW core itself was intended to be integrated on-chip with a set of hardwired
co-processors which can perform other tasks with stringent real-time requirements in
parallel. An example of such co-processor is the Variable-Length Decoder (VLD) [3].

One of the drawbacks of the hardwired solution is the lack of flexibility, since a
different full-custom circuit is needed for each particular task. Software programmabil-
ity ensures that a single device can be applied in a range of different products and can
adapt to quickly evolving standards in the media domain. Therefore, a software solution
which can provide the needed performance is always preferred to the hardware solution.

When the application exhibits data and instruction-level parallelisms,
TriMedia/CPU64 has proved significant speed-up over previous TriMedia families [4].
However, the speed-up is not so high when parallelism is not available. Entropy de-
coding [5, 6] consists of Variable-Length Decoding (VLD) followed by a Run-Length
Decoding (RLD), both VLD and RLD being sequential tasks. Due to data dependency,
entropy decoding is an intricate function on TriMedia, since a VLIW architecture must
benefit from instruction level parallelism in order to be efficient.

An entropy decoder implementation on TriMedia/CPU64 which can decode a Dis-
crete Cosine Transform (DCT) coefficient in 21 cycles has been proposed by Pol [7].
The VLD is implemented as a repetitive look-up into the Variable-Length Codes (VLC)
table defined by MPEG standard, where each iteration analyzes a fixed-size chunck of
bits. When a coefficient is completely decoded, a run-level pair is generated, otherwise
an offset into the VLC table is generated. By employing software pipeline optimiza-
tion techniques, run-length decoding for the previous decoded symbol is carried out
simultaneously with the variable-length decoding of the current symbol.

In this paper we demonstrate that significant improvement over the reference solu-
tion is possible if four optimizations are used:

1. partitioning the VLC table in such a way that by exposing the prologue of the
software pipeline loop to the compiler, an end-of-block symbol or error will never
be encountered within the prologue;

2. using an extended barrel-shift TriMedia-specific operation;
3. storing the lookup tables in such way that all the fields (run, level, table offset, etc)

are each located within the boundaries of a byte. This way, the extraction of each
and every such field can be done in a single cycle by TriMedia–specific operations;

4. using variable chunck size, in order to reduce the total size of the tables.

The testing database for our entropy decoder consists of a number of pre-processed
MPEG conformance strings from which all the data not representing DCT coefficients
have been removed. Therefore, such strings include only run-level and end-of-block
symbols. The simulations carried out on a TriMedia/CPU64 cycle accurate simulator
indicate that 16.9 cycles are needed to decode a DCT coefficient with the proposed im-
plementation. That is, our entropy decoder is 20% faster than its reference counterpart.

As an evaluation of the absolute performance of the entropy decoder we propose,
we would like to mention some figures claimed by our competitors: 33 cycles per coef-
ficient which exploits SIMD–type operations of a Pentium processor with MultiMedia
eXtension (MMX) are claimed by Ishii et al. [8], and 26 cycles per coefficient on an
TMS320C80 media video processor are claimed by Bonomini et al. [9].

The paper is organized as follows. Section 2 gives some background information
concerning MPEG compression standard and TriMedia/CPU64 architecture. Entropy
decoder implementation issues are presented in Section 3. The experimental framework
and results are presented in Section 4. The final section concludes the paper.

2 Background

The MPEG standard [6, 10] uses a large number of compression techniques to decrease
the amount of data. Data compression is the reduction of redundancy in data repre-
sentation, carried out to decrease data storage requirements and data communication
costs.

A typical video codec system is presented

Digital
video
out

Decoder
Entropy
Lossless

Lossless
Entropy
Coder

EncoderDigital
video

in Lossy
Source
Coder

Channel

Decoder

Decoder

‘‘Lossy’’
Source

Fig. 1. A generic video codec.

in Figure 1 [5, 6]. The lossy source coder per-
forms filtering, transformation (such as Dis-
crete Cosine Transform (DCT), subband de-
composition, or differential pulse-code mod-
ulation), quantization, etc. The output of the
source coder still exhibits various kinds of sta-
tistical dependencies. The (loseless) entropy
coder exploits the statistical properties of data
and removes the remaining redundancy after
the lossy coding.

In MPEG, the couple DCT + Quantization is used as a lossy coding technique.
The DCT algorithm processes the video data in blocks of 8 � 8 pixels, decomposing
each block into a weighted sum of amplitudes of 64 spatial frequencies. At the output
of DCT, the data is also organized as 8 � 8 blocks of coefficients, each coefficient
representing the contribution of a spatial frequency for the video block being analyzed.
Since the human eye cannot readily perceive high frequency activity, a quantization
step is then carried out. The goal is to force as many DCT coefficients as possible to
zero within the boundaries of the prescribed video quality. Then, a zig-zag operation
transforms the matrix into a vector of coefficients which contains large series of zeros.
This vector is further compressed by an Entropy Coder which consists of a Run-Length
Coder (RLC) and a Variable-Length Coder (VLC). The RLC represents consecutive
zeros by their run lengths; thus the number of samples is reduced. The RLC output data
are composite words, referred to as symbols, which describe a run-level pair. The run
value indicates the number of zeros by which a (non-zero) DCT coefficient is preceeded.
The level value represents the value of the DCT coefficient. When all the remaining
coefficients in a vector are zero, they are all coded by the special symbol end-of-block.
Variable length coding is a mapping process between run-level /end-of-block symbols
and variable length codewords, which is carried out according to a set of tables defined
by the standard. Not every run-level pair has a variable length codeword to represent it,
only the frequent used ones do. For those rare combinations, an escape code is given.
After an escape code, the run- and level-value are coded using fixed length codes.

In order to achieve maximum compression, the coded data does not contain specific
guard bits separating consecutive codewords. As a result, the decoding procedure must
recognize the code-length as well as the symbol itself. Before decoding the next sym-
bol, the input data string has to be shifted by a number of bits equal to the decoded code
length. These are recursive operations that generate true-dependencies.

Subsequently, we will focus on the entropy decoding, i.e., on the operation inverse
to entropy coding. We will briefly present some theoretical issues connected to variable-
length decoding and run-length decoding.

2.1 Entropy Decoder

In MPEG, the entropy decoder con-

B
ar

re
l−

sh
if

te
r

Feed−back path

Feed−forward path
Run

Level

Code−Length

Look−up
Table

Accumulator
acc_code_L

Bit parser

MPEG−compliant string

Fig. 2. Variable-length decoding principle.

sists of a Variable-Length Decoder
(VLD) followed by a Run-Length
Decoder (RLD). The input to the VLD
is the incoming bit stream, and the out-
put is the decoded symbols. As depic-
ted in Figure 2, a VLD is a system
with feedback, whose loop contains a
Look-Up Table (LUT) on the feed-for-
ward path and a bit parser on the feed-
back path. The LUT receives the var-
iable-length code itself as the address
[11] and outputs the decoded symbol
(run-level pair or end of block) as well as the codeword length, code length. In order
to determine the starting position of the next codeword, the code length is fed back
to an accumulator and added to the previous sum of codeword lengths, accumulated
code length . The bit parsing operation is completed by the barrel-shifter (or funnel-
shifter) which shifts out the decoded bits.

In connection with the hardware complexity, we would like to note that the longest
codeword excluding Escape has 17 bits. Therefore, the LUT size reaches 2 17 =

= 128 K words for a direct mapping of all possible codewords. Regarding the per-
formance of a variable-length decoder, it is worth mentioning that the throughput of a
VLD is bounded by a value inverse to the latency of the loop [12].

Conceptually, for each

L1 L2

0 1 2 3 4 5 6 7 8 9 10 63

R0=0
R1=3 R2=5

nz_coeff_pos_init = −1

nz_coeff_pos_0 = nz_coeff_pos_init+R0+1 = 0

nz_coeff_pos_1 = nz_coeff_pos_0+R1+1 = 4

nz_coeff_pos_2 = nz_coeff_pos_1+R2+1 = 10

L0

Fig. 3. Run-length decoding principle.

run-level pair returned by the
VLD, the run-length decoder
outputs the number of zeros
specified by the run value and
then pass the level through.
In a programmable processor–
based platform, a way to op-
timize this process is to fill
in an empty vector with level
values,L, at positions defined

by run values, as depicted in Figure 3: the position of a non-zero coefficient,
nz coeff pos, is computed by adding the run value, R, and an ’1’ to the position of the
previous non-zero coefficient. This common strategy has been widely used in previous
work [1, 7, 13] and will be used subsequently, too.

In connection with the software implementation of the entropy decoder we propose,
we would like to mention that both VLD and RLD are sequential tasks. Consequently,
entropy decoding is an intricate function on TriMedia, since a VLIW processor must
benefit from instruction-level parallelism in order to be efficient.

The next subsection will outline some elements of the MPEG-2 standard related to
variable-length decoding.

2.2 MPEG-2–compliant Variable-Length Decoding

MPEG-2 defines four tables for en-
intra vlc format 0 1

I DC coefficient Y B12 B12
C B13 B13

AC coefficient B14 B15
NI 1st & subsequent B14 B14

coefficient

Table 1. Selection of VLC tables

coding the DCT coefficients: B12, B13,
B14, and B15 [1]. Which table is used
depends on the type of image – intra
(I) or non-intra (NI), luminance (Y)
or chrominance (C) – and a bit-field,
intra vlc format, in the macro-
block header, as shown in Table 1. In
general, this means that a single stream
uses all tables, and the tables can be switched per macroblock and/or block.

In the decoding process of DCT coefficients, there are a few exceptional cases to be
dealt with:
1. The DC coefficient for intra macroblocks: this coefficient is encoded through the

B12/B13 tables, depending on the block type: luminance or chrominance.
2. Escape: escape code is 6 bits long, followed by 6 bits run and 12 bits signed level.
3. end-of-block: this is a 2 or 4 bit code, depending on the intra vlc format bit.

Apart from these cases, the decoding follows “normal” coding rules. The maximum
code-length is 16 bits plus a sign bit. A code determines a run and a level value. A
variable-length code is followed by a sign bit that indicates the sign of the level value.

We conclude this section with a review of the TriMedia/CPU64 VLIW core.

2.3 TriMedia/CPU64 architecture

TriMedia/CPU64 is a simulated proces-
Global Register File

15 read ports + 5 write ports

Bypass Network

128 registers 64 bit

Instruction Decoder

Fig. 4. TriMedia/CPU64 organization.

sor designed to be used in the development
process of future 64-bit VLIW cores. Its ar-
chitecture features a very rich instruction set
optimized for media processing. Specifically,
TriMedia/CPU64 is a 64-bit 5 issue-slot
VLIW core, launching a long instruction ev-
ery clock cycle [2]. It has a uniform 64-bit
wordsize through all functional units, reg-
ister file, load/store units, on-chip highway
and external memory. Each of the five op-
erations in a single VLIW instruction can
in principle read two register arguments and
write one register result every clock cycle. In addition, each operation can be option-
ally guarded with the least-significant bit of a fourth register, in order to allow for
conditional execution without branch penalty. The architecture supports subword par-
allelism; for example, operations such as additions/subtractions, shuffle, elementwise
multiplexing, on eight 8-bit unsigned integers (vec64ub), or on four 16-bit signed inte-
gers (vec64sh) are possible. Super-operations, which occupy two adjacent slots in the
VLIW instruction, and map to a double-width functional unit are also supported. The
current organization of the TriMedia/CPU64 core is presented in Figure 4.

3 Entropy decoder implementation

According to the reference implementation [7], the VLD is implemented as a repeated
table-lookup. Each lookup analyzes a fixed size chunk of bits (for example,
LOOKUP ADDRESS WIDTH = 6 or 8) and determines if a valid code was encountered
or some more bits need to be decoded. In any case, the number of consumed bits rang-
ing from the smallest variable-length code to the chunk size is generated. In case of a
valid decode, i.e., hit, a run-level pair is generated, or an escape or end of block flag is
set. If a miss is detected, i.e., more bits are needed for a valid decode, an offset into the
VLC table for a second- or third-level lookup, table offset, is generated. This process of
signaling an incomplete decode and generating a new offset may be repeated a number
of times, depending on the largest variable-length code and chunk size.

The following basic stages can be discerned in the reference implementation of the
entropy decoder on TriMedia/CPU64:

1. Initializations.
2. Barrel-shift the VLC string according to the accumulated code-length value.
3. Table look-up (look-up address computation, table look-up proper). The table

look-up returns a 32-bit word containing all the fields mentioned at Stage 4.
4. Field extraction: run, level, code length, valid decode, end of block, escape,

table offset.
5. Update (modulo-64) the accumulated code-length:

acc code length = acc code length + code length
If an overflow has been encountered, advance the VLC string by 64 bits.

6. Exit the loop if end of block has been encountered.
7. Handle escape if escape has been encountered.
8. Run-length decoding: de-zig-zag, followed by filling-in an empty 8� 8 matrix.
9. Go to Stage 2.

The Stage 8 – run-length decoding – is folded into the loop, such that loop pipelining
is employed [7]. That is, the run-length decoding for the previous decoded symbol is
carried out simultaneously with the variable-length decoding of the current symbol.

Updating the acc code length value is carried out modulo-64. The main idea is to
match this process with the transfer capabilities of the 64-bit version of TriMedia. That
is, a new chunk of 64 bits of information to be decoded is read on overflow. Also, we
would like to emphasize that the VLC-related information is stored into the lookup
table in a packed format, as 32-bit unsigned integers, as depicted in Table 2. Therefore,
a sequence of masking and shifting operations are needed to extract these fields.

Table 2. The original VLC table format.

end-of-block (stop) escape valid run level table offset code-length
No. of bits 1 1 1 5 8 12 4
Position 31 30 29 28-24 23-16 15-4 3-0

To make the presentation self consistent, the reference implementation of the en-
tropy decoding routine is presented in Algorithm 1. All identifiers written with capital
letters are regarded as constants. In the sequel, we will provide some additional infor-
mation regarding this algorithm, highlighting efficiency-related issues.

Algorithm 1 Entropy decoder routine – reference implementation
1: set-up the test-bench (store the VLC lookup table, read the VLC string into memory, etc.)
2:
3: for i = 1 to NO OF MACROBLOCKS do
4: for j = 1 to NO OF BLOCKS IN MACROBLOCK do
5: table offset FIRST TABLE OFFSET

6: nz coeff pos ZZ 0

7: run 0

8: valid decode 0

9:
10: loop
11: barrel-shift the VLC string with acc code length positions
12: lookup address the leading LOOKUP ADDRESS WIDTH bits from VLC string
13: lookup address lookup address + table offset
14: retrieved 32 bit word VLC table[lookup address]
15:
16: nz coeff pos ZZ nz coeff pos ZZ + run
17: nz coeff pos invZZ table[nz coeff pos ZZ]
18: 8� 8 matrix[nz coeff pos] level
19: nz coeff pos ZZ nz coeff pos ZZ + valid decode
20:
21: extract code length, run, level, table offset, escape, valid decode, end of block from

retrieved 32 bit word
22:
23: acc code length acc code length + code length
24: if acc code length � 64 and not(escape) then
25: continue f—————————-> go to loopg
26: end if
27: if end of block flag is raised then
28: break f——————————-> initiate the next for iteration (block-level)g
29: end if
30: if acc code length � 64 then
31: advance the VLC string by 64 bits
32: acc code length acc code length - 64
33: end if
34: if escape flag is raised then
35: run next 6 bits from VLC string
36: level next 12 bits from VLC string
37: acc code length acc code length + 6 + 12
38: end if
39: end loop
40: end for
41: end for

The entropy decoder routine consists of a first for loop (lines 3–41) cycling over all
macroblocks in the MPEG conformance string, a second for loop (lines 4–40) cycling
over all blocks in a macroblock, and an inner (infinite) loop labeled loop (lines 10–
39), cycling over all DCT coefficients in a block. The inner loop is left only when an
end of block is encountered (lines 27–29).

The initializations for block-level decoding are performed at lines 5–8. Table look-
up, i.e., variable-length decoding, is carried out at lines 11–13. Lines 15–18 implement
run-length decoding, which, as we already mentioned, is folded into the loop in order
to employ loop pipelining. Field extraction is performed at line 20. The barrel-shifting
(line 11) is done on an 128-bit field, by means of a TriMedia–specific operation:

bitfunshift Rsrc 1 Rsrc 2 Rsrc 3 ! Rdest 1 Rdest 2

where Rsrc 1 and Rsrc 2 are the two 64-bit registers storing the leading 128 bits of
the VLC string to be shifted, the Rsrc 3 defines the shifting value, and Rdest 1 and
Rdest 2 are the two 64-bit registers storing the 128-bit shifted field. Obviously, only
the value stored into Rdest 1 register will be used for the look-up procedure. It should
be mentioned that since acc code length is updated modulo-64 (lines 30–33), at least
47 bits are available in Rdest 1 for the next decoding iteration in the most defavorable
case (this can be easily verified by assuming that acc code length = 63 at line 34).

A particular optimization technique has been used in order to keep the most likely
iteration (that is when no more incoming bits from the MPEG string are needed, and
none of the escape, end of block, and error conditions is raised), as short as possible.
According to this technique, the escape flag is also set to ’1’ when any of the escape,
end of block, or error conditions occurs. In this way, a jump to the beginning of the
inner loop is taken when none of the above mentioned conditions is raised (lines 24–
26). All the exceptional cases are managed after this jump: end of block at lines 27–
29, modulo-64 updating and advancing the VLC string at lines 30–33, and escape at
lines 34–38. It should be mentioned that there is no flag to indicate an error condition.
When an error is encountered, end of block = 1 and valid decode = 0 simultaneously.
Therefore, the loop will be left because the end of block flag is set. However, it is the
responsibility of the entropy decoder calling routine to detect if a valid end of block
has been detected or an error has occured. Since this subject is beyond the goal of the
paper, it will not be analyzed in the sequel.

In connection to the efficiency of the reference implementation, we would like to
specify that the major drawback of the software pipeline is that only variable-length
decoding for the first DCT coefficient will be performed during the first iteration, the
code associated with run-length decoding being dummy. That is, the method penalty is
the overhead needed to fire-up the software pipeline. Since the number of non-zero DCT
coefficients in a block is rather small, ranging, for example, between 3.3 and 5.8 for non-
intra macroblocks [7], the number of iterations per block is also small. Consequently,
this overhead can be significantly large.

In the sequel, we will discuss the improvements that we propose with respect to
decoding of non-intra macroblocks. That is, the VLC table will be the B14 table defined
by the MPEG standard if we will not state otherwise.

To improve the performance of the entropy decoder, we propose the following
changes in respect with the reference implementation:

– The prologue of the pipelined loop [14] is exposed to the compiler. Since the
VLC table does not have “holes” in the region of short code-length coefficients
(i.e., each and every entry in the VLC table in that region corresponds either to a
short codeword which can be decoded in a single iteration, or to a long codeword
which will be decoded in two or more iterations), there are no incoming bit com-
binations which do not have a meaning within the prologue. Therefore, an error
condition will never be raised. Moreover, since an end of block symbol is not al-
lowed for the first coefficient in a block, an end of block condition will never be
encountered, too. Consequently, testing the end of block flag (lines 27–29 in Algo-
rithm 1) within the prologue becomes superfluous and can be eliminated. For this
reason, a very simple code consisting of a first-level look-up, folowed by an ex-
traction of the code length, run, level, lookup address width, table offset, escape,
valid decode (and, notable, no extraction of the end of block flag) can efficiently
fire-up the software pipeline.

– Barrel-shifting is carried out by means of an extended bitfunshift TriMe-
dia specific operations.

bitfunshift 3 Rsrc 1 Rsrc 2 Rsrc 3 Rsrc 4 ! Rdest 1 Rdest 2

The main idea is to gain flexibility over the modulo-64 operation by performing
the barrel-shift operation on 3 � 64 = 192 bits instead of 2 � 64 = 128 bits. In
this way, the modulo-64 operation can be postponed, since additional 64 bits are
available for decoding over the standard implementation.

– The lookup returns a 64-bit value instead of a 32-bit value. The main idea is to
store each of the code length, run, level, lookup address width (which defines the
chunk size of the next look-up), table offset, escape, valid decode (signals a hit),
and end of block fields within the boundaries of a byte (that is, in an unpacked way
instead of a packed one). Since extracting a byte from a 64-bit value takes only 1 cy-
cle on TriMedia, our solution is two times faster than using a pair of masking and
shifting operations required by the 32-bit approach. The cost of such approach is a
double-size look-up table. It is still an open question which approach is better with
respect to a particular TriMedia cache size, as the cache misses may become a bot-
tleneck when the performance evaluation is made for a complete MPEG decoder.
The new format of the VLC table format is presented in Table 3.

– The chunk size is variable, which leads to a more compact look-up table. Accord-
ing to our experiments, there are enough empty slots in the TriMedia instruction
format for an entropy decoding task. Consequently, a variable chunk size does not
introduce real dependencies.

In connection with the Table 3, several comments should be provided. The VLC
table is a one-dimensional array of vectors, where each vector contains eight unsigned
bytes. In order to keep the number of instructions as low as possible, we propose to
store the sign bit of each and every codeword into the lookup table.

Table 3. The proposed VLC table format.

code-length run level table offset lookup address width escape valid decode EOB
No. of bits 8 8 8 8 8 8 8 8
Position 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

According to Table B14, the level value ranges between�40 � � �+ 40. Thus, 7 bits
(less than 1 byte) are sufficient to represent all the values. However, precautions have to
be taken to convert level to a signed integer after extraction (Algorithm 2).

Algorithm 2 Converting the level from 8-bit unsigned integer to a 16-bit signed integer

#define LEVEL FIELD 5

int16 level;

retrieved vec64ub = VLC table[lookup address];
level = (int16) ub get(retrieved vec64ub, LEVEL FIELD);
level = (int16)((level� 24)� 24); /� 32-bit processing �/

The least significant byte has been allocated for end of block (EOB) flag. Since the
TriMedia C compiler recognizes expressions of the form (E1&1), the least significant
bit of this byte is set to ‘1’ when an end of block condition is raised. This way, the
condition for leaving the loop can be written as follows:

Algorithm 3 TriMedia-specific code for testing the end-of-block condition

#define END OF BLOCK FIELD 0

uint8 end of block;

for (;;) f
retrieved vec64ub = VLC table[lookup address];
end of block = ub get(retrieved vec64ub, END OF BLOCK FIELD);
if (end of block & 1)
break;

g

The table offset field defines the partitioning of the B14 into smaller lookup tables.
The B14 table has been splitted in eight tables (first, second, third, forth, fifth, sixth,
seventh, eighth) which are presented subsequently. We mention that, in order to improve
the readness, we preserved the order of the rows as in the MPEG standard.

VL code Run Level

1s 0 1
011s 1 1
0100 s 0 2
0101 s 2 1
0010 1s 0 3
0011 1s 3 1
0011 0s 4 1
0001 10s 1 2
0001 11s 5 1
0001 01s 6 1
0001 00s 7 1
0000 110s 0 4
0000 100s 2 2
0000 111s 8 1
0000 101s 9 1
0000 01 Escape

Table 4. First table

VL code Run Level

10 End of Block
11s 0 1
011s 1 1
0100 s 0 2
0101 s 2 1
0010 1s 0 3
0011 1s 3 1
0011 0s 4 1
0001 10s 1 2
0001 11s 5 1
0001 01s 6 1
0001 00s 7 1
0000 110s 0 4
0000 100s 2 2
0000 111s 8 1
0000 101s 9 1
0000 01 Escape

Table 5. Second table

1st prefix VL code Run Level

0010 0 110 s 0 5
001 s 0 6
101 s 1 3
100 s 3 2
111 s 10 1
011 s 11 1
010 s 12 1
000 s 13 1

Table 6. Third table

1st prefix VL code Run Level

0000 001 0 10s 0 7
1 00s 1 4
0 11s 2 3
1 11s 4 2
0 01s 5 2
1 10s 14 1
1 01s 15 1
0 00s 16 1

Table 7. Forth table

1st prefix VL code Run Level

0000 0001 1101 s 0 8
1000 s 0 9
0011 s 0 10
0000 s 0 11
1011 s 1 5
0100 s 2 4
1100 s 3 3
0010 s 4 3
1110 s 6 2
0101 s 7 2
0001 s 8 2
1111 s 17 1
1010 s 18 1
1001 s 19 1
0111 s 20 1
0110 s 21 1

Table 8. Fifth table

1st prefix VL code Run Level

0000 0000 1101 0s 0 12
1100 1s 0 13
1100 0s 0 14
1011 1s 0 15
1011 0s 1 6
1010 1s 1 7
1010 0s 2 5
1001 1s 3 4
1001 0s 5 3
1000 1s 9 2
1000 0s 10 2
1111 1s 22 1
1111 0s 23 1
1110 1s 24 1
1110 0s 25 1
1101 1s 26 1
0111 11s 0 16
0111 10s 0 17
0111 01s 0 18
0111 00s 0 19
0110 11s 0 20
0110 10s 0 21
0110 01s 0 22
0110 00s 0 23
0101 11s 0 24
0101 10s 0 25
0101 01s 0 26
0101 00s 0 27
0100 11s 0 28
0100 10s 0 29
0100 01s 0 30
0100 00s 0 31

Table 9. Sixth table

1st prefix 2nd prefix VL code Run Level

0000 0000 001 1 000s 0 32
0 111s 0 33
0 110s 0 34
0 101s 0 35
0 100s 0 36
0 011s 0 37
0 010s 0 38
0 001s 0 39
0 000s 0 40
1 111s 1 8
1 110s 1 9
1 101s 1 10
1 100s 1 11
1 011s 1 12
1 010s 1 13
1 001s 1 14

Table 10. Seventh table

1st prefix 2nd prefix VL code Run Level

0000 0000 0001 0011 s 1 15
0010 s 1 16
0001 s 1 17
0000 s 1 18
0100 s 6 3
1010 s 11 2
1001 s 12 2
1000 s 13 2
0111 s 14 2
0110 s 15 2
0101 s 16 2
1111 s 27 1
1110 s 28 1
1101 s 29 1
1100 s 30 1
1011 s 31 1

Table 11. Eighth table

All eight tables are stored into memory one after another, i.e., in a concatenated
way. The number of address bits for each table is related to the maximum length of the
variable-length codes. That is, Tables first and second have each 8 address bits, Table
sixth has 7 address bits, Tables third and forth have each 4 address bits, and Tables fifth,
seventh, and eighth have each 5 address bits. Thus, the sizes of the tables are as follows:

Table No. of address lines Size table offset
(lookup address width) (64-bit words)

first 8 2
8 = 256 0

second 8 2
8 = 256 0x100

third 4 2
4 = 16 0x200

forth 4 2
4 = 16 0x210

fifth 5 2
5 = 32 0x220

sixth 7 2
7 = 128 0x240

seventh 5 2
5 = 32 0x2c0

eighth 5 2
5 = 32 0x2e0

Table 12. Number of address lines, size, and offset for each VLC table

with a total of 768 64-bit words, which means 6 KB.
The decoding procedure can be exemplified on Figure 5. Let us suppose that the

following string is to be decoded: 10000000000011000110.... The table offset
is initialized to 0, that is the first table is being pointed to. Also, lookup address width
is initialized to 8, which means that the first 8 bits of the string, i.e., 10000000, will be
regarded as address into the first table. The following values are retrieved: code length
= 2, run = 0, level = 1, table offset = 0x100, and lookup address width = 8. Which
means that the second table will be accessed during the second iteration.

After shifting out the two bits decoded at the previous iteration, the leading eight
bits, i.e., 00000000, will be regarded as address, this time into the second table. By
looking-up, code length = 8, table offset = 0x240, and lookup address width = 7.
That is, the sixth table will be accessed. No valid run-level pair has been detected.

At this moment the accumulated code length is 10. Therefore, the leading 10 bits
have to be shifted out from the input string. Then, the next seven bits, i.e., 0011000, are
regarded as address into the sixth table. Again, no valid run-level pair is detected. The
code length = 3, table offset = 0x2c0, lookup address width = 5. That is, the seventh
table will be accessed.

After incrementation, the accumulated-code-length = 13. After shifting out the lead-
ing 13 bits, the next five bits, i.e., 10001 are the address into the seventh table. The
look-up procedure retrieves the following values: code length = 5, run = 0, level = -
32, lookup address width = 8, table offset = 0x100 bypassing the first table. That is,
all subsequent coefficients of the 8� 8 block will use only the Tables second - eighth.

Finally, the accumulated-code-length is 18. The next eight bits to be sent as address
to the second table are: 10xxxxxx. An end of block symbol is detected, and the table-
offset = 0; that is, the first table is to be accessed for decoding of a new block.

E
O

B
!

1st

2nd

th

O
R

th6 th 5

th

4th5 3E
R

R
O

R

4

...

5th

N
O 6

C
L

R
/L

th

...
5 5

0
0
0
0

s

rd

A
dd

re
ss

O
ff

se
t

0
x
1
0

0
x
1
0

L
oo

k−
up

 T
ab

le

...

3

...

...

8

...

th

C
L

R
/L

5

...

0
0
0
0

s

1
1
1
1

s

0
x
1
0

0
x
1
0

O
ff

se
t

L
oo

k−
up

 T
ab

le

A
dd

re
ss

6th

1
1
1
1

s

8th 7th

...

...

...

4th

rd

C
L

R
/L

4 4

0

0
0
s

1

1
1
s

A
dd

re
ss

...

0
x
1
0

0
x
1
0

L
oo

k−
up

 T
ab

le

...

...

...

3

5

C
L

R
/L

4 4

0

0
0
s

1

1
1
s

A
dd

re
ss

0
x
1
0

0
x
1
0

O
ff

se
t

L
oo

k−
up

 T
ab

le

...

...

...

7th

O
ff

se
t

C
L

R
/L

5 5

0

0
0
0
s

1

1
1
1
s

A
dd

re
ss

O
ff

se
t

L
oo

k−
up

 T
ab

le

0
x
1
0

0
x
1
0

...

......

2nd

2nd

1st
2nd

2ndrd

0
1
1
s

x
x
x
x

0
1
0
X

s
x
x
x

0
0
1
1

X
s
x
x

0
0
1
0

1
s
x
x

0
0
1
0

0
x
x
x

0
0
0
1

X
X
s
x

0
0
0
0

1
X
X
s

0
0
0
0

0
1
x
x

0
0
0
0

0
0
1
x

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

C
L 8 8 7 6 8 7 6 5 6 5 4 3

R
/L

1
1
s
x

x
x
x
x

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
2
0

0
x
2
1

0
x
2
2

0
x
2
4

O
ff

se
t

1
0
x
x

x
x
x
x

0

0
1
1
s

x
x
x
x

0
1
0
X

s
x
x
x

0
0
1
1

X
s
x
x

0
0
1
0

1
s
x
x

0
0
1
0

0
x
x
x

0
0
0
1

X
X
s
x

0
0
0
0

1
X
X
s

0
0
0
0

0
1
x
x

0
0
0
0

0
0
1
x

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

C
L 8 8 7 6 8 7 6 5 6 5 4 2

R
/L

1
s
x
x

x
x
x
x

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
2
0

0
x
2
1

0
x
2
2

0
x
2
4

O
ff

se
t

A
dd

re
ss

A
dd

re
ss

L
oo

k−
up

 T
ab

le

L
oo

k−
up

 T
ab

le

C
L

n/
a

R
/L

0
0
1
x

x
x
x

0
0
0
1

x
x
x

0
0
0
0

x
x
x

4 3
0
1
X
X

X
X
s

7
1
X
X
X

X
s
x

6

n/
a

O
ff

se
t

L
oo

k−
up

 T
ab

le

n/
a

0
x
2
c

0
x
2
e

0
x
1
0

0
x
1
0

A
dd

re
ss

E
R

R
O

R

E
O

B
2

E
SCn/
a

n/
a

n/
a

E
SCn/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

F
ig

.5
.T

he
flo

w
ch

ar
t

of
th

e
va

ri
ab

le
-l

en
gt

h
de

co
di

ng
pr

oc
ed

ur
e.

The entropy decoder implementation we propose is presented in Algorithm 4. As it
can be observed, the prologue of the inner (infinite) loop (lines 17–45) has been exposed
to the compiler (lines 4–15). Since an end of block or error condition will never occur
on the first table lookup (line 7), testing the end of block condition during the prologue
becomes superfluous and, therefore, has been eliminated.

Special considerations have to be provided with respect to modulo-64 operation.
As me already mentioned, since the extended bitfunshift TriMedia-specific oper-
ation is used, more flexibility in postponing the modulo-64 operation is gained. Indeed,
there is no such operation within the prologue. However, from the MPEG syntax point
of view this is not entirely correct. Assuming that acc code length is 63 at line 36,
it will become 81 at line 45. Considering that an end of block is encountered, then
acc code length = 83. If this situation occurs during the decoding of the first block
in a macroblock, and if the subsequent five coded blocks in the same macroblock
include each an escape sequence followed by an end of block, then acc code length
= 83 + 5� 24 + 5� 2 = 213, that is more than the limit of 192 bits. Fortunately, this
case is not statistically relevant (we did verify it on all MPEG conformance strings
mentioned in the subsequent section). Fortunately, this exceptional situation can be
overcomed without much penalty by augmenting the escape handling code within the
prologue (lines 11–15) with a modulo-64 operation.

The same strategy of exposing the prologue of the loop to the compiler can be
applied for decoding of intra blocks, since an end of block can never occur during the
decoding of an DC coefficient. However, special precautions have to be taken in order
to deal with errors.

Finally, it should be mentioned that standard optimization techniques such as loop
unrolling or grafting [15] cannot be applied, because that would introduce awkward
escape code and/or barrel-shifting processing.

4 Experimental results

The testing database for our entropy decoder consists of a number of pre-processed
MPEG conformance strings, or scenes, from which all the data not representing DCT
coefficients have been removed. Therefore, such strings include only run-level and end-
of-block symbols.

For all experiments described subsequently, the MPEG-compliant bit string is as-
sumed to be entirely resident into the main memory. In this way, side effects associated
with bit string acquisition such as asynchronous interrupts, trashing routines, or other
operating system related tasks, do not have to be counted. Moreover, saving the re-
constructed 8 � 8 matrices into memory, as well as zeroing these matrices in order to
initialize a new entropy decoding task are equally not considered. Since both proce-
dures can be considered parts of adjacent tasks, such as IDCT or motion compensation,
they are subject to further optimizations at the complete MPEG decoder level. Thus, in
our experiments, the run-length decoder will overwrite the same 8 � 8 matrices again
and again. With these assumptions, the only relevant metric is the number of instruction
cycles required to perform strictly entropy decoding. Therefore, the main goal was to
minimize this number.

Algorithm 4 Entropy decoder routine with the prologue exposed to the compiler
1: for i = 1 to NO OF MACROBLOCKS do
2: for j = 1 to NO OF BLOCKS IN MACROBLOCK do
3: nz coeff pos ZZ 0

4: barrel-shifting the VLC string
5: lookup address the leading FIRST LOOKUP ADDRESS WIDTH bits from VLC string
6: lookup address lookup address + (FIRST TABLE OFFSET� 4)
7: retrieved vec64ub VLC table[lookup address]
8:
9: extract code length, run, level, table offset, lookup address width, escape,

valid decode from retrieved vec64ub fend of block field is not extracted!g
10: acc code length acc code length + code length
11: if escape flag is raised then
12: run next 6 bits from VLC string
13: level next 12 bits from VLC string
14: acc code length acc code length + 6 + 12
15: end if
16:
17: loop
18: barrel-shift the VLC string
19: lookup address the leading lookup address width bits from VLC string
20: lookup address lookup address + table offset
21: retrieved vec64ub VLC table[lookup address]
22:
23: nz coeff pos ZZ nz coeff pos ZZ + Run
24: nz coeff pos invZZ table[nz coeff pos ZZ]
25: 8� 8 matrix[nz coeff pos] Level
26: nz coeff pos ZZ nz coeff pos ZZ + valid decode
27:
28: extract code length, run, level, table offset, lookup address width, escape,

valid decode, end of block from retrieved vec64ub
29: acc code length acc code length + code length
30: if acc code length � 64 and not(escape) then
31: continue f—————————-> go to loopg
32: end if
33: if end of block flag is raised then
34: break f——————————-> initiate the next for iteration (block-level)g
35: end if
36: if acc code length � 64 then
37: advance the VLC string by 64 bits
38: acc code length acc code length - 64
39: end if
40: if escape flag is raised then
41: run next 6 bits from VLC string
42: level next 12 bits from VLC string
43: acc code length acc code length + 6 + 12
44: end if
45: end loop
46: end for
47: end for

Table 13. Entropy decoding experimental results.

Scene Block Workload Scene Reference Proposed Improvement
type profile implementation implementation

(*.m2v) (coeff.) (bit/coeff.) (cycle/coeff.) (cycles) (cycle/coeff.)

batman I (B15) 172,745 5.5 21.85 2,843,376 16.5 22.5 %
NI 266,485 4,592,358 17.2

popplen I (B15) 47,003 5.3 20.19 777,553 16.5 17.3 %
NI 28,069 475,326 16.9

sarnoff2 I (B14) 80,563 5.1 21.9 1,387,489 17.2 23.3 %
NI 36,408 577,388 15.9

tennis I (B14) 12,345 6.1 21.77 210,011 17.0 20.7 %
I (B15) 120,754 1,937,808 16.0

NI 137,756 2,527,395 18.3

ti1cheer I (B15) 80,818 5.1 20.75 1,311,687 16.2 21.9 %
NI 51,680 836,082 16.2

The results for entropy decoder are presented in Table 13. The figures indicate the
number of instruction cycles needed to decode the pre-processed MPEG string. The last
column of the table specifies the relative improvement of the proposed entropy decoder
versus its reference counterpart. Unfortunately, only the average number of cycles per
coefficient has been disclosed for the reference implementation [7].

It is also worth mentioning that the absolute performance of the proposed entropy
decoder ranges between 15:9 � 18:3 cycles/coeff., with the mean 16:9 cycles/coeff.
This is a very good result with respect to both 33:0 cycles/coeff. needed for variable-
length decoding and Inverse Quantization (IQ) on a Pentium processor with MultiMe-
dia eXtension (MMX) claimed by Ishii et. al [8], and 26:0 cycles/coeff. achieved on an
TMS320C80 media video processor by Bonomini et al. [9]. The additional IQ function-
ality considered by the referred papers is not a real concern for us, since our preliminary
results indicate that a significant number of operations related to inverse quantization
can be still scheduled in the delay slots of the table lookup.

To make an absolute estimation of the performance we achieved, we mention that
the maximum MPEG-2 compressed bit rate for Main Profile – Main Level (MP@ML)
is 15 Mbit/s. For 16.9 cycle/coefficient, and an average of 5.4 bit/coefficient [7], the
following rate can be processed in real-time by our implementation:

5:4
bit

coefficient
� 200 � 106

cycle
sec

�

1

16:9

coefficient
cycle

� 64
Mbit

sec

That means that less than one-quarter of the computing power of the processor is used,
or, equivalently, four MP@ML strings can be simultaneously (entropy) decoded.

5 Conclusions

We proposed a new entropy decoder implementation on TriMedia/CPU64 processor
VLIW core which has the prologue exposed to the compiler. The VLC tables are or-
ganized in a special way such that an end of block or error will never be encountered
during the prologue. By running preprocessed MPEG-2 conformance strings including
only run-level and end of block symbols, we determined that the proposed entropy de-
coder is approximately 20% faster than its reference counterpart. In future work, we
intend to evaluate the performance improvement for a complete MPEG decoder.

References

1. ***: MPEG-2 Video Codec. MPEG Software Simulation Group, WWW address:
http://www.mpeg.org/MPEG/MSSG/

2. van Eijndhoven, J.T.J., Sijstermans, F.W., Vissers, K.A., Pol, E.J.D., Tromp, M.J.A., Struik,
P., Bloks, R.H.J., van der Wolf, P., Pimentel, A.D., Vranken, H.P.E.: TriMedia CPU64 Ar-
chitecture. In: IEEE Proceedings of International Conference on Computer Design (ICCD
1999), Austin, Texas (1999), 586–592.

3. ***: TM-1000 Data Book. Philips Electronics North America Corporation, TriMedia Prod-
uct Group, Sunnyvale, California (1998).

4. Riemens, A.K., Vissers, K.A., Schutten, R.J., Sijstermans, F.W., Hekstra, G.J., Hei, G.D.L.:
TriMedia CPU64 Application Domain and Benchmark Suite. In: IEEE Proceedings of In-
ternational Conference on Computer Design (ICCD 1999), Austin, Texas (1999), 580–585.

5. Sun, M.T.: Design of High-Throughput Entropy Codec. In: VLSI Implementations for Image
Communications. Volume 2. Elsevier Science Publishers B.V., Amsterdam, The Netherlands
(1993), 345–364.

6. Mitchell, J.L., Pennebaker, W.B., Fogg, C.E., LeGall, D.J.: MPEG Video Compression Stan-
dard. Chapman & Hall, New York, New York (1996).

7. Pol, E.J.D.: VLD Performance on TriMedia/CPU64. Private Communication (2000).
8. Ishii, D., Ikekawa, M., Kuroda, I.: Parallel Variable Length Decoding with Inverse Quanti-

zation for Software MPEG-2 Decoders. In: Proceedings of the IEEE Workshop on Signal
Processing Systems (SiPS97), Leicester, United Kingdom (1997), 500–509.

9. Bonomini, F., Marco-Zompit, F.D., Milan, G., Odorico, A., Palumbo, D.: Implementing an
MPEG2 Video Decoder Based on the TMS320C80 MVP. Application Report SPRA332,
Texas Instruments, Paris, France (1996).

10. Haskell, B.G., Puri, A., Netravali, A.N.: Digital Video: An Introduction to MPEG-2. Kluwer
Academic Publishers, Norwell, Massachusetts (1996).

11. Lei, S.M., Sun, M.T.: An Entropy Coding System for Digital HDTV Applications. In: IEEE
Transactions on Circuits and Systems for Video Technology 1 (1991), 147–155.

12. Lin, H.D., Messerschmitt, D.G.: Finite State Machine has Unlimited Concurrency. In: IEEE
Transactions on Circuits and Systems 38 (1991), 465–475.

13. Sima, M., Cotofana, S., Vassiliadis, S., van Eijndhoven, J.T.J., Vissers, K.: MPEG Mac-
roblock Parsing and Pel Reconstruction on an FPGA-augmented TriMedia Processor. In:
IEEE Proceedings of International Conference on Computer Design (ICCD 2001), Austin,
Texas (2001), 425–430.

14. Johnson, W.M. Superscalar Microprocessor Design, Prentice Hall, Englewood Cliffs, New
Jersey (1991).

15. ***: Book 2 – Cookbook. Part D: Optimizing TriMedia Applications. TriMedia Technolo-
gies, Inc., TriMedia Technologies, Inc., Milpitas, California (2000).

