
hnfS) uortepuno3 A0olour4col qcn6

Aq peUoddns

ocooro 'sotups
ueeOey lseo lo anillsul
Oururerl pue qcleoseg

zooz'92-zz finr

ZOOZ SOI/\IVS

uollelnurls pue'0ur;epoy\l'so;n1col!r4c;V'surelsAg

uo doqslJoM sorues puorleuJolul puocos

or.ll Io s0urpeocoJd

I
I

ij

I'

Copyright

CopyrightA 2002 by the SAMOS Initiative. Permission to make
digital or hard copies of parts of this work for personal or classroom
use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page.

SAMOS ISBN : 90 - 9016023 - X
SAMOS Order Number 2002-0722

Previous Publications

A selection of papers presented at the SAMOS 2001 workshop
have been published in Springer's Lecture Notes in Computer
Science LNCS 2268 Embedded Processor Design Challenges

Copy ordering

Additional copies of this proceedings may be ordered from:

SAMOS Initiative,
P.O. Box 9512
2300 Leiden, The Netherlands

Phone (+31 7l) 527 5778
Fax (+31 71) 527 6985
E-mail edd@liacs.nl

Printed in the Netherlands

o{rfuoqcognqg .S DarulS ,tunqo7
UunS

seJnlceln{cty snoqdtoul(1og go uo4ernSguoceg ue^lrqleog

,",*,i:#f;,f ##:::'?",::;#:{ffi :;:;Ki::,,"{rTno
owotoloS ultos ,srpuqrssDA stwaots ,BuorX uoqdagg

srossecord peppequrg (elqem8guoceg prr' erqsr'ur'€or4)J0 suo4cerrcl ern]nc

eJnlcol! rlcrv olqer n bguoceg

angatdag pg 'totllV uro,tlrtg
Surdr(1o1ord pun uorlec grceds

swetrsfs Surssecord 1eu81s fe'e al"cs e8rel roJ urroJleld elqelecs y
a"osatdag pg ,slnqualx

u^g ,uo[ti1irpiii"1y
UIBqS

IooJ ueuduro3 eql q lepontr uorlezrreeurT pepuolxg erilJo suorlezrlseg
nuSorX saUDqJ

'pssly ,tnBuo1'uo1u1nfi ac!4od ,uo11trne
arlolJ_auuy ,uarr"pe ua^ats

seJn]celrqrrv
relnEeg pepduo3 roJ sec_gJoluJ luerogJgJo srseqlu,{g cqeruolnv

q c pJ u aB "r7t1"' 3 luuD H I uD ti
s,{erry JossecoJd relngeg es r^racerd JoJ uorlerults g,tEreug

puo$oJ 'g aof coqslod uouns ,o4sdta1 .d yuor1 ,pguatat4 .0 ,tpuy
errreses ur rusrle[erud {sel_€4ul Jo Eurlepopq

uollPlnuls 3 ou;lepo|,ll

sJazlueblo orll luoJl e6esse6;

sluoluoc lo olqEl

I

Processors

Customising Flexible Instruction Processors : a Tutorial Introduction
Shay Ping Seng, Wahne Luk, peter y.K. Cheung

Entropy Decoding on TriMedi a/CpU64
Miha sima, Evert-Jan por, Jos T.J. van Eijndhoven, sorin cotofana,
Stamatis Vassiliadis

stride Permutation Access in Interleaved Memory Systems
Jarmo Takala, Tuomas Jrirvinen

Highly Effi cient Scalable Parallel-Pipelined Architectures for Discrete
Wavelet Transforms

David Guevorkian, petri Liuha, Aki Launiainen, vilte Lappalainen
Automatic vHDL Model Generation of parameterized FIR Filters

E.George walters III, John Glossner, Michael J. schulte

Abstract

Hardware support for monitoring applicationi
Kostas Anagnostakis, Herbert Bos

'eru?E eql uI pe^lo^ur ueql leE 01

pue sJe,(€ld
"ql

Eur.,frluepl le srurc elrlerlrul SO1^MS eqJ .ro^eg

url\-ur1v\ B r{lr^{ eureS elru pu" epl^Ip e sr tuolqord uErsep sruelsrts
peppeqrug eqJ 'spedxe re,(e1 ol peu8rss€ eq rmc sre,(e1 uopce4squ

qcHr!\ ur po^recuoc oq uBc qceoJdde ue ueq l, uSrsep surels,{s
peppeqtuego slcsdse IIB rolsuru of ,ftl Jeqcr€eser e plnol\ fq6

'ezrseqlufs uec orlrn pue 'uo4eroldxe uuogred u€c oq./vl lse;n1cs1rycre
olw suoqecrlddego sSurdderu leporu usc orllv\ lsernlcelrqcre

Iepotu u€c oq./v\ lsuorlecqdde lepotu u€c or{rry\ -elqusueds1pul

sr uorl€redo-oc 'eroJereql ?u€ pleg eloq.&\ eql EuuenocJo elqedec
sr gedxe epurs oN'sruelqord Eur8uelpqc .(ueur sesserpps

leql qcJeeserJo pleg EurErewe rre sr u8rsep sruelsfs peppequrg

'pozrutx€ru sr uoll€redo-oc r{cJseser JoJ ecueqc aql }€qt
sr uorreluc uorlceles erp pue ,.(po uorlelrnur fq sl doqsryom eql

'ller\\ se doqsl"la[z00z e ro3 o3 ol peprcep srol€rlrul eql
pue1uene lqssseccns e se^\ doqsryorvr IeuuoJur 1007, soIAMS eqJ

'peueddeq lr os prre 'eJeql leeru ol pesodord ecee.rg ur
sotrrBs Jo puelsl eq] wo{ SurleurEuo srpsrlrsse^ sr}eru315 l,sEurleeur
lutod-o1-1urod EuzrueEroJo p€eNur eceld euo w Jorpo qcee Eurleeru

1ou,{q16 :sJeqcJ?eser peuor}ueu enoq€ eql Euorue ue.6o.rd Eur}rsrrr e
ezute8to ol ldruepe ue ruo{ pe8rerue doqsryoru, I00Z SO6MS eqJ

',(lenrlcedse;'uolurn| eculed pue,rlcleJ ue8renl .1e1uerur6

{poV'eregerdeq pA'srperpsse6 srlerue}g .e,{,ftuqcener.{g e,rrrnqg,(q
pepeeq'(VSfUI) serruo5 pue'(,{trsrenrufl urogrep€d) ruoqrepe4

'(seqrsrenrun tueprelsurv puu ,uepre'I ,UIoO) spu€lreriloN eql
'(pue1,&e61 go .Qrsre,rrun) puelf-re4 ur pelcnpuoc sure.€ord

qcr€eser Surpeel ueoilqeq sercuopuedep olceg ep ruo{ peErerue

wqt aqwlttuJ lowtotuJ lnuorlDuraruJ ue sr e^rlellF{ SO1MS aqJ

sJezru€Ero er{} ruoJJ eEessel4

,-.

Modeling of Intra-task Parallelism in Sesame

Andy D. Pimentel, Frank P. Terpstra, Simon Polstra, and Joe E. Coffland

Computer Architecture & Parallel Systems group
Dept. of Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands�

andy,ftrpstra,spolstra,jcofflan � @science.uva.nl

Abstract. The Sesame environment provides modeling and simulation methods
and tools for the efficient design space exploration of heterogeneous embedded
multimedia systems. It specifically targets the performance evaluation of embed-
ded systems architectures in which task-level parallelism is available. In this pa-
per, we present techniques that allow Sesame to also model intra-task parallelism
exploited at the architecture level. Moreover, we describe a case study using a
QR decomposition application to validate our modeling concepts. To this end,
we were able to compare the performance estimates of our abstract system mod-
els with the results of an actual FPGA implementation. The results are promising
in the sense that they show good accuracy with minimal modeling effort.

1 Introduction

Modern embedded systems, like those for media and signal processing, often have a
heterogeneous system architecture, consisting of components in the range from fully
programmable processor cores to dedicated hardware components. Increasingly, these
components are integrated as a system-on-chip exploiting task-level parallelism in ap-
plications. Due to the high degree of programmability that is usually provided by such
embedded systems, they typically allow for targeting a whole range of applications with
varying demands. All of the above characteristics greatly complicate the design of these
embedded systems, making it more and more important to have good tools available for
exploring different design choices at an early stage in the design.

In the context of the Artemis (ARchitectures and meThods for Embedded MedIa
Systems) project [19], we are developing an architecture workbench which provides
modeling and simulation methods and tools for the efficient design space exploration
of heterogeneous embedded multimedia systems. This architecture workbench should
allow for rapid performance evaluation of different architecture designs, application
to architecture mappings, and hardware/software partitionings and it should do so at
multiple levels of abstraction and for a wide range of multimedia applications.

In this paper, our focus is on a prototype modeling and simulation environment,
called Sesame [18]. According to the Artemis modeling methodology [19], this environ-
ment uses separate application models and architecture models and an explicit mapping
step to map an application model onto an architecture model. This mapping is real-
ized by means of trace-driven co-simulation of the application and architecture models,
where the execution of the application model generates application events that represent

the application workload imposed on the architecture. Application models consist of
communicating parallel processes, thereby expressing the task-level parallelism avail-
able in the applications. By mapping the event traces generated by different application
model processes onto the various system architecture components, this task-level par-
allelism is exploited at the architecture level. In addition, the underlying architecture
may also exploit intra-task parallelism inside a single trace. This paper presents the
newly added techniques Sesame applies to model architectures that exploit such intra-
task parallelism. Moreover, using a case study with the QR decomposition algorithm as
application, we demonstrate the effectiveness of our modeling methodology.

The remainder of this paper is organized as follows. Section 2 briefly describes re-
lated work in the area of modeling and simulation of complex embedded systems. Sec-
tion 3 gives a general overview of the Sesame modeling and simulation environment,
while in Section 4 we present a more detailed description of Sesame’s synchronization
layer. In Sections 5 and 6, we describe the methods applied to model intra-task par-
allelism and discuss their impact on Sesame’s synchronization and architecture model
layers. Section 7 presents some validation results we obtained from the case study with
the QR decomposition application. Finally, Section 8 discusses several open issues and
Section 9 concludes the paper.

2 Related work

Various research groups are active in the field of modeling and simulating heteroge-
neous embedded systems, of which some are academic efforts (e.g., [6, 11, 9]) and oth-
ers commercial [8] and industrial efforts (e.g., [5]). Many efforts in this field co-simulate
the software parts, which are mapped onto a programmable processor, and the hardware
components and their interactions together in one simulation. Because an explicit dis-
tinction is made between software and hardware simulation, it must be known which
application components will be performed in software and which ones in hardware be-
fore a system model is built. This significantly complicates the performance evaluation
of different hardware/software partitioning schemes since a new system model may be
required for the assessment of each partitioning.

A number of exploration environments, such as VCC [1], Polis [4] and eArchitect
[2], facilitate more flexible system-level design space exploration by providing sup-
port for mapping a behavioral application specification to an architecture specification.
Within the Artemis project, however, we try to push the separation of modeling ap-
plication behavior and modeling architectural constraints at the system level to even
greater extents. To this end, we apply trace-driven co-simulation of application and ar-
chitecture models. Like was shown in [18], this leads to efficient exploration of different
design alternatives while also yielding a high degree of reusability. The work of [15]
also uses a trace-driven approach, but this is done to extract communication behavior
for studying on-chip communication architectures. Rather than using the traces as input
to an architecture simulator, their traces are analyzed statically. In addition, a traditional
hardware/software co-simulation stage is required in order to generate the traces.

Finally, the Archer project [23] shows a lot of similarities with our work. This is
due to the fact that both our work and Archer are spin-offs from the Spade project [17].

A major difference is, however, that Archer follows an entirely different application-
to-architecture mapping approach. Instead of using event-traces, it maps symbolic pro-
grams, which are derived from the application model, onto architecture resources.

3 The Sesame modeling and simulation environment

The Sesame modeling and simulation environment [18], which builds upon the ground-
laying work of the Spade framework [17], facilitates the performance analysis of em-
bedded systems architectures in a way that directly reflects the so-called Y-chart design
approach [13]. In Y-chart based design, a designer studies the target applications, makes
some initial calculations, and proposes an architecture. The performance of this archi-
tecture is then quantitatively evaluated and compared against alternative architectures.
For such performance analysis, each application is mapped onto the architecture un-
der investigation and the performance of each application-architecture combination is
evaluated. Subsequently, the resulting performance numbers may inspire the designer
to improve the architecture, restructure the application(s) or modify the mapping of the
application(s).

In accordance to the Y-chart approach, Sesame recognizes separate application and
architecture models within a system simulation. An application model describes the
functional behavior of an application, including both computation and communication
behavior. The architecture model defines architecture resources and captures their per-
formance constraints. Essential in this modeling methodology is that an application
model is independent from architectural specifics, assumptions on hardware/software
partitioning, and timing characteristics. As a result, a single application model can be
used to exercise different hardware/software partitionings and can be mapped onto a
range of architecture models, possibly representing different system architectures or
simply modeling the same system architecture at various levels of abstraction. After
mapping, an application model is co-simulated with an architecture model allowing for
evaluation of the system performance of a particular application, mapping, and under-
lying architecture.

For application modeling, Sesame uses the Kahn Process Network (KPN) model of
computation [12] in which parallel processes – implemented in a high level language
– communicate with each other via unbounded FIFO channels. In the Kahn paradigm,
reading from channels is done in a blocking manner, while writing is non-blocking. The
computational behavior of an application is captured by instrumenting the code of each
Kahn process with annotations which describe the application’s computational actions.
The reading from or writing to Kahn channels represents the communication behavior
of a process within the application model. By executing the Kahn model, each process
records its actions in order to generate a trace of application events, which is necessary
for driving an architecture model. Initially, the application events typically are coarse
grained, such as execute(DCT) or read(pixel-block,channel id), and they may be refined
as the underlying architecture models are refined. We note that in the remainder of this
paper, computational application events will be referred to as execute events.

To execute Kahn application models, and thereby generating the application events
that represent the workload imposed on the architecture, Sesame features a process

model

model

Event

FIFO buffer

Proc.

ChannelKahn
process

core
Proc.
core

Bus

trace

Architecture

Application

Fig. 1. Mapping a Kahn application model onto an architecture model.

network execution engine supporting Kahn semantics. This execution engine runs the
Kahn processes as separate threads using the Pthreads package. For now, there is a lim-
itation that the Kahn processes need to be written in C++. In the near future, C and
Java support will be added. The structure of the application models (i.e., which pro-
cesses are used in the model and how they are connected to each other) is described in
a language called YML (Y-chart Modeling Language)[22]. This is an XML-based lan-
guage which is similar to Ptolemy’s MoML [16] but is slightly less generic in the sense
that YML only needs to support a few simulation domains. As a consequence, YML
only supports a subset of MoML’s features. However, YML provides one additional
feature in comparison to MoML as it contains built-in scripting support. This allows for
loop-like constructs, mapping & connectivity functions, and so on, which facilitate the
description of large and complex models.

The performance of an architecture can be evaluated by simulating the performance
consequences of the incoming execute and communication events from an application
model. This requires an explicit mapping of the processes and channels of a Kahn ap-
plication model onto the components of the architecture model. The generated trace of
application events from a specific Kahn process is therefore routed towards a specific
component inside the architecture model by using a trace-event queue. This is illustrated
in Figure 1. Since the application-model execution engine and the architecture simula-
tor run as separate processes1, these trace-event queues are currently implemented via
Unix named-pipes. Alternative implementations of the queues, such as using shared
memory, are foreseen in the future. If two or more Kahn processes are mapped onto a
single architecture component (e.g., when several application tasks are mapped onto a

1 Running the application-model execution engine as a separate process also makes it easy to
analyze the application model in isolation. This can be beneficial as it allows for investigation
of the upper bounds of the performance and may lead to early recognition of bottlenecks within
the application itself.

microprocessor), then the events from the different trace-event queues need to be sched-
uled. The next section explains how this is done.

An architecture model solely accounts for architectural (performance) constraints
and therefore does not need to model functional behavior. This is possible because the
functional behavior is already captured in the application model, which subsequently
drives the architecture simulation. An architecture model is constructed from generic
building blocks provided by a library. This library contains template performance mod-
els for processing cores, communication media (like busses) and different types of
memory. These template models can be freely extended and adapted. All architecture
models in Sesame are implemented using a small but powerful discrete-event simulation
language, called Pearl, which provides easy construction of the models and fast simu-
lation [18]. The structure of architecture models – specifying which building blocks are
used from the library and the way they are connected – is also described in YML.

4 The synchronization layer

When multiple Kahn application model processes are mapped onto a single architecture
model component, the event traces need to be scheduled. For this purpose, Sesame pro-
vides an intermediate synchronization layer, which is illustrated in Figure 2. This layer
guarantees deadlock-free scheduling of the application events and forms the application
and architecture dependent structure that connects the architecture-independent appli-
cation model with the application-independent architecture model. The synchronization
layer, which can be automatically generated from the YML description of an application
model, consists of virtual processor components and FIFO buffers for communication
between the virtual processors. There is a one-to-one relationship between the Kahn
processes in the application model and the virtual processors in the synchronization
layer. This is also true for the Kahn channels and the FIFO channels in the synchro-
nization layer, except for the fact that the buffers of the latter channels are limited in
size. Their size is parameterized and dependent on the modeled architecture. A virtual
processor reads in an application trace from a Kahn process and dispatches the events
to a processing component in the architecture model. The mapping of a virtual proces-
sor onto a processing component in the architecture model is parameterized and thus
freely adjustable. Currently, this virtual processor to architectural processor mapping is
specified in the YML description of the architecture model. We are working, however,
towards an approach in which this mapping is specified in a separate YML mapping
description.

As can be seen from Figure 2, multiple virtual processors can be mapped onto a
single processor in the architecture model. In this scheme, execute events are directly
dispatched by a virtual processor to the processor model. The latter subsequently sched-
ules the events originating from different virtual processors according to some given
policy (FCFS by default) and models their timing consequences. For communication
events, however, the appropriate buffer at the synchronization layer is first consulted
to check whether or not a communication is safe to take place so that no deadlock can
occur. Only if it is found to be safe (i.e., for read events the data should be available and
for write events there should be room in the target buffer), then communication events

Buffer

Bus

Buffer

Processor 1 Processor 2

processor
Virtual

processor
Virtual

processor
Virtual

Architecture
model

layer

model
Application

Synchronization

Kahn
process process

Kahn

process
Kahn

Fig. 2. The three layers within Sesame: the application model layer, the architecture model layer,
and the synchronization layer which interfaces between application and architecture models.

may be dispatched to the processor component in the architecture model. As long as a
communication event cannot be dispatched, the virtual processor blocks. This is pos-
sible because the synchronization layer is, like the architecture model, implemented in
the Pearl simulation language and executes in the same simulation-time domain as the
architecture model. As a consequence, the synchronization layer accounts for synchro-
nization delays of communicating application processes mapped onto the underlying
architecture, while the architecture model accounts for the computational latencies and
the pure communication latencies (i.e., how long does it take to transfer an amount of
data from X to Y). Each time a virtual processor dispatches an application event (either
computation or communication) to a processor in the architecture model, it is blocked
(in simulated time) until the event’s simulation at the architecture level has finished.

The idea of concentrating synchronization behavior in a synchronization layer and
separating it from (the latencies caused by) data transmission behavior is somewhat sim-
ilar to the synchronization graph concept of [20]. However, our synchronization layer
seems to be more flexible since it is dynamically scheduled and behaves like a ”Kahn”
process network in which the FIFO buffers are bounded. As a consequence of the dy-
namic scheduling of the synchronization layer and the architecture model (remember
that they both are executed in the same discrete-event simulation domain), dynamics
at the architecture level such as contention can easily be taken into account within the
synchronization layer.

5 Exploiting intra-task parallelism

Initially, Sesame only modeled the architecture’s processing cores as black boxes which
sequentially simulate the timing consequences of the incoming (linear) trace of appli-
cation events. However, the architecture under investigation may also want to exploit

To processor architecture model

from write units

processors

Application events
from Kahn process

buffer

buffer

processors
of other virtual
to read units

of other virtual

buffer

buffer

Virtual proc.

unit
ReadRead Execute

unit
Execute

unit
Write
unit

Write
unitunit

Fig. 3. Refining a virtual processor in the synchronization layer.

intra-task parallelism which is present in a single event trace from a Kahn application
process. For example, a processing element may have multiple communication units
which allow for performing independent reads and writes in parallel, or it may have
multiple execution units for concurrently processing independent computations. To sup-
port the modeling and simulation of such intra-task parallelism, we extended Sesame’s
model library with component models that allow for refining the virtual processors in
the synchronization layer and the processor components within the architecture models.

Figure 3 shows how a virtual processor in the synchronization layer, like the ones
depicted in Figure 2, is refined. The virtual processor component now acts as a front-
end to a range of (virtual) functional units. These functional units consist of read, write
and execution units which can operate in parallel. The new virtual processor component
has a symbolic-instruction window of parameterizable size in which it stores incoming
application events and with which it analyzes them for parallel execution. According
to the event type (execute event type, channel from/to which is read/written, etc.), the
virtual processor dispatches incoming events to the appropriate functional unit. The
number of entries in the symbolic-instruction window limits the number of outstand-
ing (dispatched but not finished) events in the virtual processor. A window size of one
implies sequential handling of the application events. In Figure 3, the arrows from the
functional units back to the virtual processor refer to the acknowledgments the func-
tional units transmit whenever the simulation of an event has finished.

The read and write units are connected via buffers2 with other virtual processors,
like discussed in Section 4, in order to establish the modeling of synchronizations be-
tween Kahn application processes in accordance to their mapping onto the underlying
architecture. Hence, the read and write units do not dispatch a communication event to
the architecture model unless it is safe to do so, i.e., the event cannot cause a deadlock.
In addition, the execution and write units do not dispatch their incoming application
events to the architecture model before all dependencies for these events are resolved.

2 Per read or write unit, there may be multiple buffers connected.

A
rc

hi
te

ct
ur

e
m

od
el

Other architecture
componentsunit

Virtual proc.

unit
Read

Architecture model of processor

Execute Execute

Virtual proc.

Write Write
unitunit

Read
unit unit

Bus

Kahn process A Kahn process B

unit
Execute

unit
Execute

unit
Write
unit

Write
unit

Read
unit

Read
unit

Execute
unit

Execute
unit

Write
unit

Write
unitunit

Read Read

Fig. 4. Mapping multiple refined virtual processors onto a refined processor architecture model.

We will elaborate on this issue in the next section, which discusses the internal synchro-
nizations within a refined virtual processor component.

Figure 4 illustrates how the refined virtual processors can be mapped onto a pro-
cessor component in the architecture model which has been refined as well. The read
units from the virtual processors that are mapped onto the same processor at the archi-
tecture level, are connected to the read units of the processor in the architecture model.
Likewise, the virtual execution units are connected to the execution units of the proces-
sor architecture model, and so on. The functional units in the architecture model may
again be black-box models which sequentially account for the timing consequences of
the incoming application events dispatched by the synchronization layer. Alternatively,
they may also be further refined. For example, a refined execution unit may model in-
ternally pipelined execution of execute events. Furthermore, in the example of Figure 4
all communication units in the architecture model are connected to a bus model. In real-
ity, communication units within the architecture model may have different connections
with each other (directly across a bus or via shared memory, point-to-point, etc.).

6 Dataflow for functional unit synchronization

To properly model parallel execution of application events from a single event trace, the
dependencies between the events should be taken into account. For example, an execu-
tion unit in the synchronization layer may only dispatch an execute event to the execu-
tion unit in the architecture model when the read events it depends on have been sim-

Ex(e) = Execute of computation e

W(3)
W(2)Ex(e)

W(2)

R(1)
R(0)

Ex(e)

W(3)
W(2)Ex(e)

R({0,1}) = Read on channel {0,1}
W({2,3}) = Write on channel {2,3}

R(0)

= token buffer

W(3)
W(2)
Ex(e)
R(1)
R(0)

R(1)

W(3)

W(2)

R(1)
R(0)

Ex(e)

W(3)

(a)

(b)

Time
Ite

ra
tio

n
#

R(0)
R(1)

Virtual proc.

unitunit
Ex.
unit

Read Write
unit
Write

unit
Read

Fig. 5. Dataflow-based synchronization to resolve dependencies between functional units in a
virtual processor. The architecture shown in (a) exploits pipeline parallelism, which is illustrated
in (b).

ulated and delivered the required input for the execute. Likewise, a write event may be
dispatched to the architecture model when it is safe to do so and when the read/execute
events it depends on have been simulated.

Consider the example in Figure 5(a) in which a virtual processor is shown for a
processor architecture with a pipeline of two read units, one execution unit and two
write units. In this example, the trace generating Kahn process reads/writes from/to two
channels which are mapped onto separate read and write units. The execute events in
this example are dependent on the two preceding read events, while the two write events
are dependent on the preceding execute event. In Figure 5(b) the resulting pipeline
parallelism is illustrated.

The synchronization between the functional units in order to resolve dependencies
is done via buffered token channels. In Figure 5(a), for example, the read units have a
token channel to the execution unit. A read unit sends a token along its token channel
whenever a read event finished, i.e., has been simulated at architecture level. The size
of the token channel’s buffer determines how far the read unit can run ahead, or in other
words, the amount of internal buffering a read unit has. If the token channel’s buffer is

class v_read_unit

[...]

sig_room : (unit_id : integer)
{ }

read : ()
{

block(sig_room); // block until there’s room in token buffer
input_buffer ! get(); // wait until there’s data in input FIFO
ex_unit !! sig_data(unit_id); // send token to execution unit
virt_proc !! op_done(); // signal completion to virt. processor

}

{
while (1) {

block(read, signal_room);
}

}

Fig. 6. Pearl code for a read unit object from the synchronization layer.

full, then the read unit stalls until the execution unit has removed one or more tokens
from the channel’s buffer. During such a stall, a read unit cannot handle new read events.

In our example, the execution unit reads the tokens generated by the read units. As-
sociated with each execute event type, there are two bitmaps. The first one describes on
which token channels the particular execute event is dependent, i.e., which read units
produce data needed by the execute event. The second bitmap describes which func-
tional units are dependent on the execute event. So, it relates to output token channels.

The execution unit must have received a token from all of the required token chan-
nels, implying that dependencies have been resolved, before the execute event may be
dispatched to the architecture model. Likewise, after an execute event has been simu-
lated at the architecture level, the execution unit sends tokens along the required output
token channels (as specified by the second bitmap). As a consequence, the write units,
which are waiting for tokens from the execution unit, are enabled to dispatch depen-
dent write events to the architecture model. To summarize, synchronizations due to
dependencies between functional units in the synchronization layer are handled using
the dataflow principle with token transmissions between the functional units. To be
more specific, this dataflow mechanism adheres to integer-controlled dataflow [7]. Of
course, the placement of token channels between functional units and their buffer sizes
are freely adjustable. For the time being, however, we slightly restricted the choice of
functional units as we currently assume that there can be only one execution unit per
processor. In Section 8, we come back to this issue and indicate how our modeling
concepts may be extended to support multiple execution units per processor.

To give an impression of how the implemented models look like, Figure 6 shows the
Pearl code for a read unit from the synchronization layer (the variable declarations have
been omitted). As Pearl is an object-based language and architecture components are
modeled by objects, the code shown in Figure 6 embodies the class of read unit objects.
As the explanation of the code is beyond the scope of this paper, the interested reader
is referred to [18] for a more detailed discussion of a Pearl code sample.

In our implementation, it is straightforward to change the policy defining when
token buffers can be read from or written to. More specifically, a functional unit can
wait until all of its required tokens are available before it retrieves the tokens from the
buffers or it can retrieve a required token whenever it becomes available. In the latter
case, the producer of the token may be unblocked earlier and thereby allowing it to
proceed with processing new application events.

We note that the synchronizations between functional units are only performed in
the synchronization layer and are not needed within the underlying architecture model.
This is because once application events are dispatched from the synchronization layer to
the architecture model, they are safe to simulate, i.e., they cannot cause deadlocks and
their dependencies have been resolved. This scheme nicely fits our approach in which
all synchronization overheads are accounted for in the synchronization layer.

7 A case study: QR decomposition

To validate the previously presented concepts on how to model the exploitation of intra-
task parallelism, we have performed a case study using a set of application model in-
stances of the well-understood QR decomposition algorithm. These application models
are the result of the Compaan work [14] done at Leiden University. The Compaan tool
is able to automatically generate Kahn application models from nested loop programs
written in Matlab, which in our case is the QR decomposition algorithm. In addition,
it can perform code transformations such as loop unrolling to increase task-level paral-
lelism inside applications [21].

The Kahn application models generated by the Compaan tool are suitable for a di-
rect implementation in hardware on an FPGA. For this purpose, application models
are translated into VHDL [10]. This gives us the unique opportunity to validate our
abstract architecture models against an actual FPGA implementation. In the VHDL im-
plementation of a Kahn application model, pre-defined node components are connected
in a network. This is done according to the connections between the processes in the
application model. The node components, which represent the functional behavior of
the Kahn processes in the application model, are implemented in a pipelined fashion
that is similar to the one shown in Figure 5. Conceptually, this means that each node
component contains a number of read and write units and a single execution unit. So,
besides exploiting task-level parallelism by the VHDL network of node components,
each node component also exploits intra-task parallelism using its internally pipelined
architecture.

Regarding the QR application, we studied five different instances of its application
model generated by Compaan. In each instance, the loops in the code have been un-
rolled a different number of times. This loop unrolling creates new Kahn processes,
thereby increasing the task-level parallelism available in the application [21]. Addi-
tional information on the Kahn application model of the QR decomposition algorithm
can be found in [10]. For each of the application model instances, we described the
structure of the application model in YML to be able to run the model with Sesame’s
application-model execution engine. As a side-note, it is worth mentioning that the gen-

eration of the YML descriptions of the application model instances is performed fully
automatically by means of a visitor tool.

Our Sesame architecture model, onto which the QR application model instances
are mapped, is similar to the VHDL implementation of a Kahn application model in
the sense that it also consists of processor components connected in a network with a
topology identical to that of the application model. Each processor component is mod-
eled with our refined (virtual) processor model (see Section 5) and uses the pipelined
architecture as shown in Figure 5(a). Between processor components in the architecture
model there are point-to-point FIFO channels.

Recall that the structure of Sesame’s architecture models is described in YML. Be-
cause of YML’s built-in scripting support, this allowed us to construct a generic reusable
template for the refined (virtual) processor model. The processor network in the archi-
tecture model is thus obtained by repetitively instantiating this template with possibly
different parameters and linking these processor instances together according to the
topology of the application model. This topology information is derived from our YML
description of the Kahn application model.

7.1 Experiments

Our first experiments were performed using a Sesame synchronization layer and archi-
tecture model with the following characteristics. The size of the FIFO buffers is 256
elements, which guarantees deadlock-free execution of the studied application model
instances [10]. The functional units of processor components as well as the FIFO buffers
are modeled as black boxes. Read and write operations to the FIFO buffers take 3 cy-
cles each as specified in [10], while all execute events3 are handled in a single cycle.
The latter reflects the performance of a fully-utilized internal execution pipeline with a
single-cycle throughput. Moreover, the token channels between the functional units at
the synchronization layer have single-entry buffers. This means that the read and exe-
cution units cannot produce more than one result before consumption, i.e., they have
only limited internal buffering.

In Figure 7(a), the performance of the FPGA implementation (modeled in VHDL)
of the five QR application instances – with loop unroll factors of one to five – is shown.
The figure also shows the performance estimates of our black-box Sesame model for
these application model instances. These results are referred to as the base model in Fig-
ure 7. As shown in Figure 7(b), the black-box model yields an average error of 36% and
a worst-case error of 40% with respect to the performance results of the FPGA imple-
mentation. The Sesame (base) performance estimates show the correct trend behavior
but are consistently more pessimistic than those for the FPGA.

According to [10], the FPGA buffer implementation is based around a dual-ported
RAM, where our base model models single-ported buffers. This explains why the results
of the base model are pessimistic. As a next step, we ”opened up” the black-box FIFO
model and adapted it to include dual-ported behavior. To this end, we modeled three
variants of dual-ported FIFO buffers. Two of these variants represent implementation
extremes, while the third one reflects the performance behavior of the actual FPGA

3 In the QR application model, the execute events consist of vectorize and rotate operations.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5

C
yc

le
s

Unroll factor

QR decomposition

FPGA
Sesame, base

Sesame, perfect dual-ported
Sesame, slow dual-ported

Sesame, refined dual-ported
Difference Base Dual-ported model

% model Perfect Slow Refined
FIFO FIFO FIFO

Average 36 -21 32 -3.5
Worst case 40 -22 37 -4.7

(a) (b)

Fig. 7. Validation results of our Sesame models for the QR decomposition application against
the results from an actual FPGA implementation. The graph in (a) shows the (estimated) perfor-
mance for five application instances with different loop unroll factors. The table in (b) gives the
differences (in %) between estimates from our models and the FPGA numbers.

implementation. The results of these three dual-ported FIFO models are also shown in
Figure 7. The curve labeled with perfect dual-ported shows the performance estimates
when modeling the FIFO buffers as being perfectly dual-ported. The latter means that
read and write operations on a buffer can be performed entirely in parallel, even when
the buffer is empty. So, when receiving a read request in the empty buffer state, the
read is blocked until a write request is coming in after which the incoming (written)
data is immediately forwarded to the reading party. Consequently, both read and write
latencies are entirely overlapped.

At the other extreme, the curve labeled with slow dual-ported in Figure 7 shows
the Sesame performance estimates when modeling dual-ported FIFO buffers which are
entirely sequential at the empty state. So, when receiving a read request in the empty
buffer state, the read is blocked until a write has occurred and finished writing its data
into the buffer (in our model, this takes 3 cycles).

Finally, the curve labeled with refined dual-ported, shows the Sesame results when
incorporating more detailed knowledge on the actual FPGA buffer implementation into
our model. Details on the FPGA implementation indicated that a monolithic 3-cycle
read/write latency for the FIFO buffers does not reflect the actual behavior. In reality,
the throughput at both sides of a FIFO buffer is 1 operation per 3 cycles, while the read
latency turned out to be only 1 cycle. In our refined dual-ported model we have therefore
split the 3-cycle delay into three 1-cycle delays and placed them at the appropriate
places according to specification of the FPGA buffer implementation. This means that
we refined the timing within our model while keeping its abstract structure intact.

Three important conclusions can be drawn from the results in Figure 7. First, the
results reconfirm the modeling flexibility of Sesame. This is because we were able to
model the three dual-ported buffer designs by changing less than ten lines in the code of
the base model. Second, the results from the ‘perfect’ and ‘slow’ models – representing
the two FIFO buffer implementation extremes – immediately indicate that the average

accuracy of Sesame’s performance estimates must lie in the range of -21% and +32%.
In fact, our ‘refined’ model demonstrates how close our performance estimates can
approximate reality since it yields an average error of only 3.5% and a worst case error
of 4.7%. Knowing that Sesame targets performance evaluation in an early design stage
and therefore models at a high level of abstraction, these accuracy numbers are very
promising. Third, our results indicate that the studied hardware implementations of the
QR decomposition application are highly sensitive to different FIFO buffer designs.
Since the performance estimates of the ‘perfect’ buffer model show a speedup of 68%
over the results of the ‘slow’ buffer model, the handling of the empty state in the FIFO
buffer seems to be an important design issue.

Since Sesame targets performance evaluation in an early design stage, where the
design space that needs to be explored typically is very large, the required modeling
effort and the simulation speed of Sesame is worth noting. The architecture models in
this case study, including the components in the synchronization layer, consist of less
than 500 lines of Pearl code. It takes Sesame about 16 seconds on a 333MHz Sun Ultra
10 to perform the architecture simulation for all five application model instances in a
batch.

8 Discussion

So far, we have assumed that in the set of functional units of a refined (virtual) pro-
cessor there is only one execution unit. Processing cores, however, might have multiple
execution units that can perform computations in parallel. We are currently investigat-
ing whether or not our dataflow approach is sufficient for dealing with dependencies
between execution units. In any case, for such inter-execution dependencies we need to
extend our dataflow scheme such that tokens are typed, like in the tagged-token model
[3]. With the typed tokens, an execution unit can differentiate between the production
of results from different execute event types. To support such typed tokens, the bitmaps
need to be extended from single-bit values to multiple-bit values to be able to specify
which token types are required for an application event.

Moreover, we currently use static bitmaps per execute event type. We found, how-
ever, that this causes problems when, for example, execute events of the same type
require data from different read units in different stages of the application model’s exe-
cution. This can be solved by dynamically adding the bitmap information to the execute
events in the traces.

9 Conclusions

In this paper, we presented the techniques applied by the Sesame modeling and simula-
tion environment to model intra-task parallelism exploited at the architecture level for
task-parallel applications. To this end, our processor models are refined to the level of
functional units which can operate in parallel and which are synchronized to resolve de-
pendencies by means of a dataflow mechanism. Using a case study, in which we were

able to compare our simulation results with the results from an actual FPGA imple-
mentation, we demonstrated that our modeling methodology is flexible and shows good
accuracy.

Acknowledgments

This research is supported by PROGRESS, the embedded systems research program of
the Dutch organization for Scientific Research NWO, the Dutch Ministry of Economic
Affairs and the Technology Foundation STW. We thank the people from the Embedded
Real-time Computing group at Leiden University, and in particular Todor Stefanov, Bart
Kienhuis, Vladimir Živković, Laurentiu Nicolae and Ed Deprettere, for providing the
application models for the QR case study and for their invaluable feedback on this work.
In addition, we would like to thank Tim Hariss from QinetiQ Ltd (UK) for providing us
with the details on the FPGA implementation of the QR application.

References

1. Cadence Design Systems, Inc., http://www.cadence.com/.
2. Innoveda Inc., http://www.innoveda.com/.
3. Arvind and K. P. Gostelow. The U-Interpreter. IEEE Computer, 15(2):42–49, Feb. 1982.
4. F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara, A. Jurecska,

L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-Software
Co-design of Embedded Systems – The POLIS approach. Kluwer Academic Publishers,
1997.

5. J.-Y. Brunel, E.A. de Kock, W.M. Kruijtzer, H.J.H.N. Kenter, and W.J.M. Smits. Com-
munication refinement in video systems on chip. In Proc. 7th Int. Workshop on Hard-
ware/Software Codesign, pages 142–146, May 1999.

6. J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. Int. Journal of Computer Simulation, 4:155–182,
Apr. 1994.

7. J. T. Buck. Static scheduling and code generation from dynamic dataflow graphs with integer
valued control streams. In Proc. of the 28th Asilomar conference on Signals, Systems, and
Computers, Oct. 1994.

8. P. Dreike and J. McCoy. Co-simulating software and hardware in embedded systems. Em-
bedded Systems Programming, 10(6), June 1997.

9. R.K. Gupta, C.N. Coelho Jr., and G. De Micheli. Synthesis and simulation of digital systems
containing interacting hardware and software components. In Proc. of the Design Automation
Conference, pages 225–230, June 1992.

10. T. Harriss, R. Walke, B. Kienhuis, and E.F. Deprettere. Compilation from Matlab to process
networks realized in FPGA. In Proc. of the 35th Asilomar conference on Signals, Systems,
and Computers, Nov. 2001.

11. K. Hines and G. Borriello. Dynamic communication models in embedded system co-
simulation. In Proc. of the Design Automation Conference, pages 395–400, June 1997.

12. G. Kahn. The semantics of a simple language for parallel programming. In Proc. of the IFIP
Congress 74, 1974.

13. B. Kienhuis, E.F. Deprettere, K.A. Vissers, and P. van der Wolf. An approach for quanti-
tative analysis of application-specific dataflow architectures. In Proc. of the Int. Conf. on
Application-specific Systems, Architectures and Processors, July 1997.

14. B. Kienhuis, E. Rijpkema, and E.F. Deprettere. Compaan: Deriving process networks from
Matlab for embedded signal processing architectures. In Proc. of the 8th International Work-
shop on Hardware/Software Codesign (CODES’2000), May 2000.

15. K. Lahiri, A. Raghunathan, and S. Dey. System-level performance analysis for designing
on-chip communication architectures. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 20(6):768–783, June 2001.

16. E. A. Lee and S. Neuendorffer. MoML - a Modeling Markup Language in XML, version
0.4. Technical Report UCB/ERL M00/8, Electronics Research Lab, University of California,
Berkeley, March 2000.

17. P. Lieverse, P. van der Wolf, E.F. Deprettere, and K.A. Vissers. A methodology for architec-
ture exploration of heterogeneous signal processing systems. Journal of VLSI Signal Pro-
cessing for Signal, Image and Video Technology, 29(3):197–207, November 2001. Special
issue on SiPS’99.

18. A. D. Pimentel, S. Polstra, F. Terpstra, A. W. van Halderen, J. E. Coffland, and L.O.
Hertzberger. Towards efficient design space exploration of heterogeneous embedded me-
dia systems. In Proc. of the 1st Int. Workshop on Systems, Architectures, MOdeling, and
Simulation (SAMOS), pages 57–73, July 2001.

19. A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger, and E.F. Deprettere. Exploring
embedded-systems architectures with Artemis. IEEE Computer, 34(11):57–63, Nov. 2001.

20. S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchro-
nization. Marcel Dekker, Inc., 2000.

21. T. Stefanov, B. Kienhuis, and E.F. Deprettere. Algorithmic transformation techniques for
efficient exploration of alternative application instances. In Proc. of the 10th Int. Symposium
on Hardware/Software Codesign (CODES’02), pages 7–12, May 2002.

22. F. Terpstra. Design considerations and description of YML. Technical report, Univerity of
Amsterdam, Jan. 2002.

23. V. Živković, P. van der Wolf, E.F. Deprettere, and E.A. de Kock. Design space exploration
of streaming multiprocessor architectures. To appear in the Proc. of the IEEE Workshop on
Signal Processing Systems (SIPS’02), Oct. 2002.

Energy Estimation for Piecewise Regular
Processor Arrays?

Frank Hannig and Jürgen Teich

University of Paderborn, D-33098 Paderborn, Germany,
{hannig, teich}@date.upb.de,
URL: http://www-date.upb.de

In Proceedings of the Second International Workshop on Systems, Architectures, Modeling, and Simulation (SAMOS 2002),
Island of Samos, Greece, July 22–25, 2002.

Abstract. In this paper, we present a first approach for array-level
energy estimation during high-level synthesis when mapping piecewise
regular algorithms onto massively parallel full size processor arrays. In-
nately, piecewise regular algorithms have some power consumption friendly
properties, e.g., they may be mapped onto processor arrays with only lo-
cal interconnect and memory. In addition to these properties, we show
that the chosen mapping has a significant influence on the power con-
sumption. Our energy estimation approach identifies regions with de-
creased switching activity of functional units’ input operands. For these
regions with reduced activity, a lower power consumption can be directly
obtained from a generated table based model. Experimental results for-
tify the accuracy and efficiency of our methodology.

1 Introduction

Nowadays, low power has become an important design criterion last but not
least due to all the mobile phones and portable computers. These devices have
to handle increasingly computational-intensive algorithms like video processing
(MPEG4) or other digital signal processing tasks (3G), but on the other hand
they are limited in their power budget. The next generation of ULSI chips will
allow to implement arrays of hundreds 32-bit micro-processors and more on a
single die. Hence, parallelization techniques and compilers will be of utmost
importance in order to map computational-intensive algorithms efficiently to
these processor arrays.

In this context, our paper deals with the specific problem of estimating the
power consumption when mapping a certain class of loop-specified computations
called piecewise regular algorithms [24] onto a dedicated processor array. This
work can be classified to the area of loop parallelization in the polytope model
[8, 15].

The rest of the paper is structured as follows. In Section 2, a brief survey
of previous work on low power is presented. Section 3 introduces the class of
? Supported in part by the German Science Foundation (DFG) Project SFB 376 “Mas-

sively Parallel Computation”.

2

algorithms we are dealing with. In Section 4, we examine the power consumption
of functional units in dependence on their input activity. Afterwards, an energy
estimation methodology when mapping regular algorithms to processor arrays is
described. The methodology and some results are discussed in Section 5. Future
extensions and concluding remarks are presented in Section 6.

2 Related Work

A lot of previous work in the area of low power design during high-level syn-
thesis has dealt with the issue of power estimation. Various methodologies for
generating accurate models for datapath power consumption were presented.

In general these power estimation techniques can be divided into simulative
and non-simulative categories. The non-simulative method in [16] estimates the
power consumption from an information theoretical point of view. In [14], the
authors describe a strategy called Dual Bit Type (DBT) model where not only
the random activity of the least significant bits, but also the correlated activity
of the most significant bits is taken into account. The method in [10] proposes a
modeling approach for functional units that are typically used in digital signal
processing systems, such as adders, multipliers and delay elements. Thereby, a
4-dimensional table-based [9] macro model is used by the authors.

Also, some works [3] focused on transformations at the algorithmic and the
architectural level to obtain low power designs. In [2], transformations for nested
loop programs are discussed. In [4, 18, 19, 21], several scheduling and binding
techniques for low power are studied. Some energy estimations for processor
arrays with hierarchical memory structures are made in [6].

However, to the best of our knowledge, our work presented here is the
first which considers the relationship between space-time mappings of compu-
tation intensive algorithms and energy consumption. Here, we specify a power-
consumption model used in the methodology described afterwards for energy
estimation of piecewise regular processor arrays.

3 Notation and Background

3.1 Algorithms

The class of algorithms we are dealing with in this paper is a class of recurrence
equations defined as follows:

Definition 1. (Piecewise Regular Algorithm). A piecewise regular algorithm con-
tains N quantified equations

S1 [I] , . . . , Si [I] , . . . , SN [I]

Each equation Si [I] is of the form

xi [I] = fi (. . . , xj [I − dji] , . . .)

3

(a)

(b)

A

B

i

j
k

C

a

b

1
0
0

* +

0
0
0

0
0
0 0

0
0

0
0
1

0
1
0

Fig. 1. In (a), an index space and the reduced dependence graph is shown. Some
possible mappings are depicted in (b).

where I ∈ Ii ⊆ Z
n, xi [I] are indexed variables, fi are arbitrary functions,

dji ∈ Zn are constant data dependence vectors, and . . . denote similar arguments.

The domains Ii are called index spaces, and in our case defined as follows:

Definition 2. (Linearly Bounded Lattice). A linearly bounded lattice denotes an
index space of the form

I = {I ∈ Zn | I = Mκ+ c ∧ Aκ ≥ b}

where κ ∈ Zl, M ∈ Zn×l, c ∈ Zn, A ∈ Zm×l and b ∈ Zm. {κ ∈ Zl | Aκ ≥ b}
defines an integral convex polyhedron or in case of boundedness a polytope in Zl.
This set is affinely mapped onto iteration vectors I using an affine transformation
(I = Mκ+ c).

Throughout the paper, we assume that the matrix M is square and invertible.
Then, each vector κ is uniquely mapped to an index point I. Furthermore, we
require that the index space is bounded.

For illustration purposes throughout the paper, the following example is used.

4

Example 1. The well known matrix multiplication algorithm computes the prod-
uct C = A · B of two matrices A ∈ RN1×N3 and B ∈ RN3×N2 and is defined as
follows

cij =
N3∑
k=1

aikbkj ∀ 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2.

A corresponding piecewise regular algorithm is given by

input operations
a [i, 0, k]← aik 1 ≤ i ≤ N1 ∧ 1 ≤ k ≤ N3

b [0, j, k]← bkj 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3

c [i, j, 0] ← 0 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2

computations
a [i, j, k]← a [i, j − 1, k] ∀(i j k)T = I ∈ I
b [i, j, k] ← b [i− 1, j, k] ∀(i j k)T = I ∈ I
z [i, j, k]← a [i, j, k] · b [i, j, k] ∀(i j k)T = I ∈ I
c [i, j, k] ← c [i, j, k − 1] + z [i, j, k] ∀(i j k)T = I ∈ I

output operations
cij ← c [i, j,N3] 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2

The data dependence vectors are daa = (0 1 0)T, dbb = (1 0 0)T, dcc = (0 0 1)T,
daz = (0 0 0)T, dbz = (0 0 0)T, and dzc = (0 0 0)T. The index space is given by

I = {I = (i j k)T ∈ Z3 | 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3}.

Computations of piecewise regular algorithms may be represented by a de-
pendence graph (DG). The dependence graph of the algorithm of Example 1 is
shown in Fig. 1 (a). The dependence graph expresses the partial order between
the operations. Each variable of the algorithm is represented at every index
point I ∈ I by one node. The edges correspond to the data dependencies of the
algorithm. They are regular throughout the algorithm, i.e., a[i, j, k] is directly
dependent on a[i, j − 1, k]. The dependence graph specifies implicitly all legal
execution orderings of operations: if there is a directed path in the dependence
graph from one node a[J] to a node z[K] where J,K ∈ I, then the computation
of a[J] must precede the computation of z[K].

Henceforth, and without loss of generality1, we assume that all indexed vari-
ables are embedded in a common index space I. Then, the corresponding de-
pendence graphs can be represented in a reduced form.

Definition 3. (Reduced Dependence Graph). A reduced dependence graph (RDG)
G = (V,E,D) of dimension n is a network where V is a set of nodes and
E ⊆ V × V is a set of edges. To each edge e = (vi, vj) there is associated a
dependence vector dij ∈ D ⊂ Zn.

The RDG of the matrix multiplication algorithm is shown in Fig. 1 (a). Each
node v in the graph corresponds to one equation in the section computations of
the algorithm.
1 All described methods can also be applied for each quantification individually.

5

3.2 Space-Time Mapping

Linear transformations as in Eq. (1), are used as space-time mappings [12,17] in
order to assign a processor index p ∈ Zn−1 (space) and a sequencing index t ∈ Z
(time) to index vectors I ∈ I.(

p
t

)
= TI =

(
Q
λ

)
I (1)

In Eq. (1), Q ∈ Z(n−1)×n and λ ∈ Z1×n. The main reasons for using linear allo-
cation and scheduling functions is that the data flow between PEs is local and
regular which is essential for low power VLSI implementations. The interpreta-
tion of such a linear transformation is as follows: The set of operations defined
at index points λ · I = const. are scheduled at the same time step. The index
space of allocated processing elements (processor space) is denoted by Q and is
given by the set Q = {p | p = Q · I ∧ I ∈ I}. This set can also be obtained by
choosing a projection of the dependence graph along a vector u ∈ Zn, i.e., any
coprime2 vector u satisfying Q · u = 0 [12] describes the allocation equivalently.

Allocation and scheduling must satisfy that no data dependencies in the DG
are violated. This is ensured by the following causality constraint

λ · dij ≥ 0 ∀(vi, vj) ∈ E. (2)

A sufficient condition for guaranteeing that no two or more index points are
assigned to a processing element at the same time step is given by

rank
(
Q
λ

)
= n. (3)

Using the projection vector u satisfying Q ·u = 0, this condition is equivalent to
λ · u 6= 0 [24].

Definition 4. (Iteration Interval) [26]. The iteration interval π of an allocated
and scheduled piecewise regular algorithm is the number of time instances between
the evaluation of two successive instances of a variable within one processing
element.

Definition 5. (Block Pipelining Period) [13]. The block pipelining period of an
allocated and scheduled piecewise regular algorithm is the time interval between
the initiations of two successive problem instances and is denoted by β.

Lets consider the matrix multiplication algorithm introduced in Example 1 as a
problem instance. The whole matrices A and B have to read into the processor
array before the next pair can be read, the time between these input operations
is the block pipelining period β. Let λ be the schedule vector. Then, the block
pipelining period β may be computed as follows,

β = max
I1∈I
{λ · I1} − min

I2∈I
{λ · I2} = max

I1,I2∈I
{λ(I1 − I2)} .

2 A vector x is said to be coprime if the absolute value of the greatest value of the
greatest common divisor of its elements is one.

6

4 Power Modeling and Energy Estimation

In digital CMOS circuits, the dominant source of power consumption is switching
power [22]. The average power consumed by a CMOS gate can be computed using
the following equation,

Psw =
1
2
CLV

2
ddNf,

where CL is the gate output load capacitance, Vdd is the supply voltage, f is the
clock frequency, and N is the average or expected number of output transitions
per clock cycle.

Due to the influence of the switching activity on the power consumption, our
main idea is to exploit the fact that power consumption is drastically reduced
when some inputs of a functional unit remain unchanged for n > 1 clock cycles.

Here, we want to discuss the impact of the space-time mapping on the
power and energy consumption respectively of the resulting processor array.
Our approach identifies regions with decreased switching activity of functional
units’ input operands and take these power savings into account. An estima-
tion methodology is presented in the following. This methodology estimates for
a given piecewise regular algorithm and a space-time mapping T the average
power consumption of the entire array.

Briefly described this methodology can be subdivided into two hierarchical
estimation steps,

– PE-level power estimation,
– array-level power estimation.

4.1 PE-level Power Estimation

A sketch of a typical processor element’s internal structure is shown in Fig. 2.
It consists of a core part where all the functional units are located, a controller,
and some delay registers. In the final paper version, we quantify the percentages

Core Register

Controller

Fig. 2. Schematically internal structure of one processor element.

7

of power consumption for the functional units PFU, the control structures PCtrl,
and the registers PRg and these parts’ proportion of the overall power consump-
tion of one processing element. Then the power consumption of one PE can be
approximated as follows, PFU(λ, u) = PFU(u) + PCtrl(λ) + PRg(λ).

For characterization of the functional units (adders, multipliers, etc.), stan-
dard register-transfer level power estimation tools from Synopsys [23] are used.

Table 1. Average power consumption of different functional units.

n Pavg,A Pavg,B Pavg,C Pavg,D

1 26.97 µW 204.2 µW 212.0 µW 319.6 µW
2 22.33 µW 155.4 µW 164.0 µW 225.0 µW
3 18.82 µW 138.6 µW 145.6 µW 190.1 µW
4 16.99 µW 129.6 µW 137.3 µW 175.1 µW
5 16.31 µW 125.4 µW 133.8 µW 164.3 µW
6 15.68 µW 120.5 µW 128.4 µW 159.4 µW
7 15.48 µW 119.5 µW 125.2 µW 153.3 µW
8 15.29 µW 116.8 µW 124.4 µW 151.6 µW
9 15.09 µW 116.3 µW 123.7 µW 147.8 µW

10 14.89 µW 115.5 µW 122.7 µW 145.8 µW
∞0 8.49 µW – – –

In Table 1, the average power consumption of some 16-bit functional units
are listed (A = ripple-carry adder, B = carry-save array multiplier, C = carry-
save array multiplier with two pipeline stages, D = Wallace-tree multiplier with
three pipeline stages). Each functional unit has two input operands. The value
of one operand is assumed to be constant for n clock cycles; the other can change
randomly in every clock cycle. These values are visualized in Fig. 3 (a) for the
16-bit ripple-carry adder and Fig. 3 (b) for the multipliers respectively. The
curves are derived by regression, where the function is of type P = a0 +a1e

−n+
a2ne

−n + a3n
2e−n. The regression is good enough to have errors less than 2%.

Since we are only interested in integer multiples of the clock cycle for n, the
derived models may be stored in a table without too much effort.

4.2 Array-level Power Estimation

Based on the class of piecewise regular algorithms, we want to estimate the power
consumption for a given space-time mapping T = (Q λ)T. It is obvious that the
cost (number of processor elements) and the latency is influenced by the space-
time mapping. In earlier work [11], we described how to determine the cost and
the latency as a measure for performance. Here, we just briefly outline the main
ideas. If we assume that processor arrays are resource-dominant, we are able
to approximate the cost as being proportional to the processor count. Ehrhart
polynomials [5, 7] may be evaluated to count the number of points (processor
elements, #PE) in the projected index space.

8

1 2 3 4 5 6 7 8 9 10
14

16

18

20

22

24

26

28

n

P
av

g
[µ

W
]

ripple−carry adder

(a)

1 2 3 4 5 6 7 8 9 10
100

150

200

250

300

350

n

P
av

g
[µ

W
]

Wallace−tree multiplier (3 pipeline stages)

Carry−save array multiplier (2 pipeline stages)

Carry−save array multiplier

(b)

Fig. 3. Average power consumption of some 16-bit functional units when one operand
is constant for n clock cycles and the other can change randomly in every clock cycle.

9

The latency is determined by solving a minimization problem which may be
formulated as a mixed integer linear program (MILP) [25, 26]. Also, modified
low power scheduling and binding techniques like in [19, 21] can be applied to
compute a suited schedule.

Here, we want to discuss the impact of the space-time mapping on the power
and energy consumption respectively of the resulting processor array. Our ap-
proach identifies regions with decreased switching activity of functional units’
input operands and take these power savings into account. An estimation algo-
rithm is presented on the following pages. The algorithm estimates for a given
RDG G, an index space I, a space-time mapping T , the number of processor el-
ements #PE, and the block pipelining period β the average power consumption
Parray of the entire array. The processor count #PE and the block pipelining
period β of the array may be computed as described earlier in this paper.

Once, the average power consumption Parray of the entire processor array is
estimated, the energy consumption per problem instance is computed as follows,

E = β · Parray.

Without loss of generality, we assume in the following that the iteration period
π is one and that each RDG node is mapped onto a dedicated resource. Our
estimation algorithm can be subdivided into two phases. In the first phase, the
worst case power consumption is computed, i.e., when the switching activity of
all functional units’ input operands is highest. Therefore, the power consump-
tion PPE of one processor element is determined by summation of the power
consumption Pvi(1) of all of its FUs

PPE =
∑
∀vi∈V

Pvi(1).

The one in the term Pvi(1) denotes that operands can change in every clock
cycle.

POWER ESTIMATION

1 IN: RDG G, I, T =
(
Q
λ

)
, #PE, and β

2 OUT: Parray

3 BEGIN
4 PPE ← 0
5 FOR all nodes v ∈ G DO
6 Pv,1 ← lookUpPower(v, 1)
7 PPE ← PPE + Pv,1
8 ENDFOR
9 Parray ← #PE · PPE

10 FOR all edges e ∈ G DO
11 d is dependence vector of edge e
12 node v ← source(e)
13 node w ← target(e)

10

14 IF (v = w) THEN
15 IF (Sv is propagation equation) THEN
16 IF (Q · d = 0) THEN
17 FOR all adjacent edges e′ of v
18 d′ is dependence vector of edge e′

19 IF (d′ = 0) THEN
20 w ← target(e′)
21 Pw,1 ← lookUpPower(w, 1)
22 Pw,β ← lookUpPower(w, β)
23 Parray ← Parray −#PE · (Pw,1 − Pw,β)
24 ENDIF
25 ENDFOR
26 ENDIF
27 ELSE
28 (k,m) ← getOperandFixedCycles(T , v)
29 Pw,1 ← lookUpPower(w, 1)
30 Pw,k ← lookUpPower(w, k)
31 Parray ← Parray −m · (Pw,1 − Pw,k)
32 ENDIF
33 ENDIF
34 ENDFOR
35 END

Subsequently, the power consumption of the entire array is obtained by extrap-
olation of this value. In the second algorithm phase array regions with lower
switching activity are detected. Therefore, the whole reduced dependence graph
is traversed to examine self-loops3. These self-loops correspond to inputs of a
processor element. If these inputs remain unchanged for more than one period,
the switching activity is decreased and consequently also the power. It remains
to determine for how long inputs are constant and how many processor elements
are affected. Two cases can be differentiated:

1. Propagation equations mapped onto itself. Propagation equations are
only used to distribute data from one processor to another. Due to the reg-
ularity and locality of the considered processor arrays, they occur very com-
monly. If such a propagation equation is mapped onto itself (Q · d = 0) no
data transport is needed, i.e., the data remains in one processor element
unchanged for β cycles until the next problem instance is fed into the array.
Thus, the switching activity of all adjacent nodes vi (functional units) in the
same processor element is reduced. Therefore, the estimation of the average
power consumption is decreased by Pvi(1)−Pvi(β). As a propagation equa-
tion has global influence the activity is reduced in every processor element
(#PE).

2. Other self-loops. These are the remaining inputs which may be constant
for k clock cycles. The number of processor elements with these constant

3 A self-loop is an edge where source and target node are the same.

11

inputs is denoted by m. Let Iin1 be the input index space of variable ini.
Transforming this index space by Q and counting the number of points in
the transformed space, gives m.

m =
∣∣{I ∈ Zn−1|I = Q · Iin1 ∧ Iin1 ∈ Iin1

}∣∣
This counting problem is similar to the earlier described one and can also
solved by using Ehrhart polynomials. Once k andm are determined, the over-
all estimated power consumption can be reduced by m · (Pin1(1)−Pin1(k)).

In the next section the overall algorithm is explained by means of discussing
some results.

5 Results

Reconsider the introductory Example 1. As an allocation we choose for the
addition a 16-bit ripple-carry adder and for the multiplication a three-stage
pipelined Wallace-tree multiplier. The input operations a and b are mapped
each to one resource of type input. The execution times of these operations are
zero. This is equivalent to a multi-cast without delay to a set of processors.
Furthermore, let u = (1 0 0)T be the chosen projection vector. Then, after
scheduling and cost calculus, we obtain the schedule vector λ = (1 0 1) and as
cost #PE = N2 · N3. Now, with this information we are able to estimate the
power consumption by applying the proposed algorithm. First, the worst case
power consumption is determined, i.e., the switching activity of functional units’
when input operands change each both each cycle. Second, in the main part of
the algorithm, two types of equations with lower input activity are detected and
the overall power consumption is adapted.

P = 165.0
P = 23.7

mult

add

P = 172.0
P = 24.2

mult

add

P = 165.0
P = 24.0

mult

add

P = 165.0
P = 23.9

mult

add

P = 168.0
P = 8.2

mult

add

P = 168.0
P = 8.1

mult

add

P = 164.0
P = 8.1

mult

add

P = 169.0
P = 8.1

mult

add

P = 167.0
P = 8.2

mult

add

P = 162.0
P = 24.2

mult

add

A B

C

0 0 0 0 0

Fig. 4. Processor array for u = (1 0 0)T, N1 = 4, N2 = 5, and N3 = 2.

The processor array for a projection in direction u = (1 0 0)T is shown in
Fig. 4. Due to this projection, the variable b is mapped onto itself. From this it

12

follows that one operand of the multiplication remains unchanged for some time.
At the beginning of a computation, the whole matrix B is input simultaneously
to the array, whereas the matrixA is fed sequentially row by row from the left side
into the array. Since the matrix A has N1 rows, one operand of the multiplier is
fixed for β = N1 clock cycles which significantly reduces the power consumption
in the multipliers by 45% (see Table 1). On account of the design regularity the
power savings can multiplied by #PE (line 23 of the algorithm). The second
point where less power is consumed is the constant input variable c. One input
of the adders in the lower row of the processor array is permanently zero. This
partial areas with reduced power consumption in the array are determined by the
function getOperandFixedCycles. In addition to the time (k =∞) where one input
remains unchanged, the number m = N2 of processors with reduced switching
activity is returned.

Table 2. Average power and energy consumption of different mappings.

u Psim Pext Errext Pest Errest Esim Eest

[µW] [µW] [%] [µW] [%] [pJ] [pJ]

(1 0 0)T 2020 3466 71.6 1928 -4.6 80.8 77.1
(0 1 0)T 1530 2773 81.2 1456 -4.8 76.5 72.8
(0 0 1)T 7260 6931 -4.5 6931 -4.5 145.2 138.6

In Table 2, the power consumption for different projection vectors is shown,
where for illustration purposes, the upper boundaries of the index space are set
to N1 = 4, N2 = 5, and N3 = 2. In the table, Psim is the exact value obtained
by simulation of the entire array. The worst case extrapolation (line 4–9 in
the algorithm) is denoted by Pext. The power consumption of our estimation
algorithm is labeled with Pest. Whereas the simple extrapolation method has
errors up to 81%, our approach is very accurate with errors less than 5%.

Furthermore, the energy values per matrix multiplication in the table show
the significant influence of the chosen space-timing mapping. Different mappings
can lead to energy consumptions which differ up to a factor of two.

6 Conclusions and Future Work

A first study of a matrix multiplication algorithm has shown the great impact
of a chosen mapping to the average energy consumption of the resulting array
and the accuracy (errors < 5%) of our estimation approach when comparing it
with RTL power estimation tools from Synopsys [23].

Furthermore, our methodology is independent of the problem (array) size,
since, an estimation with Synopsys design tools has linear time and memory
complexity in dependence on the number of processor elements. Power estimation
for large processor arrays using the Synopsys design tools rapidly becomes crucial

13

since memory usage is growing to GBytes and estimation time to several hours.
Exact comparisons of the complexity and also a quantification of the percentages
of power consumption for the functional units, the controller, and the registers
and these parts’ proportion of the overall power consumption of one processing
element are presented in the final version of this paper. First experiments of
matrix multiplication and LU decomposition have shown that since all data is
stored locally inside processor element’s registers, the part of the register power
consumption averages from ∼ 10− 15% of the overall power consumption.

Finally (in the final paper), our methodology will be verified for a piecewise
regular algorithm in a case study for LU decomposition. In Fig. 5, a piecewise

AB

C

Fig. 5. Sketch of piecewise regular processor array for LU decomposition.

regular processor array for LU decomposition is schematically shown. This array
can be subdivided in three pieces, where the parts A and B also change their
functionality over the time.

Our new estimation methodology is currently integrated into the PARO de-
sign system and can be used during the process of automated synthesis of regular
circuits. PARO is a design system project for modeling, transforming, optimiza-
tion, and processor synthesis for the class of piecewise linear algorithms [1,20].

References

1. Marcus Bednara and Jürgen Teich. Synthesis of FPGA Implementations from Loop
Algorithms. In First International Conference on Engineering of Reconfigurable

14

Systems and Algorithms (ERSA’01), pages 1–7, Las Vegas, NV, June 2001.
2. Francky Catthoor, Frank Franssen, Sven Wuytack, Lode Nachtergaele, and Hugo

De Man. Global Communication and Memory Optimizing Transformations for
Low Power Systems. In VLSI Signal Processing Workshop, pages 178–187, October
1994.

3. Anantha P. Chandrakasan, Miodrag Potkonjak, Renu Mehra, Jan Rabaey, and
Robert W. Brodersen. Optimizing Power Using Transformations. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 14(1):12–31,
January 1995.

4. Jui-Ming Chang and Massoud Pedram. Module Assignment for Low Power.
In IEEE European Design Automation Conference (EuroDAC), pages 376–381,
Geneva, Switzerland, September 1996.

5. Philippe Clauss and Vincent Loechner. Parametric Analysis of Polyhedral Iteration
Spaces. Journal of VLSI Signal Processing, 19(2):179–194, July 1998.

6. Uwe Eckhardt. Algorithmus-Architektur-Codesign für den Entwurf digitaler Sys-
teme mit eingebettetem Prozessorarray und Speicherhierarchie. PhD thesis, Tech-
nische Universität Dresden, Fakultät Elektrotechnik, Dresden, Germany, 2000.

7. Eugène Ehrhart. Polynômes arithmétiques et Méthode des Polyèdres en Combi-
natoire, volume 35 of International Series of Numerical Mathematics. Birkhäuser
Verlag, Basel, 1. edition, 1977.

8. Paul Feautrier. Automatic Parallelization in the Polytope Model. Technical Re-
port 8, Laboratoire PRiSM, Université des Versailles St-Quentin en Yvelines, 45,
avenue des États-Unis, F-78035 Versailles Cedex, June 1996.

9. Subodh Gupta and Farid N. Najm. Power Macro-Models for DSP Blocks with
Application to High-Level Synthesis. In IEEE International Symposium on Low
Power Electronics and Design, pages 103–105, San Diego, CA, August 1999.

10. Subodh Gupta and Farid N. Najm. Power Modeling for High-Level Power Estima-
tion. IEEE Transactions on Very Large Integration (VLSI) Systems, 8(1):18–29,
February 2000.

11. Frank Hannig and Jürgen Teich. Design Space Exploration for Massively Parallel
Processor Arrays. In Victor Malyshkin, editor, Parallel Computing Technologies,
6th International Conference, PaCT 2001, Proceedings, volume 2127 of Lecture
Notes in Computer Science (LNCS), pages 51–65, Novosibirsk, Russia, September
2001. Springer.

12. Robert H. Kuhn. Transforming Algorithms for Single-Stage and VLSI Architec-
tures. In Workshop on Interconnection Networks for Parallel and Distributed Pro-
cessing, pages 11–19, West Layfaette, IN, April 1980.

13. Sun-Yuan Kung. VLSI Array Processors. Prentice Hall, Englewood Cliffs, New
Jersey, 1987.

14. Paul E. Landman and Jan M. Rabaey. Architectural Power Analysis: The Dual
Bit Type Method. IEEE Transactions on Very Large Integration (VLSI) Systems,
3(2):173–187, June 1995.

15. Christian Lengauer. Loop Parallelization in the Polytope Model. In Eike Best,
editor, CONCUR’93, Lecture Notes in Computer Science 715, pages 398–416.
Springer-Verlag, 1993.

16. Diana Marculescu, Radu Marculescu, and Massoud Pedram. Information Theoretic
Measures for Power Analysis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 15(6):599–610, June 1996.

17. Dan I. Moldovan. On the Design of Algorithms for VLSI Systolic Arrays. In
Proceedings of the IEEE, volume 71, pages 113–120, January 1983.

15

18. Enric Musoll and Jordi Cortadella. High-level Synthesis Techniques for Reduc-
ing the Activity of Functional Units. In International Symposium on Low-Power
Design, pages 99–104, April 1995.

19. Enric Musoll and Jordi Cortadella. Scheduling and Resource Binding for Low
Power. In Int. Symp. on System Synthesis, pages 104–109, 1995.

20. PARO Design System Project. http://www-date.upb.de/research/paro/.
21. Anand Raghunathan and Niraj K. Jha. An ILP Formulation for Low Power based

on Minimizing Switched Capacitance during Data Path Allocation. In IEEE Sym-
posium on Circuits and Systems, May 1995.

22. Anand Raghunathan, Niraj K. Jha, and Sujit Dey. High-Level Power Analysis and
Optimization. Kluwer Academic, Norwell, Massachusetts, 1998.

23. Synopsys Inc. http://www.synopsys.com.
24. Jürgen Teich. A Compiler for Application-Specific Processor Arrays. PhD thesis,

Institut für Mikroelektronik, Universität des Saarlandes, Saarbrücken, Germany,
1993.

25. Jürgen Teich, Lothar Thiele, and Li Zhang. Scheduling of Partitioned Regular
Algorithms on Processor Arrays with Constrained Resources. Journal of VLSI
Signal Processing, 17(1):5–20, September 1997.

26. Lothar Thiele. Resource Constrained Scheduling of Uniform Algorithms. Journal
of VLSI Signal Processing, 10:295–310, 1995.

'sar8olopoq?am u8rsap 1aaa1 .raqElq Surpnord sprprtao+ p"ol spuer+ 1ng ('uorlecg
-rceds 1,1,u tuoq swaqlufs ''a'l) srsaqlu,ts cpol rog s1oo1 SupSsrles sapuo.rd ,(3o

JorrqJel e$eralJos aq1 ,(puarrnc '(vqa) slool uolleuolne u8rsap Jruorpala aq+ ul
spuarl epnlJm plnoqs uorlnlo e 1ee€olouqoet;o qs,{pua eq1 ,alaldruoo aq o;,
'pap8mpr aq o+ seq ?r Jr uele 'plerr swerna.r 'suollergnads 1ane1-q31q eql ruo{
uop€ruJoJur aa€Fe+m p"Jp(e o+ iaoq ltpueu'4rorr luasard aqlgo q:ed auo'rarra
-aoH 'aleq paluasard auo aql uro{ }uaJagTp {raa aq r{em suaqlu,(s eJ€JJelq eq}

'rpo,renre-r; € qJns q '[gt] ep€tn ueeq ea€q sa.rroruam o1 flpargp sdqc vca.r 3n1d
o1 s1dua11e etnos ?eql ereq eloN 'u8rsap lapered ,(1q85q roJ uor?Fruep eleJralur
locolord snq +uange q+ur pauraJuor fpreru s1 .raded sIqI 'peraprsuor aq Fnrrr
eo€3:e+m Jo uorl"Jeue8 orleruo1ne l(peep lnq 'pu"q ,(q pau8rsap uegJo lsoru sr

33€Fa+w uE qcns 'qlpl,raprr"q snq aql ,(11uapga sesn l€q+ 1oro1o.rd af,?Jte+ul u€
qllna pera llap aq +snru u8lsap pooS e 'acuo11 'aeneru.roJrad JoJ {raual$oq roferu
aql satuolaq u8rsep e olrq pal aq rmJ elep rpFl,ra +" paads aq+ 'aroSaraql pue
'sos€arJm salc,fr >1co1c sosnq pue sap,(r 4eop u8lsap eql ueeiapq det aq1 qng
'dqc aq+ uo sosnq repcrq:ed 3o asn aq+ sasodmr qrq,,t ,€olopoqleu u6*ap pasnq

tu.totlo1ttr aq1 3o Supeards aq1 ,(q pagrldme sr ,truepual s.nl;, 'snq peuuor{uoc
Jo vgl IV 'alduruxa rog 'dI a)€3:a+m o1 qocolord snq uo ,t1ar suSlsap i(ue6

'ualqord Je$q sFI+ sasseJpp€:aded luasard aq;, 'anss1 rofeur e seruos
+q ,(11uarega sar Sugmgre+q '[Z] dttlc uo qronlau go aeueaE:aure aql q+r,r +nq
'rualqord quepodurr lsour s,fepol s€ pa€p$uof, aq u€t u3rsap aJtsrtr€-Ja1$od 'uor+

-durnsuoc raaaod Surzrurrurur pue '4cauallloq q+plrapueq snq aq+ 3un1os 'cger1
pue,(qcrcrarq 'azrs f.rouraru Surzrrurldo 6? qJns suJaf,uo3 Jeq+o ol rusgalpred pue
acueruroyad qBq uror; paAoru seq u3rsap affrapJ€q uI snJoJ ul€tu aql 'arua11 ',ue1

s(aJoow rlaolloJ lou op uol1er8a1ur ,{1ddns renod prrc sesnq 'seuouraru ;dnn e 3o
slualnaF pe ,(1uro;pn peSP lou op ,ffiolouqcalJo sluerrre^ordr4 'pueq Jeqlo aql
uO 'Ja+Joqs prr€ Japoqs aJ€ sluerrreJlnbar prpeur ol euql pue '1sBJ r(ra.rr sasearc
-u1 su8lsap aqt Jo ,(lrxalduroo eql esnsJeq ,(.rolepueru Sunuoreq a.re [96] su31s

-ep pesoq u-ro!1o1d pue su8rsap p?saq il'sarSolopoq+aur u8rsap aq+ ul sa3ueqr

luepodrur seaseJoJ u81sap ualsr(s pappaqun rog deut peor pc€olouqta+ aq;

uor+cnpor+ul I

r;:' uo{1-suaO{+ass gr+}
Z0 xepeC uo,t1 pgg6g

olpll,p agll" gt (uo,(1 g5ig (411
.

.rg:' esplg{:eu8ea' uoxurnb' no11rn8e'ua1,r:aps}
arue{{ ':.epaC seuuog gTggg 'nelpeeg ap sndueX 'eqrl ,

,rau8er11 sap€qC
pue'.}ass1g r(n8uel'ruolup$ aJIJlsd 'rnollFC arl€lC-€uuv 'ruagraq ua a+S

sorn+3a+Ir{crv rEInSatI pollduloc

I

roJ sac€JJa+ul +ualcsg Jo slsaqtu/(s cl+Buro+nY

using,new languages (systemc for instance) and new methodologias (use of uvr,
specifications for instance). The research presented here belon*gs to a specific
domain which aims at compiling Ioops to hardware [21,].g, 10, tl. n tnis netd,
interfacing is also a major issue because applications'op"rui" oo i.rg" data sets
(usually streams in signal processing or images in m'ttimeaia) which must be
efficiently brought onto the chip. Again, design automation is a major issue and
the approach proposed in this paper focus on automatic interface design for
architectures compiled from loop nest specifications.

Based on the work done around the MrvrAlpha tool [10, g], we propose a solu_
tion to this problem for a particuiar class of architecture,'narnely linear regular
arrays. In this paper, we introduce the concept of applicotion interfac, *ni.u
can be seen as the application dependent part of the interface for linear systolic
T3yr. As all highly pipelined designs share many properties, it is possible to
dgfine a generic application interface, i.e. an interface rkul"too that is valid for
all linear arrays and that can be easily pa^rameterized for earh application imple.
mented. The experiments we report in this paper are oriented towards a FpcA
platform, but the concepts presented can be used for interfacing Ips on a soc,
provided the rp has some features that we will describe herea.ftei.

The underlying interface a^rchitecture that we consider in this paper is com-
posed of a bus (with fixed bandwidth and throughput, possibly including a faster
oue mode) and of a Fifo interconnecting the bus and-the application. The Fifo
allows data to be buffered when an interruption occurs at one ofthe bus ends.
The bus and the Fifo form what we call the hardwore interface. on top of the
hardware interface is built an appricotion interface whose ,ot" i, to rearrange
the data between the ha.rdware interface and the application. This part of the
interface is application dependent and can be automatically produced by the
same kind of tools that generates the hardwa.re of the application.

^
This paper is organized as follows. After a brief piesentation in section 2

of the or,us application which serves as an illustration throughout the paper,
we eucplain in section 3 the model of our application architJ:ture. seciion 4
details the various elements of the interface we target. In section b, we describe
how data transfers are structured in phases and patterns to allow for effi.cient
communications. The generation of the interface, both software and. hardware,
is presented in section 6. We then describe in section 7 the use of our interface
generator to implement automatically a or,us filter on a FpcA board. Finallv.
we present in section 8 related work and we conclude in smtion g

2 The ourrs example

In this section, we introduce an ercample that will be used throughour ro paper ro
illustrate our interface design: the derayed least mean square algorithm (olvs)
for channel error correction in signal processing applications.

"
Least mean squiles adaptive firters are

"o**ooty
used ia sigaal processing

applications such as ech_o cancellation, system identificatioo, ,pJ".h cod_iog aoJ
channel equalization [11]. unlike fixed coefrcient Fir (Finite lmpulse Response)

(e)

(z)

aq1 ',(pscard erol I'e '8tgJo merSord eqlJo sueeru,{q peurelqo n uorleluaueldrnr
ereiapr€q aql pue uolleegpads Fuol+rrrry aq+ uaarqeq Smdderu eq+ pue ,uqdlv

Jo psqns
"

fl rplqrn 'ruerSord preHdly rrc se passeJdxa u 1 '31.{ of paluasard
ompelrqrrt aq1 'ssaco-rd sTql Jo pua aq+ w '[SZ] a3en3nel

"qdlv
aq+ uo pes?q

'a.ru,ugos eqdlywyrl aql qll,ra uoqdrnsap lJ;u ol uollecgrJods Fuor+rrrry uro{
,tlecperuolne pe -rrep eq rr€J empellmr" slql t"ql rr,raogs uaeq s€q +I ,[0I] uI
'1 am8g ur paluasarder sr [61] sl lro aq] Jo uog€luorualdul rsrrr alqpsod y

'1eu3ls parrsap aq1 sr (u)p araq.ra

(u)ft - (u)p: (u)a

@ - u)o(O - u)a d + (u)m: (1 a z)rn

:,(q uairlS are [Zf] sw'ra eql So suorlenba
alepdn t{8pn aql '(((u)t-ltrotr' ' '' '(u)orn) : (u)m pue ((u)c, ' . ',(t

-.M- u)c)
: (u)t :sro+rel-N se+ouep Ealq€rre ploq) 0 : (g)rn pue 0 - (O)o q+l

0:t
' (u)?n(g *

")t 3 : @)m(u) rn : (u)ft,
I-^I

:fq ua,rr3 u (u) lt pu8rs 1nd1no aq1 ,(u) lrn ,(q palouap sr asuodsar
aqndur asoqnd, rellg q.f, e sI retlg Fll31p a,r11depe aql +€ql Burrunsse ,(g

'urq+lro3p (swrc) atonbe suoaut $oel
pafrn1ap

"
pelpr sr nrqlrroSle Sugpuodsarror aq;, .ped appdn luopgao3 eql Jo

dool arrrsrncal eq+ u1 s,(epp Suryasq fq uorleluauraldrur paurpdrd e uplqo o1
elqrssod s1 q.1 '.rarraaaog 'doo1 {r€qpeeJ B Jo acuasard aql o} enp amladrd ol lpJSIp
aJ€ sratg I"lF1p aalldepe ro ellsmsar leql urraorr{-llea sl ryserlradord a8raauor
rageq rr.rc+qo o+ uor+"ra+I ql"a +" paldepne arc rellg sw'r aq+ se qlns srellg 1eII
-8gp arrlldepe Jo s+uelrlsaor aq1 'sra11g 1elp1p (asuodsag es1ndrul alrugul) uu ro

'00T: w pu" zI = o '0I - p 'doo1 {r'eqpaeJ eq1 ur s,{e1ap

Jo .rlqrunu eqt q O 'ra11g eqt 3o sdel Jo ri,qumu aql sI 11/
.ssacord uSrsep eqdlynr4i

raqe shr.rc eql roJ pour€lqo ern1collrpre eq1 go (q.* g - u = I p 1e) pqedeus .I .tI,!I

(r)

I

(I-Q+u)x

syateE firr : {lf,}t,D I

(r:{n
d:{n

retuns (y : {n

3<=l{<= (l{-D-1 ,D-1) }
l<=n<=I{} of irtegerlS,16l ;
$<=n<=Il) of iateger[S,16])
l{<a<=M} of integertS,16l) ;

D<=t<=-$+l{; p=O} of iateger[S,16J ;
D<-t<=-l{+!l; p=0} of integerlS,16l ;
-ll+D+1<=t<=-il+!{; p4} of integer[s,16] ;
-il+2<=t<--!I+l{+1; p=Q} of integerls,l6l ;

<=it; p=l{-t} of iategerlS,l6J;

d-mirrl : {t,p
y-nirrl : {t,p
r-Inirrl : {t,p
r-nirr2 : {t,p
Y1 : {t,p I lt<=t

Iet
y-rnirrl[t,pJ = ytt+$-DJ ;
d3irrl [t,p] = dlt+]I-Dl;
r-nirr2[t,P] - r[t+}J-l] ;

r-nirrl[t,p] = rlt+l{-Dl ;
y[nl = Y1h,l{-11;
use firrl{odule[l{,M,D] (cl_uirrl, y_mirrt, r_nirrl, r_nirr2)

returtrs (Y1) ;

tel;

Fig. 2. The part of the AlpHard progra- (f irr system, also called AIpHa,rd interface)
which maps the functional specification (input c and d, result g) to the architecture
(f irrModule system also called AlpHard, module). This system contains the information
about the date and place where data should be entered (here for exa,mple, input in the
first processor: p = (), and output in the last proce$or: p = J\f- 1). This progra- has
three parameters: l{ is the number of taps of the filter, D is the number of delays along
the feedback loop, and H is the number of input sa,oples of the filter (for simulation
purposes,)

input flow x and the coefrcient vector d of the initial f irr algorithm are mappd
to new variables x-mirrl, x-mirr2, and d-mirrl, and the architectue itself is
represented by a instanciation of arother Alpha program called firrModule (by
a use statement), which returns an output strearn y1. This strearn is assigned to
the output variable y of program firr. All inputs and outputs of firrHodule
are indexed by t and p which represent respectively the time and the processor
number to which these streams are assigned.

3 Application architecture model

This section models the interface we want to synthesize. We first state the as-
sumptions that we make regarding the tlpe of application hardware that we
want to interface. Then we detail the information which is needed for interfacing
correctly the application architecture (e.g. f irrModule in the or,us application)
with its host architecture. Then we abstract this architecture by a number of
features that will constitute the input to interface generation.

('aregrapr
eql Jo ,{cuenge aq1 Surcnpar eruaq ,qtp}u }lq Fnfr€ eq+ u€ql .ra1ea.r8 orq Jo
.re,s'od lsen€Ius 3q1 esoorp [[I,u locolord aql {}ou sl 1l JI) oial Jo .ra,raod

"
aq o+ $Bq

salq"rrea Jo q+plia 11q aql 'apliu llq ?g ro gg {1ensn sr snq aql sv .q}plttr snq e+€p
aqlJo rapr^Ip € $ fln€erls aqlJo qrpl,la llq aqt l"ql aumss? eM .s1unaqs

lo ttlpptvt

'lou ;t aJJoJua o1 dsea sr pue ,qq,la

Suqeap er€ erla l€ql empe+rqrJe go ad,(1 eql ,{q leur ueuo +sour sl uorldmnsse
snIJ 'rrr€er+s 1ndlno ;o lndw q?€e roJ +ueJaslp aq ,tem rosseeord sTrll +"qt eJIloN
'rrl?eJls aq+Jo Jorra3atd uoqtauuo, pell?J ,rossalord paxg uarrr8 e (aleo1 'dsar) ur
a^Irrts +snru (urea.rp 1nd1no 'dsar) ruearls 1ndu1 ua,rF,(uy .qndlno puo slnd,u1

'apfc lco1e
I€nFI^ auo 8u1mp pepuord oq o+ mq

"lep
auo u"ql erorrr atms .arnlcalrqrre

rcalduoc aloru e sarpbar ,(erre leuomuarDlp-U e Suoeg.ralur ,atrperd ur 1nq
,r(er

-re rep8ar Fuolsuarslp-Z ,(u€ ro; pale.raua8 eq u€c sampa1gqJJ€ ,eqdIVWW qI
'[g] ,(tprtfep rrrilou>l a.re

"+€pJo
sprnq exlql asn€Jaq es€c slq+ reaor o] papuago

,(gsea aq ppor raded sH+ uI pasodord aJ€Jrelq aq1 .ra,reno11 .surtseJ+s snonurl
-uoJ Jo uolldurnsse Jno laam lou op pue ,spoFed fldrua Buol ,(q paleredas elep
Jo srutseJ+s paldnualqun 'a'r 'apom $Jnq q sealile elep ,srte.rre pauorllq-red ug
'snDJJo louo?sueulp-A pu€ ,[V] ffinu,o pauory4.nil Supepalm uroq B]ue ard uorl
-durnsse slql +€q+ pacllou oq pFoqs +I .selep esaql uaeapqul rncJo uor1dn.ua1u1
ou prre 'a1ep SurDua IenFI^ " pu€ elep Surpels FnFI^ " al€q sueerp 1nd
-?no ro +ndq IF leqt su€aw qrgra .e1ep

Jo sru€e4s snonurluoJ ere slndlno pue
sqndq ferre (puorsuaurrp-1) J€auII € aq +snur empelrqJre aqa .efr,n.uo JD?utI

'uq11ro8p aqtJo eu4l +rep arll pue uorplndruoJ aql uaenaleq pasdep sap,(c r1co1c

Ien1rl Jo Jaqumu aql uollelndtuor B Io e1np IDqJ?a If€r arlil .uo ,tlou uro.14

'FuBIs
lre+s ? uo su€aq ern+ra1rglJ€ eq+ Jo uol]eJado eq] +€ql eurnsse os[" ad\ .t/cdJ
aq1 go pu8rs elq€ua {JoIJ aql Bmsn paluaualdurr flern+€u sl {JolJ l€n+rr eql
'sdgqr vcau sp8rel qcru,r su8rsap leluaunradxe Jno r{ .pacnpord a:r ,(aq1 uaqn
snq eql ,(q pa.rnlder eJ€ e}"p 1nd1no pnu ,papeeu se aarrJe sl"p tndq ,8u.mun:

sr empelTqJm
"ql

Jo 4cop e{+ se uoos s€ +eq+ errmss? uer reutrsap aq} .peap

-q['a]eFalul aq+ eplsur ,tlucalduroc lorluoJ aql sasnpar,(lluecgmErs uorldnrnsse
sIqJ '"1€p 1nd1no p€er ol ro e+Bp lndur puas o1 ,(pear lou sr 3.soq aq1 ,aruep
-u'l JoJ 'g uazog aq rr€o pue 'arnpellqor€ eq+ 3o uorlerado eqt saleln9eJ {JolJ
I"nlJIj\ SlqI ?Jotr pqJlo uolltu.t"o? e ,{q palorluo) eJ€ sralsSar II" qJr-qrra ur ?rnt
-ttt 7o7t6tp mouatqcufrs ftpqop € sr ampelruJre uor+erqdde eq1 Wolc pnqlA

'sursarls Jo
qlpl,ra +lq aql pu? 's1nd1no pue slndur (,(er:€ reau{ Jo lapou aq1 tcolc I"n1JI
e :spadse moJ uJaJuoJ arnpe+nrJJe uorlecrldde aq1 Supre8a; suolldunss€ mO

t

suorldurnssy I.g

.:'ilo$lu:eotrc;',
::::::: ::::::::::: :::: : ::: ::: ::: ; : :: I i:. : t::: i i i i tt : i i i | : I :.::::i:

iili"]t'+:HffiiF

ffiffiffiffi

\-

fct FrFo

Fig.3. Standard a,rchitecture of the interconnection between a board and the host
(taken from a Spyder board [23]), together with a logical view of the Fifo mechanism
used betweea the bus and the application architecture.

3.2 Information needed for the interface

If the above assumptions are met, then the interface of the architecture can be
determined from the following information.

- The number of input and output strea,ms. In the case of our example, the
f irrModule system has four inputs (d-nirr1, y-mirrl, x-mirr1, x-mirr2)
and one output (Y1).

- The nanne, bit width, connection processor, virtual starting and stopping
time of each strea,m. For instance input stream x-mirrl is 16 bit wide and
is input in processor p : 0. The starting time is f : -JV + D + 1 and the
stopping time is f : -lV + M + 1.. All these informations can be eurtracted
from the AlpHard interface showu fur Fig. 2 (see for el(arnple the declaration
of the x-mirr1 variable in Fig. 2).

4 fnterface model

In the previous section, we have described what we want to interface as well as
the information needed to define this interface. We now describe in more details
our model of interface. Fig. 3 presents a typical interface architecture, in the
case of the rpce Spyder board [23]. The application hardware, here a DLMs
filter circuit, is mapped on the FpcA. The host and the DLMS a"re interconnecbed

I

aq+ q aes rrsJ auo 'atu€+fin Jo$.eIII"s aql eJ" ornpalTqil? agl Jo slnd+no pu"
s+ndq 11€ qDlrl,ta Sugmp s1alt 1polJ l€ng1lr e rssaof,ns go aruanbas e s1 eseqd y

sasBqd I.g

'nuaq4od pue samqd:suor+ou orrq Bqsn
srupeJls 1nd1no pue 1ndu1 aq+ ampnJ+s an ,acegtalm uorlerldde aq1 ale.raua8 o6

srueor+stu1.rn1en.r15 g

'Z '31.f uI uruoqs merSord pr"Hdlv er€Jre+ul
aql tuo"I; flsnoauegpuls er"napJ€q eq1 pu" eJ"raqJos aq1 aleraue8 o1 esodord arl
,(qaa s1 qql 'ped alerlaqJos aql ,tq pacnpo.rd are ,(eq1 se Japro eru€s eqq uI +:ed
er"napr€q aql ,cq ue{p} aq prnoqs e+€p aq+ .a.r .alqrpduroJ 3q $nlu sq.red o,u1
asaql 'asrnoe gg fe:.re aqt olq ruaq+ spues pu€ oJId aql Jo lno sproaa aqq sla8
qegqn map,ts 8uxa1d11pul€p eql sl 1r :relduor aroru q f:ed ar"r,!apJ"q oql .oJIS

eql 01. €lep spues 1eq1 urrtord e go pasoduor sr lred aJ"ialJos eqg,.yod unn
-proq aq+ pur pad atom$os € olm papFrp :(1p.rngeu sl ao€Fe+w uorleaqdde eql

s1.red a.re,rprBq prrB eJB,u,goS Z.V

'a'"Fe+q lndul aq+ q+lna Fap Ipo aal uo naou rrro{ prr€ ,re[u4s
,{rarr are sped oaal aseq; 'ferre aql uro.g s+"p selreJal rplqra acnpalut lndpo
eq+ pu"'ferre aq1 ol e1ep spuas rlJrq/,la aco{.n1ut Tndup aqqotul peppgp fgemleu
sl alepalq uorlecgdde eqJ 'unl+lro3le aqt Jo uollnJet€ +Jarrol e luawaldur o1
rapro rn $oq aq+ (oq 'dsar) uro{ dr uo11ee11dde aqq (ruog elep 1nd1no sla3 .dsar)

ot
"1ep

qndur spuas +eq+ eJ"Fe?u.r aqg ;o ped aqq sr. acopa1ut uotyvttldilo aqa
'[g '1] arepa]q Ie aI naol rqnurs e apuord spreoq vod,{ elq€Lre^"

,{gercraurtuoJ +soJ tr 'pJ€oq rapr{dg aql Jo ,(romau aq1 Bupn paluaueldun are
aJ€FaluI Is el-iaol aqlJo soJld eq+ (g '31.{ m rrna.oqs a6€J aq+ u1 .mro;1e1d p8rel aql
uo Surpuadap 'sur:o; +uereglp e{gl rr€J a}"3:a+w Ie al-naol eql Jo uorl"luarualdmr
aql leql a)lloN '6;o raaod

"
eq o+ eurnsse era qtlqia q?p?n #q oJIJ eq+ sr aleJre?ur

Ieml rrol eqtJo ra1aul€red y .opg e se,(prFo1se eqaq er€Fe$n le^al iaol eql
'acopalu uo4oaqddo eql pu€ ,acopayut

pnel mol aq1 :sped o,l!+ olq papplp ,(1err3o1 sr eJe:lre+ur aql (uo raou uo.L{

aaeJJa1rn uorlucgdde prre .aae;.ra?EJ
Ia aI is,ot T.V

'ar"Fe1tn uorlecldde eq1 go
sped are,tlpreg pu€ eJeitalJos eql pu" ,aleg:a1m uorlerldde aq1 (aeegralm

la^al j$ol
eql :ercJJallrl sTrll 3o slusruala aql sF"lep oJoru ur rlaar^eJ en ,uorlJes sF{} qt

'arelrilpJ€g uorlecqdde aqg. pu" snq Icd eq+ ueerr+aq uorlezruorqru,(s
qloours € roJ sraon" soJld Jo 8u1p1suor a8prrq Icd V

.snq rcd e 3o sueau ,(q

T

?\0.q
\/

q
q \q\q{od

Fig.4. The phases of the progra,m of Fig. 2 for parameters values N: 10, D : 12 and
M:100

program of Fig. 2 that between clock cycles f : -N * 2 and t : -N * D, only
the x-nirr2 strea,m enters the array. Hence the period of time

{rl- JV +2 <t S -N + D}

is a phase.

During a phase, data are sent to the Fifo word by word, these words having
the size of the Fifo width. For instance the x-rnirr2 va,riable being 16 bit wide,

and if the Fifo 32 bit wide, two x-nirr2 data can be placed in one Fifo word
(remember that we assume that the bit width of all streams divides the Fifo
widtb).

We require the length of a phase to be a multiple of the m# ratio.
If this is not the case, one can always break the phase in two smaller phases, in
order to meet this condition. In our exanple (32 bit wide Fifo and 16 bit wide

va.riable), this ratio is 2, and phase (4) contains D - 1 virtual clock cycles. If D
is even, this interval has to be divided into two phases: phase dr = {tl -JV+2 <
, < -N + D - 1) and phase dz = {tlt: -N + D}.

To illustrate this, Fig. 4 shows the phases corresponding to the progra,m of
Fig. 2, for N : 10, D : 12 and M : 100. We can see that dr : {tl -8 < t S 1}
and6:{tlt:2}.

Phases can be easily computed from the interface specification with elemen-

tary operations on the time iutervals corresponding to each data. Indeed, time
intervals are obtained by projecbing variable dspains of Fig. 2 on the time inds<

t. In MrvrAlpha, these computations are done using the Polylib libra,ry [24].

5.2 Patterns

Inside each phase, a pattern describes in which order data are sent to the Fifo.
ps1 insfance, in phase ft of Fig. 4, one can choose to fill a Fifo word with two

(4)

'raFISer glr{s Agp€oT al€udordd" aql
q tuaql ero+s pu€ oJId aql tuo.g Gl€p salrerar +uauoduor acElretufxndul aql
'luauoduror aoeJrsxuftndul aq+ ol pa?rarmor s1 luauodmor ZgpeoT qJ€g

'sap,(r 4co1t up1/79 Sulmp
1nd1no eq o+ s+rq 1144 prr€ oJI.{ aql urog lalered q p€er aq o} sgq Ag sraolle
pql rap€ar 13lqs

"
srneluol luauodruoc ZgpEoT eq; 'TI Io rrful qfpl,ra 11q eq]

fq panrapurered sr qlru,ra luauodmoc AgpeoT € ol pe+ceuuor sr 1ndur sIqJ .TI

Jo qlpptr +lq eql aq r1r1 1al pue 'ampelrurre aq+ +o ,TI lndur,(es
.1ndu1 rr€ raprs

-uoC 'g '31g uo paluesardar aJ€g:elur lndur eq13o uogesnreBro eql ile1ap a&\
'(Ot : ? atsp Fn1.rI^ 1e a:aq)

flecrg.eruolne dn ps pu91s go-1rets €,iq papels sr ao€Falm 1nd1no eq+ a11tl,rl

'(g- : ? app I"nFr^ aq+ 8ul+€rpm araq ,rasn aq1 ,(q dn 1as) pu8p sels " qlpr
paqJ?+s sr e'€JJe+ur eql leq+ q eruaJaslp uFur aql .pcFpm,(s lsorrrF ar? rprqra,
emFa+rn 1nd1no eq+ pm alepetur +ndq eql olq pepplp s! 1.led eJpjrpmq aqJ

'g 'tld Iq palerpng s1 1red er"iapr€q eql Jo ernpe+Flrr" aq;
'd1qr vca.r aq+ roJ pazrsaqlufs q pu€lcHA ui pap.raua3 sl 1:"d ar"rrpreq eqJ

saldpur.rd :1red are,u,pleq aq+ turle.rauag G,g

'alqelre
"

al€ saJJnosar q3noua tou JI JosseJord aq1 go
uorle.rado tTeA elqrssod e pne oJId aql q alqsl€ € s+ols Jo requmu aq+ uo 1se1
€ qll,lA pe?qs aq eroJeraq+ plnorls urerSord BnlJo sdool aq1 :e?€p puas ro ldacce
o1 ,(pear are soJrd aql reqprli^ I3erp +ou saop urerSord p rtqt l€q} erlpN

'A J€JqII uor+€sTrmunuot

Ie al ltaol € Jo uol+Jury € s31€Allt" oJ:rJPEaU Jo oJ:Tgelrrl,l ol il€c qo€g .80

pu€ l/ 'ep saseqd;o slndlno pue slndur epu€q oq paleraua8 urerEord C eql Jo
ped saaoqs g .tt.{ '[OZ] ereqnaesla peqrnsep ragdmoc A o1 eqdly aqt tulla3.re]ar
,{q uerSord C € m qred are,ulgos eq+ acnpord a,r ,sru1 op oJ .pazlsaqlur(s aq
ol s€q speu dool Jo +as e s€ ',(sua Suraq uro.g JeJ sI ll Swlerarag .snq lcd
aqq q3norq+ o;19 1nd1no aq+ uro.rJ e+ep pear ro oJIS lndur aql ol €+€p puas
o+ lsoq aq+ ,(q uru ruaSo.rd eq+ sr aJ€Jrelur uorlerlldd€ aql Jo lJed emauos aqJ,

lred a.re.ngos aqt 3ur1u.raua11 I.g

'suolleuJoJ:ul
asaq+ tuo.g peleraua8 ax€ e}epelm eqt Jo sg:red are,upJ€q eql pu€ eJe/r!,qJos eql
,uoq IIIeld:cJ /sou adrsuralled s11 'aseqd qJqsa JoJ ,pue saseqd sq go uoEdps
€p aq+ fq pape:pqe s ppout acopa4ul aql .uolpes snoprard aql q uees sV

arBJro+u[oq+ Eul+€rauaD g

'suolt"nlls {Jo1p€ep luaaard o} rapro uI ep€ur
eq o1 mq uralled eql Jo aJroqc aq1 'p.raua3 qI .qfpl,ta llq aums aql e €q Urrrrrrx
prrp T.rrTrx esn"Jeq alduns $ as?J s.ql X€ql aas rr?J aug '(6:r1u-x31rrrru-x) sr

u:aped aq+ 'as?f, slql qI 'lues aJ€ rrr€eJls q]"a Jo
"1"p

g l€q} os samrq' I errraqJs
s1q1 leadar pu€ €l€p errrrrrx o,rq q+pr prora oJIJ 1xeu aq? ueql pue €+€p trrrTrrrx

I

)
/*

/* phase 6 ; fron 12 to 89 sith variables:
{a-nirrl, y-nirr1, Y1, r-nirrl, r-nirr2}*/

for (t = 12; t <= 89; t =t + 2) {
IlriteFifo((int *1(-d-rnirrl + (t -12)));
I{riteFifo((int *1(_y_nirrl + (t -12)));
ReadFifo((iat *1(_Yt + (t -10)));
HriteFifo((int *;(-r-prirrl + (t -3)));
tlriteFifo((int +)(-r-nirr2 + (t+8)));

)
,/* phase 7 : fron 90 to 90 vith variables:

{d-nirrl, y-mirrl, Yt, r-nirrl, r-nirr2} (1

t=90; {
l{riteFifo((int *1(-<l-nirrl + (t -12)));
l{riteFifo ((irt *1 (-y-.nirr1 + (t -12))) ;
ReadFifo((int *)(-Y1 + (t -10)));
IlriteFifo((int *)(-x-pirrl + (t -3)));
llriteFifo((int *1(-x-nirr2 + (t+8)));

data sent)*/

phase I : from 91 to 91 gith variabLes:
tYl, r-nirr2) (t data sent)*/

= 91; {
ReadFifo((iat *)(-Yt + (t -10)));
llriteFifo((irt *)(-r-n:irr2 + (t+8)));

Fig. 5. C code generated for phases 4a,dt,6a of Fig. 4 (for a 32 bit wide Fifo). d-nirrt
is an aray storing value of the d -i rr1 variable of the Alpha program.

The control of this axchitecture is provided by a hiera.rchical two level finite
state machine. The states of first level are the phases of the interface, ard the
states of the second level are the variable names wbich define the patterns inside
a phase. $witshing from one phase to the other is done by counting the number
of elapsed virbual clock cycles (for instance, we see on Fig. 4 that phase /1 must
last 10 virtual clock cycles). An efrcient control of the load32 shift register
allows the loading of a new Fifo word to be overlapped with the output of the
last data word to the application architecture. Hence, provided that the rpca
clock frequency is high enough, the a.rray is fed at the throughput allowed by the
bus. Usually, the rpca clock can be set up fast enough because the application
design is highly pipelined but d for instance, the input data is only 2 bit wide, the
rpca clock frequency might have to be 16 times the bus clock frequency which
is probably not very realistic. AII this process (and the application architecture
as well) can be frozen when the data coming out of the Fifo is not ready.

6.3 Efficient synthesis of the hardware part

It is important to indicate how to efficiently implement this protocol in vnor,,
as the efEciency of the final p is greatly infuenced by the efficiency of the

's+lq a8 se,u soJ:rd ec€JJa$n aql Jo qlpl,,a aqJ .00I : .r4I pne 7,T : Q ,0I : N
:s-ralaurered aqlJo sanl€ 8uuuo11o3 aq+ roJ (z .3r.r) ruq1uo31u swlo eqt roJ er€Jiral
-uI pr"Hdly aq+ mog flpcrleuolne paprana3 seia amJJa+il uorlerndde aql

'ssaeord msaqlu,(s 1arra1 q31q aq+ 01 uoq€Inuns al€iapmq uro.5 uor+€+ouu? ITeq
pe;8uraao1p pue aurl+ u8rsap aq1 dn Supaads arueq .uorle1nrrrrs rcIHA pal1e+ep
aq+ o+ unaop uolte1nurrs lalel q3r-q ruoq

"+"p
eums aql esn ol alq€ araaa a,ta' .1uaur

-uorraue eqd1yw41 aql Jo ,(+tuqrrcau eq+ o1 s{u"qJ 'uor+"Inlurs IsuolpunJ ssna
ssaeo.rd u8rsap aql Smmp ensu luepodrul uV (.[g1] aas) pr€Hdlv o+ utru,op uoller
-gmads €qdly u€ uro.T,{lerr1emo1ne pazrsoqlu,(s s€na sr rTc aq+ roJ loH aql
'lsotn +€ s/glt g sl vcdd aqt pue ndc +soq aqt uaealaq q?pl,tapueq pauesqo aq;
'sreJsu"rl vr trc ro paddeur-,ftouraur Smsn eceJJelw rca aq1 qEnorq+ vcd,{ eq+ qll,ra
sal"rnmunuoc rossecord +soq aql pr€oq sFIl qt .g .BId m rriaoqs sr pJ€oq eq+ Jo
am+ca+rmre eq; 'arr^ep 009)€1:IA xUIIIX

"
uo paseq ,[gZ] preoq rca gy_rap,{dg

e roJ pe+uompadxa pu€ palueunldmr se,ra uolle.raua8 e)"3:etq rrlemo+ne aql

s+uarrrrJadxg I
'sfsdou,(g o{I qoo+ srsaqlur(s 1enJarutuor q+rrtr

uoi+e+uameldun luanga,(rarl e .laaoaJorn pu€ uol+eJndde r(ue JoJ ec€Fe+q aql
o1 SurpuodsaJJoo TcIt ! eq+ Jo uorleraue8 clletuolne ,(sea ne sr$oflB uo+eruo+n€
eql Jo Smpoc slqJ 'l '3t_t of uiaoqs sr alg sr,q+ Jo 1r"d .arnsue o1 fsea ,ftaa s1

ped arerapreq eql pu€ q:ed are,ro,gos aql uaarulaq ,(qgqrleduoc .acua11 .ped
ar€ra'$os erl+ JoJ uorlerauaS apoJ c aq1 3u1mp se uralled pue saseqd aq1 Supug
roJ uorq.rury aur€s aq+ tursn 6

.8td
Jo ruerSo.rd oleFatw eql uro+ uorl€ruroJur

Surpnarlxa ,tq +tpq sl aIS slqJ '(q+p1,rr +lq rleql pue slndur Jo raqumu aq1 uodn
spuadap q)Iqid aJ,"Fa+q aq+ ur sluauodruoJ Jo uor+er€IJep aq+ a411 sa8ueqg lerus
,(;ea ldaaxa) alg euo q uorl€rrrrogn luapuadap uorlecqdde aql n€.raq1et rr€J uo
'uorleluarualdq sr-q+ q1r6 ('seseqd 61 araq) ses?qd Jo raqumu aql sl ezjs asoqnl
Pro3ar ;:o rie.rre ue salepdrueu uo+srrroln€ eql 'p.ro3er lcHA € w peJo+s
a;e (ap 'salqerren aAIlJe 'uoglemp ,ura11ed .a.;) aseqd euo uo uorleurJoJnr eq;
'g uor?ras;o suorldunss? aql Surpaw eJnpeq.rqJJe uorlee.qdde II" roJ l"Jlluapl 'a'r 'lrraua8 ,(lapldruor sr uo?€tnoln" ale+B ellug eq; .el€Jrelq aq1 go srseqlu,ts

sr^r'rq eql roJ arejFelur uorleclldde eql 3o ped arer$,pr"H .g .BI.{

t[-t

t

The sy.nthesis was realized with the Syaplify software [22]. Table 1 gives the
number of look-up tables (Lut) necessary for the synthesis of the DLMs alone, the
DLMs and the interface without the Fifos, and the total design. The clock cycle,
ae estimated by the synthesis tool is also given. Fiaally, the tbroughput of the
iuterface is erraluated ftom the cycle time and the uu&ber of data that are pre
duced by the architecture during eari cycle. More precisely, the DLMS produces
oue 16 bit y-mirr value during each cycle. The table sbows also the maximum
throughput of the pcl bus of the board, as observed for several desicus.

One can draw some conclusions from this table.

- FAst, the hardware interface is not a limiting factor of speed for this design.
Indeed, the clock cycle is inceased ouly by lns by the Fifos.

- Secondly the PcI bus is clearly the limiting factor of the interface: there
is a factor of 8 in the best case betweeu the bandwidth of the bus and the
bandwidth that couJd be achieved by the design. As was expected, the design
of such a high performa.nce device is therefore Iimited by the communication
with the host.

Note however that this interface was not optimized since the x-Birrl and
x-eirr2 streams are a shift in time of one another, hence only one of the two
streams needs to be seut tbrough the bus. Moreover, the y-mirrl stream should
in practice be taken at the output of the architecture and not sent from the
host (the values sent where obtained duriag simulations.) We choose this im-
plementation to validate the interface protocol: ilrdeed, the interface has a more
complicated phase and pattem structure here (phases of one of two clock cycles,
phases with i:rput and outputs, etc.).

Desiga Number of LUT Ulock cycle (Ds Tbougbput (MB/s)
DLMS 5938 3r% 30 --- 66:67TE/r-

DLMS + itrterface 6501 34% 30 66.67 MB/s
DLMS+iqterhr€+Fifos 6928 36% 31 64.5 MB/s

PCI bus (Max) 8 MB/s

Tbble 1, Result of the interface gereratio! for the DLMS algorithm. Palameters: _lV =
10, D = 12 and M = 100. This table gives the aumber of look-up tables occupied by
the design, in the Virto(XCV800 chip (tbe percentage of total LUrs used in a Virtex
XCV800 is giveu betweeq parentheses), the clock cycle estimated by the synthesis tools,
ard the (one-way) throughput of the htedace. The ma:<imum observed tbrouBhput of
the pcl bus of the Spyder boa.rd is given for compa,rison.

8 Related work and discussion

Most of the research on FpcA design focuses on the eficiency of the design itself
rather thau the eficiency of the irrterfa;e of the design. Tests are usually made

ry

pap"ar aq 01 saru€rrro'ad q'lq s,ro1p al'raru-r aqr -rr, #:F::rT Ht * pJ"oq vDdJ rap,{dg e uo palduoe ,{lef,rl"uolne ItrqlIJoBI" sW,Ic € uo rol"n)uag
a:'"y_a1ur srgl paluauuadxa a

"q
a.r,!\ .urroJl"ld al",rpr"q aql uo pazrseqlu,{s 3q o1

ue.r8ord rcu.,t e prre 'lsoq aqt uo unJ aq o1 rm.r8ord 3 e sale.raua3 pue ,suraged
pu€ sas€qd olm suoltermnuruor €l€p aql sampnrp eJ€Fatul aql Jo $saqlufs
aqJ 'lualaqof, aq o+ slJed asaql Sulmsua aJoJereqt ,slool

Jo las anms aq1 Smsn
uorlduJsap aur€s aql Eoq pel€raua8 a.re ereJJalllt eqt Jo qr"d aJ",lrpreq aqt pu"
lJ"d ar",1a!Jos aql qlog .lool

"qdlVWW
aq1 Sursn paurelqo se ,uorleeqdde aql go

uolldlresap 1a,r.a1 qBru e uoq,{lecrlernogne pale.raua8 sr pue ,luapuadap uorpc{d
-rlP $ ar€Falm mO .qsoq aqt ulo.g tEr^r-u"

"l€p
Jo naoE aq1 ur suorldn.ualm qlpu

aoos ol soJld srll€luoJ ptr€ pas"q snq 8r eJqlalur Jo lopoE rno .s3m+J€}rrDr" -r"l
-n8ar :eam1 .rog sareg:a1ur Surzrsaqgu,{s .rol lool € paluasaJd e

"q
a,$, .Jad"d slqt uI

uorsnlJuoc 6

'lapou mo Jo scrlsrJapeJ"rp aq+ sq'aern

{Jrtr,,!d arnpalqcre pallduor,tue oq. partdde eq um lnq .rog uSrsap eqdlylrtrnl aq1
ol paleqpap uorl"luaualdurr u" ,(Iuo tou sr 1r pne ,cr:aua8 fi ppou mo .,{lpu
-Id €qdlvr^{t! s€ q3ns loo+ alSu'ls

"
q{^t las $ ql€d n8rsep rrl"Illoln€ aplduror

"
uaqna alq"[€

"
ar€]€qt ear+Il]"J uorl€Inuns aql pe+uasard IBelJq osl€ a €q

a,t l{p:q; Ioo} au"r aqg Bulsn pue r["r8oJd pJ"Hdly a J?r arfl -o"1 p"nrr
€p aJ" Er€d er",,rAUos pu" aJ"apreq aql rra^oaroE prJe t nperyqalo eq\ UWm
Jaqla6ol pa1.1&\oa sr eJ€Fa+rn aql asn"raq al"s fi ugrsop aql ltlpuooas .paplpard
,{IIEJIt"ts eq u"r ar€Jfalq aqt Jo dJual3sa aqq. .aroJaraql .smrJo uor+druJalul
snq € ss qJn6 luaae l€uJalxe ue uaqa mon"qaq paJJoc Bulmsua o1 papF$eJ
sr tr 'paapql .alqlssod s€ ,ro[s" sr lorluoJ Jr.ueu,tp eql ,18qd.sar]le^ou

l€re
-Aes sttresard uolle.raua8 al?Jn)lul eql roJ asodoJd a.t. 1eq1 ,(Bolopoqpur aq;

.sasnq uo srlJoi$.lau ss€f,ord uqEX tqlerlrmurrroJ
,{11uapga luarualdul o1 [91] dtolopoqlau apeds aql uo saqar [g1 ,6t] q*"UV
'anssl Jol"u aql lou sr ar"Jralul aqlJo ,{euarcga aq1 ,s:ossef,ord

Jo raqunu l1erns
" o+m pauottru€d sr ampelrqf,J€ taBJ€l aql sy 'Jalrqr€ snq € ,{q eurl unJ l€ pa los

sl ualqord af,"Falur aq+,[fZ] oefa q .pa]"JJetq arnpetrqrre Jo adll aql prr$ar
'a.raq paluasard lJorr aql q s€ ,slduatle asaqJ .uorl€Jaua8 ef,eFalln al€Iuoln"
o? ep"ur uaaq e^"q slduall€ ,s1oo1 u8rsap paal q8r.g go luaudola ep aqq. uI

'pap"r8ap eq ,{lq€qord Itr,1d
,tcuanga 1nq uorlnlos

"
eq osl" rr"J (solx) u-a1s,ts Sull"rado arrq-Iear Jo tualp"

aql '[91] sassaeo;4 prluanbag SullecmnmmoC ro ,LI ,16] spu rrp4 ary qapom
pal"uruop Io4uot uo,{lar spalord uoltqldrnor vca.r,{ue1'lq f [9] a-re16o3 m pc
ampaJoJd alouar 'a uepul ro;) slorolord xalduro:r o1 speal prqru Insru"qmln uort
-esruo.rqcu,ts paal q9rq € ,tq paluaualdEl ,{I["nsn eJ" suorl"rrsnEurof, ,qlr-r tFap
strorl"rrldd€ Jo ad,{l l"raua8 ,{re^ aql Jo asn"f,aq ,qool pelualro u8lsap-ot uI

'saJ"Felq uallrJ-{
f11"nu"rn aqursap .[6 ,71] sacuaraSag rape rroJ plr8rq/Bopuy u?

"ra
pr"oq

uo ,([perrp Surarrre elep qllr ro ,ftoualll pr"oq-uo eql ur dp"e{"
"trep

qlla

I

References

[1] Anaapolis. Wildstax Datasheet, 2001.

[2] F. Catthoor, K. Daoclaert, C. Kulkarni, aod T. Omres. Data transfer atrd storage
architecture issues and €c(ploration in multimedia processors. It prcgrcmmable
Digitol Signol Procedsors: Afthitectwe, Progmmming, and Applicatiou. Marcel
Dekker, Inc, New York, 2000.

[3] Celocica. RC1000 Datasheet, 2001.

[] A, Darte. Regula.r Partitioniog for Synthesizing fixed-size systolic Arays. Izte-
gr'd6on, The VLSI Joual, 12:293-304, December 1991.

[5] A. Darte aud B. Rau et F. Vivien R. Scbreiber. A Coostructive Solution to Jug-
gling Problem in Systolic Array Synthesis. Technical R€port 1999-1b, Laboratoire
de I'informatique du paralldlisme, 1999.

[6] H. De Mao, I. Bolsens, B. Lin, K. Va,o Rompaey, S. Vercauteren, aod D. Verkest,
Hardwa,re-Softirare Codesign of Digital Telecommuaication Systems. proceedings

of the IEEE,85(3):391-418, 1997.

[7] G. De Micheli. Ne6work on Chip: a aew Paradigm for System on Chip Desiga.
IA Ddign Automation ond Test in Europe (DATE) 2002, pa1es 418-420, paris,
2002. IEEE Computer Society Press.

[8j S. Derrieo and T. Risset. Interfacirg Compiled FPGA Programs: tbe MMAlpha
Approach, Iu A. Araboia, edrtor, PDPTA2000: Seand Intenntional Workchop
on Engineering of Reconfgutble frardvare/Software ODjeclr. CSREA press, June
2000.

[9] Jau ftigo, Maya Gokhale, aud Domioique Laveoier. Evaluation of the Streams-
C C-Io-FPGA Compiler: ao Applications Perspective. la Niflth itutetnational
slmposium on Field pmgrommo,ble gate anog4 pages 134-140. ACM Press, 2001.

[10] A.C. Guillou, P. Quintou, T. B.isset, and D. Massicotte. High Lev-
el Desigu of Digital Filters itr Mobile Communicatious. DATE
Desiga Cotrtest 2001, March 2001. Second place, are,ilable at
http://www.irisa.fr /bibli/publi/pi/2001/1405/1405.htmI.

[11] Simon S. Haykin. Adaptite fitter tieory. Preotice.Hall idormatiotr aod rystem
sciences series. Prentice-Hall, Upper Saddle Rire, NJ 07458, USA, third edition,
1996.

[12] M. Katswhige, N. Kiyoshi, aod K. Hitoshi. Pipelined LMS Adaptative Filter
Usiag a New Look-Ahead Tta.osformation. IEEE Ilansoctionc on Crlcuits and
Syateme, 46:51-55, Janualy 1999.

[13] B. Kienhuis, E. Rijpkema, aad E.F. Deprettere. Compaa,r: Deriviug Process
Networks ftom Matlab for Embedded Sigaal Processing Architectures. In 8ti
Intenntional Workehop on Eard,war/Sofhtare Coduign (CODES'2000), 2000.

[14] D. Lavenier. SAMBA: Systotic Acceleratqr for Molecula.r Biological Applicatioa.
Te€haical Repori 988, Irisa, Ma,rch 1996,

[15] P.H.W. Leong, M.P. Leong, O.Y.E. Cheung, T. T\rag, C.M. Kvok, M.Y. Wong,
and K.H. Le. Pilchard - A Recoofigurable Computing Platform with Memory Slot
Iqterface. In Sgmposium on Field-Prgrammoble CLetom Compriing Machinet
(FCCM), Cdifonta, 2001. IEEE Computer Society Press.

[16] P. Lieverse, P. Van der Wolf, E. F. Deprettere, aad K. Vissers. A Methodolog5r for
Architecture Exploratioa of Ileterogeneous Signal Processing Systems. Joumol of
VLSI Signal Proc$sing for Signal, Image and Video Technology,2g(3):197-207,
November 2001, Special issue oa SiPS'99.

'ncv 666t rsoeotro
.rdaN '90/-1,69 EeBed '(Cv1)auuluoC uorl:oluolnv u6rn1 ut .6aur.qJel,! gllltnd
-EoC olq"rnSEuoC pas€E-VCdd roJ uort"lrdEoC af,e,$.pr€H .urT .g pue nqz .X

'88ard ,{lartos rrlndEoC dggl '2002 'sr,red
'gIf 962 sa8"d'C006 (gJVd ?doJng u! tEU puo uoqoutottll ufrs?C, q .osnalJ

luotrodmoC I"n9nA prre rtglsac pa6?B rnroJteld :uo!6sos .z€urlJeI
{

.N ptr€ J:lo l
.'/i

'?667
cao raru€-\{ rsouoalJ ,eqq ,239 goda11 prruqcql .a8"ngEq eqdly aq; .ap111 .q

'€66T 'aru"{{ ,aauusu ,esrJJ

'99/ t&deu lscruqf,al .suorleDdo lerpeq,tJod Smop roJ ,ft"rqr.I V .apll^{ .CI

'0OOZ 'frosv elo) elqoututoJq
-ord neli lo runlcodutfrS gAfrI uI .6VCdd peseq-I IVUS ro; qreorddy uolpu
-r18g ro,{.od prlsuasou

^l
pue .rols{xals .I .Beq.t")I .I ,Io>l+oo .C ,Bla

4. .X
.T00A Iaqol'o ,Fru"W oruaxaJau 0.t ord ,qrrdu,(S

'IOOZ'6urs6noJd lou6,ls $,IA to lo!].lnot
.Brol"raFccv

ore;lpreH olqewru"r8orduoN Jo srsaqlutg 1a,re1-q8rg :y611-gCld .uen€r" rS .r
l

pue'lsmbuo.rg C ll€qlex A'a{Wy,i .S,nsu .U.g,e,ttJpv .C .S,raqFrqrs .1I

'0002'9r8-8/2:(s)za
'sua?'fr,S puo t"ivnhloT 6uunuu6oJA uo ro4.o'j.tnll Jnlry 1opoE lerpaq
-,tlod oqt ul e3?sn ,ftoEoE 9ugz1u9d6 .a,(qp"dofsu ,{efrps pu" ?roJIIob uolqq{

'r002'89-zg:(rr)t8
'ralnduoC gggf qEralre qll,ld sonpalrqJne sEaF,{s-poppaquo Sqroldxg .g.re1

-lordoc J g pE€ 'Jtol!\ r.C u€A 'g 'es.reaerl '6 (re8reqzfrJE .O .T ,laluauld .C .V
'966I '1,0I-r8:ZI t6t$E|rroJd

loit''a JS,IA lo pu
-JloI 'uorldlrrsap e18urs e uo4 suals,ts a.re.ugos-ere,r,preq Surpnr6uog .e8e6 .1

'?66T'60I,10I n?ed, (g yg1 1]6.rto O papry -r4ndutoC
uo a?u"Je{uoC louor}o&relu! EI .EoilereueC uolsra uoC lorolord cltetsolov ql!,ta
sofnpoJ^i a?"J:ralq Eals,{S tuoJmcuoC Jo Elsaq?Ets .uarrtnerra^ .S po€ ul1 .g

Itzl

lszl

lszl

bzl

hzl

loz]

lez]
lzzj

torl

leil

lzrl

I

SAMOS, II(1), 1–24 (2002)

The Compaan Tool Chain

Realizations of the Extended Linearization Model

Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere

Leiden Embedded Research Center, Leiden
University, Leiden, The Netherlands

At the Leiden Embedded Research Center, we are working towards a
framework called Compaan that automates the transformation of digital
signal processing (DSP) applications to Kahn Process Networks (KPNs).
These applications are written in Matlab as parameterized nested loop pro-
grams. This transformation is interesting as KPNs are well suited for map-
ping onto parallel architectures. Although the KPN semantic always as-
sumes that FIFO buffers can be used between processes, we have found
cases in which the FIFO is not enough as data may arrive in the wrong
order. To solve this order problem, we previously presented the Extended
Linearization Model (ELM) that describes a mechanism to reorder tokens.
The introduction of the ELM does not violate the Kahn Process Network
semantics; we still use a FIFO between a Producer and Consumer. The
ELM relays on some additional memory and a controller to perform the
reordering. The ELM model can be implemented in different ways. In this
chapter, we investigate four different realizations of the ELM. The realiza-
tions differ in the computational complexity of performing the reordering,
the kind of reordering memory used, and the size of the reordering mem-
ory.

1

Copyright C
�

2000 by Marcel Dekker, Inc. www.dekker.com

2 Turjan, Kienhuis and Deprettere

I. Introduction

An appealing and fruitful methodology to deal with exploration or de-
signing applications - architectures pairs has become known as the Y-chart
approach, [1]. This approach embraces two fundamental notions: the sep-
aration of concerns and the abstraction hierarchy. The concerns are: the
application, the architecture, and the mapping. The abstraction hierarchy,
introduced in [2] as the abstraction pyramid, bridges - be it for exploration
or synthesis purposes - the gap between high level application specification
and low-level architecture specification by defining a number of abstrac-
tion levels and a corresponding stack of Y-charts. At each level, application
models, architecture models, and mapping models must match to make ex-
ploration and synthesis feasible.

Several research groups around the globe are currently experimenting
with this methodology, some explicitly and others implicitly. They are,
naturally, all focusing on different application domains which lead to dif-
ferent views on this methodology. Applications in the realm of automotive,
multimedia, and communications have different requirements, constraints,
and boundary conditions which result in different challenges.

The Leiden Embedded Research Group focuses on applications that
can be specified as parameterized affine Nested Loop Programs (NLPs).
The group has been developing and implementing the Compaan tool chain
to translate such applications from their imperative language specification
into Kahn Process Networks (KPN) [3]. The application specification lan-
guage is Matlab or C, and the tool-chain is a compiler through which a
range of KPNs can be obtained for any given application specified as a
parameterized NLP.

The processes in the Compaan generated KPNs are not (completely)
specified in an imperative model of computation because the distance be-
tween that model and the models in which architecture components - in
particular the processing units - are specified is too large. This is not spe-
cific to the application domain for which Compaan is an appropriate trans-
lation tool set; it is a problem that is revealed wherever the Y-chart method-
ology is used. Of course, the processes in KPNs may be specified in terms
of more than one model of computation. For example, one could be ob-
tained for the Control Data Flow Graphs model [4] or for one or more

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 3

[A(i,j)] = F (i,j);
for j = i:1:N,

for i = 1:1:N, for x = 1:1:N,
for y = x:1:N,

F (A[x,y]);

end
end

end
end

for i = 1:1:N,

end
end

for j = i:1:N,
out = F (i,j);
fifo.Put(out);

for y = x:1:N,

end
end

for x = 1:1:N,

F (token);
token = fifo.Get(in);

P C

P

FIFO

Linearization

C

 A[i,j]
Global 2−D Array

Figure 1. The Standard Linearization Model

Dataflow Network models [5].
The Process Network Model (PN) in Compaan is the Kahn Process

Network (KPN) model [6], which consists of concurrent autonomous pro-
cesses that communicate in a point to point fashion over unbounded FIFO
channels using a blocking-read synchronization. The strength of a Process
Network is that it uses no global memory and no global scheduler. This
makes a KPN very appealing for further implementation into hardware [7].

In the Compaan KPN processes, each process executes an internal func-
tion following a local schedule. At each execution (also referred to as it-
eration) this function reads/writes data from/to different FIFOs. An input
port domain (IPD) of a process is the union of the iterations at which the
process’s function reads data from the same FIFO. An output port domain
(OPD) of a process is the union of the iterations at which the process’s
function writes data to the same FIFO. Each FIFO uniquely relates an
input port to an output port forming to an instance of the classical Pro-
ducer/Consumer pair [8].

One of the tools in the Compaan Tool Chain is Panda. Panda accepts as
input the description of a Polyhedron Reduce Dependence Graph (PRDG)
and transforms this PRDG into a Process Network (PN). This transforma-
tion is done in a number of steps. One of the steps involved is the Lin-
earization, in which a high dimensional data structure (e.g., matrix

��� �����	�
)

is linearized into a single linear stream of data. In case of Kahn process
networks, the linearization model is a FIFO buffer as shown in Figure 1.

4 Turjan, Kienhuis and Deprettere

In the top part of this figure, a producer and consumer process are given
that communicate the data array A[i,j] using global memory. In the lin-
earization step, this communication is replaced with a FIFO buffer, leading
to the producer/consumer processes given in the lower part of Figure 1. Ob-
serve that in the top part, the indices i and j are used to address matrix A. In
the bottom part, the reference to A has been eliminated. The for-loops only
describe an order and data produced by the function is placed on the FIFO
buffer. There are cases, however, in which a FIFO as the Linearization
Model (LM) no longer holds. If the order data is produced is different from
the order data needs to be consumed, a FIFO buffer no longer is enough.
In [9], we have proposed an extension to the LM, which we called the
Extended Linearization Model (ELM). This model includes an additional
reordering mechanism that consists of a Controller unit and some Reorder-
ing Memory. The ELM preserves the semantics of the KPN model. As we
will show in this chapter, the ELM can be realized in different ways and
each realization has its own strength and weakness. Based on these realiza-
tions, alternative hardware/software mappings of the Compaan generated
network onto different platforms are feasible.

II. In Order/Out of Order case:

Consider the two KPN processes in Figure 2 with node domains P = �
p, ��� and C = � c, ��� , respectively that are collections of atomic nodes
p � ������� and c �
	 ���
� defined on the domains � = ��� ������������� �����������
������� � � and � = �!�
	 ���"���#�$� 	 �%�&�%�����'���(�)�*�%� � , re-
spectively. In the first process one of the OPDs is O = � out, +,� that
is a collection of atomic output ports out(i,j) defined on the domain + =
��� ������������� ���%�-� �/.���� �0�1�2� ���%�&� � � . In the second process
one of the IPDs is I = � in, 3�� that is a collection of atomic input ports
in(x,y) defined on the domain 3 = ���
	 ���
���4�'� 	 ����� 	 �%�2�5����(�%� � . There is a mapping M � �76 	 �%�98���6,��.:�98;� relating these two
port domains. Hence, these two ports form a Producer/Consumer pair. A
token produced by the atomic node p � ������� is put on the FIFO channel re-
served for the edge domain (O, I) through the atomic output port out(i,j),
and will be consumed by the atomic node c �
	 ���"� through the atomic input

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 5

5 6 7 85 6 7 81 2 3 40

0

1 2 3 40

0

for j = 3:1:N,

for i = 1:1:N−2,

end
end

for x = 2:1:N−1,

for y = 2:1:N−1,

end
end

if j > i+1,
FIFO1.Put(token);
end

token = Fp(i,j);

Fp(token);

if j <= i+1,
FIFO2.Put(token);
end

if x <= y,

end
token = FIFO0.Get();

if x <= y,
token = FIFO1.Get();
end

N=

4

6

7

8

3

5

1

2

j

NODE DOMAIN

OPD

i

Mapping M(x,y)=(x−1,y+1)
N=

4

6

7

8

3

5

1

2

x
y

IPD

NODE DOMAIN

OPD1

FIFO2

FIFO0

OPD1

IPD1

IPD2

Producer FIFO1 Consumer

Figure 2. A Producer and Consumer process. Of the Producer we show
the output port domains (OPDs) and of the Consumer, we show the in-
put port domains (IPDs). Each OPD is uniquely connected to another IPD
via a FIFO. Over this FIFO, tokens are communicated that adhere to the
mapping given by the mapping matrix � . In this example, OPD1 is con-
nected to IPD2 via FIFO1. The Producer/Consumer with the FIFO form
an instance of the classical consumer/producer pair.

port in(i+1, j-1) that gets the token from this channel.
Since the KPN processes are sequential processes, no two atomic ports

in a port domain are active at the same time. That is, there is an order
among the atomic output ports in an output port domain, and there is an
order among the atomic input ports in the corresponding input port do-
main. In [9], we have defined the rank function that expresses in a pseudo-
polynomial form this order of execution in a particular domain. The rank
function is derived using the Ehrhart theory that expresses the number
of integral points inside of a polytope as a pseudo-polynomial expres-
sion [10]. A pseudo-polynomial is a polynomial with periodic coefficients.
This theory has been extended recently for parameterized polytopes [11].

6 Turjan, Kienhuis and Deprettere

As a consequence, the expression of the rank function is in general a set
of pseudo-polynomial expressions depending on the parameters. Examples
of the rank functions will be shown later when various realizations of the
ELM are discussed.

In Compaan, the sequential ordering of atomic nodes firing in a node
domain is in lexicographical order, which means these nodes are sched-
uled according to a loop nest. The ordering in which tokens are put on a
channel is the same as the order in which atomic nodes are fired. Because
the channel is a FIFO channel, a consumer can only get the tokens from the
channel in the same order. This represents the in-order case. However, de-
pending on the lexicographical schedule of the consumer’s atomic nodes,
the consumption of the channel tokens may follow a different order than
the order in which these tokens were put on the channel. This represents
the out-of-order case. To work correctly in the out-of-order case, a Con-
sumer needs a mechanism to restore the consumption order. This mecha-
nism relays on the use of private reordering memory for temporary storage
of tokens. Once stored, the tokens can be consumed in the correct order.
This reorder mechanism is modeled as the ELM.

III. The Extended Linearization Model in more detail

PP

Producer

A

C
B

Controller

Memory

Consumer

unbounded FIFO

C
Pfifo.Put(F (i,j));

for i = 1:1:N,
for j = i:1:N,

end
end end

for y = x:1:N,
for x = 1:1:N,

end

token = Controller.getFrom(x,y);
F (token);

Figure 3. The Extended Linearization Model

The main elements in the Extended Linearization Model are the local
reordering memory and the Controller. Because the tokens can no longer
be read directly from the FIFO, as they may arrive in the wrong order,
they are delivered by the Controller to the function unit. In this way, the

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 7

Controller takes care of supplying tokens to the consumer Function in the
right order. In Figure 3, a schematic representation is given of the ELM.
It shows the Consumer process (A), the Reorder Memory (B), and the
Controller (C).

A. The Process Description (A)

The process description in the ELM is different from the process de-
scription when using the LM. Instead of getting tokens directly from a
FIFO, the function gets its tokens from the Controller. Hence function call
fifo.Get (See the lower part of Figure 1) is replaced with the call to the
Controller function getFrom.

B. The Memory (B)

The Memory stores tokens allowing the Controller to reorder tokens
into the order required by the Consumer process. Two kinds of memory
are possible: Random Access Memory (RAM) and Content Addressable
Memory (CAM). The two kinds of memory differ in the way they are
addressed. The implementation of the Controller depends on the type of
the memory.

C. The Controller (C)

The Controller converts the sequence tokens are produced into the se-
quence they have to be consumed. The Controller performs this reordering
by addressing the reordering memory (B). This functionality is exposed
externally to the Consumer process by the function getFrom(x,y) that re-
turns the token to function ��� for an arbitrary iteration point �
	 ���"� .

The behavior of the Controller is shown in pseudo code in Figure 4.
The getReadAddress(x,y) determines the memory address of the
token needed at the iteration �
	 ���
� . Next, the Controller checks whether
the token is already available at that address by calling the function emp-
tyMem. If the token is present, it is read from that address by calling the

8 Turjan, Kienhuis and Deprettere

Token t getFrom(x,y) �
double address = getReadAddress(x,y);
if(! emptyMem(address)) �
return readFromMem(address);�
else �
return readFromFifo(address);�

�

Figure 4. The components in the Controller.

function readFromMem. Otherwise, the Controller starts to read tokens
from the FIFO and stores them in the memory until the desired token ar-
rives at the address of interest. The procedure of reading from FIFO is
initiated using the function call readFromFifo. Storing tokens into the
memory implies that for each token read from the FIFO, a certain address
is generated. Depending on the type of memory used, different procedures
are available to generate this address. These procedures are realized as the
function getWriteAddress inside the function readFromFifo .

IV. Realizations of the Extended Linearization Model

PseudoPolynomial CAMSegment

ELM

Linear

Realizations of the ELM

Figure 5. Four Model Instances

The ELM can be realized in four different ways as shown in Figure 5.
The realizations differ by the way the function getReadAddress and func-
tion getWriteAddress are implemented and by the type of memory used as
reordering memory. To compare the four different realizations, the follow-

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 9

ing three characteristics are relevant:

The complexity of the addressing mechanism the computational com-
plexity of the controller functions getReadAddress and getWriteAd-
dress.

The dimension of the reordering memory the number of the storage lo-
cations needed to perform the reordering.

The generality of the realization the class of algorithms for which Com-
paan can derive KPNs.

To introduce the four realization, we use as an example the Producer/Consumer
pair given in Figure 6. The graphical representation of the domain descrip-
tions of the Producer/Consumer pair is shown in the top part of Figure 7.
Because the order the Producer produces data is different from the order
the Consumer consumes, an ELM realization is needed in the linearization
of the Producer/Consumer pair.

for (int i=1;i<=N+2;i++) � for (int y=4;y<= N;y++) �
for (int j=1;j<= N;i++) � for (int x=1;x<= N+2;x++) �

if (2*j >= i+6) � if (x <= 2*y-6) �
a[i,j] = Fp(); Fc(a[x,y]);� �

� �
�

Producer
�

Consumer

Figure 6. Running Example

V. PseudoPolynomial realization

The PseudoPolynomial realization is based on the fact that the order
of the iterations inside an OPD can be expressed as a pseudo-polynomial,
which is the rank function discussed earlier in this chapter. In general, the
getReadAddress function of the Controller is a pseudo-polynomial func-
tion. In Figure 7, the iteration points of the OPD are perfectly enclosed
by a shape that we call the linearization shape. The pseudo-polynomial
expression is computed by calculating the �����

�
function inside the Lin-

earization shape. This consists of adding several pseudo-polynomials ��� ,

10 Turjan, Kienhuis and Deprettere

2 3 41 5 6 7 8 92 3 41 5 6 7 8 9

Mapping
Producer Consumer

2

3

4

5

6

7

1

8N=

2

3

4

5

6

7

FIFO

10 = N+210 = N+2

to the shape of the Producer domain

Controller

1

13 14 15

9

2

3 4 5 6

7 8

29

10 11 12

1716

25242321 22 26 27 28 29

201918

y
x

1

8N=

j

i

The Linearization shape is ajusted
token 5

token 1

token 3
token 4

token 2

token 6
token 7
token 8
token 9
token 10

token 15

token 12
token 13

token 11

token 14

token 16
token 17
token 18

token 29
token 30

token 26
token 25

token 22
token 23
token 24

token 27
token 28

token 19

token 21
token 20

00
01
02
03

05
06
07
08
09
10

13
14

17
18

20

28
29

Address Address

Reordering Memory

04

11
12

15
16

19

21
22
23
24
25
26
27

2

1 6

7

83

4

5 10

15

16

17

18

20

26

27

11

12

13

14

9

2219

23 25

29 30282421

Figure 7. The PseudoPolynomial realization.

��� , ... ��� , where � is equal to the dimension of the Linearization shape. For
our running example, the rank is the sum of the two pseudo-polynomials
� � and ��� :

��� �
� � ������� 6 � � � ������� . ��� � �������

� � � ��������6 � � �%� �����-. � �����	���
� � � � ��� � . � � �
���	� ���
��� � ��������6 �0. � �����9� �
� �/. � � � � �����9� ���

��� �
� � ������� 6 � ���	��� � � . � �������9� �
� � . � . � ��� � �����	� � � � ���

(1)

To obtain the getReadAddress function, the rank needs to be composed
with the mapping � �
	 ���
� and the result is equal to :

����� �!� ��" � "#" � ��$%$ �
	 ���"��6 ��� �
� � �������'&

� �
	 ���
�6 �����	��� 	 � . � �������9� ��� 	 . �� � � �
���	� ��(� �)� (2)

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 11

The � ���
�

polynomial contains all the information needed by the Con-
sumer process to reorder the token correctly. For this realization, tokens
are written into the reorder memory following the sequence into which
they arrive from the FIFO. Therefore, the function getWriteAddress is a
simple increment. The dimension of the reordering memory is equal to
the number of iteration points in the OPD. For the Producer/Consumer of
Figure 6, the dimension is equal to � ��� ����� � �-.%� � �9� . The computa-
tional complexity of addressing the reordering memory can be quite large.
It requires the evaluation of a pseudo-polynomial expression like, for ex-
ample, the one given in equation 2. In general, the PseudoPolynomial re-
alization is valid only for the cases when an OPD is a polytope. Under
certain conditions, the realization can be extended for cases an OPD is not
a polytope [12].

VI. Linear realization

The Linear realization is based on the classical Linearization of an n-
dimensional array into a one-dimensional array [13, 14]. The classical
Linearization shows that a rectangular shape can be addressed using a
simple polynomial. Inspired by this concept, we relax the Linearization
shape to the smallest rectangular that includes the producer domain (OPD).
Consequently, the getReadAddress that results is always a simple linear
function. The rectangular Linearization shape is shown in Figure 8, and
the ��� �

�
function is as follows:

�����
� � ��������6 � ��� � ��� � � �)� �4. � � � �

(3)

The getReadAddress function is obtained by composing the rank function
with the mapping function � �
	 ���"� , and the final polynomial expression
is :

� ��� �!� ��" � "#" � �	$	$ �
	 ���
��6 �����
�

� � ��������&
� �
	 ���
�6 � ��� � ��� �
	 �%� � . � � � � (4)

The consecutive order inside the Linearization shape, however, can get
disturbed. This happens when an OPD doesn’t have a rectangular shape
and therefore, more iteration points are enclosed by the Linearization shape
than necessary. As a consequence, these additional iteration points are also

12 Turjan, Kienhuis and Deprettere

1 2 3 4

Producer
Mapping

5 6 7 9

Consumer

8 2 3 41 5 6 7 8 910 = N+2

2

3

4

5

6

7

1

8N=

FIFO

2

3

4

5

6

7

1

8N=

j
i

Controller

1

13 14 15

9

2

3 4 5 6

7 8

29

10 11 12

1716

25242321 22 26 27 28 29

201918

y
x

rectagular containing the Producer domain
The Linearization shape is given by the smallest

10 = N+2

token 5

token 1

token 3
token 4

token 2

token 6
token 7
token 8
token 9
token 10

token 12
token 13

token 15
token 16
token 17
token 18

 NULL
token 11

 NULL
token 14

 NULL
 NULL
token 19

token 21
token 20

token 23

token 26

token 27
token 28

 NULL
token 25

 NULL

token 24
 NULL
 NULL

 NULL
 NULL

 NULL
 NULL
 NULL
 NULL

token 30

token 29
 NULL
 NULL
 NULL
 NULL

token 22

 NULL
 NULL

Reordering memory

09
10
11
12

41

29
28

00

02
03
04
05
06
07
08

13
14
15
16
17
18
19
20
21
22
23
24

01
25
26
27

30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49

1

7

6 21 26 31 36 41 46

504540

3934

3530
29

2823

24

2520

19

18

17

1611

12

13

14

15105

4 9

83

2 47

48

49

433833

32 37 42

44

22 27

Figure 8. The Linear realization

ranked by the �����
�

function, disturbing the consecutive order. Looking at
Figure 8, we see that after iteration

���
follows iteration

� �
. However, iter-

ation
� �

does not belong to the OPD. The next iteration belonging to the
OPD has rank

� �
and hence the order becomes

���
,
� �

,
� �

. Consequently,
the Controller cannot rely any longer exclusively on the order tokens are
read from the FIFO; the eleventh token read from the FIFO should be writ-
ten at the address

� �
. Therefore, the Controller cannot use a simple incre-

ment for the getWriteAddress function.
To re-create the correct sequence of addresses, the Controller relays on

a function that assigns to incoming tokens the correct order number inside
the OPD. This function is called the recover function. This function re-
implements at the Consumer side the logic used to schedule the iteration
points inside the OPD.

The advantage of this realization, is that the function used to address the

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 13

reordering memory is always a linear expression depending on the coordi-
nates of the consumer iteration point. A disadvantage is that need for the
recover function. Moreover, the extra iteration points enclosed by the lin-
earization shape result in empty memory slots (represented by the “Nulls”
in the memory in Figure 8). In the example, the memory requirement is
equal to the dimension of the Linearization shape, i.e., to � �*��� ��� � �-.� �

, but only half of this space is actually used.

VII. Segment realization

The PseudoPolynomial realization results in good memory usage, but
the addressing formula can be very complex because of the irregularities
it contains as expressed by the periodic coefficients. On the other hand,
the Linear realization results in simple addressing but potentially wastes
a lot of memory. We now present the Segment realization that combine
the best features of the two approaches discussed so far: simple addressing
mechanism and efficient memory usage.

The Segment realization is based on the fact that pseudo-polynomials
can be decomposed into a linear part and a non-linear part as shown in
Figure 10. The linear part describes the consecutive order, the non-linear
part described the non consecutive order. At the Producer side, the order
changes at iteration points at which the innermost nested loops start to
iterate again from their lower bound value. We say that a non-linearity oc-
curred at iteration point (IP) and using the notion of these IPs, the Segment
realization computes the value of the pseudo-polynomial using a Segment
Number and a Segment Displacement as is shown in Figure 10. How the
Segment Number and Displacement are computed is explain later on in the
chapter. Because the segment number and displacement are pre-computed,
a pseudo polynomial cannot be evaluated in a parameterized way, as is
possible in the PseudoPolynomial realization. Hence, parameter values in
a NLP have to be fixed in order to use the Segment realization.

Writing data into the reordering memory occurs in the same way as
in the PseudoPolynomial realization. The Controller writes tokens in the
Reordering Memory as they arrive from the FIFO. The detection of the
IPs at which the consecutive order get disturbed, is done by the recover

14 Turjan, Kienhuis and Deprettere

2 3 41 5 6 7 8 92 3 41 5 6 7 8 9

Consumer
Mapping

Producer

2

3

4

5

6

7

1

8N=

2

3

4

5

6

7

10 = N+210 = N+2

FIFO

Controller

token 5

token 3
token 4

token 2

token 6
token 7
token 8
token 9
token 10

token 15

token 1

token 12
token 13

token 11

token 14

token 16
token 17
token 18

token 29
token 30

token 19

token 21
token 20

token 22
token 23
token 24

token 26
token 25

token 27
token 28

1

13 14 15

9

2

3 4 5 6

7 8

29

10 11 12

1716

25242321 22 26 27 28 29

201918

y
x

1

8N=

j

i

Segment Displacement
Segment Number

Segment Memory

Data Memory Reordering Memory

01

02

03

04

05

06

07

08

09

00

00

07

S0 S1 S3 S4 S5 S6 S7 S8 S9S2

Segment Number

10

28

4
4
5
5
6
6
7
7
8
8

Segment Displacement

01
02
03
04
05
06

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0
5

14
18
21
24
26

29

2

1 6

7

83

4

5 10

15

16

17

18

20

26

27

11

12

13

14

9

2219

23 25

29 30282421

Figure 9. The Segment realization

function that duplicates the Producer for-loops at the Consumer side. With
each occurrence of an IP, a Segment Number and Segment Displacement is
associated. Each such number pair is used by the Controller to determine
the value of the Pseudo polynomial. Let’s see how writing and reading
takes place in the Segment realization. The writing is implemented in the
getWriteAddress and the reading is implemented in the getReadAddress

Writing a token happens in the following way. Initially, the Controller
contains an internal counter that is set to zero. The � ������� � � function keeps
track of whether the order is linear or non-linear. if the order is linear, a
token is read from the FIFO, and the internal counter is incremented by
one. If the order is non-linear, the Controller allocates a new entry in the
Segment Memory. It writes in the entry the current value of the iterator in
the Segment Displacement field and the currently value of the counter in

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 15

....

P2(x, y)

....

7

4
4
5
5

6
6

y − SegmentDisplacement

 getReadAddress(x, y) = (−1/4)* x^2+x*(N−2) + [2,9/4]_x −N + y + (−1/2)*x + [−3, −7/2]_x
PseudoPolynomial −

getReadAddress(x, y) = SegmentNumber + y − SegmentDisplacement
Segment −

Non−Linear Non−Linear

SegmentNumber

P1(x, y)

0

10
5

14
18
21
24

Linear

Figure 10. Computation of a Pseudo Polynomial using a Segment Num-
ber and a Segment displacement stored in the Segment Memory.

the Segment Number field.
In Figure 9, the Producer starts at iteration � � � ��� , which immediately

results in an IP for iterator
�
. Consequently, an entry is allocated in the

segment memory at address 0. The counter has a value of 0 and the iterator
is equal to 4, leading to entry (0,4) at address 0. Next, iterator

�
moves

consecutive to iteration � � ��� � . At the next iteration of
�
, an IP occurs again.

A new entry is generated at address 1. The counter value is equal to 5 and
the value of

�
is again 4, leading to the (5,4) entry at address 1 and so one.

For a particular iteration point of the Consumer, the Controller deter-
mines the address from where data has to be consumed using a three-step
procedure. The three steps are:

step1: � ��������6 � ��� & �
	 ���"� �
step2: � � ����� � � 6 � � ����� � � � ��� � �

� � � � �	�	
���
�
 � �
step3: � " " � ��$%$ 6 � � ����� � �����������
 . ��� � ������� � ��� ��������� � �!�"� �
 �

(5)

In Figure 9, the Producer starts from the iteration � �#�!
���
�
 ���$�	
���
%
 � , which
is equal to � � � ��� . Suppose the Consumer wants to obtain the token for
iteration � � ��& � . In step 1, the iteration is mapped in an iteration at the
Producer and is equal to � � ��& � (i.e., the mapping is identity). In step 2,

16 Turjan, Kienhuis and Deprettere

the segment is found associated with this iteration. In step 2,
� �	
���
�

is equal
to 1 and

�
is equal to 4. Hence, the segment number is 3, which is address 3

in the segment memory were entry � � � �
� � is stored. In step 3, the address
in the reordering memory is calculated as 14 + 6 - 5 = 15. At address 15, the
token is stored that was generated at the 16th iteration by the Producer. This
is the token needed by iteration � � ��& � of the Consumer as can be verified
by inspection in Figure 9. The memory size of this realization is equal with
the size of the DataMemory plus the size of the SegmentMemory. In our
example the size of the DataMemory is

� � �9� .:���9�9��� &
(the same as

the memory size from the PseudoPolynomial realization) and the size of
the SegmentMemory is

��. �
. Hence, the total memory size is equal to� � �9� .����9�9� � �

.

VIII. CAM realization

The CAM realization uses a Content Addressable Memory (CAM) as
reordering memory. In a CAM, a key is used instead of an address to ac-
cess the content of the memory. The entry used in the CAM realization
is given in Figure 11. It shows that each entry in the CAM consists of a
key, the token associated with the key, and a field called multiplicity. We
explain later what the term multiplicity means. The CAM approach works,
because to each token produced at the producer OPD an unique key can be
associated. The Controller can reproduce this key to obtain the token the
Consumer requires at a particular iteration.

KEY token multiplicity

how many times this token will be
consumed by Consumer iteration points

the token produced by the Producer

the search key (attached by the Controller)

Figure 11. The CAM entry

For the CAM realization, the function getReadAddress generates a key
instead of an address. The generation of the unique key can be done in dif-
ferent ways. We compute the �����

�
function inside the Producer based on

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 17

an Node domain instead of an OPD. Another possibility would have been
to use a classical linearization polynomial. In general, the shape of a Node
domain results in a simple polynomial instead of a pseudo-polynomial and
it therefore easily calculated. Using the ��� �

�
, a unique number is associ-

ated that is equal to the order of the iteration inside the Node domain of
the Producer. To illustrate this, consider again the Producer/Consumer pair
from Figure 6. Suppose that the Node domain is defined as

� 6 ��� ��������� �2� ���%�-�1�2� ���%�-.�� � �
Then the �����

�
is given by

��� �
� � � ����� 6 ��� ��. ���

By composing the � ���
�

with the mapping � �
	 ���
� we obtain the ge-
tReadAddress function:

����� �!� ��" � "#" � �	$	$ �
	 ���
� 6 	 ���-. � �
(6)

For a given iteration point �
	 ���"� of the Consumer process, the getReadAd-
dress function determines the unique key for that iteration using equa-
tion 6. For this key, the Controller checks (using function EmptyMem) if a
token already exists in the CAM by searching all keys for a match. If no
match can be found, the token is not stored yet.

If the key exists, the token associated with the key is retrieved from
the CAM by function readFromMem. If the token doesn’t exist, the Con-
troller keeps loading data from the FIFO into the CAM. This happens in
function ReadFromFifo. To each token the Controller loads, it attaches an
unique key given by the function getWriteAddress and multiplicity num-
ber. Loading data from FIFO stops upon arrival of the token for which the
key (as given by getWriteAddress) is the same as the key the Controller is
searching for (as given by getReadAddress). The function getWriteAddress
is based on a � � � ����� � function similarly to the recover function from the
Linear realization.

In general, a token is read only once by the Consumer process. There
are cases in which the same token is read more than once by the Consumer
process. This called a broadcast. A read from a FIFO is destructive and in
case of a broadcast, this would mean that a token needs to be send over
the FIFO as many times as needed, or that a token needs to be stored in

18 Turjan, Kienhuis and Deprettere

memory and read from memory as many times as needed. In the CAM
realization, we implemented the latter option as it is more efficient.

To keep track of how many times a token is to be read, we have in-
troduce the notion of multiplicity [12], which indicates how many times a
particular token needs to be read by the Consumer process. Each time a
token is consumed, its multiplicity is decremented. When the multiplicity
reaches zero, no other iteration will need that token and it can be erased.
That location can be reused by other tokens. Hence, using multiplicity, the
Controller is able to free memory locations and consequently, this realiza-
tion uses the smallest possible amount of memory. The memory size (MS)
of the CAM is given by the next formula:

MS
6 �����

� (�� �
	�� � � � � ��" �
	
���"� �

��� �
�
��
 � � �����
 �
	 ���"���4. � � (7)

where
�

represents a sub-domain of the Consumer domain where no two
points read the same token. In the case from Figure 6,

�
is the whole

Consumer domain. The � � � " function is the same as the getReadAddress
function from the PseudoPolynomial realization:

� � ��" �
	 ���"� 6 �����	��� 	 � . � �������9� ��� 	 .�� � � � �
���	� � (� �)�
(8)

and the �����
�
��
 � � ���"�
 is the function that gives the order of the Consumer

iteration points:

��� �
�
��
 � � �����
 �
	 ���"� 6,� � � � � . 	 .:� � � (9)

According to equation 8 and 9 it resultes that:

MS
6 �����

� (�� �
	�� � �
�����	��� 	 � . � ��� ���9� � 	 � � � . � � � ��� � � � � �#���	� ��(
� �

The maximum of this formula inside the
�

domain can be derived using
analitycal methods. In our case for

� 6 �
, we have � � 6 ��� . For more

informations about the read and the rank function, we refer to [9]. The
key to efficient memory usage is the ability to compute the multiplicity for
a token. However, this multiplicity is again computed using the Ehrhart
theory and may again be a pseudo-polynomial.

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 19

IX. Comparing the different realizations

In the previous sections, we have shown four different realization for
the ELM. Each realization has its strength in terms of efficiency of mem-
ory usage and computational complexity of address the memory. In this
section we make some general remarks about the different realizations and
summarize the strengths and weaknesses of the four realizations.

A. General Remarks

i. Linearization Shapes

In the realizations, the Linearization shape of the OPD determines the
complexity of the getReadAddress implementation. We indicated that when
rectangles are enforced, simple polynomials result. There are application
domains where the rectangular shape is the natural Linearization shape, for
example, in imaging. In those cases, the Linear realization doesn’t have the
disadvantage of memory wastes and the need for a � ��� � � � � function. On
the other hand, we found more complex Linearization shapes in advanced
signal processing algorithms. In algorithms like QR or SVD, triangular
shapes are typical leading to complex pseudo polynomials.

ii. Parameterized versus Static realizations

We solved the Linearization under the assumption that we want to keep
the problem parameterized in the original parameters of the loop-bounds of
the parameterized NLPs. If, however, we need to provide a realization for
specific values of these parameters, we can come up with a much simpler
realizations of the Controller. The Segment realization already shows that.
In general, if we can evaluated the getReadAddress a priori, the Controller
becomes a simple look-up table.

20 Turjan, Kienhuis and Deprettere

iii. RAM versus CAM

RAM is the most commonly used form of memory. It is simple, cheap
and widely available on todays FPGAs. But more and more, CAMs are
also becoming available. Now a days, there are FPGA platforms available
on the market that supports CAM blocks with high speed search time [15].

iv. Dense Polytopes

In the examples shown so far, we assumed that all nodes in the OPD and
IPD can be enclosed by a Linearization shape. There are cases, however,
in which we can find the exact shape, but still not all points are part of
the enclosure. We refer to these points are holes and they are introduced
when a for-loop is used with a stride other than one or when linear expres-
sions are used that contain operators like mod, div, floor, ceil, max, or min.
The holes affect the generality of the realizations presented in this chap-
ter. Not all of the discussed realizations can handle holes. For example, if
a Linearization shape encloses holes, these holes get also ranked, thereby
disturbing the consecutive order.

v. Recover Function

In three of the presented realizations, the function getWriteAddress is
based on the recover function. For each token read from the FIFO, this
function recovers the iteration at which this token was produced inside the
IPD. Basically such function duplicates the control from the IPD as a finite
state machine, which can be computationally expensive.

Instead of using the recover function at the Consumer, another approach
would be to tag the tokens produced at the OPD with additional informa-
tion. In this way, the Controller and memory have the same function as the
matching unit found in classical Dataflow architectures [16]. The problem
in these matching units was to find a lower bound on its memory, such that
a program wouldn’t deadlock. We have shown in equation 7 that we can
determine a lower bound on the memory such that no dead-lock occurs
given the class of parameterized NLPs.

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 21

vi. Practical limitations

The Pseudo-Polynomial realization depends very much on the ability to
calculate the �����

�
functions. We rely on the Polylib library [17], to com-

pute the rank function. Although this library has proven to be quite stable
and useful, this implementation of the Ehrhart theory is not always able to
compute the �����

�
function. By selecting the Linear, the Segment, or the

CAM realization, we are always able to come up with a representation of
a KPN.

B. Summary

We have presented four different realization for the ELM. In Figure 12,
we compare these realizations for the Producer/Consumer given in Fig-
ure 6.

Linearization Memory size N=8 Computational recover Generality
Model Complexity

Pseudo ���������
	�����
������ 30 ��	 No No
Linear � � ������� 50 ��������	 Yes Yes

Segment � � ������������
������ 40 ���� !��� Yes Yes
CAM "$#&%('*)�+�#-,.��)/#&02143 10 �.�5
��� Yes Yes

Figure 12. Comparision of the ELM realizations

The table shows the memory requirements in a symbolic way for param-
eter
�

and when
��6 �

, the computational complexity of addressing the
memory (as done by function getReadAddress), whether a recover func-
tion is needed, and finally the generality of the approach. We can see that
the Segment realization uses more memory than the PseudoPolynomial
realization because the segment part consumes some memory. The advan-
tage of the Segment realization is that the Controller can fill the memory
in the same order tokens arrive. The Segment realization uses less memory
than the Linear realization. If you look to the computational complexity of
addressing in the Segment or Pseudo-Polynomial cases, you can see that
the complexity is less for the Segment realization although in both cases a
pseudo polynomial is evaluated. Finally, we observe that the CAM realiza-

22 Turjan, Kienhuis and Deprettere

tion uses the least amount of memory but may require a relatively complex
addressing mechanism since the CAM realization requires the computa-
tion of unique key.

X. Conclusions

In this chapter, we have presented the Extended Linearization Model
(ELM). This model was introduced to solve out-of-order communications
of tokens between a Producer and a Consumer process. The ELM adds to
a process some additional memory and a controller without violating the
Kahn Process Network semantics; we still use a FIFO between a Producer
and Consumer. The Controller uses the local memory to re-order the tokens
in the order the Consumer expects the tokens. In the realization of the
ELM, the implementation of the Controller is the difficult part.

To implement the Controller, we make a lot of use of the ��� �
�

function.
This function assigns to an arbitrary iteration a unique rank number that
indicates when it is produced. The � ���

�
function is in general a pseudo-

polynomial. We exploit the ability to derive such polynomial at compile
time to find realizations for the ELM at compile time. In the realizations,
we assumed that we only exchange tokens over a FIFO without any addi-
tional information. We did not assume tagging of tokens.

When realizing the ELM, we have seen that four different realizations
exist. The first realization is the pseudo-polynomial realization. It uses ex-
clusively pseudo-polynomials to solve the reordering case. The advantage
is that we can solve the reordering in a parameterized way. Because in
the most general case pseudo polynomial are involved, the implementa-
tion can be computationally complex. Also, the pseudo-polynomial can in
practice not always be calculated. If we relax the Linearization shape to the
smallest rectangular that encloses all iterations, we obtain a more simple
implementation. However, this might be at the expense of inefficient mem-
ory usage. If we want to avoid complex addressing and efficient memory
usage, the Segment realization is a good choice, although the solution is
not longer parameterized. Finally, we showed that we can use a key instead
of an address to retrieve the proper tokens. The calculation of this key is
in general a simple polynomial which is easy to realize. Also, the CAM

REALIZATIONS OF THE EXTENDED LINEARIZATION MODEL 23

realization requires the least amount of memory to solve the reordering of
tokens.

The KNPs derived by Compaan can be simulated using the YAPI frame-
work [18] or using the PN-domain in Ptolemy II [19]. In both cases, we
have to implement the presented realizations in software. We are currently
able to implement in software, at compile time, the PseudoPolynomial, and
CAM realization. For these realizations, we have shown that we can derive
correct implementations. We verified this by running Compaan on a set of
applications written as parameterized NLPs.

References

1. Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An ap-
proach for quantitative analysis of application-specific dataflow ar-
chitectures. In: Proceedings of 11th Int. Conference of Applications-
specific Systems, Architectures and Processors (ASAP’97), Zurich,
Switzerland (1997) 338 – 349

2. Kienhuis, B., Deprettere, E., van der Wolf, P., Vissers, K. In: A
Methodology to Design Programmable Embedded Systems. Volume
2268 of LNCS. Springer Verlag (2002) 18 – 37

3. Kienhuis, B., Rijpkema, E., Deprettere, E.F.: Compaan: Deriving pro-
cess networks from matlab for embedded signal processing architec-
tures. In: 8th International Workshop on Hardware/Software Code-
sign (CODES’2000), San Diego, USA (2000)

4. Wolf, W.: Computers as Components - Principles of Embedded Com-
puting System Design. Morgan Kaufmann Publishers, Inc. (2001)

5. Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of
the IEEE 83 (1995) 773–799

6. Kahn, G.: The semantics of a simple language for parallel program-
ming. In: Proc. of the IFIP Congress 74, North-Holland Publishing
Co. (1974)

7. Harriss, T., Walke, R., Kienhuis, B., Depettere, E.: Compilation from
matlab to process networks realized in fpga. Design Automation of
Embedded Systems 7 (2002)

8. Ben-Ari, M.: Principles of Concurrent Programming. Prentice Hall

24 Turjan, Kienhuis and Deprettere

(1982)
9. Turjan, A., Kienhuis, B., Deprettere, E.: A compile time based

approach for solving out-of-order communication in kahn process
networks. In: Proceedings of the IEEE 13th International Confer-
ence on Application-specific Systems, Architectures and Processors
(ASAP’02), San Jose, California (2002)

10. Ehrhart, E.: Polynômes arithmétiques et Méthode des Polyédres en
Combinatoire. International series of numerical mathematics vol. 35
edn. Birkhäuser Verlag, Basel (1977)

11. Clauss, P., Loechner, V.: Parametric analysis of polyhedral iteration
spaces. Journal of VLSI Signal Processing 19 (1998) 179–194

12. Rijpkema, E.: Modeling Task Level Parallelism in Piece-wise Reg-
ular Programs. PhD thesis, University Leiden, LIACS, Leiden, The
Netherlands (2002)

13. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques
and Tools. Addison-Wesley (1986) ISBN 0-201-10088-6.

14. Muchnick, S.: Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, Inc. (1997)

15. Xilinx: Memory Application Notes for Virtex-II Devices.
www.xilinx.com (2001) pag 505-506.

16. Veen, A.H.: Dataflow machine architecture. ACM Computing Sur-
veys 18 (1986) 366–396

17. Clauss, P., Loechner, V.: Polylib. http://icps.u-strabg.fr/Polylib (2002)
18. de Kock, E., Essink, G., Smits, W., van der Wolf, P., Brunel, J., Krui-

jtzer, W., Lieverse, P., Vissers, K.: Yapi: Application modeling for
signal processing systems. In: 37th Design Automation Conference,
Los Angeles, CA (2000)

19. Davis II, J., Hylands, C., Kienhuis, B., Lee, E.A., Liu, J., Liu, X.,
Muliadi, L., Neuendorffer, S., Tsay, J., Vogel, B., Xiong, Y.: Ptolemy
ii - heterogeneous concurrent modeling and design in java (2000)

'utJollDld luaJJnJ aU+ qJznl pa?nJJsuou.np aq UDJ IoJluoJ puD iutssato-td
'TuauL,a1nunut DlDp sD U?ns u-LaJsns alors a6.n7 n lo sanssx fiaI al JaaoaJory Lua?sfl,s a1!1 alDpqon
01 puD sluaurartnbeJ Jz?IlJ aunJ oJ sJesn-pua aql nolp ol saaxpetqo fi,1tyzqzra{ puD nuDultotJad,
uaamyaq aszut o.t du,t or D uaaq aanq u"tofioyd V7HJ aql .tot paTta1as uaaq anoq pql siporu arDnprDll
ar11 'suor4ntz1ddn lo saz1zun{ -to! slu?,oJ?suoJ pun sTuau,a-tznba-t adnsapl oxpnJ Walagxp to a6uDJ D

{o stsfiTnun plarm D Laltn pasodotd arem +DUy sqroru {o salplLDl a1l? {o slaqtuatu lo sa)uD+sur, arnm
-prDU erD qtztlm pa7uarualdutz uaaq sDq sprnoq alnmpJnq){nads {o ?as V 'sJasn-pua a10 nq papxnoJd
sJur.Dr?suot puo sluazua-rznba.t aUJ uaaz6 's"tau6zsap eql lo $1"-o+ u|xsap puD uozynto1dra 'uozgnc{z
-cads uL'aqsfis aql saW?1,IpD! pun pa{qdutzs snqT sz uo'tTzsodtuoc uaysfr,g pnal u.La1.sns 7n 6uz7nol

nlDp lDul?,\do -tol suor,Tnur,qu,r,ot qco\q a1dz1\nuJ TzuL^tad .Ln|nctynd uz satot ta\uz Dpp aqJ 'suor,7ntn6{

-uoJ adnsapl lo las a6.tn7 D {o u,zsap pun uor,\m{nad,s aq? Jo! pasn ?q unJ u.teUl to salunJsux puo
saqxurDl ux auto, sqJolg aqJ 'sluau,Dla fr"nJ qz1 a7qo.tn6{uoJ/alq0uuJoJ6oJd pun .to\npouL, lo suot\ts
-odtuot snoaua1o.taJall senpsueU? aro lDUl s!,lrolq {o uozyzsoduL,oc D sz pua-sLcoq 1,n7767p yggl aql
'uozssatdd,ns asxou Jol uolJDlarror puD (IIII) aJuaJatJalux fi,cuanbatt oxpoJ to uoxlD0zy,ul anzTdnpn

'6uztut olunaq suttol.nd ?I 'apnap ?rau aql ux ?pnq puD peu1zsap 'pa{tcads aq lpn q)ryn adoxa1ay

oxpDr pa?nqu?szp a6nq lo uor,s.taa palnsunop n sz ut^t o{7o7d (V3HJ) ,{errv luauralg pu€snoq; aqJ
'ytomauntl uozyn t o1dxa a7nu,n72n aqy to uot7n7uau.ta7d,u.r,z puo guauldn1eaap aql 6 pnp uoxlnrepzsuo)
olux uaqD? aq 1pm s6uzpu{ asoqn srasn-pua aqy fr,q uor,Tnyuauluadxa .to{ pesn aq uDa uL"t ollold aq1
'fr6o1opoq7au uotln"toydra u$zsap pun uozyo:t{nads pasodo.td n lo ftTt1zqzsoal aql salDJlsuoluap lDlll
tu"rofin1d alqDlDrs D payuauaydulz pun pau1zsap 'pa{zcad,s annq am 'u,r,atsfis aqy {o uozync{zcads aql lo
s1.tnd. Tnczyuc lDrn+Jru?s pun Tnuoz1cunt aq? alDlosx pun ftltyuapt o7 puo 'suotTnntasqo IDJxurouoJJsD
otpn"r,.tol sfltsL-n pasotld .tnynczyod uz'su.La7sfi,s 6utssato"td 7ou6t s fr,nun aTms a6.to7 lo u|zsap aqy uz

a6o7s fl1.toa uo u?, satux?DlLra?ID lDJnltru?s pun ynuozycun{ |uz-mdulot o? sunelu apzao-td oq JepJo uJ

lrer+sqY

Iu sc€rToppo

spuelroqloN oqJ (uaproT

aruarcs ralnduoc pacue^pv Jo alnlrlsul uapral 'scvlT
arollordoc pg

Iu.uorls€o+oIIi€
sPu€lrorilaN ar{J

(oola8ur.4aQ

durouorlsy ur rlrrtsasag roJ uorltspunod spu€lrar{taN 'NOUJS$
?ouv ur€ lds

3urd.,{1o1ord pue uor+Bf,grrads suralsfs

I"l

Surssacord 1errFls .,te"r"re olers o8rel roJ urroJ+€Id alq€I€rs V

Introduction

Astronomers from all over the world are currently regularly meeting to discuss requirements,

constraints and boundary conditions for a number of very large radio telescopes that have to

be built in the coming twenty years or so. Examples of such telescopes are the Atacama Large

MiUimeter,Array (ALMA), [1], the trota Frequency Array (LOFAR), [2], and the Square Kilometer

,Arroy (SKA), [3]. Besides being very high speed imagers, LOFAR and SKA will include hierarchical

beamformers and adaptive filters in space, time and ftequency. These telescopes will be composed

of large clusters of distributed antenna elements that will be built on hierarchies of embedded

systems with hard real-time and very high throughput constraints, and data intensive process-

ing capabilities. However, astronomers do not provide system specifications. They only give

their input-output relations, modes of operation, and a number of metrics that they can use to

eva,luate alternative system specifications and system designs. Moreover, the given requirements

and constraints may be incomplete or open for modifications at the time the designers - System

designers as well as software and hardware designers - take ofi for their parts of the complex

task of building such large systems. Thus, this process is not a chain of consecutive actions but

rather a action graph with many concurrent tasks and unavoidable dependencies between these.

Such huge project can only be undertaken with confidence if the design of such system is a well

structured, interactive and iterative trajectory that is based on a sound methodology. Indeed,

what the astroromers as initiators as well as end-users of the system would like to have to their

disposition is a transparent exploration framework that they themselves can use to answer their

own uhat zf questions. What if the cost is too high? What if we change the required resolution?

\\&at if we add this or that mode of operation? Developing and implementing such an explo-

ration framework is itself a major effort that is to be undertaken well before the telescopes are

in place. work in this direction is currently in progress, and although this paper is not intended

to elaborate on the underlying methodology it makes sense to briefly sketch it here because the

THEA platform which is the main subject of the paper, has been both a test case and a driver for

the methodology. Thus the building of a huge distributed radio telescope goes in three equally

important and partly paralleled phases: 1) the exploration of the specification space that emerges

from the system requirement parameters and constraints, 2) the exploration of the design space

that is defined by on the one hand, the model in which the specification is casted and, on the other

hand, the library blocks based implementation platform model into which the specification is to be

mapped, and 3) the implementation and realization of the final system itself. The first two phases

are iterative and interactive processes that a.re supported by fast simulation and metrics based

performance analysis tools and methods to accelerate the exploration trajectories. This can only

te achieved if the explorations are conducted at high enough levels of abstraction without delving

too deeply in the details. It has been demonstrated by several researchers that exploring at higher

levels oi abstraction has greater impact on performance improvements and cost reductions than

can be obtained at the lower levels of abstraction. However, performance and cost measures at

the highest level of abstraction are partly imported from the lower levels, and for these to be

of sufficient confidence, critical parts have to be taken down to lower levels of abstraction where

some Sort of fine calibration can be done and from where performance and cost numbers can be

safely injected in ihe higher levels of abstraction. The THEA platform has been the first attempt to

.p".ify u scalable telescope prototype system for which the sKA telescope was taken as the large

L

'slur"rlsuoc po uap ar€ pealsur faql '1a,ra1 srql l€ alqelr€ e lou rls at€ sleu8rs;o lndq8no:q1 pue
$lse? Jo sarcual€l s"e qlns sarns"eal,{ Iro.r\lou aql ur slor^eqaq Fnpr^rpur Jql Jo .{lrlrq€rr€ pu€
dlrxalduroc l"uor?€?ndrlroc pue ',{1qeuo3oq1:o '.,{cuar:ncuoc ,fl,rrysuas aJ" u-rocuoJ Jo sansq .oc€ld

ur sr srs.{1eue paseq scrJlaur pue uorle:oldxa auos 'a-roJaJaql 'pue anbrun 1ou sr uorlrsodurocap leql
'sJorleqaq 8ur1ce:a1ur pue SurSecrunururoc Jo {Joalau e :slueuerrnba: asaql Jo uorlrsodurocap

FrnlrnJls pu€ FuorlcunJ
"

sr 1"ql uorl"Jgraads 1a..ra1 qSrg e oqur pal€lsu"tl aJ€ ,uorlrpuoc f:epunoq
pus slur€rlsuor 'sluaura:rnbe: 1nd1no-1ndur se alxor l"q? sluaurarrnbal paugap Jasn aql ,+srl.!I

'uorla€JJsq€ Jo sla^al p:aaas q8no:q1 d1a,rr1e:a1r sunr]eql
ssacoJd € sr sluaua:rnba: ua,r.r3 aq1 uoq uorlecgoads uralsds e Sur,rrrap ,1 arn8rg m u.roqs sV

a,rnlrrd pqop aql 1'1

'sseco:d 1eq1 q8norql unr o? pasn s 1eq1 rurogleld vgHI aql luasard a.la. pue ,ssecord sql q€ {ool
rlcrnb e arpl aaa. 'uorlcas srql u1 s:au8rsap aql dq uraql ol paluasaJd aq o1 uorlecgoads aql alrnbal
srasn pua aql l€qt flqerluapguoc ;o ea]Sap eq1 uo spuedap palrsr sr l€ql sla al uorlc€rlsq€ Jo
raqrunu aq? qcq,{r ur ssaco:d alpptu aq} ur laarrr pcrd,{1 r sr JI suorsrcap Ia al Ja.uol uo lcedurr
a tsg pu€ suorsrcap 1e,ra1 .raqBrq uo luapuadap aJ" uorlc€Jlsqe go 1a,ra1 ,,{:a,la pue qcea le ap€ur
suorsrcap osn€caq alr?tsJalr sr ?I 1so, pue acueur:oyad Jo saJns€au leuralur a1e:3a1ur o1 .{sea pue
sar"JJalur pazrpJ€pu€1s qlt, uorlecgrcads urals-,ts aql ur palrodur , psea aq uec ,,{aq1 1eq1 pagrcads
os aq sallasuoql ?snur sarlrlua asoql pu€ uotlrpuoo e ,{11ensn $ sarlrlua aJ€,4d.pr€q pu€ aJ€.^aqos Jo
osnau 'soc€JJa?ur la^al ralur puts Io al ellm pauuap IIa,u a^€q lEq? sla al uorlsetlsq€ Jo raqunu €

1ts spoqlau pu€ sleporrt alq"lrc^€ Jo sura] ur passardxo sl ll]€ql osuas oql ur parnJcnJJs sr JI
.ssat

-o:d a,rr1e:a1r paJnlanlJs € .{11er1uessa sr sluaura:rnba: lasn uro{ uorlecgrcads urelsds e Str,Lrrag

frolca[e.r1 uol]€rglcadS I
'sacr.tap elqe:n8guoc pu€ alqrurure:Bo:d ;laqs aq? go arar"r sluauodruoc

aql qcn{,,!r ur sarnlcalrqcJ€ snoauaSo:a1aq Jo surra1 ur as"eqd uorlecgrcads aq1 ur pagrcads uaaq
a eq l"ql qrolq aqt olur,{llca-rlp padderu se.tr uorlecgrcads aq1 'peagsul 'palaprsuoJ uoaq lou
seq '1unocc€ olur ua{el aJe sacu€Ap€ dSolouqcal palcrpa:d qcrq,tr ur 'drolca[e:1 uorleluau.raldurr
.ro; uSrsap pauorJuau-aroJ eql ur.rogleld V3HJ aql yo uSrsap aqtr Jo 1xaluor aql ur sr srq? IIts leql
II"caU 'uor1")grcads 1a,La1 ura1s.{s aq1 qJ€aJ o? paqcauuocra?ur ar€ $polq qlrq,r ur.,{e,tr eq1 o1 auroc
a,r,r. 'g uorlrag ur ', 1purg uorl€-rqrT€c:o3 paddeur aq ueo $lsel Surssacord qcrqnd. olur $lJolq crseq

Jo uorl"urroJ arll a)npoJlur a,u 'Z uorlJas u1 suorlergrcads o1 sluaura:rnbar sa{"1 l"ql .,{:oqcaferl
crseq arll luasard ara. 'T uorlcas uI 'snd.olloJ se pezrueS.ro s :aded aq1 go lsal aql uorqecgrcads aq1
yo sdals uotle:ql1ec aql ul pasn arone qeql sluauodruoc Jlaqs aql Jo asoql 3o pasoduroc sr l"ql uorl
-eluauraldu.rr rrB u€aur a,u, uorleluauraldur l3o-rrp qlrlys.rasn-pua ar{l Jo sluarrroJrnba: eq1 sagsrlrs

1€q1 urals,{s e sp1ar,{ aseqd uorle-roldxa uorlecgrcads aq1 go 1nd1no aq} Jo uotl€luaiualdutr 1ca:rp
aql (as€qd uotleroldxa eceds u8rsep aq1 q8no:q1 Suro8 lnoqlrn leql pal€rlsuouap seq ad,{1o1o:d
e se uorlecgraads yAHJ aql;o uorleluauraldur I€nJc€ aq1 'dlpuocag le paune se,r uorlecgrcads

Tuzod uap7o6 Jo Jros auos ,{1u6 1a.{ alq"y"^e sB,tr {Jo,lrarrreg uorle:o1dxa ou esnecaq ur:o;qe1d
ygHJ aql 8ur,4;rcads ol auop uaaq seq uorle:o1dxa q)nrx lou 'd1ls:rg a.raq acryd ur a.re s1:eura:
o.tJ 'auop aq paapur plnoc srqq ?eql sroqln€ aql Jo auo.'{q unoqs uaaq seq U addlo?ord l"r{l Jo
uorsral pal€os e $ l€ql uorlecgrcads e lrtrrp€ o? u,^d.oqs aq o? a^"q uaql plno.4 leql edocsalag alecs

t

Subsys

Figure 1: A design trajectory to extract specifications from requirements and the difierent levels
of abstraction for the application to architecture mapping, application decomposition
qnd nnmnncitinn

Nevertheless, there is a rough indication of computational latencies based on counts of atomic
operations in the executable specifications of the behaviorc. Next, critical subsystems are identified
and taken one level down the abstraction hierarchy for further decomposition and exploration.
This provides refined indicators of performance and cost. If necessary, this process of identifying
critical parts, refinement and further exploration can be repeated until a level is reached where a
final calibration can be performed. This calibration consists of mapping of (parts of) behaviors at
this level of detail into state-of-the-art components and obtaining sufficiently accurate numbers
expressing performance and cost. These numbers are then exported back into the first higher
Ievel of abstraction where the performance and cost measures are expressed as performance and
cost numbers of blocks that are heterogeneous compositions of the lower level components. The
stage in which blocks are defined and specified is denoted leuel s in Figure 1. From there on, all
higher levels are specified, recursively, in terms of compositions of blocks. The blocks so defined
and specified are members of families of blocks that are made available in a library. This library,
together with block connection rules and methods to obtain performance and cost measures of the
block compositions from the performance and cost measures of the block themselves constrtute a
platform of which various instances can be selected and analvzed.

1.2 The platform

During a feasibility study, the requirements are changing due to feed back to and interactron
among the users and experts. This is not only the case in the specification phase, it is likewise so in
the design phase because of emerging new technology or even because of unexpected modifications
in constraints and boundary conditions which may emerge from the users side or from the designers
side. With a platform, including a transparent exploration framework, the users as well as the

I

:

's{tolq Jo sarlrueJ Jo uorJou 3ql pu€ rlrolq e
Jo sl€uralur aql 'a.rnlJnJls {Jolq aql uo ur urooz ond. suorJcasqns F.ra as }xau aq} uI .urroJl"ld aql
'acuaq 'pur slapou o.4^l raqlo aql or€ os pu€ puorlrsod'roe oJ" sr{Jo,{\laN ssaJord uq€X :alq€lecs
sr ru:og1e1d aql asn€raq 11e,ra. se pagrcads flsea aq uec uralsds (qns)]a8:e1 aq1 ,,{e.,n

l€qq pagrrads
$ uals,{sqns aql acuo pa-rn}cnJ}s Ilarr pu€ pauuap na.4\ sr ,louuec leq,r osF pue ,euop aq uec
leqrr :sa lasuaql s:au8rsap eq1 dq pesodurr suorlpuoc ,{:epunoq pu€ slur€tlsuoJ aq} urqlrnd. sr artrrJ
aues aql 1" 'l€q3 prre 'pal€nl€ a aq utsJ sJrrlau d:essacau aq? qJlqrd 30 sged s1r ur uorlucgrcads
Jo Iaporu e 'p:aua8 ur sr 1r '(uaaq seq 1l sB) pazrpe: ,lecrs_(qd aq uec ?l qgnoql - sjnlDalrqcre
uorleluauraldrur ue.{I:essecau lou sr acu€lsur ur:o;1e1d 8ur11nsar aq; 'ruaSdsqns aql JoJ 3cu€lsur
uorlecgrcads alalduroc e sapr,r.ord acu€lsur leql Jo uorl€nl€^a aq? pu" pal"arJ sr ru:o31e1d aq1 3o
ocu€lsur ue 'slapou aaJql aql ur sralaure:ed aq1 :o3 senle,r Burlcalas Jagts (uaq; qapout req,]o ond.l
aql salelar lsql Iapou Surddeur e pue 'r1:o.la.1au uor?cauuoJralur u" m pappaqua spolq Burplnq
;o 1as e aldruexa JoJ 'laporu leuorlezrueS:o ue ,[g] qro.,ra.1ag ssaJoJd uqex e eldurexe :o3 ,lepout

I€roh€qaq e :slopour aaJql Jo sruJa? ur ua,rr8 sr uralsfs e3:e1 e 3o ura1s,{sqns e go uorlecgrcads
aqt]€q] arunsse 'cgrcads arour aq o; suralsds :a8:ey;o uorlrcgrcads aql roJ alq€lrns arB ilEql
sarlrlua a?erpau.ra?ur are urro;1e1d VSHJ oq]:o; pagrcads uoaq a^€q leql qaolq Burplnq aqg

s{rolq Surpllnq vsHI aql

'uorlcas Jxau aql ur ruaql 1€ lool Jasolc ts al€l o.tr ,a:oJaraq1 ,pue

ru:ogtre1d aq13o dlqrqepcs pa:rnbar aq1;o lq8rr ur sarJrJua I€rcnrc aJe ,{aq; .purur ur dcuarlga pue
,{1111qeruure:3o:d uaa.rlaq asruroJduroJ poo8 € qlr,4r pau8rsap pue pagrcads uaaq a^"q s{rolq aqJ
'[1] suorlels yNS pu€ Uvlg.I aq? pue '[g] ro1e1a::or VW.JV oql Jo uorlecgrcads aql toJ]ua?srsuoc aq
o? u,roqs uaaq osl€ a

"q
$lcolq asaql [g] :alauto:1ceds aq1 pue fp] rauroJrrreaq uorJcorrp-rlFu;

aql s€ qcns 'suorlecqdde pua-{J€q l€fl8lp V3HJ snorr€A aql a1€nl"Aa ol palras pue ur.ro;1e1d aq:
Surdola,rap e1q.,n pagrcads pue pau8rsap aq ol p€q a €r{ pu€ alq€lr€ e .,{ppeer 1ou ara,!. sl?olc
'es'ec urro;1e1d vgHJ aql rod 'la^al slql l€ paslu?ren3 oqe s flrlqelecg .pa:rnba: se slndq8no:q-
qll.4\ uorl?nJlsuoc.{q suorlrsoduroc JaaJJoc pler,{ s1ao1q Jo uor?Jauuoc.ra}ur ?€ql psugap os ara.\l
s{colq aql Jo saJ€Jla?ut eqJ uorl3€rlsq€ Jo Ia^aI srql le sJaqurnu lsoJ puts acueruroJrad 1crr1x;
o1 sluauoduroc aq? o?ut surqlrro8p Surssaco:d pu8rs (3o sped) deur o? su?ou ala,lr alqellv B osiy
'sluauoduroc Jlaqs aqtr Jo aql uo llnq sajnllolrqJ:e snoaue8o:a1aq ar€ ?eq] slrolq Jo sarTrurp:
paur€luoc ,{rerqrl Jaqlou€ 1a svDdg pu€ sdso se qcns ,sluauodulo}

Jlaqs oql go paur€1uo,
,{:e:qq :aqlouy surql:o81e uorl"larloo pue u.rq1r:o81e uorssarddns 1gg a,rrldepe ,sru:oJsue::

:ar:nog ',{cuanba{ pue alxrl 'aceds ur stallg se qcns ,si1se1 Surssaco:d pu8rs ;o (luauruo:r.ru:
luarudola.tap urql:o81e qelt"W aql ur ua11r:.la) suorlecgrcads alqelncaxa paureluoc d:urqrt aui
'ur:o;1e1d V3HJ aql .rog 'sualqo,rd (uorlecgrpour) u3rsap aql :o (uorlergrpour) uorlecgrceds aq1 o:
suorlnlos alqrsea; plarf u€c ?eq} ssacord uorleroldxo lseJ e goddns o1 $lmqpaal pue ,se,rr1eu:ar.:

a:o1dxa o1 sueaur 'qaporu aql Jo slsoJ pu€ saJueurroJJad alenp,re o1 sueau ,qapoiu ur pa1:oclu::
aq u€J sarlrlua qcrq,u dq salnJ 'suorleJuroads d11ua Jo sarr€lqrl sure?uoJ lBqJ lJo.,rraru€{ E sr _-

iJo ?srsuo, ur:o;1e1d aql saop l€r1\\ 'aJuapguoc 3o aar8ap alq€uoseal € qlr,ld pu" aurrl lroi--s
dlqeuos.ea: e ut suoz\sanb lz ?Dqn Jlaql o1 sla.^asu€ 1aB lsnur srasn-pua aql ,sas?c

11e ur ldqc:era:._
aql dn pu" u,uop alddr: .,{eur pue uorl3€l?sqe Jo 1a,ta1 due 1e :a1ua deur suorl"cgrpour aq; .sa8ue.;

qcns o1 ldepe ol pu" 1s€J suorlecgraads uelsds aql arn8guoca: o1 suorldo ua,tr8 are s:au8rs::

2.1 The block structure

In Figure 2 a tlpical building block is shown as a hierarchy of elements in a class diagram. This
object oriented structure makes the evaluation of performance and cost numbers easy because

those are inherited from the elements forming the block.

Figure 2: A building block specified as a UML class diagram

As an example here, the class MSP is constructed with the aggregation of interfaces and FPGAs
classes. A specific interfacing object called APBus that represents a particular physical bus has

been attached to the interfaces and n FPGA objects of type APEX1500 are created. The methods

of the MSP class can access the objects methods that are linked to mapping information of a
process network, or a combination of them, on a architecture block. The component's static
properties are also easily inherited. As an et'cension, the combination of these within a model at
a block level is accessible for higher system architecture constructions out of blocks such as MSP.

Another view is proposed in Fig. 4 to represent the blocks and the elements of a block within a

particular topology. This determines the composition of a block and it introduces the constraints

of the internal data distribution. The properties of the block related to the topology are taken

L

'la al asrou luarque aql a oqe gp 0Z o1 dn lead _,{eur spu8rs ,,(cuenba:g orp€J apetu u"txrrq ttsq1
alou ol a^rJJn-rlsur sr 1r 'Burss-ed uo SurTInu ldu a rlcag€ roJ aq plnoqs :o1ca,r 1q8ra,tr urnurrldo
3ql ?Eqna 1no sa:nBg 1eq1 ruqlr:o81e uorJ"rrrlsa qq8ra_,t{-a rldEp€ ue pue ,:aru:oSureaq aq,+ ur Id.U
aql IInu pu€ Ic€J] o? aunl ur Surf:e,r sr l€ql rolJa^ ?q8ra.{r € pue ,fe:re €uuo}ue aq1 dq 1ndtrno
:o1ca,r pu8rs e ''zra 'qcea saulua gI 30 fes - s-ro1ca,r panle.r xald'roc orrrl 10 lcnpo-rd rauur u3 sr
acuossa ur qf,rq.,lr '.JatrlU ac€ds v :sped o,u.1 Jo sqsrsuoJ raruJoJur€aq Burle8rlrur 1gg aarldepe uy
'aldlx€xa u€ sr a-raH uor?J€JJsqB Jo Ia al ?€ql uo sa^rJ€uJalle JoJ slaqutnu lsoJ pu€ acueur:o;:ad
aplr.o:d o1 pue sa:npalo.rd uor?€JqrT"c aql a?€prl€ o1 ?no parJreJ oq lsnu uorle.roldxa Burdderu
pue ruqlr:o31e alxos snr{J aseqd uorlecgrcads aq1 ur slualllala uor}€rqrl€J ere sluauodruoc 1eq1
II€caH palcalas uoaq a^eq sluauoduro:r aql ralJe pagoads lou aJ" qons se $lrolq ?urplrnq aq1
'asrnoc JO patnSguor _,{Isea pue pappaqua eq uec d:oure'r palnqrrlsrp pue slrun Burssaco:d
lndq8no:ql q8rq qcrq.tr ur $lJo.rlau uorl€crunrutrroc luarcga pue lsBJ pu€ ,sernlcalrqc:e paxg ou
aaeq .{aql asn€caq luauoduoc s" pa?calas uaaq oq€ a €q sv5dd ,aroya:aq; .ruaq1 olur paddeur
.'{11uarcge aq plnoJ ',{e,u palnqi:1srp € ur suorlcauuocJalur pu€ Burssaao:d Jo sarn}Kur Burpnlcxa
are daq? se 1as alalduroc ts rxioJ ?ou op quauoduroc esoqq ,s1ueq f:oruaru pedrunl e8:ey fgensn
ar€ sarJorxatr i pue 'sessnq uorleJrununuoo pJ€pu€?s pue saJnlcalrqcJ€ paxg a €q sdSO pu" sndC
asn"Dag Surssaco:d 1o.r1uoc Surpueutap ssal JoJ palcalas uaaq osl€ a^€q sndC pJ€pu€ls .$lrordlaN
uorlcauuocralul pu€ socBJraluJ 'sauourotrAl ,(4gq) s:osseco:4 leu8rg plr8rq are pa?calas uoaq a €q
?"ql sluauoduroc aqt 'lndq8noJr{t q31q paurelsns € l€ pu€ aurlleal ur surqlr:o81e Burssaco:d
1eu8rs p:a,Las go uorlnJaxa aq1 '.,turouo:1se orper pacu€ p€ sr umrrrop uorqecqdde aq? l€rll ua rrJ

queuodruor go uollJalas Z.Z

'sluauoduro.
asaql Jo uorlcalos aql Ja?Jts sal€uorl€r ar{l qtrrna sl€ap uorlcasqns lxou oqJ .sacraap parsdqd :age
pollapour uaaq a 3q pu€ Iapour puorlezrueS:o ar{1 ur uorlc€rlsq€ Jo Ia al ?sajdol aql J€ sarlrlua
aql uaaq e,req sluauoduroc eq1 'ru:o31e1d vgHJ aql Jo as€o arll uJ .sact^ap

1ecrs,{qd o1 puodsarro:
1ou deur :o leur 1eq1 'spoqlaiu pu" slapour Jo srrrJa? ur ua,tr8 eq leru uorlecgneds asaq; d.re:qr;
lueuoduroc aql ur suorl€rgrcads :req1 uroq u,rou)l aJ€ l"ql strsoc pu€ sacueru:oJ:ad ,sror,rrqar:

Sururrl aaeq 1eq1 sluauoduroc 1co1q Surplnq asaql oluo 'yapour Burddeur aq1 Fursn ,padderu a::
Iapour l€ror^eqaq aq? ur slauu€ql pue sassaJoJd urro31e1d Iapou-oaJql aq1 ur Iapou leuorlezrueF
-Jo aql Jo sped a.re sluauodruoe luanJrJsuoo rraql se IIa,u se sqrolq Burplnq aql l"q1 IIeJaU

.lla.ll

s€ pal3alas dllnJar€o aq ol p"q sluauodruoc >1co1q Surplnq aql ,?lnsar € sV pal?auuocralur al:
sluauoduroa asaql ,,{e.tr oql ur pappaqua.{llr€d pue slueuodruoc luen}t}suo) rraq} uio{ paluilqri.
.{11red are sluaura:rnbar esaql 'sa,tlesuraql qcolq Surplmq aq1 o1 lcadsa: qlrlrsuorJcauuoc:ati::
aql pu€ suor]elnduroc eq1 go ,{cerncoe pue ,paads ,,,{]rl€nb aql a:e ,:a,randoq ,s}uaura:rnba: FIIrte:
-ruop aqJ ,,{1qrceJ Surlnduoc palnqrrlsrp € pu€ pua-luo-g alolrrar ? q}la uorlc€lalur JoJ Iorluc
aturl Iear 1a.ra1 q31q os1e lnq 'suorlelnduroc a^rsua?ur €lep pu€ slndq8norql q8rq urelsns,{1uo 1o-_

lsnut ur:o31e1d aqt ;o ped p1p1p aql 'snq; flrlrqrxag pue ,,{1rpnb ,aurnlo^ ul SursBarcur a:.
?€q? s?uaurarnba: Surssaco:d pue 'slndq8no:q1 elep qBrq .,{:a,r ,sqlpr,lrpueq elep a8nq ,{q pa:
-ralJel€r{3 a:e suorlecqdde asaqJ purur ur suorlecqdde duouorlse orp€r aql qlr,ra pagnads pi:-
pauuap uaaq oq€ a^sq alaq qrolq Surplnq aql ,rgr3eds uorlecqdde sr urroJl€ld due asnecag

'uorl€np a acueru:o;:ad JoJ saln: atu€s aql 8ur:rqs seqrure; o1 Buolaq lJolq eql ,reJnL-.

are qcolq aq1 go d8o1odotr aq? uaq.^,\ 'uo ta?e{ paugap sV .uor}"nlela acueur:o;red ar{l ur aj:,

I

whereas the signals of interest that come from fainted stars and galaxies may delve down to 70
dB under that noise level. Now, a measure of complexity of the complex valued inner product is
easy to obtain from the specification of that function in the behaviorally model of the platform:
it is 16 complex multiplications and 15 complex additions. The calibration of that function in the
organizational model of the platform is easy in case the function is to be mapped into a DSp: The
specification of any DSP includes the performance and cost for that function. However, for THEA as
for the other systems of concern here, no DSP can achieve the fast pace at which consecutive inner
product evaluations have to be executed. Therefore, a calibration in an FPGA may be a better
choice. Indeed, it is relatively easy to map the inner product as a systolic array into an FpGA.
In this case, it is even not necessary to do so, because the specification of any FPGA will provide
cost and performance of a single complex multiply-add pair, and a simple extrapolation can yield
sufficiently accurate performance and cost measures, not only for the space filter itself, but also for
the achievable throughput. This is what has been done for the development of the THEA platform.
No further alternatives have been explored. See e.g., [9] for an exploration case on executable
specifications of the inner product. The situation is dramatically different and more complicated
for the adaptive weight estimation algorithm. Indeed, there are many adaptive weight estimation
algorithms all deferring in terms of accuracy, complexity, latency and throughput. Figure 3 shows
the minimum execution time for three different weight estimation algorithms when using a DSP
for calibration (or implementation). if higher accuracy or faster update rates are required, other
algorithms have to be explored and other calibration or implementation (models of) devices have
to be conceived.

DSP TMSC67

I
c5
=oac

6-

Subspace
tracking
(PastD)

Subspace
direct (eigen

sys.)

Minimum
Variance
(MVDR)

5 10

execution time (ms)

Bacm (ms)

tprojection (ms)

Figure 3: Example of exploration: the adaptive weight estimation in the THEA spatial RFI nulling
using a floating point DSP for calibration/prototyping for three difierent nulling algo-
rithms

Although the number of components that have been selected for the THEA platform speciflcation
(and prototyping) is rcasonably snrall, there are still many \i'ays in which these components can
be interconnected to be promoted to building blocks. It would be very appealing if one could do

t

f)

uraJs.,{s urnrurldo oql Jo uorsua}xa aql sr .{Solodol IJo,{\Jau xrrJGtx € qlr,^(r u6Js,{s Vodd-r+lnur u

'la al preoq ly 'r€lrurrs dra^ aroJaraql arE VDdd ts Jo arnlrnrls l€u.rolut drqJ arll puB uorl€rrTddE
aql Jo dlrr€ln8al arlJ sapou Surssaco:d f:eluaruala qqr,ll llo.^alau llJJ€rn E 01 paqcl€ur aq u€c
$lJo,[lau ssaco:d olur]ualuauual JraqJ s]euJoJ lndur se saorJJ€ru Jo sJolca qll,r suorleaqdde
go saldurexa are sJapp" luaraqoJ Jo sroqelaJJot-oln€ pu€ ssorc 'srallrd 'sauq;o :equrnu 1ee:3 e
Sursso:c acr,rap Surgnqs crs€q € s€ pasn oq u€c 1I e 8l.f ur pazrseqdrua sr dsr{ pallm {colq aqtr

Surssaeold/Sulpgnqs x.rrlptr l fn'Z

uopdl.resappaprlaq p'7

'suorlcasqns xrs lxau aql ur lnaql 1€ {ool Jasolc € a{€l a/!\
'ssauJsnqoJ pue acu€uuoJrad ualsds aql 8ur,to:dur d11ecr1se:p snqt

'salnpour l"npr rpur ur dlualduroe 8ur1no.r elep aql Jo lsour paqrqs lSolourpal ,uau oq Surp.roccr
ura1s.,ts aq1 ;o Suqecs-ar aqJ preoq pale:8a1ur a18urs e o1 ,{lureur pallillq aq plnoJ suorl3auuo3
ssols aql sluorua.r'o.rdurr ,{ltsuap drqc lsa?el aq] 01 s{u€qJ Ia al pJ€oq € q€ alq€lre^e soc€Jralur

lsals€J aql pu€ suorlcauuoc Jo raqunu a8Jel e qlp\ l1nq uooq a,req sru:ogleyd aq1 ,a8esn :raqt
a8:e1ua o1 oroJaJaqJ sarcuapuadap Suruqadrd 'uorlnqu?srp : pal€lal :aru.od Surssaao:d pus ssacc€

pue uorl€col ec€JJaluT puts r{rorraur : pal€l3l aSueqcxe €l?p aJ€ slueura:rnba: qcng sluaurerrnba:
suorlecrldde ur"ur aql ,,{;sr1es o1 go-apel} e sr {colq cr:aua8 e Surugaq 'cgrceds uorleurquoc)po{q
puts luaruala aJ€ 1€ql sul€.rJsuoc asodu.rr slueurala cr:aua8 aql uo Surssaco:d luorclga JoJ sanbruqcat
aql I 'q€I ur paluasa:d sru u8rsap arnlcalrql.r€ cr:aua8 e dq palsoq ,,{l?uarcso }sou aq o1 f1a>1g1

uorlecqdde pu€ sarnl?alrqJJe yo uorlz8a:88e pue uorleredes e Jo Elnsar uorltugap 1rolq aqJ
'y a:n8rg ur u.roqs s sollrru€J asaq? Jo sroquraur 3o uorleluasa:dar crloqu s oqJ ruroJleld

V3HI aql Jo luarudola.r.ap aq1 Surrnp pagrluapr uaaq a
"q leql salllur€J aql slsll I alq€J sraqixaru

raq?o u€q1 lsoc ;aq8tq ro raa.ol
" l€ pue asro.,!\ Jo:aq1aq sur:og:ad ll l€ql ul roqrxarrr.raqloup

uro{ Jlosqr saqsrnBurlsrp ,t1ueg 1co1q aq} Jo roqurau y uorlrsodruoc {colq € loJ Ia al uorl3erlsqp
aql o:e salnrn"J aql a.roJa.raqJ dlueg e urqlr-& uoturuoc a:e sarl:ado:d qcns f€,u. cgrcads e ut
sluaurala o1 pu€ lrro{ sarl:edord sa8ueqcxa e1€p sacnpur oJn}cnlJs s.Icolq aqJ ?ou sraqlo pu€
,{11uatcga pue dlarr.rlcaga paddeur aq u€c sJor^€qaq cgrcads ur€tr.roc qcrq,r olur sluauoduroc 3o
uorlaalJoJ snoauaSo:a1aq pezr:alaure:ed e sr dpuey 1co1q e '.{es 01 sr lEqJ acu€}sur uro;1e1d e

o1 sal€lar 4co1q Surplnq € se qcnu ur:og1e1d
"

01 sal€la.r ,{pue; 1ao1q e ,8ur1eads ,{lq8nog

saJI.ruBJ {rolfl t'z
'uorlrasqns lxau aql ur sarTru"J asoql l" Iool JasolJ € alel

II"qs el papaou ar€ sartrru€J lcolq Surplnq yo ',{lasrca:d a:oru ':o s4co1q Surpgnq Jo InJpueq p

.{1uo 'dlastca:d aJotrAtr }uorcsns sr srlcolq Surplrnq Jo raqurnu at€rapour e .{1uo;o uorlecgrcads pue
uolllugap aql]€q? ?no surnl u .{r€rqrT {rolq aql ur alq"F€^€ aq o1 a^€q plno,r slsolq Surppno

Jo.raqumu a?J€l € l€ql lcadxa lq8rur euo 'acue18 lsJU lV uaql uo pasodu.rr ar" l"q1 sJur€JJsuoJ
Bur.{:e,L ,,f1epr,ra. pue suorlsoduoJap lto,ulau ssaao:d pnbaun a,req sassaao:d 1a,ta1 :aq8rq luaJaJrp
'ra^a,,iroH 's4co1q 8up1mq uo padderu aJ€ l€ql suorlrsoduocap ssaao:d 1a,ta1 :aq8rq asaql f11ectd.i:
sr 11 sassacord 1a,ra1 :aq3rq ;o suorysodurolap al€ l€q1 suolJecgnads {ro.^.lau ssaco:d ur rnclo
?€ql sassa)oJd Jo slsel .,{luoruruoc a.re slueuoduroc uo peddeu.r aq u€J l€ql sulqluo8l€ Surssaro:c

leu8rs;o suorleagrcads alq€?ncaxa 'paapul 'crlsrurrldo oo1 sr 1€ql lnq polq Sutppnq auo .,{1uo qlrr

Table 1: Families of building blocks from which building block instances have been selected for
the of the THEA platfcrm.

Block family Target processes

Matrix shuffiing / processing Central processing

Cross-correlation
Adaptive cancelling / nulling

D^^-f^--i-^ucdururuurr6

Fast pipeline processing Distributed processing

Data flow online filtering
Spectometer

Fast control processing Complex memory circulatron
Array decomposition and processing

Space / time / frequency analysis
Application control

High speed link Mass data transfer
Cluster connection

Mass routing
RT control lines connection

Remote data transfer
Remote RT control

Selection Massive Cache-storage
Data Multiplexing / routing

IDC Band miing
Band separation

Analog / Digital conversion
Main acouisition and control Monitoring

Network support
Hardware support

10

II

s{colq olq€l€3s rnroJleld

uollcauuoC lColg ----- 0opw

- aul I|e'8oo

-
soull I 'snE

lcotg y\lvH

lcolq ndo / dso

eoBtols eqr€3 uollsslss

{dcj) 6urssdord to4uo3 |sel

I
I
o

:7 aJnSrJ

(stso (oor)r€ !J
qouslu pseds q6lH 'CW'lexln O'l

FF {t- {}
FFF== .{ 1- .{-_ a-

F=
0lsHJ

€oepqq)iul t poeds q6rH

O
(€80)r€)ior€

FanbaH peho

(cvn)
uolllEnlov loJluo9 ulelI

(dsn)
Eulsse.ord ourunqs xlrlPn

on chip implementation. The mesh topology [10] was used for very large scale implementation of
a single application over a board or multiple boards such as telescope correlators [11]. A variant
with a ladix topology is proposed for the current platform enhancing the cross node florv for
multi-beaming operations [4]. Matrlx shuffiing within a mesh is coupled with large processing

capabilities at the knots. The integration and the large number of pins in a FPGA, make this
device very attractive for the data crossing on chip. Most of the elementary processing on the
data flow can be efficiently distributed on the board limiting the intermediate data storage.

Table 2: Matrlx rrocessins block
Current features Standard block

6 FPGA, APEX 400-1500 (Altera)
I/O : 384 lines at 40 MHz, 16Gbit/s

Ext. bus : 32bit 10MHz [12]

Mesh processing topology
Large pipelined I/O rates

Block I/O transfer (control/acquisition)

2.4.2 Fast pipeline processing

If the array is made large, the internal and external memory bandwidth in a FPGA is decreasing

and deteriorates the system's performances by spanning the memory bus over the array, this is
demonstrated in [tSj [t+] and can not be easily solved with hand optimized memory skews. When
matrix shuffiing is not a main task for instance for online filtering, fast real time digital signal
processing is required with immediate access to large RAM blocks. For the THEA spectrometer
application, the memory constrains were higher than the largest FPGA internal memory and DSP
structules were selected instead. The fast processing is inserted in the data pipeline processing

blocks. The sustained telescope high data rates are reached by duplicating the processing units
on blocks of data with fluid access to dual temporary memory and interfaces. The architecture
with interfaces, memory and processing elements routed with a cross bar element is easily config-
urable and can host a large variety of applications. The level of computation is simply raised by
duplicating the number of processors if required. Such systems on chip are proposed in the next
generation of FPGA [15]. After prototyping of the acquisition routine as well as the processing on

a DSP chip for the spectrometer application, a block with sufficient processing and memory width
was commercially available for THEA at the scale of a board called PMPS [16] see performance
in Tab. 3. The fast processing unit can be pipelined or connected to a common bus for additional
processing power.

2.4.3 Fast control processing

Control processing stands for advanced processing with complicated arithmetic or control func-
tions. This block is directly connected to the devices handling the data flow and consequently
is real time specific. Nevertheless, the control processing is not directly receiving the raw data.
For THEA, the control processing constrains were high and had to be implemented in a guaran-
teed real time environrncnt like a fast DSP tied loop to the row data stream. Eventually, The
processing-control could also be shared by the PC CPU rvith lower response constrains. The fast

72

GL

'uor?l?)rTdd€ -ra Jas JuarlJ e r{?11!1 loJluos l€]lual € JOJ {ro,!\l3u
laurar{la rre pr^]a{olg lsanbau lcalqo u3 o] paJcauuo, sl cd aql .snq

IccI aql €I^ rrorlrsrnbse
e?"p roJ spr€oq Surssaaord puu loJ?uoc aq] 01 ssacte lseJ roJ Cd IerJ?snpur ue sr ygg; go lroddns
ar",A pr€q aqJ acu*urroJJad uorlrsrnbee ra,^aol ro luap.r.rnba :oy lsoc :aq8rq rraqJ Jo asn'?aq uasoqc
?ou ara,r Icd ?c€duro3 pu€ gtr^I^ ,{1ddns:a.uod pue lor]uoc qll^\ snq Jcd € uo surals, s paprpequra
a1dr1lnur Surlsoq;o alqedec lcadsa: leq? ut ar" s:alnduroc puosrad aqJ .sarlqrq€d€c uorlrsrnbce
pu" Ior?uoc luapuadepur ql.,'' sapou Surssaco:d Surleredas dq uorlrsoduroc uro1s.{s aq1 dgrtdlrrs o1
uasoqJ se.r 11 su8rsap prra-Io€q ul Ja rJp lsoc 1uu1:odrur uB ua+Jo sr oJn?JnJJs€qur uralsds eq;

IorluoJ ureur / uorlrs.lnbey V.V'Z

't q€J ul salnl€eJ ass esuodsar xaldnror
pu€ ls€J d1a,rr1e1e: roJ pr"oq lotSuoc aIIIrl I€ar

"
sr urn:1cadg luo{ pr€oq euoS_,{uq aqJ .alq"lrp p

dlprc:aururoc sBnE. uorletrununxoa l"uJalxa roJ dSCI € o1 snq pal€crpop lsEJ pu" uorlrauuor IOd

I

uorlrsrnbce €1"p pu€ ur:og1e1d Surssaco:d 1se; sdogggl roJ lsorl Cd I€rrlsnpul :q ern8.rg

AIq€I

(uorlrsrnbre/1o:1uoo) :a;sue:1 Oif rf-f A
raauanbas/:a1o:1uoc/:eq,sso:c e1dr11n11

qlpl^pueq q8rq/sac:nosa: d:oruaur a3:e1
saler 6/1 paur€lsns lsed

Surssaco:d palnqrJlsrp .roJ pal"crpaC

zHIAitt llqzt I3d : snq lxg
r"q-ssorc s3urod 9 / tOZSCSWJ, aSO t

I IVUCS gi,1 961 luapuadapur 6
aceJralur 1s:nq s/9tr11 092ry00S

IOZgCSI^IJ dSO 8

{rolq pr€pu€?ssarnl€al ?ua.rJnc
I1S€.{ :8

Current features Standard block

2 DSP TlvlSC6701 (float)
4 points Cross bar

2 independent 64 N4B SDRAM
2 independent I \48 SRAM
Ext. bus : PCI 32bit 33MHz

Accurate / fast complex processing
Dedicated for data / memory circulation

Large memory resources / high bandwidth
Fast memory addressing / high bandwidth

Block I/O transfer (control/acquisition)

Table 4: Fast control

Figure 6: Combination of 3 blocks. SCS, MSP, HSL

Support : hardware/communical,ion/scheduling
Standard network interface

Multi-Blocks I/O control/acquisition)

Pentium III
100 Mbit/s ethernet connection

Ext. bus : 8 x PCI 32bit 33X4Hz

14

sI {Jo.trlau pal€orpap tl uo spr"oq laulaqla Br^ lJauuoc ot.,{s€a puu ptsords dlapr.r\ ,lceduroc ,36

I€Illsnpur oql 'uorllauuoJ xrJprrr € pualxa ol pasn aq osl" u"J saJp,J:alur IurT B]€p paads q8rq
aql 'sas€l auos uI .{^oU el"p aq1 8ur1tn:1sqo lnoqI,r .{lrcedec Surssaco:d go Surpersec :og g 31g
uI uruoqs se 'pcr:q.aururfs 1nd1no/1ndu1 a-r" pua-{ctsq VSHJ aql Jo s1co1q Burssaro:d ,{:eulrrd aq1

'dyluanbasuo3 'Icolq Fcrluapr JaqJou" ol uorlJauuoo e dq ua,t rB sr .,(lrcedea Bursseco.rd ur asre:
aq1 u:o;1e1d cr:aua8 aq1 rod 'popualxa aq u€c sticolq f:elueurele slr I aIqEI€cs sr uraqs.,(s y

uollreuuor lrolg I't

pua-{req alqelBrs Y €

(3rp / fdo :xg) aceg:a1ur ureurog
slauu€qc 6/1 luepuadapul

sroxaldrl1nl11
aa€Jralut ple:ed/lerrag

s/?tqcIx0I:ur
zHIN 0V I saul t8t : ?no

aslnd o:qcu.,{s + {colc 0I : lno
r1I ,xJ lauraqla qq €FID

{colq pr€pu€lssaJnlsal luarJnc
{UII:z alqeJ

'saurT uorl€zruoJrlcuds pu€ elep ,,fta,re qy,u 3uo1e pede re; dlecrs,4qi
palnqrrlsip aq .,{lluanbasuoc uec uralsfs aql(raqg I€uorlrppe ue uo }uas d11ua:rnauoc oJ€ saslni
uorlezruo:qcuds pu€ rlool3 'sluarunJlsur a1dr11niu Jo salnpou a1dr11nur lcauuoc.{lsea uec leql
squrl lurod o1 lurod a]u€qlnlsrp crr]Jala oJaz ,.{eyep o:az ql,I,t\ t€lnpolx are.{1snor,le:d paqrrcsaf
s{colq aqt Jo qceg ,{1r:eppour rununldo roJ uorlnlos e os1e a.re solnpou paads q8rq aqJ uorlrau
-uoc alornaJ:o; padola,rap uaaq o^eq sluq paads-q8rq cgrcads ,sa1e: uorlnqrrlsrp q3n{ aql ua^lg

1u11 peads q31g g'V'Z

:egsue:1 6/i slrolg-rllnnl
srallorluor palnpaqrs luapuadapuy

raxaldrllnu qauueqc / aurr;
a1e: g/1 a3:e1 / a8erols aqce3

lrqzt lcd:snq']xg
ac€Jralur snouorqcu.,{s s/911 691 : 1n6

s/llqDgl 'zHI I 0t 1" saulT t8t :ul
salnporu J lYucs l]q t9 * 8

{colq prrpu€lssarnleal luaJrnc
Jols aq'€J uorlcalds :9 alqeJ

I

'ur:og1e1d Surssalo:d lseJ e ol a1€r ra,{4.o1 € l€ palSrursu€rl aq uaql upl
pa,rrnbce elep aqJ 'uorlnlosar 1n9.,{cuanbag Suqdures euualue aq} l€ ualsds arr3ua aq1 :og,{roura'.::
uol?elnarrc-€J -ro aqo€c e se lc€ u"c alnpour srqJ sauraqcs uorlcnpal elep cgrcads ,suorlerqdd:
qua:agtp deur o1 flqrqrxag aq1 sa.a!8 lr 'su8rsop I€uorlrp"Jl ol paredruoa 1co1q .trou € sr uorlralas arl i

e3elols eqcec (uorlcalas g'f a

Figure 7: Different acquisition architectures

the host for the more dedicated hardware. Indeed, the PCI bus can distribute the power and the
non time critical data.

3.2 Data routing

The control is strongly pyramidal and the data flow is linear. Actions are pipelined syn-
chronously and some mechanize data crossing. Therefore, one of the main challenge in setting a
generic platform was the design of elementary and complex processing with very large number
of lines 392 data bits at 40 MHz for data crossing. For that reason the balance between the
data flow and the processing is of prime importance. The approach here was to build modules
based on the fastest interfaces and the maximum data flow on a board for a given application-
The phased array beamformers and interferometers back-ends in radio astronomy in general are
measuring cross products of elementary channels at very high bandwidth. The new generation of
FPGAs such as the APEX 20K from Altera and VIRTEX from Xilinx, permits extremely flexible
data routing within a single chip. Unfortunately, telescopes constrains are following Moore's laws
and the systems are still spanned over several chips, boards and clusters of boards. The THEA
beamformer is an application example overtaking the capacity of a single chip but a combination
of 6 chips on a board (see [17]) allows optimal routing and maximum integration.

3.3 An object oriented control approach

The generic platform is a physically distributed embedded system that can be connected to a
hierarchical scalable control system via network interfaces illustrated in Fig. 9. This approach for
the control of THEA called TECH, described in [18], is implemented by a peer-to-peer communi-
cation through distributed Corba objects 119] as shown in the deployment diagram in Fig. 9. It
offers transparent access to data and methods from all processes. The back-end blocks or objects
from a software point of view are connected to TECH. Each block is embedded in a device driven

16

rolelarroc € roJ s{colq VSHJ aqlJo Sugecg :g a.rntrg

6ulss@oJd

'""Xffi;fl * r,aoiait#s";;i; r+wotr<-' ;50'"fffi rid' >6g$rqr<. auserH- xalg-X.g'

,)/l

)4
\i

l\l

--"1 \f

)4
\f

Hierarchical control

(clien!)/zY\
^-\(action I \acuoD,Y /-\

L.\ ,--\ .,--\
\oe.nce_/ {acrion) (acrion)

I tl
/.t1\ ri\q:9 q:9
l+r l+

--r

[\
@.@

Deploymenr diagram

Figure 9: On this figure the tree of the object oriented software control is shown as well as the
control deployrnent via CORBA for concurrent client applications

bv actions. Consequently, the platform can be extended and upgraded from or within a pyramidal
architecture. This structure is adequate for team work on the project but also for maintenance. As

a base for a more generic back-end, independent drivers can be re-used for a different application.

Conclusion

We have presented the THEA platform which is a case study in ongoing investigations deal-

ing with methodologies to designing specifications from requirements and implementations of the

specifications. The implementation of such a methodology should provide a transparent frame.

rvork for fast exploration and getting user satisfying answers to the user's what if questions.
The development and implementation of the THEA platform has been a first and successful trial to
structure the whole specification and prototyping project. The configurability and programma-

bility of the platform offer exploration and validation facilities, not only for the relatively small

scale Thousand Element Array, but for the distributed signal processing functions in al1 currently
investigated radio telescopes. The platform is currently used as a versatile back-end for a telescope

connected to the necessary control of the instrument. In the context of the the ALMA, L0FAR and
SKA feasibility studies, different applications and technical solutions were proposed by difierent
groups. A comparison of these proposals based on the THEA methodology and platform helped at
an early stage of the project to establish specifications. Requirements, processing techniques as

well as technology are likely to change within the development and first integration steps of the

different large telescopes, yet the impact of the modifications can be evaluated and anticipated
using such scalable platforrn of which the TI{EA platform is exemplary. \Ahat remains to be done

is to improve the exploration part of the specification and design methodology. Work in this
direction has to some extent been done [9] and the expertise gained with the THEA platform has

been of great help to specify what exploration methods and tools are worth focusing on in order

to make a platform bmed design of next generation telescopes really useful for those who provide

the requirements and will be the users of these telescopes.

18

6I

'0002 'dal{raB ,€ruroJrl€C
Jo

flts:a,tru11 rrnnLprDq a1qn-m6{uocag q4tm nssato.t tlo-r,cz1ry n 6uquau6"y
',i"."n11

p,"g' rrtlof [gI]

'Z0 I uorshag .966I laqua^oN ,apmppo16 urelsdg
dSC ,{0UJCA 69 'uot|rtc{nadg anl.tary1 sng uozsuod,rg paddny,T fi,tou,ta1y :S4NII-1SO l1,l)

.0002 raqutacap \a000
-C,I-VIN,IV-NOAJSy' !,,ro?elarroC ornlnd VI IlV aq1 yo ,{pn1g u3rsaq rua1s.{g V,, ,sog V III]

'866I ,,'stuals,{s alqe:n8guoca:;o orn}nJ aqJ,, ,{cn€H .S
[0I]

'2002 grdv ,sua4sftg iuzqnduog 1apun1 fi1aazssnytr uo atua.ta!,uop
IDuoxlnlualuxJ qunod aUJ ,gp47,y s6uzpaaco.r;. ,,,dpn1g as.ec y :ura1s, g Burlndruo3 1a1p:e4
.{1a,rrsse1,n se adocsalaa orp€U palnqulsrq,, ,a:a11ardaq pe ,toIIV ure,rlig ,aeloarg n,iunrnnl 161

'vL6r filnt 'y'I
ssa"t 6uot dIdI JoJd ,,,3unuure:Bo:d 1a1e:ed :og a8en8uel aldurrs e yo srr1,r"*". .qj,, ,u"qy :C IS]

-1oqe-/1u'uorlse'n.u..,r//:d11q .1002 raqua^oN ,paqsz\qndun y,od,ag gr11ggy\y ,,,sadocsa1a1
,{::e paseqd a3:e1 d:a,r spr€.{rol qcolq VSHI aql Jo uorsualxa pue flrriqepag,, ,lolllv -.S

L]
'1oqp-/1u uo-r1se .tr.tr-u//:d11q .1696 :aqualdag ,paqsz1qndun y.od,ay y1t17y

,,'siicolg 3lrauaD uo pas€g rol€la-r-roC e :o; uorle;o1dxg ornltalrq3Jv uralsdg y,, ,tolllt S Ig]

.0002 f€W tyodda.t
Tnulaquz NOAJSV ,,,:alaurorlcads VSHJ,, ,?o{lv .S

[9]

'666I iI-U I IIrdV ,gze gg7 .dd,sfinu,y
Duualuv a6ln7 .tol sat1olouqtatr :frluouo-tgsy o?,pDV uo saat5tad,s.ta4 ,,,sedocse1e; orp€U Jo
uolJerauaC lxaN aq?:o; Surueag*r11nr\l luarcggl, ,sraplourg .y pue ,p116 ap .g ,uosdureg .g [7]

'666I IIrdV '976y' atuatatuog g14g ,sadocsalal o?pry - 0006
uoxJDluaunJJsuJ pun sadocsa1al lrnr,uouorlsv ,,,.,{erry erleruolg a:enbg aql pJ€.4\ol ure:Bo:d
CU aql roJ slpsa: ldurouo:tsv orpeg JoJ seuualu€ a,rrldepe a,tr1cy,, ,auuap.ry ue,t ploury [g]

'0002 rlDrehl '9y61 acua.taluop g14g ,sadocsa\al o?pDA _
000A uoxlDJuautu.ts,ul

puo sadocsa1atr IDJr.uJouoJlsV ,,,,{e::e .,{auanbag
^{ol

€ :og u8rsap 1dacuo3,, ,ueru8a:g .O f [Z]

'666I IIrdV 'ZZ LI
.dd ,sftn.u"y nuuayuy a0n7 ,to! saz\oyouqtal :ftwo

-uorlsv oLpDA uo saaz7tads.ta4 ,,,.{e,r:y :e1aurrptrt1 a8:e1 eurecely aqJ ,yr\lTy,, ,qloog ,S,U
III

sesrralaJou

'srarllo pu€ J€€qcS Jap ue^ plaq 'tsuno arpuv ,€JlsurorH
uoa'J '{prrr ap ppuou '8urddad u€f-.''reH 'laaqrapuooqcg slc ']u€)I uorc : v[HJ Jo pua-{r'Li
ar{} uo palro.lr\ }€q? ul€al aql ,{llenadsa rlu€rll o? lu€nd. ai6 .O1AN Iq papurg NOUJSV 1e lcafo.ri
VSHI aql pue ssa:3o:6 ,{q popunJ ,1cafo-rd gnlggyry aql Jo 1:ed ur paur:o;:ad se,ra dpnls srq;

I

sluouSpal^\ou{rY

[14] stylianos Perissakis, Balancing computation and. Memory in High capacity Reconf.gurable
,4rrays. University of California, Berkley, 2000.

l15l strati'r Deu'ices: New Leuels of system Integration, Altera corporation, April 2002.
htip: //www. altera. com/products/devices/stratix/stx-index.jsp.

116l PMP\ Signatec, 2002. http: I lwww.signatec.com.

[17] G. Hampson, "Development of a Reconfigurable Digital Beamformer using Altera FpGAs
and Mega F\nctions," Intetnal ASTRON Report, June 2000.

[18] K. van der Schaaf, "the TECH project," ASTRON Intetnal Report, November 1999.

[19] B. Morgan, "Learn to build a distributed Java applet that accesses server objects usrng
CORBA," http : / /wwu.jauaworld. com/ju- 1 0- 1 997/jw- 1 0- corbajaaa.html, April 2000.

I

20

Future Directions of (Programmable and
Reconfigurable) Embedded Processors

Stephan Wong, Stamatis Vassiliadis, Sorin Cotofana

Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology,
{Stephan, Stamatis, Sorin}@CE.ET.TUDelft.NL

Abstract. The advent of microprocessors in embedded systems has significantly
contributed to the wide-spread utilization of embedded systems in our daily lives.
Such embedded systems can be found in devices ranging from simple controllers
found in power plants to sophisticated multimedia set-top boxes found in our
homes. This is due to the fact that microprocessors, called embedded processors
in this setting, are able to perform huge amounts of data processing required by
embedded systems. In addition and equally important, embedded processors are
able to achieve this at affordable prices. This has resulted in the fact that much
effort must be placed in the design of embedded processors. In the last decade, we
have been witnessing several changes in the embedded processors design fueled
by two conflicting trends. First, the industry is dealing with cut-throat competi-
tion resulting in the need for increasingly faster time-to-market times in order
to cut development costs. At the same time, embedded processors are becoming
more complex due to the migration of increasingly more functionality to a single
embedded processor in order to cut production costs. This has led to the quest
for a flexible and reusable embedded processor which must still achieve high
performance levels. As a result, embedded processors have evolved from simple
microcontrollers to digital signal processors to programmable processors. We
believe that this quest is leading to an embedded processor that comprises a pro-
grammable processor augmented with reconfigurable hardware. In this paper, we
highlight several embedded processors characteristics and discuss how they have
evolved over time when programmability and reconfigurability were introduced
into the embedded processor design. Finally, we describe in-depth one possible
approach that combines both programmability and reconfigurability in an inte-
grated manner by utilizing microcode.

1 Introduction

A technology turning point that made embedded consumer electronics systems an ev-
eryday reality has to be the advent of microprocessors. The technological developments
that allowed single-chip processors (microprocessors) made the embedded systems in-
expensive and flexible. Consequently, microprocessor-based embedded systems have
been introduced into many new application areas. Currently, embedded programmable
microprocessors in one form or another, from8-bit micro-controllers to32-bit digital
signal processors and64-bit RISC processors, are everywhere, in consumer electronic

devices, home appliances, automobiles, network equipment, industrial control systems,
etc. Interestingly, we are utilizing more than several dozens of embedded processors in
our day-to-day lives without actually realizing it. For example, in modern cars such as
the Mercedes S-class or the BMW 7-series, we can find over 60 embedded processors
that control a multitude of functions, e.g., the fuel injection and the anti-lock braking
system (ABS), that guarantee a smooth and foremost safe drive. The employment of
embedded processors appear to grow in an exponential curve. Furthermore, it has been
postulated [22] that the sales trend of embedded processors (microprocessors in this
setting) will significantly outperform the sales of general-purpose PC processors.

In this positional paper, we describe several characteristics of embedded processors
and investigate how these characteristics have changed over time driven by market re-
quirements such as faster time-to-market times and development costs reductions. We
will show that two strategies have been widely used to meet such market requirements,
namely programmability and reconfigurability. Finally, we show a possible future direc-
tion in the embedded processor design that merges both strategies and thereby providing
flexibility in both software and hardware design at the same time.

This paper is organized as follows. Section 2 introduces a general definition of em-
bedded systems, discusses the characteristics of embedded systems that follow from
the definition, and provides an in-depth discussion of traditional embedded processors
characteristics. Section 3 discusses the need for programmability and several examples
of such an approach. Section 4 discusses the use for reconfigurability and discusses
how it affected the embedded processor’s characteristics. Section 5 continues our dis-
cussion by describing what we think is the direction for future embedded processor that
combines programmability and reconfigurability. Furthermore, we show an example of
such an approach called the microcoded reconfigurable MOLEN embedded processor.
Section 6 concludes this paper by stating several key observations in this paper.

2 Traditional Embedded Processor Characteristics

Embedded processors are a specific instance of embedded systems in general and there-
fore adhere to the characteristics of embedded systems. In this section, we provide a
more traditional view on embedded processors by stating their characteristics deduced
from our general definition of embedded systems:

Definition: Embedded systems are (inexpensive) mass-produced elements of a larger
system providing a dedicated, possibly time-constrained, service to that system.

Before we highlight the main characteristics of embedded systems, we would like
to comment on our one sentence definition of them. In most literature, the definition of
embedded systems only states that they provide a dedicated service – the nature of the
service is not relevant in this context – to a larger (embedding) system. However, we be-
lieve that all the issues related to the specification and design of embedded systems are
very much anchored in the market reality. Consequently, in our opinion when we refer
to embedded systems as mass-produced elements we draw the separation line between
application-specific systems and embedded systems. We are aware that the separation

line is quite thin in the sense that embedded systems are mostly indeed application-
specific systems. However, we believe that low-production application-specific systems
can not be considered as embedded systems, because they represent a niche market
with very different set of requirements. For example, in low-production scenarios cost
is usually not important while it is almost paramount for embedded systems to achieve
low cost. Finally, we include the possibility for time-constrained behavior in our defini-
tion, because even if it is not characteristic to all the embedded systems it constitutes a
particularity of a very large class of them, namely the real-time embedded systems.

The precise requirements of an embedded system is determined by its immediate
environment. However, we still can classify the embedded system requirements in:

– Functional requirements are defined by the services that the embedded system
has to perform for its immediate environment1. Such services usually include data
gathering and some kind of data transformation/processing.

– Temporal requirements are the result of the time-constrained behavior of many
embedded systems thereby introducing deadlines (explained later) for the service(s).

– Dependability requirements relates to the reliability, maintainability, and avail-
ability of the embedded system in question.

In the light of the previously stated embedded systems definition and requirements,
we briefly point out what we think are the main characteristics of more traditional em-
bedded processors and discuss in more detail the implications that these characteristics
have on their specification and design processes. The first and probably the most im-
portant characteristic of embedded processors is that they areapplication-specific2.
Given that the service (or application in processor terms) is known a priori, the em-
bedded processor can be and should be optimized for its targeted application. In other
words, embedded processors are definitely not general-purpose processors which are
designed to perform reasonably for a much wider range of applications. Moreover, the
fact that the application is known beforehand opens the road forhardware/software
co-design, i.e., the cooperative and concurrent design of both hardware and software
components of the processor. It is misleading to think that application-specific proces-
sors can not be programmed, because the signals controlling the processor can be per-
ceived as rudimentary processor instructions, e.g., firmware or microcode [29], which
could be re-arranged thus programmed. The hardware/software co-design style is very
much particular to embedded processors and has the goal of meeting the processor level
objectives by exploiting the synergism of hardware and software.

Another important characteristic of embedded processors is theirstatic structure.
When considering an embedded processor, the end-user has very limited access to soft-
ware programming. The utilized software is provided by the processor integrator and/or
application developer, resides on ROM memories, and is not visible to the end-user. The

1 The immediate environment of an embedded systems can be either other embedded systems
in the larger system or the world in which the larger system is placed.

2 In accordance with our embedded systems definition, embedded processors are mass-produced
application-specific processors. Therefore, we consider graphics processors in game consoles
to be embedded processors. On the other hand, graphics processors intended for military sim-
ulators are not since they are not mass-produced.

end-user can not change nor reprogram the basic operations of the embedded processor,
but he is usually allowed to program a (different) sequence of basic operations.

Embedded processors are essentially non-homogeneous processors and this char-
acteristic is induced by theheterogeneouscharacter of the process within which the
processor is embedded. Designing a typical embedded processor does not only mix
hardware design with software design, but it also mixes design styles within each of
these categories. To put more light on the heterogeneity issue, we depicted in Figure 1
(from [16]) an example signal processing embedded processor. The heterogeneous char-
acter can be seen in many aspects of the embedded processor design as follows:

– both analog and digital sub-processors may be present in the system;
– the hardware may include microprocessors, microcontrollers, digital signal proces-

sors (DSPs), application-specific integrated circuits (ASICs);
– the topology of the system is rather irregular;
– various software modules as well as a multitasking real-time operating system.

Control panel

ASIC microcontroller

real-time

operating

system

controller

process

user

interface

system bus

DSP

assembly

code

host port
programmable

DSP
memory interface

host port
programmable

DSP
memory interface

dual-ported memory DSP

assembly

code

CODEC

analog

interface

Fig. 1. Signal Processing Embedded Processor Example (from [16]).

Generally speaking, the intrinsic heterogeneity of embedded processors largely con-
tributes to the overall complexity and management difficulties of the design process.
However, one can say that heterogeneity is in the case of embedded processors design a
necessary evil. It provides better design flexibility by providing a wide range of design
options. In addition, it allows each required function to be implemented on the most
adequate platform that is deemed necessary to meet the posed requirements.

Embedded processors are alsomass-producedelements separating them from (low-
production) application-specific processors. This characteristic imposes a different set
of requirements for the embedded processor design, because embedded processor ven-
dors face fierce competition in order to gain more market capitalization. An example re-
quirement involves the cost/performance sensitiveness of embedded processors making
low cost almost always an issue. Other related design issues include: high-production
volume, small time-to-market window, and fast development cycles.

A large number of embedded processors performsreal-time processing introducing
the notion ofdeadlines. Roughly speaking, deadlines can be classified in: hard real-time

deadlines and soft real-time deadlines. Missing hard deadline can be catastrophic while
missing soft deadline only results in some non-fatal glitches. Both types of deadlines
are known a priori much like that the functionality is known beforehand. Therefore,
deadlines determine the minimum level of performance that must be achieved. When
facing hard deadlines, special attention must also be paid to other systems connected to
the embedded processor since they can negatively influence its behavior.

3 The Need for Programmability

In the early nineties, we were witnessing a trend in the embedded processors market
that was reshaping the characteristics of traditional embedded processors as introduced
in Section 2. Driven by market forces, the lengthy embedded processors design cycles
had to be shortened in order to keep up with or stay in front of competitors. In addi-
tion, production and development costs had to be reduced in order to stay competitive.
By highlighting the traditional embedded processors design, we discuss ”large scale”
programmability3 which has been used to address these two issues.

The heterogeneity of the embedded systems demanded a multitude embedded pro-
cessors to be designed for a single system. This was further strengthened by the disabil-
ity of the semiconductor technology at that time to produce large chips. As a result, the
multitude of embedded processors requires lengthy design and verification times, espe-
cially for their interfaces. On the other hand, subsequent design cycles could be signif-
icantly reduced if only a small number of the embedded processors requires redesign.
This delicate balance between long initial design cycles and possibly shortened subse-
quent design cycles was disturbed when advancing semiconductor technology allowed
increasingly more gates to be put on a single chip. Fueled by the need to incorporate
increasingly more functionality into (in order to distinguish yourself from competitors)
and to decrease the cost of embedded systems, the functionalities of embedded proces-
sors were expanded. More complex and larger embedded processors did not decrease
the initial design cycles. However, the subsequent redesign cycles were increased, be-
cause we are dealing with highly optimized circuits meaning that subsequent designs
are not necessarily easier than the initial ones.

In the search for design flexibility in order to decrease design cycles and reduce
subsequent design costs, functions were separated into time-critical functions and non-
time-critical ones. One could say that the embedded processors design paradigm has
shifted from one that is based on the functional requirements to one that is based on
the temporal requirements. The collection of non-’time-critical’ functions could then
be performed on a single chip4. The remaining time-critical function are to be imple-
mented in high-speed circuits achieving maximum performance. The main benefit of
this approach is that the large (possibly slower) chip can be reused in subsequent designs
resulting in shorter design cycles. Moreover, the large chip also exhibits a more general-
purpose behavior and its design becomes more like the design of general-purpose pro-

3 One could argue that programmability has always been part of embedded processors. However,
programmability introduced in this section significantly differs from the limited (low-level)
programmability of traditional embedded processors.

4 Possibly implemented in a slower technology in order to reduce cost.

cessors. The design of general-purpose processors can be divided into three distinct
fields [14]: architecture5, implementation, and realization.

In Section 2, we stated that more traditional embedded processors are application-
specific and static in nature. However, in this section we also stated that increasingly
more functionality is embedded into a single embedded processor. Is such a processor
still application-specific and can we still call such a processor an embedded processor?
The answer to this question is affirmative since such a processor is still embedded if
the other constraints (mass-produced, providing a dedicated service, etc.) are observed.
Given that increasing functionality usually implies more exposure of the processor to
the programmer, embedded processor have become indeed less static as they can now
be reused for other applications areas due to their programmability. In this light, two
scenarios in the design of programmable embedded processors can be distinguished:

– Adapt an existing general-purpose architectureand implement such an archi-
tecture. This scenario reduces development costs albeit such architectures must be
licensed. Furthermore, since such architectures were not adapted to embedded pro-
cessors still some development times is needed to modify such architectures.

– Build a new embedded processor architecturefrom scratch. In this scenario, the
embedded processor development takes longer, but the final architecture is more
tuned towards the specific application the embedded processor is intended for.

Several examples of the first scenarios can be found. A well-known example is the
MIPS architecture [4]. In this case, the architecture has been adapted towards embedded
processors by MIPS Technologies, Inc. which develops the architecture separately from
other embedded systems vendors. Another well-known example is the ARM architec-
ture [1]. It is a RISC architecture that was firstly intended for low-power PCs (1987), but
has been quickly adapted to become an embeddable RISC core (1991). Since then the
ARM architecture has been subject to numerous modifications and/or extensions in or-
der to optimize it for targeted applications. A well-known implementation is the Stron-
gARM core which was jointly developed by then Digital Semiconductor and ARM Ltd.
This core was intended to provide high performance at extreme low-power. The most
current implementation of this core developed by Intel Corp. is called the Intel PCA
Application Processor [3] intended for PDA handhelds. Other example general-purpose
architectures that have been adapted include: IBM PowerPC [2], Sun UltraSPARC [8],
the Motorola 68000/Coldfire [5], and many more. An example of the second scenario is
the Trimedia VLIW architecture [9] from Trimedia technologies, Inc. which was origi-
nally developed by Philips Electronics. Its application area was multimedia processing
and can now be found in many televisions, digital receivers, and other digital video
editing boards. Figure 2 shows a block diagram of the Trimedia TM-1300 processor. It
contains a VLIW processor core that controls the other specialized hardware cores and
performs other functions that do not need real-time performance.

Summarizing, the characteristics mentioned in Section 2 can be easily reflected in
the three processor design stages (architecture, implementation, and realization). The
characteristic of embedded processors being application-specific is exhibited by the

5 The architecture of any computer system is defined to be the conceptual structure and func-
tional behavior as seen by its immediate user.

SDRAM

VIDEO IN

MAIN MEMORY

INTERFACE

VIDEO OUT

PCI/XIO INTERFACE

VLIW CPU

IMAGE

COPROCESSOR

VLD COPROCESSOR

SYNCHRONOUS

SERIAL INTERFACE

I
2
C INTERFACE

SPDIF OUT
TIMERS

AUDIO OUT
AUDIO IN

INSTR.

CACHE

DATA

CACHE

INTERNAL BUS (DATA HIGHWAY)

TO

PCI/XIO

BUS

Fig. 2. The Trimedia TM-1300.

fact that the architecture only contains those operations that really need support from
the applications set. The static structure characteristic exhibits itself by having a fixed
architecture, a fixed implementation, and a fixed realization. The heterogeneity char-
acteristic exhibits itself by the utilization of programmable processor core with other
specialized hardware units. In addition, a multitude of different functional units exist
on the programmable processor core. The mass-produced characteristic is exhibiting
itself in the realization process by only utilizing proven technology that is therefore
cheap and reliable. The requirement of real-time processing exhibits itself by requiring
architectural support for frequently used operations, extensively parallel (if possible)
implementations, and realization incorporating high-speed components.

Finally, a wide variety of design issues also have their impact on the architecture,
implementation, and realization of an embedded processor. However, due to the vast
variety of design issues, such as cost, performance, cost/performance ratio, high/low
production volume, fast development, and small time-to-market windows, we refrain
ourselves from discussing these issues in the light of architecture, implementation, re-
alization of embedded processors. However, it must be clear that each design issue has
a certain level of impact on the architecture, implementation, and realization of an em-
bedded processor.

4 Early Time Reconfigurability

In the mid-nineties, we were witnessing a second trend in the embedded processors
design that was reshaping the design methodology of embedded processors and conse-
quently redefined some of their characteristics. Previously, in the design of embedded

processors application-specific integrated circuits (ASICs) were still commonplace and
the design of ASICs required lengthy design cycles. It requires several roll-outs of the
embedded processor chips in question in order to test/verify all the functional, temporal,
and dependability requirements. Therefore, design cycles of 18 months or longer were
commonplace rather than exceptions. A careful step towards reducing such lengthy de-
sign cycles is to use reconfigurable hardware, also referred to as fast prototyping. This
allows embedded processor designs to be mapped early on in the design cycle to re-
configurable hardware, in particular field-programmable gate arrays (FPGAs), enabling
early functionality testing and thereby reducing the number of chip roll-outs. However,
such hardware initially were limited in size and therefore only small parts of embedded
processor designs could be tested. Consequently, still roll-out(s) of the complete chip
(implemented in ASICs) were still required in order to test the overall functionality.

In recent years, the reconfigurable technology has progressed in a fast pace and it
has currently arrived at the point that embedded processor designs requiring million(s)
of gates can be implemented on such structures. In addition, the performance gap that
existed between FPGAs and ASICs is rapidly decreasing. This development in tech-
nology has also changed the role of reconfigurable hardware in embedded processors
design. Instead of only serving fast prototyping purposes, embedded processors im-
plemented in reconfigurable hardware are actually being shipped in final products. An
additional benefit of this development is that bugs found in such embedded processors
can be easily rectified resulting in much higher user satisfaction. Furthermore, design
improvements can also be easily incorporated during maintenance sessions. In the fol-
lowing, we revisit the embedded processor characteristics mentioned in Section 2 and
investigate whether they still hold in case embedded processors are build using FPGAs.

application-specific Embedded processors built utilizing reconfigurable hardware
are still application-specific in the sense that the implementations are still targeting such
applications. Utilizing such implementations for other purposes will prove to be very
hard or it will not achieve the required performance levels.

static structure This characteristic has been affected the most by the utilization
of reconfigurable hardware. From a pure technical perspective, the structure of a recon-
figurable embedded processor is not static since its functionality can be changed, either
during maintenance or during operation. However, we have to consider the frequency
of this happening. In most cases, an implementation is chosen for the reconfigurable
embedded processor and it is not changed anymore between maintenance intervals.
Therefore, from the user’s perspective the structure of the embedded processor is still
static. In the next section, we will explore the possibility that the functionality of an
embedded processor needs to be changed even during operation.

heterogeneous This characteristics is still very much present in the case of recon-
figurable embedded processors. We have added an additional technology into the mix
in which embedded processors can be realized. For example, the latest FPGA offering
from both Altera Inc. (Stratix [7]) and Xilinx Inc. (Virtex II [10]) integrates on a single
chip the following: memory, logic, I/O controllers, and DSP blocks.

mass-produced This characteristic is still applicable to reconfigurable hardware.
Early on, reconfigurable hardware has only been used to verify the functionality of
design and therefore were not implemented in actual shipped embedded processors. As

the technology progressed, it allowed reconfigurable hardware to be produced at much
lower costs and therefore opening the possibility of actually shipping reconfigurable
hardware in actual products. This is actually the case at this moment.

real-time In the beginning, we were witnessing the incorporation of reconfigurable
hardware only for non-’time-critical’ functions. As the technology of reconfigurable
continue to progress and making reconfigurable hardware much faster, we are also wit-
nessing their incorporation in actual products where real-time performance is required,
such as multimedia decoders.

5 Future Embedded Processors

In Sections 3 and 4, we have shown that both programmability and reconfigurability
have been introduced into the embedded processor design trajectory born out of the
need to reduce design cycles and reduce development costs. Programmability allows
the utilization of high-level programming languages (like C) and thereby easing ap-
plication development. Reconfigurability allows designs to be tested early on in terms
of functionality and diminishes the need for expensive chip roll-outs. The merging of
both strategies in the embedded processor design (if possible) will result in two main
advantages. First, the design flexibility is hugely increased, because it allows easy de-
sign space exploration in both software and hardware. Second, it allows rapid applica-
tion development since the software and hardware can be realized utilizing high-level
programming and hardware description languages. When correctly incorporated, the
combination of programmability and reconfigurability allows embedded processors to
change their functionality dynamically during operation (in run-time).

The mentioned advantages and enabling FPGA technologies have even resulted in
that programmable processor cores are under consideration to be implemented in the
same FPGA structures, e.g., Nios from Altera [6] and MicroBlaze from Xilinx [11].
However, the utilization of programmable embedded processors that are augmented
with reconfigurable hardware also poses several issues that must be addressed:

– Long reconfiguration latencies:When considering dynamic run-time reconfigu-
rations, such latencies may greatly penalize the performance, because any compu-
tation must be halted until the reconfiguration has finished.

– Limited opcode space:The initiation and control of the reconfiguration and exe-
cution of various implementations on the reconfigurable hardware require the in-
troduction of new instructions. This puts much strain on the opcode space.

– Complicated decoder hardware:The multitude of newly introduced instructions
greatly increased the complexity of the decoder hardware.

In the following, we discuss one possible approach [28] (introduced by us) in merg-
ing programmability with reconfigurability in the design of embedded processors. The
approach utilizes microcode to alleviate the mentioned problems. Microcode consists
of a sequence of (simple) microinstructions that, when executed in a certain order, per-
forms “complex” operations. This approach allows “complex” operations to be per-
formed on much simpler hardware. In this section, we consider the reconfiguration
(either off-line or run-time) and execution processes as complex operations. The main
benefits of our approach can be summarized as follows:

– Reduced reconfiguration latencies:Microcode used to control the reconfiguration
process allows itself to be cached on-chip. This results in faster access times to the
reconfiguration microcode and thus in turn reduces the reconfiguration latencies.

– Reduced opcode space requirements:By only pointing to microcode (explained
later), we only require (at most) three new instructions and not separate instructions
for each and every supported operation.

– Reduced decoder hardware complexity:Due to the inclusion of only a few in-
structions, complex instruction decoding hardware is no longer required.

In Section 5.1, we revisit microcode from its beginnings to its current implementa-
tion within a high-level microprogrammed machine. In Section 5.2, we discuss in-depth
our proposed MOLEN embedded processor. Finally, in Section 5.3, we briefly highlight
several other approaches in this field that are comparable in one way or another.

5.1 Revisiting Microcode

Microcode, introduced in 1951 by Wilkes [29], constitutes one of the key computer en-
gineering innovations. Microcode de facto partitioned computer engineering into two
distinct conceptual layers, namely: architecture and implementation. This is in part
because emulation allowed the definition of complex instructions which might have
been technologically not implementable (at the time they were defined), thus project-
ing an architecture to the future. That is, it allowed computer architects to determine a
technology-independent functional behavior (e.g., instruction set) and conceptual struc-
tures providing the following possibilities:

– Define the computer’s architecture as a programmer’s interface to the hardware
rather than to a specific technology dependent realization of a specific behavior.

– Allow a single architecture to be determined for a “family” of implementations
giving rise to the important concept of compatibility. Simply stated, it allowed pro-
grams to be written for a specific architecture once and run at “infinitum” indepen-
dent of the implementations.

Since its beginnings, as introduced by Wilkes, microcode has been a sequence of
micro-operations (microprogram). Such a microprogram consists of pulses for operat-
ing the gates associated with the arithmetical and control registers. Figure 3 depicts the
method of generating this sequence of pulses. First, a timing pulse initiating a micro-
operation enters the decoding tree and depending on the setup register R, an output is
generated. This output signal passes to matrix A which in turn generates pulses to con-
trol arithmetical and control registers, thus performing the required micro-operation.
The output signal also passes to matrix B, which in its turn generates pulses to control
the setup register R (with a certain delay). The next timing pulse will therefore generate
the next micro-operation in the required sequence due to the changed register R.

Over the years, the Wilkes’ model has evolved into a high-level microprogrammed
machine as depicted in Figure 46. In this figure, the control store contains microin-
structions (representing one or more micro-operations) and the sequencer determines

6 The memory address register (MAR) is used to store the memory address in the main memory
from which data must be loaded of to which data is stored. The memory data register (MDR)
stores the data that is communicated to or from the main memory.

TREE
DECODING

PULSE

TIMING

MATRIX A MATRIX B

R

TO GATES IN
ARITHMETICAL

UNIT, ETC.

FROM SIGN FLIP-FLOP
OF ACCUMULATOR

DELAY

Fig. 3. Wilkes’ microprogram control model [29].

the next microinstruction to execute. The control store and the sequencer correspond to
Wilkes’ matrices A and B respectively. The machine’s operation is as follows:

1. The control store address register (CSAR) contains the address of the next microin-
struction located in the control store. The microinstruction located at this address
is then forwarded to the microinstruction register (MIR).

2. The microinstruction register (MIR) decodes the microinstruction and generates
smaller micro-operation(s) accordingly that need to be performed by the hardware
unit(s) and/or control logic.

3. The sequencer utilizes status information from the control logic and/or results from
the hardware unit(s) to determine the next microinstruction and stores its control
store address in the CSAR. It is also possible that the previous microinstruction
influences the sequencer’s decision regarding which microinstruction to select next.

It should be noted that in microcoded engines not all instructions access the control
store. As a matter of fact, only emulated instructions have to go through the microcode
logic. All other instructions will be executed directly by the hardware (following path
(α) in Figure 4). That is, a microcoded engine is as a matter of fact a hybrid of the
implementation having emulated instructions and hardwired instructions7.

5.2 Microcoded Reconfigurable MOLEN Embedded Processor

In this section, only a brief description of the MOLEN embedded processor is given,
We refer to [28] for a more detailed description. In its more general form, the pro-
posed machine organization can be described as in Figure 5. In this organization, the

7 That is, contrary to some believes, from the moment it was possible to implement instructions,
microcoded engines always had a hardwired core that executed RISC instructions.

MAIN

MEMORY

MDR

SEQUENCER

CSAR

STORE

CONTROL

R

M

M
A
R

I

CONTROL LOGIC

HARDWIRED UNITS +

STATUS

(α)

Fig. 4. A high-level microprogrammed machine.

I BUFFER stores the instructions that are fetched from the memory. Subsequently, the
ARBITER performs a partial decoding on these instructions in order to determine where
they should be issued. Instructions that have been implemented in fixed hardware are is-
sued to the core processing (CP) unit which further decodes them before sending them
to their corresponding functional units. The needed data is fetched from the general-
purpose registers (GPRs) and results are written back to the same GPRs. The control
register (CR) stores other status information.

ρµ-code

ARBITER DATA

MEMORY

GPR

CR

CP

reconfigurable unit

CCU

I_BUFFER

Fig. 5. The proposed machine organization.

The reconfigurable unit consists of a custom configured unit (CCU)8 and theρµ-
code unit. An operation9 performed by the reconfigurable unit is divided into two dis-

8 Such a unit could be for example implemented by a Field-Programmable Gate Array (FPGA).
9 An operation can be as simple as an instruction or as complex as a piece of code of a function.

tinct process phases:setandexecute. Thesetphase is responsible for configuring the
CCU enabling it to perform the required operation(s). Such a phase may be subdivided
into two sub-phases: partialset (p-set) and completeset (c-set). Thep-set sub-phase
is envisioned to cover common functions of an application or set of applications. More
specifically, in thep-set sub-phase the CCU ispartially configured to perform these
common functions. While thep-set sub-phase can be possibly performed during the
loading of a program or even at chip fabrication time, thec-setsub-phase is performed
during program execution. In thec-setsub-phase, the remaining part of the CCU (not
covered in thep-setsub-phase) is configured to perform other less common functions
and thuscompletingthe functionality of the CCU. The configuration of the CCU is
performed by executing reconfiguration microcode10 (either loaded from memory or
resident) in theρµ-code unit. In the case that partial reconfigurability is not possible or
not convenient, thec-setsub-phase can perform the entire configuration. Theexecute
phase is responsible for actually performing the operation(s) on the (now) configured
CCU by executing (possibly resident) execution microcode stored in theρµ-code unit.

OPC R/P ρCS-α/α

p-set / c-set / execute

opcode
resident/pageable

address

(0/1)

Fig. 6. Thep-set, c-set, andexecuteinstruction formats.

In relation to these three phases, we introduce three new instructions:c-set, p-set,
and execute. Their instruction format is given in Figure 6. We must note that these
instructions donot specifically specify an operation and then load the corresponding
reconfiguration and execution microcode. Instead, thep-set, c-set, andexecuteinstruc-
tions directly point to the (memory) location where the reconfiguration or execution
microcode is stored. In this way, different operations are performed by loading different
reconfiguration and execution microcodes. That is, instead of specifying new instruc-
tions for the operations (requiring instruction opcode space), we simply point to (mem-
ory) addresses. The location of the microcode is indicated by the resident/pageable-bit
(R/P-bit) which implicitly determines the interpretation of the address field, i.e., as a
memory addressα (R/P=1) or as aρ-CONTROL STORE addressρCS-α (R/P=0) indi-
cating a location within theρµ-code unit. This location contains the first instruction of
the microcode which must always be terminated by anendopmicroinstruction.
The ρµ-code unit: The ρµ-code unit can be implemented in configurable hardware.
Since this is only a performance issue and not a conceptual one, it is not considered
further in detail. In this presentation, for simplicity, we assume that theρµ-code unit
is hardwired. The internal organization of theρµ-code unit is given in Figure 7. In
all phases, microcode is used to perform either reconfiguration of the CCU or control
the execution on the CCU. Both types of microcode are conceptually the same and
no distinction is made between them in the remainder of this section. Theρµ-code
unit comprises two main parts: the SEQUENCER and theρ-CONTROL STORE. The

10 Reconfiguration microcode is generated by translating a reconfiguration file into microcode.

H
Table

Residence

PAGEABLE

FIXED

PAGEABLE

FIXED

R/P α/

α

M

R
I

to CCU

from CCU

ρCSAR

ρ

ρ , if present

SET

EXECUTE

SEQUENCER

ρ-CONTROL STORE

micro-instruction
Determine next

ρ

CS−α

CS−α

CS−α

ρCS−α

Fig. 7.ρµ-code unit internal organization.

SEQUENCER mainly determines the microinstruction execution sequence and theρ-
CONTROL STORE is mainly used as a storage facility for microcodes. The execution
of microcodes starts with the SEQUENCER receiving an address from the ARBITER
and interpreting it according to the R/P-bit. When receiving a memory address, it must
be determined whether the microcode is already cached in theρ-CONTROL STORE
or not. This is done by checking the RESIDENCE TABLE which stores the most fre-
quently used translations of memory addresses intoρ-CONTROL STORE addresses
and keeps track of the validity of these translations. It can also store other information:
least recently used (LRU) and possibly additional information required for virtual ad-
dressing11 support. In the cases that aρCS-α is received or a valid translation into a
ρCS-α is found, it is transferred to the ’determine next microinstruction’-block. This
block determines which (next) microinstruction needs to be executed:

– When receiving address of first microinstruction: Depending on the R/P-bit, the
correctρCS-α is selected, i.e., from instruction field or from RESIDENCE TABLE.

– When already executing microcode: Depending on previous microinstruction(s)
and/or results from the CCU, the next microinstruction address is determined.

The resultingρCS-α is stored in theρ-control store address register (ρCSAR) before
entering theρ-CONTROL STORE. Using theρCS-α, a microinstruction is fetched from
theρ-CONTROL STORE and then stored in the microinstruction register (MIR) before
it controls the CCU reconfiguration or before it is executed by the CCU.

11 For simplicity of discussion, we assume that the system only allows real addressing.

Theρ-CONTROL STORE comprises two sections12, namely aset section and an
executesection. Both sections are further divided into afixed part andpageablepart.
The fixed part stores the resident reconfiguration and execution microcode of theset
and executephases, respectively. Resident microcode is commonly used by several
invocations (including reconfigurations) and it is stored in the fixed part so that the per-
formance of thesetandexecutephases is possibly enhanced. Which microcode resides
in the fixed part of theρ-CONTROL STORE is determined by performance analysis
of various applications and by taking into consideration various software and hardware
parameters. Other microcodes are stored in memory and the pageable part of theρ-
CONTROL STORE acts like a cache to provide temporal storage. Cache mechanisms
are incorporated into the design to ensure the proper substitution and access of the mi-
crocode present in theρ-CONTROL STORE.

5.3 Other reconfigurability approaches

In the previous section, we have introduced a machine organization where the hardware
reconfiguration and the execution on the reconfigured hardware is done in firmware
via theρ-microcode (an extension of the classical microcode to include reconfigura-
tion and execution for resident and non-resident microcode). The microcode engine is
extended with mechanisms that allow for permanent and pageable reconfiguration and
execution microcode to coexist. We also provide partial reconfiguration possibilities for
“off-line” configurations and prefetching of configurations. Regarding related work we
have considered more than 40 machine proposals. We report here a number of them that
somehow use some partial or total reconfiguration prefetching. It should be noted that
our scheme is rather different in principle from all related work as we use microcode,
pageable/fixed local memory, hardware assists for pageable reconfiguration, partial re-
configurations, etc.. As it will be clear from the short description of the related work,
we differentiated from them in one or more mechanisms.

TheProgrammable Reduced Instruction Set Computer (PRISC)[25] attaches a Pro-
grammable Functional Unit (PFU) to the register file of a processor for application-
specific instructions. Reconfiguration is performed via exceptions. In an attempt to
reduce the overhead connected with FPGA reconfiguration, Hauck proposed a slight
modification to the PRISC architecture in [20]: an instruction is explicitly provided to
the user that behaves like a NOP if the required circuit is already configured on the array,
or is in the process of being configured. By inserting the configuration instruction be-
fore it is actually required, a so-calledconfiguration prefetchingprocedure is initiated.
At this point the host processor is free to perform other computations, overlapping the
reconfiguration of the PFU with other useful work. TheOneChipintroduced by Wittig
and Chow [30] extends PRISC and allows PFU for implementing any combinational or
sequential circuits, subject to its size and speed. The system proposed by Trimberger
[27] consists of a host processor augmented with a PFU,Reprogrammable Instruction
Set Accelerator(RISA), much like the PRISC mentioned above. Concerning the man-
agement and control of the reprogramming procedure, Trimberger mentions that the
RISA reconfiguration is under control of a hardwired execution unit. However, it is

12 Both sections can be identical, but are probably only differing in microinstruction wordsizes.

not obvious if an explicit SET instruction is available. TheReconfigurable Multimedia
Array Coprocessor(REMARC) proposed by Miyamori and Olukotun [24] augments
the instruction set of a MIPS core. As the coprocessor does not have a direct access
to the main memory, the host processor has to write the input data to the coprocessor
data registers, initiate the execution, and finally read the results from the coprocessor
data registers. An explicit reconfiguration instruction is provided.Garp designed by
Hauser and Wawrzynek [21] is another example of a MIPS derived Custom Comput-
ing Machine (CCM). The FPGA-based coprocessor has a direct access to the standard
memory. The MIPS instruction set is augmented with several non-standard instructions
dedicated to loading a new configuration, initiating the execution of the newly config-
ured computing facilities, moving data between the array and the processor’s own regis-
ters, saving/retriving the array states, branching on conditions provided by the array, etc.
The coprocessor is aimed to run autonomously with the host processor. In theOneChip-
98 introduced by Jacob and Chow[23], the computing resources are loadedon-demand
when a miss is detected.Alternatively, the resources arepre-loadedby using compiler
directives. Several comments regarding these assertions are worth to be provided. If an
on-demand loading strategy is employed, then the user has no control on the reconfig-
uration procedure. In the pre-loading strategy, an explicit reconfiguration instruction is
provided to the user and the reconfiguration procedure is indeed under the control of the
user. PRISM (Processor Reconfiguration Through Instruction-Set Metamorphosis) one
of the earliest proposed CCM [12][13], was developed as a proof-of-concept system, in
order to handle the loading of FPGA configurations, the compiler inserts library func-
tion calls into the program stream [13]. From this description, we can conclude that an
explicit reconfiguration procedure is available. Gilson [17] CCM architecture consists
of a host processor and two or more FPGA-basedcomputing devices. The host con-
trols the reconfiguration of FPGAs by loading new configuration data through a Host
Interface into the FPGA Configuration Memory. The reconfiguration process can be
performed such that when one computing device is being reconfigured and, therefore,
is idle, the others continue executing. The write into the configuration memory instruc-
tion can play the role of an explicit reconfiguration instruction. Therefore, apre-loading
strategy is employed. Schmit [26] proposes a partial run-time reconfiguration mecha-
nism, calledpipeline reconfigurationor striping, by which the FPGA is reconfigured at
a granularity that corresponds to a pipeline stage of the application being implemented.
An application which has been broken up into pipeline stages can be mapped to a striped
FPGA. The pipeline stages are known asstripes; the stages of the application are called
virtual stripes, and the hardware stages which the virtual stages are loaded into are
calledphysical stripes. The PipeRench coprocessor developed by a team with Carnegie
Mellon University [15][18] is focused on implementing linear (1-D) pipelines of arbi-
trary length. PipeRench is envisioned as a coprocessor in a general-purpose computer,
and has direct access to the same memory space as the host processor. The virtual stripes
of the application are stored into an on-chip configuration memory. A single physical
stripe can be configured in one read cycle with data stored in such a memory. The con-
figuration of a stripe takes place concurrently with execution of the other stripes. The
Reconfigurable Data Path Architecture(rDPA) is also a self-steering autonomous re-
configurable architecture. It consists of a mesh of identical Data Path Units (DPU)[19].

The data-flow direction through the mesh is only from west and/or north to east and/or
south and is also data-driven. A word entering rDPA contains a configuration bit which
is used to distinguish the configuration information from data. Therefore, a word can
specify either a SET or an EXECUTE instruction, the arguments of the instructions be-
ing the configuration information or data to be processed. A set of computing facilities
can be configured on rDPA.

6 Conclusions

In this positional paper, we have described several characteristics of embedded pro-
cessors that were logically deduced from embedded systems characteristics in general.
Driven by market requirements, two strategies were followed in order to reduce design
cycles and development costs. First, programmability was introduced as a means to
combine all non-’time-critical’ functions to be performed by a ’general-purpose’-like
embedded processor. Such an embedded processor could then be reused in subsequent
design and thereby greatly reducing design cycles. Second, reconfigurability was ini-
tially only utilized as fast prototyping. Over time, technological advances in reconfig-
urable hardware in terms of size and performance have led to the fact the reconfig-
urable embedded processors are actually incorporated in shipped embedded systems.
We believe that the future of embedded processors design lies in the merging of both
strategies. Programmability allows the utilization of high-level programming languages
(like C) and thereby easing application development. The utilization of reconfigurable
hardware combines design flexibility and fast prototyping. At the same time, the pro-
cessing performance of reconfigurable hardware is nearing that of application-specific
integrated circuits. Finally, in this paper we have highlighted one possible framework
in which future embedded processor design can be performed. The proposed MOLEN
embedded processor combines software programming (by utilizing a programmable
processor core) with hardware programming (utilizing microcode to control the recon-
figurable hardware). Such an approach provides possibilities in combatting several is-
sues associated with reconfigurable hardware.

References

1. ARM architecture. http://www.arm.com.
2. IBM PowerPC. http://www-3.ibm.com/chips/products/powerpc/.
3. Intel PCA Application Processors. http://www.intel.com/design/pca/applications

processors/index.htm.
4. MIPS architecture from MIPS Technologies. http://www.mips.com.
5. Motrola 68000/Coldfire Family. http://e-www.motorola.com/webapp/sps/site/homepage.jsp?

nodeId=03M0ylgrpxN.
6. Nios Embedded Processor. http://www.altera.com/products/devices/excalibur/exc-

nios index.html.
7. Stratix Family. http://www.altera.com/products/devices/stratix/stx-index.jsp.
8. Sun UltraSPARC IIe. http://www.sun.com/microelectronics/UltraSPARC-IIe/index.html.
9. Trimedia VLIW architecture. http://www.trimedia.com.

10. Virtex-II 1.5V FPGA Family: Detailed Functional Description .
http://www.xilinx.com/partinfo/databook.htm.

11. Xilinx MicroBlaze. http://www.xilinx.com/xlnx/xil prodcatproduct.jsp?title=microblaze.
12. P.M. Athanas. An Adaptive Machine Architecture and Compiler for Dynamic Processor

Reconfiguration. PhD thesis, Brown University, Providence, Rhode Island, May 1992.
13. P.M. Athanas and H.F. Silverman. Processor Reconfiguration through Instruction-Set Meta-

morphosis.IEEE Computer, 26(3):11–18, March 1993.
14. G.A. Blaauw and F.P. Brooks.Computer Architecture: Concepts and Evolution. Addison-

Wesley, 1997.
15. S. Cadambi, J. Weener, S.C. Goldstein, H. Schmit, and D.E. Thomas. Managing Pipeline-

Reconfigurable FPGAs. In6th International Symposium on Field Programmable Gate Ar-
rays, pages 55–64, California, USA, 1998.

16. W.-T. Chang, A. Kalavade, and E.A. Lee. Effective Heterogeneous Design and Co-
Simulation. In Giovanni de Michelli and Mariagiovanna Sami, editors,Hardware/Software
Co-Design, pages 187–211. Kluwer Academic Publishers, 1995.

17. K.L. Gilson. Integrated Circuit Computing Device Comprising a Dynamically Configurable
Gate Array Having a Microprocessor and Reconfigurable Instruction Execution Means and
Method Therefore. U.S. Patent No. 5,361,373, November 1994.

18. S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and R. Laufer.
PipeRench: A Coprocessor for Streaming Multimedia Acceleration. InThe 26th Interna-
tional Symposium on Computer Architecture, pages 28–39, Georgia, USA, May 1999.

19. R.W. Hartenstein, R. Kress, and H. Reinig. A New FPGA Architecture for Word-Oriented
Datapaths. InField-Programmable Logic: Architectures, Synthesis and Applications. 4th
International Workshop on Field-Programmable Logic and Applications, Lecture Notes in
Computer Science, pages 144–155, Czech Republic, September 1994.

20. S.A. Hauck. Configuration Prefetch for Single Context Reconfigurable Coprocessors. In6th
International Symp. on Field Programmable Gate Arrays, pages 65–74, California, 1998.

21. J.R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable Coprocessor.
In IEEE Symp. on FPGAs for Custom Computing Machines, pages 12–21, California, 1997.

22. J. Hennessy. The Future of Systems Research.Computer, pages 27–33, 1999.
23. J.A. Jacob and P. Chow. Memory Interfacing and Instruction Specification for Recon-

figurable Processors. InACM/SIGDA Seventh International Symposium on Field Pro-
grammable Gate Arrays, pages 145–154, Monterey, California, 1999.

24. T. Miyamori and K. Olukotun. A Quantitative Analysis of Reconfigurable Coprocessors
for Multimedia Applications. In Kenneth L. Pocek and Jeffrey M. Arnold, editors,IEEE
Symposium on FPGAs for Custom Computing Machines, pages 2–11, California, 1998.

25. R. Razdan.PRISC: Programmable Reduced Instruction Set Computers. PhD thesis, Harvard
University, Cambridge, Massachusetts, May 1994.

26. H. Schmit. Incremental Reconfiguration for Pipelined Applications. InIEEE Symposium on
FPGAs for Custom Computing Machines, pages 47–55, California, April 1997.

27. S.M. Trimberger. Reprogrammable Instruction Set Accelerator. U.S. Patent No. 5,737,631,
April 1998.

28. S. Vassiliadis, S. Wong, and S. Cotofana. The MOLENρµ-Coded Processor. InProceed-
ings of the 11th International Conference on Field-Programmable Logic and Applications
(FPL2001), pages 275–285, 2001.

29. M. V. Wilkes. The Best Way to Design an Automatic Calculating Machine. InReport of the
Manchester University Computer Inaugural Conference, pages 16–18, July 1951.

30. R.D. Wittig and P. Chow. OneChip: An FPGA Processor with Reconfigurable Logic. In
IEEE Symposium on FPGAs for Custom Computing Machines, pages 126–135, 1996.

'flrarlcnpord as?arJrrr o1 suorldrnsep Jo Ie eI Joqtr-q fq pepuacsuerl aq
o1 Sm.paau sa8entuel uolldrrcsap ercnapr€q q1lu 'u3rsep empa5rJJ€ relnduror
ro; a8e /$eu ? se parepFtror aq rreJ lu:tndop,lop mag*fg 'muelqord uorlezrue8ro
aql fq ua{"Feao sella. turuurerto.rd 3o {s"} eqt uaqi[pue 'u.loJuor meru aql mra
suer8o.rd a3.re1 5o Sm.reaur3ua 1uelqga araqao, a8e eql le arnec ,t11reppo141

'(EuruuurSord paluerro pafqo ,Ueppot11 ,epy) Supru pue
salEralw €rA uorlr€rlsqe apor pue l(lrreppou (t) '(F"s"d 'IotIV) $u"rtord
pompru$ (6) '(uerpog) suorlelndworgo uopsardxa crroqur,ts (1) :ere f.rols s.rqt
go sa3e $rS eqJ '[g6gq]fro1s aten8uel tururmer8ord eqt o-r rarrree peretrmol
-ue ueeq spq lr atrns sp-rluaTts ralndmoc Eo.g ulaoq osl€ sl uorl€ntrs s.nIJ

'sluauodmoc prepu€ls go ,tlqmesse amoes fq i(lurpnpord erou
epraord oq' prrp uo11;1eda.r {rora prol" ol repro u1 ssecord perudolaaep aq1 a8ueqe
ol $ ranilsu€ rry 'sallTllq€dec poqlau luermJ Jo sseoxa m sellr-nqFsod p;asn tm
-prao.rd sr eEpal,toul lerrmloe+ ernleu € oregaa' uor+enlrs uountroJ e go uorlrlede.r
a{l se uees aq rr€J s.nIJ '{1alop tupsarSo.rd em spoqlau lueudolaaep ore,ra.pr€q

agl elnlra eler q35q le s'acmoser ereraprerl Swpraord s1 fSolouqcal uorle.r8aluJ

lxeluor leJeueo

uol+cnpor+ul I

'.rolereuet repocep/.repoc CIVU uourolos-peog
"

Jo e$Bc

oq1 u1 ue,rp er€ sllnser palr€leq 'scrlueures e3ert8nel go {lluepuadapur
suopsardxe uo parldde aq uec senbnrqcal uorlepdruoc paal qtr-q lcql sI
,lpadord puoces V 'senlsA yo 1es esreds;o e8elrre,rpe twrel 1aae1 qE1q +e
fllsour ,(lrraldruoc crEol eq1 ecnper o1 sr anbnrqral s.n{l Jo lcaga tsry V

'arnlcelnlcle
alqernEguocar leErel e o1 paddvur pue selqel c€o1 olur petqsu€rl o$e

lsql EIeo uorlcrmJ eql ot luele lnbe salqeldnlool Jo {roialou e s-acnpo.rd

lI 'sonl Jo Ie ralrn ro las ol pa?"rcos6'B spoqlern sa1pueq repdruoc eq;
'Bass€lc pefqo o1 pel€rcoss€ serrrlrunrd

,tre.r1rq:e ;o tmrrnner8ord aaole o1 lred puoces eql w pesn enblmpel
uorlegdruoc e seqlrosap reded sq;, 'ssaqlu,{s pue 8r41aporn uorlelnd
-ruoc pu? 'srseq1u,(s c€o1 1e,re1 q8ru 'qoo1 pue uorle4lepour emlcelnpre
Ia el iaol .rog sged eeql q pepFlp $ {ronaarne{ oep€W arT. .+curlsqv

ecueq 'g866e lsarg 'ne8rogal 'rre 96
(sacuelrs

U.{n
eFlueprrco euSelerg ap glrsra mll

'semqlsr{g le samlcelr-qerv

ua1JmC-s€Ua1IA r€JsO '.re111o4 px€urag 'cape3el c.ro1

sorn+ra+Irlsre alqerntsuosar roJ

I

{Jo ^.aureJJ
srsaq+u.,(s 1e,ra1 qtFI v

Companies developi.g applications have their specific methods for design and
production management in which they can represent their products, tools and
ha.rdware or software components. The method that er$ure the feasibility of a
product is leading technical choices and developments. It also change some of the
rules in design since most of the application is achieved in a topdown fashion
using components or code generators rearching the functiot'al requirements.

Psgen ff gurable architectures

FPGAs iue one of the driving forces for integration technology progresses, due

to their increasing field of applications.
Like software and hardwar€ prograrnming languages, reconfigurable arclritec-

tures are sensitive to scale mutations. As the chip size is increasi.g, the char-

acteristics of the application architecture change, with new needs for structured
communications, more efficiency on a,rithtttetic operators., and partial reconfg-
urability. The softwa.re follows slowly migrating from HDL to HLL. Preserving
the developments aud providing a sane support for production tools is, in our
oPinissr a major issue.

Madeo

MAoeo is a medium term project that make use of open object modeliug to
provide access to hardwa,re resources and code portability on reconfigurable ar-
chitectures.

The project structure has three parts that interact closely (bottom-up):

1. Reconfigurable architecture model and its associated generic tools.
The representation ofpractical architectures on a generic model enables shar-
ing of basic tools such a.s place and route, allocation, circuit editionpB00].
Mapping a logic description to a particula^r technology is achieved using the
algorith.ns parcked into SIS[Sa92], or hiera^rchical and parallel synthesis from
Lemarchand's PPartpem99]. Specific atomic resources can be merged with
logic, and the fra,rnework is extensible.

2. High level logic compiler. This compiler produces circuits associated to
high level firnctionalities on a characterization of the above model. Object
oriented programrning is not restricted to a particula.r set of operatorg or
t5qpes, a,ud so we provide the capability to produce primitives for a,rbitrary
a,rithmetics or symbolic computing.
At an intermediate level, the compiler handles a graph of lookuptables ca.r-

rying high level values (objects). Theu this graph is tra.sliated into a logic
graph that will be mapped on hardwa.re resources. The translator maks use

of values produced in the high level environment that allows to implement a
lot of classic optimizations without attaching semantics to operations at the
language level.

3. System and architecture modeling. 16s sernputation a,rchitecture in
its static or dynamic aspects is described in this framework. pq1 insfianss,

I

'slueuodrrroJ uor+€Jrtdds lJod ol flpqrssod eql qrFr (a.rn10e1rqc.re
,,'au e uo Eool

Jo los aql dn Supq ol luerlIgns ere {rona 1o srtep ,ro,a; .ryoao,arue{I qql S"IsO
'uorlcermoJ r.reqt pue salnpoul qJns Jo ,(lqrnasse crrlauroaS

eqtr Burzr-par smerSord fq peqrresap axe s{rona}au sulqnauoe- .ro s.role.rado se
qf,ns slmJnc 'rolrpe crreuaS aql Jo nd.ar^ e roJ z pue g samSg eag .salnporu cl8ol
turlnor pue 8mre1d 'Swddeu ,(tolouqrel .rog aleredo s1oo1 crreua8 ;oorlarrcsap
sntl ua rC 's.arnpalnrcre elerluor ;o uorldpcsep oql tu;,uo1p [ggg1]reutuer8 cglceds

" er passarpps s.r lapoE aqJ 'seJmoser er?nd,plgq 30 surelleo Jrrlsruo
-at go fqcrererq e fl samr'errq'r" asaqr 5o uorlezrueB*

"qi
roJ lapo,o mo

'(arc)
polq cFoI alqem3guoc pefi€r snor o1m s.ralsrtar prru sJnr l"raAes anoiiosle
EernpelltrJr€ l€rJrermuoc eulos .ser4l poxsqs ro ,soqclr,rs ,s1mod

lrarmocrelw
elqeunue.r8ord se qcns saJrAap elqerntguoc snou€a gmsn palalqce sI qnIJ .Dltol
urJoJ o+ saseqd uo.rlem3guoc eq1 tulmp pelcermoJralul fla,rlpege er€ sJOrI

arnpelrqcr€ pas€q-JnT.relncrped e 1otre1 ol s.{ro,tlau ro
sa1qe1 c€o1 a3rel 3uruo1111.red rog sloot pue suqlrrotp em eragJ .selqelr€
rpalooq ?, Jo uorprrnJ c€o1 Iue acnpord o1 {eal le.raueg $our aqt sr JIIT epl/r
!Ig-a ue 's1oo1 srseqlu,(s crBol eql ruo.g usas sv .qeu8rs

Jo los e fq passalppe
(f,n.1) serroruaur dn4oo1 leurs Bmsn strorlrrmJ c€L1 eprioro sygd,f +sontr

-soco.rd 'sarlouern 'saqclra^s tsesnq
'saur1 uorlecmnunuoc ,srolerado ,t;J:;:

crBol :saomosar ar€naprcq 3o me.r8 luerag1p xrur rr€f, sernlca+fi1lxe elqem3guocag

EugapourarnlrelrqJry T.(,

s1saq1u.,fs cfol roJ {ronnalues Y ?,

'sllnsar aarlelrluenb q1r,t smelsfs
OIVU rog dLrure; rapocep/repoJ € Jo aldmexa eql qt1,ra uerrrt sr uoqerlsnlF uy
'peAefirJ€ are 1€gl strorl€ruroJsrr€rl eql uo 6T310p a.roru sarut 1l uaq? ,uorlcnpord
c€o1 prrc uorlecgrcads roJ pasn saldouud lerauat eq1 ,"qrr"sap raded aql

uorlecsrcedsa*esaqruopes€qruu";;:i"lffiT:,'J:,iJil,T;#r:JiH;
uo Pel€rlsuoEep uaeq seq nsaqlu,(s urertord pne trrnepow rualsr(s .Irona luar
-mc ur pe^oue.r er" leql sarlqlqedec qsaqlu,(s polTu.q qll,la [g6dT] ur psqrrosap
ueeq seq luauruorrlua palueuo pafqo eql qll,ra uollqsg .[fOf..Vn"1] rrr paqrrrs
-ep se cr3o1 ol uorl"I$rur1 erloqru,(s uoljreN pu€ qrnoslrgM ,u.rT aql morJ s€epr
uel€l s€q {roaa sgl? l{[[eelroNEH ..rapdrnoc epol aq1 uo sesnooJ raded eq;,

.s1uewa1a uerB
umrpam ro aug Jo s{ro,t,lau xaldruoc pprq ol ,u,ope ,1red puoJas aql Eo{ srs
-eq1u,ts pue '1red ls{I eql fq uaa€ 8ur1no.r pue Bmeeld Iorluor o1 ,(15gqe aq;
'uorlerudde pem3guoc e arnpord pne ,sarrowam ro sralsr8ar ol uaql pwq
'suoqem8g:nor ecnpord ol uorl€$uat cpol Jo esn eqprr u"r rapduroc aq;,

,{t}altre rualsrts pue luauateueu rnroglqd
'sasseJord 'qoo1 palercosse qegl qlrna s€mlcelrocre .repga.r lrreua8 are asaq?

I

on a concrete platform, it is theu recessaxy to build the bit-strerm genera-
tion software by rewriting the coofguration descriptions to the basic tools. Two
practical exa,mples are the xc6200 that has a public a^rchitecture and haq been
addressed directly, and the virtex addressed through the JBits API. we are also
worLi. g on industrial prototype srehif ssf urs.

2.2 Progrnr"p.ing considerations

Applications for fine grain reconfigurable architectures can be speciali"ed with-
out comprornise, and they should be optirnized in terms of space and perfor-
mance. Iu our views, there is an abusive advantage given to the local performance
of standard arithmetic rrnifs i:r the synthesis tools and also in the specification
languages.

A first consequence of this advantage is the restricted ra.ge of basic types
coming from the capabilities of ALU/FPUs or memory address pnscha.nisps.

Control structues strictly oriented towa,rd sequentiality are another a.spect that
can be criticized. As an example, programrning for multimediia processor accel-
erators lg'ains procedural despite all the experience available from the domain
of data parallel languages. Ha.rdware description languages have rich descriptive
capabilities, however the necessity to use libraries led the language designers to
restrict their prirnifives to a level sirnilar to C.

Our aim is to produce a more flexible specification level with direct and effi-
cient coupling to logic. 1'[is implies allowing ea^sy creation of specific arithmetics
represeating the algorithm needs, letting the compilers automatically tune data
width, and modeling computations based on well understood object classes.

To reach this goal, specifications with symbolic and functional cha^racteristics
are rxed, jointly with separate definition of data on which the program will
operate. Data are objects that have bioary representation.

Sequential computations can be structured in va,rious ways by splitting pro-
grarns on register transfers, either explicitly in the case ofan architecture descrip
tion, or implicitly duttng the compilation. In this case, high level variables axe
used to retain a state with known initial values, the co-piler retrieving progres-
sively the other states by enrmeration [LP96]. Figure 1 shows a diagram where
registers are provided to hold state values associated to high level variables tbat
could be instance variables in an object.

In this paper we will consider the case of methods without side effect, oper-
atrng on a set of objects. For sake of simplicity we will reruune these methods
'functions', and the set ofobjects, 'values'. Interaction with external variables is
not discussed iu this paper. The input language is Smalltalk-80, variant Visual-
woks, also used to build the tools and to describe the applicatiou architectures.

2.3 Execution model

The execution model targeted by the compiler is currently a high level repli-
cation of LUT-based FPGAs. We define a'program' as a function that needs

.saxapln
Prrc sanF^

uoei0,leq satu€qcxe ew elPueq 01 {roiqeu eqt Jo lndFo pu? lndw eql u-r
sepou 1.resm o+ pepeau eq 1llid, 1r {sluemarmbar trro"Fo5n aql uo tugpuadap .g

'sa8pa aq1 ao luesatd san n luie:ri4lp Io f,eqrrrnu eq1
uo tnq q?prna e+"p uo eroru.r(ue puedep lou op {rotqau eql aplsq sqled elep .1

:eSueqoxe s.ql ruo{I strorlealesqo ro Elnsar pepodrnr aruos arts areqJ
.E€erl8u/r!,op roJ saxepln 1o uolleSartfle aq1 1nd1no El uI pu" .saxapu aq1

30 pnpord uelsolJec aq1 lndm s1r ur Smauq vld e sI epou e Jo uorleluesa.rdar
Ie sl rtol eq1rtgecpeg .elqq eql uo.II uolpepsxepw 1xerr eql pne (1ndm eq1ur
sexopur Jo uo11e3a€3e eql qu,ra ses€c lno-rr€J pue m-uql srrogs u am3rg 'sen[" Jo
uorl€roumue eql uI s€xapw ro3 1nd1no pue 1ndu1 eq1 q Su.rreadde san n pefqo
tm8seqcxe ,{q ro 'luercgo eq ol uiaou{ tuTpocue cgrceds € tu.rsn,{q .sfeirl onill u.r

peaenro€ q s.nt; .spefqo roJ uor+€luesardar frvurq speou sVCdS ol qor+€IsrrcqI,

'19 o+ pelselep am ,(aq1 a.reqn 8lFrn JrleEqlFe asodrnd
preuat;o esn pu? 'sosserle elq"l qs€q pepeJsec ore oreql .uorlncexo pclperd ro3
perago se11pq;ssod luare:lrfp eq1 Buouy .Furuearu cpuqluogp rre pogar faql pue
u.Tert IIec empecord eq+ le amlJnrls uorlilrry e lpo;Ue sql 1cegeJ s{ro$qeu asegJ
'u€erlstrt$op setueqc raqlo soonpq uml q leq+ 1nd1no s1r m a8ueqr alqgssod
e sagdnn elqq € 30 lndu-r eql .m aSwqr onre^ v 'papr€A.roJ oxe sanlsl rpnrna
m selqq dn1oo1 Jo {roitl?au l"c1rlomrefq e Jo lesraa€rl oql q uorlncaxa uV

'ssacord ol papualw s.r +T
"l€p

aql Eog papuadep
,{fqtg q l5nJr.n Bullpser egJ .Ee ol eseg+ ruo.g pe.rrelq a.re suorldr.rrsep et€g
'sauoruaru ro selqer.re 8m{1dur (puq snoura.rr 3o suolplndruoD IeAaI reqtSq u1
peppeque aq ueo wetSotd mg .uolldrmsap

"tep
eql pue Erlllrogt€ aql aouo

1e sdno.r8 wetSord Jo uorlou eql snqJ 's3nle^ 1ndu.r go las e uo paln3oxa eq ol

'Fanle 1elltq uaa.orDl tuneq
selqelr€ elerrrrd uo Emlerado spoqleur ,(q par4elqo oq rrec sermtcsur a1e1g .1.ftg

I

sllnseJ

uoDJUnJ [euotlswqrtroJ

selqBuB^ e]gls

Fig.2. Fan-in: index a,re aggregated to form an address in the table. Fbn-out: the same
indoc is presented to each table downstream.

3. logic synthesis tool capabilities a^re limited to medium grain problems. To
allow code production for FPGAs, algorithrns must decrease the nu*bs of
values down to nodes that can be easily handled by the logic generation
layer. Todag this grain is sirnilar to the &bit microprocessor grain.

4. decreasing tfts wrrnSer of valuas is the natural way in which functions oper-
ates, since the size of a Cartesian product on a firnctiou input values is the
maximum number of values produced in the output. The number of values
carried by edges is decreasi.g either in the hiera^rchy structure or in a graph
flow. There is no possible divergence and the efficiency of an algorith"' can
be stated to be its ability to quickly decrease the data a,mplitude on which
logic complexity depend.

2.4 Type system

Language types appea,r to the progr^mmers as annotations for shscking code
consistency and binding to architecture resoruces. The type system we are using
does not restrict programrning to this kind of biding. It is only intended to
specify any possible set of values appearing in the program input or inside the
computation network. In the object euvironment, it is supported by a set of
classes supporting operations.

Implicit or etryIicit collections of raalues a,re denoted by intervals or sets. Cla.ss-
based types are associated either to classes harrin.s a finite number of instances

I

sr uorr"rodo nq,
".'1q 1qo9,qr,. ^#:i[ffi;':#,fffLT:iffi;itj*; aq1 'sanlea Jo las II"Es e .ro (auo oq spue.raoo nqi a"1p1r1ra, rg ."n"roqllrc wol -s.nr uo suorlerado yereua8 parualdml srolerado aseqt ieqt gn"_*no" aq u€f, tJ

'a?rr€ rIlB u.r +r 3IPu"q ol prre ped puolpe.g aqtr lgds ol pepaau eq 11rr,a 1r (sapnlrldue .raq3ru .rog
'sIIa3 07I ol 0gI luo{ azls Er pes€errap uorlez.nu.rldo_1sod aq1 pue

'e.rnlcalrqcre ?-,lnT € roJ po4seg1u,(s sen lTnrIJ aqJ .srnoq g m pe^alqJe 6?r!a
'rerrdrrlnu Sq'"og s'!q 0I € uo pa^a'.'r€ suqlrrotle sis pt*pr"+r {q uolp4rurldo
lsod pqo13 e '11uq reddn ue xS oJ '%gu Jo-repro ue m c€o1 aq1 eao.rdur o1 spaercnc,(leagcaga uor1e4u11do_poa ri pue x1pe.rry p"qq*-L"q e eq pFor msaqlufs sapnlgdme r.e^!ol ros 'paznurlao rpco1"$q'r*rii*" eql acnpord o1 speaJcns rapdwoc eq1 's11qg30 rapro eql u1 'epnlldrue fierusJo srelaueredJ0 asec aqt qt 'rllnrrrlgx€ aql tur.ropel sle^relo' pu€

lealooq m sple$ 6'.orrpa eqr peloss +rd spefqo egt Jo uoll"4rralr€reqc e apirrord o1',tressacau d ff ,"pq o+u.r pelel -su"4 eq oJ '?ueuruorrlua Io^aI qfu aqr uI elq€tnrexe s.r pepasard epoo eqJ

E'! rpTrr,$ parnpo.rd sl qderr
^ou

e as€' puoras aql qr ;ffi.TH;r*dtftt""-Tfr f11car1p [Fna ePou aql e6?r tsrg eql ct 't& ro rnec;qcierqq a"r"""p ol arrorp eg] a{"m 11tra rapduoc aq1 .slndur epou qJ€a ur apnlqdue *1*p nqioo Bwouadeg

. (szTTeurou :otrposTer 0T) / +ueu =: tueur
.gzTTPlnxou

+ dre =: dte

' gpuecr;ru'Ts : pEe,ypuecls:p'r",
:"l$L";;iffiil"li:: il":':T#; .glueuodxe :pue VxEeEodxe :.roglueuodrgelnduoo JTes =: dte .gu81s :pue yu8ts :.roguglgelnduoc g:1es =: uErs

I ozTlpurrou lueu &s ugls I

glueuodxe :lueuodre gpuectg:rrgrs :pueoTJrugrs gr8rs :u31s r4lueuodxe : lueuodxe lpuectg:trg.",p*";l;dis ycls :ugls

r"uop]ry 8uufldrlpur (slueuod:ra
swope ror *ffi 1H,l#trffi:J#,i'-H: s ur paqF3sap s.r uoll€JJldrlpu eq.l .}red

FuorlJ€.g
"

pu" lueuodxa ue .u8rs
3 s" peluese'der ere srequmu eqJ 'srequmu p.roa tulleoB [I'*"

"J t"lrr"r* ra11dt1pu e Jo es?r aql luauruoc sn rer 'aeeg.ra1u1 s"T*;#o;; eq+ aprrsnrr oJ

uorlBrlsn[r lJoqs v g.z

'sadrtl snopard o,u1 eql uo suorlerado urog Bmlpsar e,.., s.tromn .scrleuqlue
Su.rpnpu.r 'sarlueuorlrurg naeu parrgop rElsn ol ,o ,lsraaag p*"G*rq ,strealooq)

J

Fig. S. Development interface showing the high level code for floating point multiplier
and the corresponding execution graph. The 3 nodes at the bottom of the figure output
(left to right) the sign, the exponent and the &actional part. Boxes in the graph can
be irspected to check the types carried on edges, as shown figure 4

Fig.4. Tnspectors on nodes of figure 3 graph. At the left, internal aspects of a node
with inputs, output, and generated logic presented in the right pane in BLIF format.
In the middle the inputs is an array of 2 parameters. The 2 other windows show value
characterizations for the output and an input.

I

olep qql l" peluaueldun la/t lou sr lnq $r€trodrnr i(rel $ rusrusqJeru snIJ r
'es?r s.ql q IIqJ suoll€lnduroc [€uorlTpuoJJo loT .rsalqel 6 pu€ / "I sp"potd
u€uepeC aq1 SurmerlsuoJ fq palalap eq rruJ pu" Fgasn lou ere rueerlsdn
pu€ q epou m-u"J eql u1 slndu.r Jo raqumu y .o olqeue^ uo fcuapuedep eql
Jo esneraq ((z'7)6'@'r)t)',t ueql 1nd1no re11€us e seq ((z.a)6.(ft,c)!)t1
uorlrsoduoc aq1 'aldnrexe u" sV .sleuqns ur-rr€J o+ lno-rreJ uI pasn elq€
-rrBA m sanuapuedap Jo ua{et eq +sntu ersc uorlsturoJsu€rl s.qt BuilnO

'slndul pougep Eqreq epou qc€e roJ elq€l € Bqppq
'pa,rerure sr Ieeraaerl qderB y 'lsII relou€.r€d uorlcung eql uo+ i(laapsart
-ord pale8edo.rd ere sanp^ ag1 ,sa1qe1 dn1oo1 ,(q sapou aseql erelder o;,

'sepou
.raqlo ro '1s{.releruered uorlcnrg egl uo4; sa3pe Sm4ersJ sJ1€J uorpung Fm
-ploq m1s ers sepou e3ep s.rq1 lV .pofeqrrrTla er" seJueroJor elq€.ue 1eroT
'esn elqsrre pu€ aarl:<e1u{s eq1 tuufpue ,tq ftmq q (CVA) qdert cge,{ee
pe+JarTp aq; 'repduoo prepuep eql ,(q pacnpord sr aarl:re1ui(s eq1 ,pepp sy

'ru?erlsrlrl|op sanlea
ssed o1 ,to1p saBpa qrrqa pu€ spetqo uo peseq sa1qe1 dnlool er€ Bapou
qcro,u qderE 1eg cuofce ue Smopq u-r sls.rstroJ a8ep uoqepdmoe lsrg aq;

{ro r+eu onp oqt 3uJp1;ng .1

laog regdtuo3 .9.8.rd

'sesselt
Smprxe aql Jo esn pue pu+.tuory rapduroc pr"puets aql Jo esne.r aql er" slgauaq
alsTpauurl 'sygdg tmlatrel pua8ord, ro; rrep,(s a3enSrel sTql asn ol 1sare1
-u.r snouqo u€ araila a.req1 'posn sr lueuruonAua quawdolalap {Ie+il€IIIs € S.V

'sII€J uorpury egl Jo euos roJ slxeluoc uorlelduor 1euol?pp"
paau lIA teqt suorcsilrdxa;errurrre.ra.q qlpr uorlrsoddo m uorssa.rdxa ?"g

"
e^fl1

e,u, 'pazrsaqlu,ts flpargp oq u€r apou qJ€e s.V .emlJelrqJr€
vgd.f u-JfIT € roJ

nseqp,ts cpol pelega u€ qll,ll elqrledrnoc $ II€J uorlcuru qme Jo 1ndu1 aq1 u1
tuueadde sanl€A Jo requmu eql ereq^t rue.rtord

"
reprauor sn 1a1

,a3e1s
1srg e qI

suorssa.rd:<e Xelg I.g

naoE rolldruoc g

I

2. High level optimization and building the index network
After this first stage we have a situation sirnilar to a compiler having a lan-
guage semantic howledge becarue the tables have inferred stronger proper-
ties from the mssage executions. It is time to apply high level optirnizations
such as sliminatisp of constant nodes and dead code or subexpression fac-
torization. This imply backward and forward processing on the DAG.
The next transformation is the trnnslation of the DAG by dsdu6ing hdex
based tables from associations of value tables. This is achieved by generating
index for values. ca"re must be taken of class based types to prserve their
special encoding.

3. LUT based optimizations and architecture mapping
Index path optimizations involves the detection of subnets with pa,rticular
topologies. As an exe-ple, linea,r cascade of tables can be collapsed irr a single
table. For logic translation, each index-based table is given to logic synthesis
tools to produce an equivalent bina,ry description. At this stage we must also
take into account the size of LUT memories in the ta,rget architecture. The
result is a hierarchical logic description which is a bina.ry equirralent for the
high level prograrn.
The last stage is to place and route the logic graph using the generic tools
in the fra,mework, producing a hardware module for further system handling
and binding.

3.2 lfierarchical aspects

In section 3.L we supposed that the program can be directly synthesized at each
function call. We itre now consideri.g the more general ca.se where calls mrxt be
developed to reach this condition.

The logic needed to implement a particular function call depends on the
expressed algorifhr", the number of pa,rarneters, the number of possible values for
pararneters and the original encodi'g of values in the higher level environment.
A valuable property of an algorithrn is its ability to quickly decrease the mrmber
of values present on graph edges. This gradual decrease comes from frrnction
calls ttrat are processed in thc saure way a.s their root function, for every node
showing an excessive complexity related to synthesis.

When trfus 6srnpiler reaches a condition where logic tools will be inefficient, it
creates a new compilation context and process recursively the call. The context
will return a structured logic description that will be installed as pa,rt of the
current level production.

ffus fschnisal form of a logic description associated tro n 6s'r,piled program is
a hierarchical BLIF description that can be partially flattened for fiuther logic
optimization, and partially placed under control of a floor planner. In this case
each developed function call has its corresponding circuit semponent assembled
in the global hiera,rchy.

A more speculative compiler built-in fuuction is type pa.rtitioning. When a
data set appe:Irs to be too much large, tr6s 6smpiler can divide the type in
order to reach a grain suitable with synthesis. Automatic type division by the

I

.parols eq pFoqs 8pro1[ur + 1t Jo le]ot
€ (samrsl u, JoJ freaoJar rorra 3ur,uo6e sproa

"lep
u qtFu rualsfs e rod -sprofi,

urnsJtoeqo u.l Smsn sror.re uJ o1 dn;o uorloe.rror sis,o1;" Bmpor (gg) uouolos_peaU

uorlJnporlu.r uouolos_Peeu T.V

'acneuro3.rad perrsep
1aeu ol (aruds cFol go amad)€ eql le) {lsnoauelpurs sprona elep alarlynur uo
Iroru ol EInJnJ aqt eleegdar o1 alqpsod sr 1

(luapuadapm ere sprott lueregTp
.rog suorlerado eqt sV .stlq ? go sdnor8 q surearls eql Eo{I etrep e{q l€ql sl5nJ
-rtJ rn€lqo ena '76 splels slol"C 3o 8u.rrye1 ex? &tr s ,1€gl str€eur qr(IJ .slmq
pro,u-fq-prora, e m Smporep/tupocue eq1 u1 ,{pn1s as?J mo pes€q a tsg ?d\

'seweq?s aml.mJ luoreJTp IoJ Pesn eq ol ore/$px"rl eur"s oql r!rcil€ IIIrtr Er-nJqt
eq+ olelnw ol Ilmqe aq;, .,(l1rqFreg pepp€ gl!/r Erelsrts aq1 apnord lT.r.da +I _

'(Emrroa-uou 1s.rp
o1 tu,trroal {slp uog uorlrsuerl) suaddeq emFeJ {qp e uaqal fpo pT€d sI
lsoJ agJ 'uor+JarroJ rorre ol anp ssol aeuemlo;rad ou ro eIltTI eq feru araqJ _

:guosBer
ona? roJ flmeu aler.rdordde smeas Surpocep/Bugpocue roJ yCdd Jo asn aqJ

'sums{reqc
eql tuog pepnrlsrroJer aq ol paau {eur elep lemtrro aq1 ,sge; slsp (u^r o1 dn
.ro) auo y '.ralamo11 .s{sTp €t€p eq+ Eo{I el"p oql rrrnlar i(1duns srapoeap eql
'alqegerre ere sm"orls perols II€ uerlt/i .sru?orls elep purSrro eql uxnlor prrg
6.{slp uo pero$ sul"erls eql qq 1p,t ped rapoJep eq1 .pueq laq}o aqt uO

'ellloqrs u.l : u uorrrS e .ro3 uoqern8g:rroJer enbrun e ro3
sd{eu s.nIJ 's{slp }ueprnpor agt q parols oq ol sur"erls ?r, egl alelauat o} s{slp
€}€p aql m parols oq ol srrr€erls ?, eql s{et ru,ra ped repocua aq1 ,,(lecrseg

'"1€p Jo s"{slp u .rog fcuepnnper se posR erp srls.rp tunspeq, ?r.l

eraqir €ruaqJs su € Eulleopu.r su u,t : u Jo {I€1 IIIr!6, o/!\ .sped rapocep/repocue
aql Jo uorleluaualdwr egl uo slerlueJuoJ [.rna e l .sluaEala

,z q]Iiil plag € Jo
eqorp egl ep"E ea"q enl areg .splerd sIoFC raao Bmpoc (gg) uomolos_paag
tmsn ldaq $ uorl?arroJ rorre roJ feueprrnpar welsfs cffyu u1 'walsfs uorlJeJro)
rue1s,{s OIVU € Jo aldmexe eql dq pel"rlsnllr sr suorssardxa leg roJ a.rnpacord aq;

{pn1s asec uorTJorroc rorro OM V V

's1nd1no apou ul
uorle.rauaS adr(1 ,ueu luarrard o1 ralduor aqt dq paSuueu eq lsnl[salnr paseq
-adr(1 'apoc aql ut 1u€rrrmop erc suorlerado asaql Jl 'sroqe.redo qseq Jo flocelduroc
c€o1 aq1 uo eJrrengm ula seq Hag slot€C ? ur sluaurala Jo rapro aq1 ,elduuxa
u€ sV 'sanl€A ro; ,SurDocue lsaqr e go atpal,nou1 aql fl uorl€nln r€Lrurs y

'1ala1 q35q 1e floraldruoc srsaqpi(s e3sueru ol uellu,t! flJeurou ale smqll_ro3p
aoqJwy egl aJu-rs'uorleuorordde p;nb e se r{po pe.raprsuof, aq pFoqs.raydmoc

I

The basic idea of RS codi'g is io build a system with n * rn rows aud n
columns. All rows are built to be independent. Recovery from up to rn errors is
possible as we could always tale tle ar"ailable words aud build a system that is
solvable. Solving that system by aoy trschnique (like Gagssian Elimination) will
provide the original data words.

Encoiling: at ihis point we need to build rn additional independent equations.
To arhieve that, we will use the Vandermonde matrix r*d 6srnpute its associated
independent terms that will serve ss checksrrrns. This can be done by perform-
ing the following operation (where &... it^ are the data words to encode aud
ct . . . en its associated qhscksrrms):

(1)

Decoding: when retrieving data we know that the following equation must apply:

so in case of an error on a word of data, we cau compute its value by solving
a system involving n. rows of the equation. This will be possible as long as we
have n valid values in the indepeadent term vector; that is, there are less tha.
rn etrorg.

Arithrnetic ouer Gqhois Fiekls is used as the algebra needed to solve the system,
as is closed over a field of finite size.

For a more detailed description of RS coding using a,rithrnetic over Galois
Fields, the reader may refer to Pln.nlr's tutorial[Plagg]. Other interestiug bibli-
ography comes from c. Paa,r et al., for example lpRgz] provides informaiion on
GF operator complexity ssd irnplementation on FpGAs.

4.2 Encoder/decoder speciff.cation

our objective is to obtai. con-figurations for the encoding/decodi''g using RS
over Galois Fields. We are ta^rgeting a system that has a reconfigurable part to
do both, encoding and decodi"g. we will need a configuration for the encoder

fl,:,,,*-, .:,] |;]
:|]]

(2)

d,t

dz

d.
Cl

Cz

cn

|:]

1 0 0 ... 0
0 1 0 ... 0

0 0 0 ... 1

1 L 1 ... 1

I 2 3 ... n

L2m-r g--r . ..n^-7

I

'pa^oruar
ax€ lndllr slr ol luel€ lnba sI 1nd1no esoqi$, srol€rado .creul .IBAorrroJ do-o1q

'srseqpr{s er8o1
roJ elqelms sa1go7 dn qool olw; suorlerado rgoqwfs eql swroJsrr€q fI .fu
-purq ampelFlrr" spretrot euo lsrg aq1 st dep s.KIJ .uoIlBJg.rInT aole.redg

'uorlerr.*qe uorsse.rdxenns uoumoc ,q teqJ .uo.r?BzlJolr*J epoC
'peaorual are faql os ,pesn releu fl llnser esoqia suorsrardxa are eregl lsql

alqrssod sr 1r 'suorssardxe palereue3 {1pr1pruo}ne Jo arnleu aql of enp pue
'suorle^redo g fq uorlecgdrllnu Emrroruar Jo l[nser € sV .[Blor[ar apo, peec
'peloruer ere (g,tq uorpcpdllpru aryg1) rynsar luepuor e BrJpler,ra suollerado
oqy 'sdap s.q1 ul paloruer 11€ eJ€ esoqJ .silrc1suoc roao suorleredogo Ipald
are eregl 'strorssardxa mo Jo oml€u palereuet eql o1 anq .Bqplog luelsuoC

'gT.fC ad,{1 go ge ,spron ums'{reqJ pu" €l€p a.re slndur
aq1 'asec s.rql qI .pad,tl are satpa il€ .CVC eq1 Euqmq regry .oaueregul ed.fi,

'Iroilraur€rJ mo u-r pelpueq s" uorlelueEaldul eq1

Jo t3ega lrrupodun 1sou eql ,rloqs /,taoleq sdels eq;, .JItoI ol uaqq alduroc pue
sraporap/s.rapoJua eql ro; suorssardxe eql e{"} ueo ett .uorlergireads eql uo.\{

uollelrdnroa uorsse.rdxg g.?

'turpoc uourolos-peell uo ecuar.redxa

1erym ou qlpa 'auop aq o? smoq ilaeJ e {ool uorlecgrcads e oq€ eql .e1ou e sy

'suorpm8guor eql plmq of
pagduoc eq 11.ra leql apor poqleru o1m paleed eq rmr suorssa.rdxa esoq& 'uor?
-lpuoc tugqron ual18 e m srepooap eg+ roJ 6? 11e,rl, sr .sunsqqaqc;o Bqpocua
eql roJ suorssardxe eql plmq rr?J e/tr .pauro;rad suorle.rado oqt sprorar leql

ss€IJ s{-rl-tqeurqlr.rc rre Bumlmg .suorssardxe uorlJoJJor roJJo Jo uorlJerlxg
'sseu?serror lsal ol repro rr rrlarmllue plol.f sIoIeC eq1 Bqsn Bwooc gg

eql Jo lset elrlsneqxa ue pauroJred e eq e11\ .rrleuqlr? /r!,eu aq1 Bmsn sselc
uoEoIoS pasu aql i{1dde uec a,u. ,am1eu rrqdrorn{1od 1n3.ranod 6.{t€lII"ES
t"pn '[OOq4] m u,uoqs saullapp8 aq1 tq,ro11o; ,ualqord mo uI pepmu
asoql are paluatueldwr suorl"rado eqJ .(gI.{C) padolaaep rceq 6?rl {1el

-il€tus roJ ,Z plald slol€C y .sselr rlteurqlge plaId EoIBg go luewdola^aq
'tllelllqlrr? leuor]uaAuoJ

tursn uorlcar.ro) rorre Surmro;.rad dlaarlsneqxe fq papal uaaq s€q uolt€JIII
-eads eqg, 'ezrs Surpocua ,(ue .rog pesn eq u€J lr os .uorparc ecuelsm le sprorla
Ens.rpaqc prm el"p Jo raqumu aql /raoll€ ot rapro q H.mq ueeq ssq ss"lJ eqI
'e1ep tumolap/Suroocua roJ spoqlaw sfiI leill sselc {F}IIerug e se pagrceds sr

s.rIJ 'Z uorlenbe eqt selerareB uoqecgncads aql .uorleogrreds uourolog paall

:sda1s aarql u1 padoprrap useq mq uorlecgrrads aq;
'pedwr eIllTI s cq llua es€J

"
qJns m

uorlem8gumar Jo lsor eq+ pup .arer pa.raprsuoc eq rr€J ("*L."1 4s.ro) uorlSpuoc
8uq.roal egl a€qna 'sualsi(s 6ayti o1 alqecSldde eq u"J s.rul .(Burssru spro,u
yo 1es) uorlrpuoJ Suqro,r qf,"a roJ auo ,Surpocep rog suorlem8gnoJ l"rales pue

I

Operator fusion. Una,ry operators are removed by fiuing them with its pro-
ducer/consumer operators. we assume that this will provide a better irnple"
mentation.

Circuit production. Several circuits have been produced to collect practical
information of the results.

4.4 Encoders/decodersstatistics

Tbbles 1 and 2 display respectively statistics for the 3 necessa^ry encoders a,D.d

all the possible decoders fe1 disk failures. The tables has colgmns showing the
decrease in the nu.mber of GF16 operators, average number of inputs per oper-
ator, and the critical path in the network of operators. The meaning of rows is
the observed value after each optirnization operation as described in section 4.3.

Correctness ha" been checlced at the logic level by selecting random inputs
and verifying the output a,fter logic synthesis using SIS simulate command.

Table 1. statistics for encoders-RS4:3.

gsmpiler

rperation
critical

patbinput
type inference L2 2

constant foldine 8 2

dead-code removal 8

code factorization
operator to LUT 1.375
neop removal r.67 3.6?
cperator fusion

Thble 2. statistics for decoders-RS4:3.

3ompiler
rperation

lnp?af^ pri+inql

inpul path
;ype inference 85.0t Lt.24
constant folding 11.6t 7.65
clead-code remonal 11.6i 7.65
code factorization 10.41 7.65
operator to LUTg 10.41 1.43 7.65
no-op removal 7.42 1.65 5.7i
rperator firsion 4.5 t 3.625

I

'rr3o1 lueualdrul ol pasn snal Jo roqumu a lloega
.?

lr-mrlJ eql roJ Endul Jo reqwnu .g

'eare sr[1 u] posn sapB .6

'su^re11ed ner Jo requmu ur eer€ lr-nrrlJ Ietot .I

:EI?
sellsualJ€xeqo peluasard aq;, 'Eumueld .roog roJ pasn 6I ll s€ {lqruasse peml
-rrup aldurs pue cr3o1 pezrurldo flquesse-1sod ro3 slred o,rq s€q alqq eqJ

eqr or rua* mba slualuor orq€r pue epoc,ffH:"j,ltffil:';:tTitfi uo uorl€armldo 3o pua aqt l€ leqt eJIloN .rt8elerls epor uorleraua3 repdruoc
oql ur sarroqc Suqetu ro; ro (secmosar c€o1 elqem8gnocor egl Jo luarueteueu
urapfs rog elduruxa ue se (1aaa1 req81q

"
1e pasn eq uer lfill pelc€r5e are

srelawered oruos .ssocrns rmr lsrg e tu.rpyro.rd (sura11ed
11er eqt ogsul g ezrs Jo

leuueqp tmlnor
"

seq euo rpeg .samlJelnrJr" asoql uo rapooep pue raporue eqtJo
srllsue+rererp pa.reduoc eq+ srroqs g elqq oqJ, .sII$ JnTt pu? J1T-U Buneq
sem+Jelurcr? luereJ:lp 6 o1 paddeu pus pazTul+do ueaq 6?rI slmorn aseqJ

'(e atqqt) eml.reJ ur
U pu" I {s-rp €l€p qll,la ,{s-rp €lep lsrg uo reporap aql roJ ueql puts ,(l etqql) Z
{qP uorparroc rorro uo raporua egl roJ uerr13 sr lpsar relduoc aql .porap.rsuot

sl s{sIP lu€Frnpar z pu€ s{6.rp €l€p g q1ru. map,ts cll\ru € Jo aseJ eql (awr1 sru;

uogle.reuet lInJrIr qt!^{ esree 6:9 cgreedg g.V

ztuorsng .role.redo

9'IVT1eaoura.r do-ou

ow'l9IuollGcgIJ,nrl
6}Iuol+e4rolceJ epo,
6}Ils oruer epoc-peaF

t)}IEuIpIoJ luelsuoc
]IG74ecue:e3:ur edr(1

q1€d
'acrlrrc

lnou.r
e8erarrt

uorle.redo
.repduo3

ropoeue e {qp roJ llnser re11dwoC .? alqql

8?luorsry .role.redc

oL9'7t7,I"AourgJ do{j
.TLV'I08rrollscslJ,nl
CTz08uorlszuoloeJ epo(

zl7'D8l€aoruer ePoc-p€et

7,rt8SulploJ luslsuo.
qI)6ecua.re;m ad,(1
qleo
Ieqllr.

lnouluorleradc
randuq.1

I

ue{orq Z pue I s{qp qllttr (rapocep
I {slp roJ tpser ralldruoC .g elqql

5. the average of used inputs in module cells includi''g the border
6. the se'ne measure for cells in (4)

Notice that (3)+():(2), with (4) being low. The circuit is I/O dominated.
Gates used in (3) disappea,r when the module is connected to other a,rchitecture
element.

Routing cost (7) is an etimation on the number of rsoruces allocated for
connections. Critical path (8) is the maximum number of cells and other re-
sources allocated in the circuit between an input and an output, with unitary
costs. CPU time (9) provides an idea of the delay to place an route the circuit
on aPC/750Mhz with ihe Visualworks environrnsaf lrrnning on Linux. Figgres
6 and 7 are views on these decoders as generated by the tools.

(10) is the maximum area occupied by the assembly of elementary modules
without post-assembly optimization, and without the use of the floor pla''r,eg.
(11) is the maximum number of cells ued in this area, and (12) is the number of
cells used to implement logic in the a^rea. (12) is sirnilar to (a). A good measure
of the post-assembly optirnization is the respective 40% and2T% logic decreases
in the cases of the decoder and encoder. The use of the floor planner will bring
(10) and (11) closer to (1) and (2).

Thble 5, Resuits fronn place and route on 2 architectures

Encoder Decoder
LUT i LUT4 LU'I'2 I,UT4

Area (1)
Cells Used (2)
Input cells (3)
Internal celb ()
Input average (5)
Gates Input averaqe (6)

9t
8T

32

OJ

r..62

2.Q

56

53

32
27

2.O4

3.62

L21
119

40

79
1.67
2.0

72
71
40
31

2.23
3.81

Routing Cost (7)
Critical Path (8)
CPU Time (9)

1095

18

43.L4

64C

t4
20.34

1E3S

1g

98.70

IU4g
15

34.89
Ma:c struct. area (10)
Cells used (11)
tnternal cels (12)

128

109
53

88

85
to

20t
18r

7S

L76
170

58

5 Conclusion

The section t has presented our project in three parts. Reconfigurable architec-
t*"t *sdsling tools are operational, with a practical implementation on xc6200
and active work to address the Virtex. Another development is in progress for
a low power FPGA prototype architecture. using these tools, one c'n describe

t

omlcallqcrB ?-lnT G uo repossp elnes eqf .l .tld

ornpallqcl? z-+nT €
uo pa+nor pue per€Id EeIqoJd s{srp fcu€Frnper a pu€ slep g us roJ raporap y .g.sl,I

I

regulat circuits for operators or processi'g networks by replication and cha.'nel
routinS.

The compiler described in this paper is a work in progress. With the exceF
tion of optimization for rrariable dependencie, it is now possible to produce an
optimized hierarchical logic description suitable for technology mapping, then
place and route. This compiler handles optirnization mostly at high level, re-
moving a considerable load oa logic 'nappil'g algorithrng. The execution model
can be understood as a specific lookup memory unil linlring symbolically input
stimuli to outputs. The strength in opti-izatioo comes from the fact that the
knowledge of values fsing processed allows tre simplify computations either at
high level or at logic level.

The most important point is that this method gives the possibility to create
specific logic based on concise behavioral algorithm expression that is reusable
in a variety of situations on different kind of data. Binding nodes to memories
or arithmetic operators is feasible based ou the architectural model and types
propagated inside the computation graph.

We find in the object oriented approach very promising results either for
architecture management and high level synthesis which must be considered as
a productivity tool in the context of systems oo ships.

References

[DC90] E. Debaere and J.M.V. Campenhout. Interprctotion ond instrtction poth
coprcceseing. MII Press, 1990.

[FLLP99] G. Fabregat, G. Leon, O. Le Berre, and B. Pottier. Embedded system
mqdsling and synthesis in oo environments. a smart-sensor case study. ln
G. Gao and K. Palem, editors, CASES'||, Oct 1999.

[L800] L.Lagadec and B.Pottier. Object oriented meta-tools for reconfigurable ar-
chitectures. l^ SPIE, Reconf,guubh technology Id volume 4212, November
2000.

pem99] L. Lemarchand. Parallel performance directed technolory mapping for fpga.
In Proe.edings o! IEEE Swthwect Sympdum on Miced-Signol Design, Ttuc-
rcr4 aSA, pages 18$-194, 1999.

PP96l Jos&Luis Llopis and Bernard Pottier. Smalltalk bloc.ks revisited, a logic
generator for fogas. In J-M. Arnold and K. Pocek, editors, FCCM,g6,Napa,
CA, 1996. IEEE press.

[LWN91] B. Lin, S. Whitcomb, and A. Newton. Symbolic don't care and equivalence
in high level synthesis. Ia (IFIP) P. Michel and G. Saucier, editors, -Lqgic
ond, Arthitectutu Sgntheais. Elsevier, 1991.

[Pla99] Ja-es Plank. A tutorial on reed-solomon coding for fault-tolerance in raid-
like systerns. Tbchnicd Report UT-CS-$$2, Department of Computer
Science, University of Tennessee, February 1999.

[PR97] C. Paar and M. Roener. Qemparison of aritbmetic architectures for reed-
solomon decoders in reconfigurable hardware. In (FCCM?7,1, Napa, CA,
1997. IEEE press.

[Sa92] E.M. Sentovich and al. Sis: A system for sequential cirquit synthesis. Tbch-
nical Report UCB/ERI M92/41, EECS, Berkeley, May 1992.

I

In Proceedings of the International Workshop on Systems, Architectures,
Modeling, and Simulation, Samos, Greece, July, 2002.
Goal-Driven Reconfiguration of
Polymorphous Architectures

Sumit Lohani and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland, College Park MD 20742, USA
{slohani, ssb}@eng.umd.edu

Abstract. Polymorphous computing architectures refer to computing platforms
whose computation and communication structures can be changed over time.
The objective of such platforms is to use the underlying reconfigurable compo-
nents and attributes to adapt to dynamically changing constraints, objectives,
and characteristics in the applications that execute on them. In this paper, we
present a model for executing applications with non-deterministic execution
times and time-varying performance requirements on a polymorphous architec-
ture. We analyze the complexity of various issues related to the model, and iden-
tify some broadly-applicable conditions under which the complexity of these
issues can be reduced. We develop a heuristic framework for guiding the run-
time configuration adaptation process, and show through simulation experiments
that this approach can efficiently handle both dynamics in performance require-
ments and in task execution times.

1. Introduction
There have been many advancements in recent years on architectures for recon-

figurable processing engines (e.g, see [7][12][13]). With the increasing degree of
reconfigurability in processing architectures, it is useful to view embedded multipro-
cessor systems as polymorphous computing architectures (PCAs) in which config-
urable attributes of the architecture and software are adapted in response to
dynamically changing needs. Such attributes may include items such as inter-processor
message routing, caching policies, scheduling policies, processor voltages, resource
allocation to computing units, and synchronization protocols. A PCA can be a particu-
larly useful platform for developing a computing system where applications and per-
formance requirements change at run-time as one can adaptively configure the PCA to
suit the dynamic constraints and objectives.

This paper takes a step towards bridging techniques for scheduling and system
synthesis with reconfigurable processing platforms and the dynamically-changing
application requirements that drive these platforms. We first formulate the problem of
executing application dataflow graphs on a polymorphous computing architecture such
that specified performance requirements are satisfied, where the requirements may
vary over time and the application may have tasks with non-deterministic execution
times (e.g., due to data dependencies or unpredictable events such as cache misses and
interrupts). We analyze key properties of this problem and the complexity of some rel-
evant sub-problems. We then develop a flexible heuristic framework for guiding the
1

run-time configuration adaptation process, and show through simulation experiments
that this approach can efficiently handle both dynamics in performance requirements
and dynamics in task execution time behavior.

In the application model addressed in this paper, computational tasks (actors),
which are represented by dataflow graph vertices, in the application are allowed to
have stochastic execution times with static distributions or distributions that may vary
slowly over time. The computing unit is a reconfigurable multiprocessor architecture,
and the objective is to find a mapping of the actors in the application onto the proces-
sors in the multiprocessor and the configuration that the architecture should assume
such that performance-related constraints (e.g., constraints on power, resource usage or
throughput) are satisfied and objectives (e.g., maximizing throughput or minimizing
latency) are optimized effectively. Furthermore, the constraints and objectives may
vary over time, and thus, overall solution quality can be viewed in terms of how effi-
ciently reconfiguration of the architecture tracks changes in the application’s require-
ments. Henceforth, we will refer to this problem as the polymorphous computing
architecture mapping (PCA mapping) problem. As can be seen, the PCA mapping
problem is quite general in nature and even very restricted special cases can be proved
to be NP-complete.

The approach suggested in this paper is correspondingly general and can handle
diverse applications and performance requirements. All the reported experiments were
performed on an abstraction of the Raw architecture [12] that incorporates salient fea-
tures of the architecture such as the programmability of interconnects between proces-
sors. For experiments, the self-timed execution of applications on this abstracted Raw
architecture was simulated using the inter-processor communication (IPC) graph
model [12].

The emphasis in this paper is on coordination of the on line configuration man-
agement process for reconfigurable networks of processors, rather than the develop-
ment of specialized configuration optimization techniques (such as fixed-objective
scheduling and allocation), which are already in abundance in the literature (e.g., see
[11] for a survey). Our work is complementary to such existing efforts and also to
work on multiprocessor system synthesis [1][2], which can be used to derive the store
of pre-computed configurations that is input to the techniques developed in this paper.

2. Problem formulation
A set of relevant metrics, such as latency, throughput, average power, peak

power, and number of resources, is denoted by . If a certain metric appears as a con-
straint with a value to be satisfied when the application executes, then this metric is
referred to as a constraint metric and the value as a constraint value for that particular
metric. A constraint value belongs to the set of real numbers. A pair of constraint met-
ric and constraint value is called a constrain pair. A sequence of constraint pairs in
turn is referred to as a constraint vector, and is denoted by

, (1)
where represent any metrics in , and represent the
corresponding constraint values, for , where is the number of all con-
straint pairs. This (possibly empty) sequence of constraint pairs in a constraint vector

M

V m1 c1,() m2 c2,() … mK cK,(), , ,[]=
m1 m2 … mK, , , K M c1 c2 … cK, , ,

K 0 N,{ }∈ N
2

is prioritized such that is a higher priority constraint pair than a constraint pair
 if , for in a constraint vector

. A metric that is to be optimized after all
constraints have been satisfied is called a residual objective. A goal is an ordered
pair , where is a constraint vector and is a residual objective. If there is
no residual objective, then the goal is composed of only a constraint vector and can be
represented by . Here, the symbol represents the absence of a residual objec-
tive. Also, without loss of generality, the metrics are such that the associated optimiza-
tion problems are to minimize the metric (i.e., a lower value of a metric is always better
than a higher value). Metrics for which higher values are more desirable must thus be
transformed into corresponding metrics for which lower values are better. For exam-
ple, in iterative applications, the throughput (average rate of completion of application
iterations) can be re-cast as the average iteration period, which is the reciprocal of the
throughput.
Example 1: Consider a set of relevant metrics , where is the
latency, is the average power consumption, and is the iteration period. Consider
the goal . In , the constraint pair

 has higher priority than the constraint pair , which in turn has higher
priority than the constraint pair . The metric is the residual objective.

This definition of reconfiguration goals as prioritized lists with optional residual
objectives leads to a view of dynamic reconfiguration as a sequence of one-dimen-
sional optimization problems. This simplification is useful because run-time adapta-
tion techniques must be of relatively low complexity, and thus, one-dimensional
optimization is a better match. Additionally, it allows us to leverage existing libraries
of single-dimensional synthesis techniques, which are more abundant than multi-
dimensional techniques. Third, it provides an intuitive and unambiguous format for
designers to prioritize multidimensional application requirements. Note, however, that
this formulation applies only to run-time reconfiguration, and multi-dimensional opti-
mization techniques, such as SPEA-based methods [14], can be used off-line in arbi-
trary ways to compute caches of pre-computed configurations. Use of such caches will
be discussed further in Section 3.2-5.

For example, in Example 1, we initially have an unconstrained latency optimiza-
tion problem (since the first constraint involves latency). As we adapt the system con-
figuration with techniques that address this problem, we will in general improve the
latency. Once the latency improves to time units, the current constraint is satisfied,
and we switch to a power-optimization problem subject to a constraint of .
The optimization process may continue in this manner until the last constraint is satis-
fied (in this case,), at which point run-time adaptation stops (if there is no
residual objective) or reaches a terminal mode of optimizing the residual objective
subject to all constraints in the constraint vector. This mode then continues until the
system shuts down or the application’s goal changes.

Mapping an application to a multiprocessor architecture includes defining a task-
to-processor mapping along with defining the configuration of the reconfigurable
architecture. In this paper, the scope of the word “configuration” is expanded to
include also the mapping of the application onto the reconfigurable architecture.

mi ci,()
mj cj,() i j< i j 1 2 … K, , ,{ }∈,

V m1 c1,() m2 c2,() … mK cK,(), , ,[]= mR
g

V mR,() V mR

V ⊥,() ⊥

M L P T, ,{ }= L
P T

g L 50,() P 100,() L 40,() P 70,() T, , , ,[]= g
L, 50() P, 100()

L 40,() T

50
L 50=

P 70=
3

Therefore, a configuration consists of two components 1) task-to-processor mapping
and 2) configuration of the architecture. Henceforth, the word “configuration” is used
in the above sense, unless stated otherwise. A given application, goal, and resource set
define an instance of the PCA mapping problem. Input to the model is an instance that
may change with time. We define the design space as the set of all feasible combina-
tions of an instance and a configuration. The solution space for a feasible instance is
the set of all feasible configurations for that instance. Latency, throughput, average
power and peak power are some of the commonly encountered metrics. With many
metrics of simultaneous relevance, the goal space is too vast to be fully explored
before run-time, and run-time adaptation of configurations is generally advantageous.

Figure 1 illustrates a general model for solving the PCA mapping algorithm with
a combination of off-line and on-line techniques. The main components of the model
are the off-line component, the configuration store (CS), and the on-line component.
The off-line component, whose objective is to pre-compute a set of efficient candidate
mappings for various run-time scenarios, can be constructed using existing methods
for scheduling, system synthesis, and multi-objective optimization. The focus of this
paper is thus on the on-line refinement component and its interaction with the configu-
ration store.

For a given instance, not every configuration is suitable as some configurations
may violate constraints or may not adequately address residual objectives. As the goal
changes for a given application, the system needs to derive a suitable adaptation of the
run-time configuration. Optimally solving this problem is undecidable in many con-
texts. Also, reconfigurability of the architecture and the stochastic variance of execu-
tion times greatly complicates the solution space consisting of all possible
configurations for the input of a goal and a given application. Since computing a suit-
able configuration is performed during the execution of an application, one can not
apply exhaustive or relatively sophisticated search strategies as those techniques will
take away excessive computational resources away from the application itself. To
address this trade-off (thoroughness of dynamic optimization vs. resources drained
from the application), our model of the PCA mapping problem also accounts for the
time spent in computing efficient adaptations of mappings at run-time on the basis of
feedback obtained from execution and identification of bottlenecks, and hence always
tries to move towards an optimal solution. This is taken care of in the on-line refine-
ment part of the model, which consists of low-complexity algorithms that find and
refine configurations for a given instance. It also consists of feedback units shown by
the “Identify bottlenecks” block in Figure 1 that takes feedback from the execution of
the configurations and modifies the configurations so as to better suit the active goal.
The OnlineStats unit in the on-line refinement part of the model stores short-term sta-
tistics that can be used by on-line algorithms.

 A configuration store is used to store high-quality points in the design space that
have been explored so that one can use them later as need be. The off-line refinement
part of Figure 1 consists of high-complexity algorithms that yield better solutions. It is
acceptable for them to be of high-complexity as they are used off-line, and do not com-
pete for resources with the application. In Figure 1, the STATS unit stores statistics
about the application (e.g., distributions of execution times for different actors, fre-
4

quencies of occurrence of some particular regions of the goal space, etc.). Off-line
algorithms use these statistics to explore the solution space for input instances.

As soon as the goal or application changes, an initial configuration is found using
the on-line configuration management component in conjunction with the configura-
tion store. On-line algorithms keep improving the configuration that is being executed,
using the feedback from the execution. In the meantime, off-line algorithms may keep
exploring areas of design space and merge the relevant information into the configura-
tion store (for use in the selection of future initial configurations).

Off−line Algorithms

CS

STATS

Mapping
/Configuration

Execution

Application

Identify
bottlenecks

On−line algorithms
A1
A2

An

OFF−LINE REFINEMENT PART

ON−LINE REFINEMENT PART

Objective vector (O)

OnlineStats

Fig. 1. An overview of the system-level reconfiguration framework studied in this paper.
5

3. Configuration management model
The overview of our PCA system synthesis model shows that it is very adaptive

in nature and hence is suitable for applications with stochastic execution times and
time-varying goals. This section develops further details of this model.
3.1 Evaluation of configurations and goals

It is useful to define some measure of how well a given configuration executes
for a particular instance. This evaluation measure should allow unambiguous compari-
son between two configurations based on the current goal.

Suppose we are given a goal , where
. (2)

We define the quality of a system configuration with respect to goal , denoted
 (or simply if is understood) as the ordered pair ,

where is the index of first unsatisfied constraint in the constraint vector of
(i.e., the lowest-index constraint in that is not satisfied by the configuration), and
is the value obtained for the metric . If configuration satisfies all con-
straints in the constraint vector of , then we say that satisfies , and in this case,

, where is the value obtained for the residual objective if
 or .

In summary, the quality of a configuration measures a configuration with respect
to a given goal, and given a goal and two configurations and with qualities

 and for that instance, respectively, has
higher quality than if

 or . (3)
3.2 Configuration store

A configuration store serves as a repository of alternative configurations. A con-
figuration store can be divided into several sub-stores (sub-CSs), one for each relevant
application. Each sub-CS has some configurations stored in it, one for a specific com-
bination of goal and resource set. In the later part of this section, we assume that we are
dealing with a fixed application and a fixed resource set, unless stated otherwise. This
does not detract from the generality of the ideas developed later as they can be general-
ized to include various applications and resource sets using the hierarchical model of
configuration store explained above.

Assuming a fixed application and resource set, selecting the goals whose corre-
sponding configurations should be stored in the configuration store depends on various
factors such as the size of the configuration store; the optimality of the stored configu-
ration; computational resources drained from the application during execution by the
on-line refinement algorithms; and the expected or observed frequency of specific
goals.
3.3 Acceptability of configurations

Notions of acceptability and cover emerge naturally from this concept of config-
urations stores, and guide the construction and adaptation of the configuration store in
our model. For example, one can envision the reconfiguration process as selecting an
acceptable configuration, and gradually tightening the notion of acceptability to guide
the on-line refinement process. The following definition makes these notions precise.

g V mR,[]=
V m1 c1,() m2 c2,() … mn cn,(), , ,[]=

C g
Qg C() Q C() g Q C() k v,()=

k 1+ g
g v

mk 1+ C n
g C g

Q C() n 1 vR,+()= vR mR
mR ⊥≠ vR -∞ if mR ⊥= =

C1 C2
Q C1() k1 v1,()= Q C2() k2 v2,()= C1

C2
k1 k2>() ((k1 k2) and (v1 v2))<=
6

Definition 1: Given two goals and , we say that is acceptable for ,
denoted , if a configuration that satisfies is an acceptable implementation
for . If , we also say that covers . Given a set of goals and a spe-
cific goal , the space of over (or simply, the space of , if is understood) is

. Thus, the space of a goal is the set of goals that are acceptably
implemented by any configuration that satisfies . The space of a goal is repre-
sented by .

The following result, proved and elaborated on in [9], shows that the acceptabil-
ity of configurations is a particularly well-behaved relation if it is a partial order.
Theorem 1: If we have a finite set of relevant goals, and the acceptability relation is
a partial order, then there exists a unique, minimal set of goals such
that

, (4)

and this set of goals can be computed in polynomial time in , the number of rele-
vant goals.
Definition 2: Dominance relation: A point dominates a point if

, where and denote th components of and ,
respectively.

One can see that the dominance relation is a partial order [5]. We can have an
acceptability relation between goals based on the dominance relation where a goal
is acceptable for a goal if the constraint vector of the goal dominates the con-
straint vector of the goal , and the residual objectives for both goals are same. The
following example illustrates an acceptability relation that is not a partial order.
Example 2: Suppose that we have a single constraint metric, which is the average iter-
ation period of the system. Thus, the constraint associated with a goal can be
expressed as the desired average iteration period . Suppose that in a particular
implementation context, the acceptability relation is defined by

 for some positive real number . Thus, a configuration for
can be worse than what is desired under , and still be acceptable for , as long as
the deviation does not exceed the threshold . Suppose also that the goals
and have desired average iteration period values of

, and . (5)

One can then see that and but is not acceptable for . There-
fore, this acceptability relation is not transitive, and thus, is not a partial order.

An acceptability relation between goals based on the dominance relation or any
other partial order leads to valuable properties such as that exposed by Theorem 1.

g1 g2 g1 g2
g1 g2→ g1

g2 g1 g2→ g1 g2 Γ
g g Γ g Γ

g′ Γ∈ g g′→{ } g
g g

space g()

Γ
g1 g2 … gn, , ,{ }

space gi()
i 1=

n

∪ Γ=

Γ

pεℜn qεℜn

pi qi, for all i≤ 1 … n, ,= pi qi i p q

g1
g2 g1

g2

T g
T g()

g1 g2→
T g1() T g2()– ∆T≤ ∆T g1

g2 g2
∆T g1 g2,

g3

T g1() 5= T g2() 5 3 T∆
4

----------–= T g3() 5 3 T∆
2

----------–=

g1 g2→ g2 g3→ g1 g3
7

Also, the dominance relation is a natural candidate for an acceptability relation among
goals, as a configuration corresponding to the dominating goal can be used in place of
a configuration corresponding to the dominated goal without violating any constraints.
This motivates our use of the dominance relation in managing configuration stores.
One can observe that our approaches of defining a goal and the quality of a configura-
tion are all consistent with acceptability based on the dominance relation.

4. On-line configuration management
In this section, we define an on-line configuration management framework called

CMF that defines how to choose an initial configuration for a particular instance, and
how the on-line adaptation for that configuration should proceed. We also formulate
problems related to storage of configurations in the configuration store. These prob-
lems and our models to solve them provide fundamental analysis of the complexity of
configuration management and provide feasible, low-complexity solutions to this
problem.

A pseudocode outline of the CMF approach is shown in Figure 2. The objective
is to provide a framework that imposes minimal constraints on how reconfiguration is
actually performed, while providing systematic support for managing the reconfigura-
tion process in terms of configuration stores, performance constraints, and optimiza-
tion objectives. CMF is a meta-algorithm because specific details of the architecture,
the application, and the on-line adaptation algorithms are left unspecified, and can be
customized based on the relevant classes of applications and architectures. This meta-
algorithm maintains a current objective at all times, where the goal is always to
improve the current objective without violating any of the previously satisfied con-
straints. The function onLineAdaptation takes an objective metric, a constraint value,
and a configuration as inputs, and keeps refining the configuration in an effort to con-
tinually improve its quality (as defined in Section 3.1). This function would typically
be called within an enclosing loop that performs any system-dependent re-initializa-
tion and re-invokes the function immediately after the previous invocation of the func-
tion terminates (observe that the function terminates when the current goal is
changed).

Pseudocode for the related functions is given in Figure 3. We have implemented
CMF, and simulation results pertaining to it are discussed in Section 5.
4.1 Issues related to configuration management

Before proceeding with discussion of our experiments with CMF, we first study
some fundamental versions of the problems related to configuration management, dis-
cuss their complexity, and relate aspects of them to well-studied problems. Two related
problems regarding the size of the configuration store are as follows.

P1. Find the minimum size configuration store and the goals that should be
stored in it such that all the relevant goals are covered.

P2. If one has a well-defined measure of “distance” between goals and the
goal-pace is a metric space [4], then for a given fixed size configuration store, find the
goals whose configurations should be stored such that the sum of the distances of those
goals that are not present in the configuration store, from the distance-wise nearest
goal present in the configuration store, is minimum.
8

function CMF

/* Global variables accessed: the current goal and the set
of pre-computed configurations, respectively.
*/

global goal
global configurationStore

stack ;
goal , ;

/* The current optimization metric and the current
constraint to satisfy
*/
objective
constraint

while () {
(, ,) = demoteConstraint(,)

}

/* Select an admissible configuration from using some
heuristic or specialized, optimal algorithm.
*/

 = select()

/* Keep trying to refine the current configuration accord-
ing to the current goal until the goal changes (may
change at any time under external control).
*/
while {

while (is not satisfied by) {
onLineAdaptation(, ,

)
}
/* Move to the next unsatisfied constraint or to
the residual objective */
(, ,) = promoteConstraint(,)

}
end function

gc m1 c1,() m2 c2,() … mK cK,() mR, , , ,[]=
C

S emptyStack=
g go

g go gc= =

objectivec mR=
constraintc null=

σ c C∈ c satisfies g{ }=
σ ∅=
g constraintc objectivec g S

σ c C∈ c satisfies g{ }=

σ

configurationc σ

gc

 (gc go)=
constraintc configurationc

objectivec constraintc
configurationc

g constraintc objectivec g S

Fig. 2. The CMF framework for goal-driven reconfiguration.
9

P1 and P2 can be viewed, respectively, in terms of the well-known problems of
minimum dominating sets and k-medians. To reduce P1 from the minimum dominat-
ing set problem [5], for every vertex in the dominating set problem, instantiate a goal,
and for every edge, instantiate a condition that the goal corresponding to the source
vertex is acceptable to the goal corresponding to the sink vertex. The problem P1
related to this set of goals and the acceptability relation among goals is equivalent to
the given minimum dominating set problem instance. The vertices in the given mini-
mum dominating set problem instance, corresponding to the goals that should be
stored in the configuration store (found by solving P1) constitute a minimum dominat-
ing set for the given minimum dominating set problem instance. This can be used to
show that the problem P1 is NP-hard (see [9] for more details). However, if the accept-
ability relation is a partial order, then the minimum dominating set can be found in
polynomial-time by picking up all the vertices with no incoming edges in the graph of
the minimum dominating set problem. This is in accordance with Theorem 1, and fur-
ther underscores the advantage of using acceptability relations that are partial orders.

If the associated distance function is defined between any two goals and the goal-
space is a metric space, then problem P2 can be modeled in terms of the k-median

function promoteConstraint
input goal , stack
output goal, constraint, objective
goal
constraint
objective
constraint

return { , ,)
end function

function demoteConstraint
input goal , stack
output goal, constraint, objective
goal

.
return (, ,)
end function

g m1 c1,() m2 c2,() … mK 1– cK 1–,() mK, , , ,[]= S

g′
v S.pop()=

m S.pop()=
x S.pop()=

S.push(x)
g′ m1 c1,() m2 c2,() … mK 1– cK 1–,() mK v,() m, , , , ,[]=

g′ x m

g m1 c1,() m2 c2,() … mK cK,() mR, , , ,[]= S

g′
S.push(mR)
S.push(cK)
g′ m1 c1,() m2 c2,() … mK 1– cK 1–,() mK, , , ,[]=

g′ cK mK

Fig. 3. Definition of functions promoteConstraint and demoteConstraint from Figure 2.
10

problem [2, 8], as shown in [9]. For the simple case of a two-dimensional goal space, a
polynomial-time approximation algorithm with a 3-approximation factor exists for the

-median problem [2].
Configuration management problems P1 and P2 can be viewed as extreme cases

in the sense that in one of them we want to cover all feasible goals without considering
how large the minimum size configuration store would be (P1), and in the other case,
we have a fixed size configuration store and we are trying to find out the maximum
number of goals that can be covered using that configuration store even though that
number could be much less than the total number of relevant goals (P2). A more elab-
orate formulation would be one in which we have to pay extra cost for increasing the
size of the configuration store, but we would be gaining some additional service by
that by being able to store more goals in the configuration store. This way we can
explore various trade-offs between the size of the configuration store vs. the number of
goals stored in a well-defined way. For the specific case when a distance function is
defined between any two goals and the goal-space is a metric space, these trade-offs
can be explored by modeling this problem as a facility-location problem [4, 8, 10], as
explained in [9]. A polynomial-time algorithm with an approximation guarantee of
1.74 exists for the facility location problem [4].

5. On-line adaptation
In this section, we focus on the metrics of throughput and power consumption,

and develop low-complexity, on-line strategies based on heuristics for throughput opti-
mization and power optimization as implementations of the function onLineAdapta-
tion in Figure 2. The objective is to demonstrate the efficacy of the CMF model, and
show that it can produce efficient tracking of time-varying application requirements.

The approach of taking feedback from the execution of the application makes
these on-line methods able to handle even applications with stochastic execution times
that have time-varying distributions, in addition to applications with fixed execution
times, and applications with stochastic attributes that have stationary distributions. In
general, this on-line refinement formulation can thus be viewed as an approach to
tracking the dynamics of the goal and the characteristics of the application.

To experiment with CMF, we used a simple heuristic based on load balancing
[15] to optimize throughput during online adaptation. Pseudocode for this heuristic is
represented by function adaptThroughput in Figure 4. In the pseudocode,

 is a function that chooses tasks from a maximally loaded processor
in a configuration , and randomly, moves them to appropriate locations on a mini-
mally loaded processor, and returns the modified configuration. Randomization in
choosing tasks from the maximally loaded processor provides a low-complexity
approach to increase the explored region of the design space and to calibrate the con-
figuration to dynamic application characteristics. The function is a
function that executes the application according to configuration for a time interval
of length , and returns the throughput of the application during that interval. The
value of to use depends on the non-determinacy of the application. We define the
non-determinacy of an application in the following way.

Let the number of possible execution times taken by an actor be denoted by .

k

moveTask c n,() n
c

executeTr c l,()
c

l
l

i ni
11

We denote the set of possible execution times taken by an actor as
{ }. The probability of occurrence of a possible execution time for
actor , is denoted by , for all . The degree of non-determinacy is a
measure of the overall amount of non-determinacy in the application, specifically, in
the actor execution times, and is defined as

, (6)

where denotes the mean execution time of actor , and is defined as

/* This function adapts the given input configuration
while executing the application.

*/
function adaptThroughput
input configuration
global constant time , time

time
time
configuration

while {

if (exhausted all -task movements
without improvement){

}

if() {

}

}
end function

c
timelimit l

told executeTr(c l,)=
t

cold c=
n 1=

clock timelimit<()
c moveTask(cold n,)=

n

n n 1+=
c moveTaskTr(cold n,)=

t executeTr c l,()=
t told≥

cold c=
told t=
n 1=

clock clock l+=

Fig. 4. An online adaptation approach for throughput optimization.

ni i
ti1 ti2 … tini
, , , tik

i pik k 1 … ni, ,= λ

λ

pik tik ti mean,–()2

 
 
 

k 1=

ni

∑
 
 
 
 
 

i
∑

ti mean,{ }2

i
∑

--=

ti mean, i
12

. (7)

Generally, the more non-deterministic the application is, the longer it needs to be
executed to determine an accurate value of average throughput.

The function adaptThroughput returns a configuration that it deems most appro-
priate for throughput maximization. Note that if moving any single task from the max-
imally loaded processor to the minimally loaded processor does not improve
performance then the heuristic chooses a pair of tasks to be moved to another proces-
sor. This approach of progressively increasing the number of tasks to be moved contin-
ues whenever all combinations for a particular number of tasks have been exhausted.
This approach thus attempts to make small low-complexity changes first and if that
does not improve performance, the approach gradually reaches towards higher-com-
plexity changes. The higher complexity changes are larger in number than small, low-
complexity changes, and help the system in escaping from local minima.

In our experiments, inter-processor communication (IPC) per time unit during the
execution is taken as an estimate for relative power consumption. Since IPC consumes
relatively large amounts of power, it is a reasonable approximation for comparing the
power consumption levels of alternative configurations on a homogeneous multipro-
cessor. To find a configuration that reduces the power consumption, we use an
approach (called adaptPower) similar to the adaptThroughput approach used for
throughput optimization, except that the probability of a task on a maximally loaded
processor being transferred to a minimally loaded processor depends upon the IPC
associated with that task. The higher the IPC associated with a task, the higher its
chances are of being transferred to another processor.

6. Experimental results
An on-line adaptation scheme for refining a given goal is specified in Figure 5,

and it is represented as function onlineAdaptation in the CMF pseudocode of Figure 2.
In Figure 5, the appropriate online optimization strategy, such as the adaptThroughput
or adaptPower approaches discussed above, is selected depending on the current opti-
mization objective and system state. Typically, this strategy will be drawn dynamically
from a library of simple, low-complexity techniques.

Table 1 shows the performance of our implementation of CMF using the heuris-
tics developed in Section 5 for throughput optimization and power optimization based
on various goals applied to several DSP benchmarks, including fast Fourier transform,
filter bank, music synthesis, and measurement applications. The starting configuration
that is refined is found by using standard critical path scheduling. The critical path
length is computed in terms of average execution times of actors. The set of relevant
metrics for our experiments is , where denotes the average iteration
period of the execution and denotes the average power consumption. Experiments
are reported for the following eight goals.

 = {(P, 0.270), (T, 265), (P, 0.250), (T, 0.255), P}

ti mean, tik
k 1=

ni

∑
 
 
 
 

ni⁄=

M M T P,{ }= T
P

g1
13

 = {(T, 260), (P, 0.240), T}
 = {P, 0.125), (T, 180), P}
 = {(T, 165), (P, 0.110), (T, 160), P}
 = {(T, 360), (P, 0.160), (T, 355), (P, 0.155), (T, 350), P}
 = {(T, 345), P}
 = {(T, 215), (P, 0.040),T}
 = {(P, 0.053), (T, 215), (P, 0.050), (T, 210), P}

In Table 1, the column titled “Goal” represents the goal that is applied to the
application. Also, for a non-negative integer , column denotes the value of a met-
ric of the best configuration found by the on-line adaptation scheme, after configura-
tions have been assessed by executing them for some time. For the same experiments
that are reported in Table 1, Table 2 shows the times at which different constraints
associated with the applied goals are satisfied. For a given goal that is applied to an
application, denotes the number of configurations that have been executed in order
to assess them before the th constraint in the applied goal is satisfied. One can see

Applicati
on Goal Metric

fft1 0 T 278 278 278 278 256 254 254

P .273 .269 .269 .269 .204 .226 .226

fft1 .359 T 309 256 251 251 251 252 259

P .242 .282 .278 .278 .278 .257 .221

qmf 0 T 145 242 198 198 186 170 170

P .133 .117 .098 .098 .088 .096 .096

qmf .256 T 142 164 162 162 153 153 153

P .136 .127 .110 .110 .110 .110 .110

karp 0 T 395 353 346 342 342 342 342

P .131 .158 .156 148 .148 .148 .148

karp .309 T 450 352 300 342 342 346 346

P .115 .155 .159 .151 .151 .148 .148

meas 0 T 220 212 201 184 184 184 184

P .054 .075 .059 .021 .021 .021 .021

meas .405 T 185 218 212 212 212 210 196

P .064 .018 .037 .037 .037 .019 .040

Table 1. Experimental results for CMF.

λ v0 v10 v20 v30 v40 v50 v60

g1

g2

g3

g4

g5

g6

g7

g8

g2
g3
g4
g5
g6
g7
g8

k vk
k

ni
i

14

Fig. 5. On-line adaptation scheme. This is an elaboration of function onLineAdaptation,
which is called in Figure 2. It is effectively a wrapper for specialized reconfiguration opti-
mizations.

function onLineAdaptation
input , ,
global goal , ,
global constant time
global stack /* constraint stack */

time
while (and){

while is not satisfied {
if () {

adaptThroughput()
} else if () {

adaptPower()
} else if …

… /* adapt for other objectives */ …
}

}
(, ,) = promoteConstraint(,)

}
end function

objectivec constraintc configurationc
g gc go

timelimit
S

t 0=
t timelimit< gc go=

constraintc
objectivec throughput=

configurationc
objectivec power=

configurationc

g constraintc objectivec g S

App. Goal

fft1 0 1 37 39 42 -

fft1 .359 7 56 - - -

qmf 0 8 48 - - -

qmf .256 0 13 36 - -

karp 0 4 7 9 28 28

karp .309 16 - - - -

meas 0 8 28 - - -

meas .405 3 17 17 48 -

Table 2. Results for CMF tracking an applied goal.

λ n1 n2 n3 n4 n5

g1

g2

g3

g4

g5

g6

g7

g8
15

that in these experiments, CMF is able to meet the constraints specified in the given
goals within a reasonable number of configurations.

7. Conclusion
In this paper, we have developed a framework called CMF for on-line adaptation

of system-wide configurations of embedded multiprocessors. The objective is to pro-
vide a framework that imposes minimal constraints on how reconfiguration is actually
performed (i.e., the specific optimization algorithms that are used during off-line and
online configuration synthesis), while providing systematic support for managing the
reconfiguration process in terms of configuration stores, performance constraints, and
optimization objectives. The CMF approach is shown to be effective through analysis
and experimental results on several DSP benchmarks, which demonstrate the ability of
CMF to systematically adapt system configurations towards progressively better solu-
tions for a variety of goals, even in the presence of significant uncertainties in task exe-
cution times.

8. References
1. S. S. Bhattacharyya. Hardware/software co-synthesis of DSP systems. In Y. H. Hu,

editor, Programmable Digital Signal Processors: Architecture, Programming, and
Applications, pages 333-378. Marcel Dekker, Inc., 2002

2. T. Blickle, J. Teich, and L. Thiele. System-level synthesis using evolutionary algo-
rithms. Journal of Design Automation for Embedded Systems, 3(1):23-58, 1998.

3. M. Charikar and S. Guha. improved combinatorial algorithms for facility location
and k-median problems. Proc. 40th Annual Symposium on Foundations of Com-
puter Science, 378-388, 1999.

4. F. Chudak, “Improved approximation algorithms for uncapaciateted facility loca-
tion”, In R. E. Bixby, E. A. Boyd and R. Z. Rios-Mercado, eds., Integer Program-
ming and Combinatorial Optimization, Springer LNCS Vol. 1412, 180-194, 1998.

5. T. Cormen et al. Introduction to Algorithms, McGraw Hill, 2000.
6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the The-

ory of NP-Completeness, W. H. Freeman and company, 1999.
7. J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a reconfigurable

coprocessor. In Proceedings of the IEEE Symposium on FPGAs for Custom Com-
puting Machines, pages 24-33, April 1997.

8. K. Jain and V. V. Vazirani, “Approximation algorithms for metric Facility location
and k-median problems using the primal-dual scheme and Lagrangian relaxation”,
Proc. Foundations of Computer Science, 1999.

9. S. Lohani and S. S. Bhattacharyya. System synthesis for polymorphous comput-
ing architectures. Technical Report UMIACS-TR-2002-12, Institute for Advanced
Computer Studies, University of Maryland at College Park, February 2002. Also
Computer Science Technical Report CS-TR-4330.

10. D. B. Shmoys, E. Tardos, and K. I. Aardal. Approximation algorithms for facility
location problems. Proc. 29th ACM Symp. on Theory of Computing, 265-274,
1997.

11. S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:Scheduling and
16

Synchronization, Marcel Dekker, 2000.
12. E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.

Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal, “Baring it all
to Software: Raw Machines”, IEEE Computer, September 1997, pp. 86-93.

13. S. Wong, S. Vassiliadis, and S. Cotofana. Microcoded reconfigurable embedded
processors: Current developments. In Proceedings of the International Workshop
on System Architecture Modeling and Simulation, pages 207-223, July 2001.

14. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257-271, November 1999.

15. A. Y. Zomaya, “Parallel and Distributed Computing: The Scene, the Props, the
Players,” Parallel and Distributed Computing Handbook, A.Y. Zomaya, ed., pp.
5-23, New York: McGraw-Hill, 1996.
17

Customising Flexible Instruction Processors:
A Tutorial Introduction

Shay Ping Seng1, Wayne Luk1 and Peter Y.K. Cheung2

1 Department of Computing, Imperial College, London, UK.
2 Department of EEE, Imperial College, London, UK.

Abstract. This paper presents a tutorial about the Flexible Instruction
Processor (FIP) methodology which facilitates trade-offs between area,
performance and functionality of instruction processor designs, both at
compile time and at run time. We explore the customisation of FIPs and
discuss the use of FIPs to target the design space between off-the-shelf
instruction processor designs that provide flexible computation, and cus-
tom hardware designs that provide high performance. We demonstrate
how customisation enables FIPs to perform competitively with current
main-stream processors and also with dedicated hardware, in certain ap-
plications such as CaffineMark Benchmarks and AES encryption.

1 Introduction

Software implementations on standard commercial processors often provide good
performance, a wide range of functionality and an effective means of targeting
evolving standards. However, they tend to lose efficiency when dealing with
non-standard operations and non-standard data that are not supported by their
instruction set [21]. Direct hardware implementations tend to provide the best
performance for a given application, but lack the flexibility of an instruction pro-
cessor. When designs are implemented on FPGAs, reconfiguration can be used to
gain functionality, thereby providing flexibility to direct hardware designs. This
is at the expense of performance, since the time required for reconfiguration can
be long and will become longer due to the increasing density of FPGAs.

The resources afforded by large programmable devices makes implement-
ing instruction processors on FPGAs increasingly attractive [6]. Customisa-
tion of processors implemented on configurable logic provides a way to balance
the trade-offs between direct hardware and software implementations. One way
of supporting customisation is to augment an instruction processor with pro-
grammable logic for implementing custom instructions.

This paper presents a tutorial introduction about the Flexible Instruction
Processor (FIP) methodology which facilitates trade-offs between area, perfor-
mance and functionality, both at compile time [19] and at run time [20]. In
particular, we explore the customisation of FIPs and discuss the use of FIPs
to target the design space between off-the-shelf instruction processor designs
that provide flexible computation, and custom hardware designs that provide
high performance. We demonstrate how customisation enables FIPs to perform
competitively with current main-stream processors and also with dedicated hard-
ware, for applications such as CaffineMark Benchmarks and AES encryption.

Generic
instruction processor

AES
(encrypt)

DES......
Increasing

performance
Increasing
flexibility

AES
(decrypt)

AES1

AES2

AES3
(encrypt)

AES4
(decrypt)

Fig. 1. FIP design spectrum. On the left of the spectrum lies the generic instruction
processor, such as one that executes Java bytecodes. AES1 and AES2 are FIPs opti-
mised for AES operation. AES3 and AES4 are further optimised respectively for AES
encryption and decryption. FIPs on this spectrum have similar area constraints.

2 FIP Design Spectrum

Standard general-purpose instruction processors are highly optimised and are
implemented in custom VLSI technology. They are fixed in architecture, and
each represents a point in a spectrum of possible implementations. Our FIP
methodology provides a way of traversing the design spectrum to create cus-
tomised processors that are tuned for specific applications, at compile time and
at run time.

FIPs provide a well-defined control structure that facilitates varying the de-
gree of sharing for system resources. This allows critical resources to be increased
as demanded by the application domain, or eliminated if not used. FIPs also pro-
vide a systematic method for supporting customisation by allowing user-designed
hardware to be accommodated as new instructions. These design-time optimi-
sations provide a means of tailoring an instruction processor to a particular
application or to applications for a specific domain, such as data encryption.

Direct hardware implementations provide fast performance but once they
have been manufactured and deployed, there is little scope for improvement. In-
struction processors, on the other hand, provide a solution that is easily upgrad-
able and flexible. However this flexibility is often provided at the expense of
performance. FIPs provide a way to explore the design space between these two
extremes. For instance, custom instructions can be included into a design to
speed up their operation, at the expense of increasing area and power consump-
tion.

To illustrate our approach, consider designs that we have developed to sup-
port AES (Advanced encryption standard) [13] for data encryption and decryp-
tion. These designs have similar area constrains. AES1 in Figure 1 is a FIP imple-
mentation of the AES algorithm. It has been customised by removing hardware
associated with unused opcodes in the generic instruction processor. However
AES1 does not contain any custom instructions. AES2 has three custom in-
structions that will speedup both encryption and decryption. AES2 shows better

performance for both encryption and decryption when compared to AES1. The
new custom instructions replace the functionality of some opcodes. The opcodes
no longer in use are removed to provide area for the custom instructions. Hence
AES2 is less flexible than AES1, in that some programs executable on AES1 may
no longer be executable on AES2. AES3 is a further specialisation that improves
the performance of AES encryption: a new custom instruction that replaces the
inner loop for encryption has been introduced. This provides a four-fold speedup
over AES2; however, the three custom instructions introduced in AES2 have to
be removed to make space for this new instruction. So while encryption speed is
improved, decryption speed suffers. AES4 specialises the decryption routine to
give a five-fold improvement over AES2 but with the same kind of trade-offs as
AES3.

In contrast to FIPs, each conventional instruction processor occupies one
point in the design spectrum shown in Figure 1. Once deployed, these processors
cannot adapt itself to suit run-time conditions, unlike FIPs.

3 Related Work

The viability of implementing instruction processors on FPGAs has been demon-
strated by Altera [2] and Xilinx [28]. Many techniques and tools for customising
instruction processors have been reported. This section outlines a small subset
and organises them into three categories: fixed processors coupled with config-
urable logic, partially configurable processors, and fully configurable processors.

The PRISC [18], Chimaera [7], ConCISe [9] and DISC [26] architectures are
examples of systems that couple a fixed processor core with field programmable
hardware. PRISC provides customisation in the form of programmable func-
tional units. The goal of PRISC is to augment the performance of the RISC
microprocessor by allowing programmable functional units to be pipelined at
a granularity that is smaller than the existing cycle time. The Chimaera sys-
tem is similar to PRISC. The Chimaera reconfigurable functional unit can be
configured to implement a 4-LUT, two 3-LUTs or a 3-LUT or a carry chain
computation. However, Chimaera logic cells do not contain latches or flip-flops
and require results to be stored back to the register file.

The ConCISe system features a CPLD-based reconfigurable functional unit
and a system to encode multiple custom instructions in a single reconfigurable
unit. The objective of this technique is to reduce the time for reconfiguration.
Custom instructions implementable in ConCISe are limited to combinational
logic. These three systems, PRISC, Chimaera and ConCISe, provide compilation
tools that attempt to automatically generate mappings for the reconfigurable
logic. Custom instructions tend to be fine-grain and relatively small, due in part
to the difficulty of the matching problem and the size of the programmable fabric
available. Like the systems mentioned above, DISC consists of a main processor
coupled with reconfigurable functional units. The DISC system requires custom
instructions to be identified and programmed manually. The main focus of the
DISC system is in the handling of the loading of custom instructions. DISC

treats the reconfigurable logic as a cache, with a miss in the cache resulting in
an automatic stall and the loading of the required custom instruction. Several
vendors [1, 24, 27] are also offering a route to implementations featuring fixed
processor cores interfaced to programmable logic.

NIOS [2], MicroBlaze [28] and Xtensa [23] are configurable processors that
implement a fixed instruction set, but allows the implementation of the proces-
sor to be customised to a limited degree. NIOS and MicroBlaze are designed
to be configured and run on an FPGA, while Xtensa is designed to be imple-
mented on ASICs. Design tools for these systems help the processor designer
to customise a processor at design time. The NIOS and Xtensa system support
custom instructions but they require the custom instructions to be hand-crafted.

CRISP [3] and BUILDABONG [16, 22] are projects that explore methods for
prototyping instruction sets and application specific processor designs. CRISP
provides a template for reconfigurable instruction set processors to be described.
The BUILDABONG project divides its goals into four phases: architecture de-
scription and composition, simulation, compiler generation and optimal archi-
tecture and compiler-codesign.

The FIP approach is based on a technique advocated by Page [15] where
instruction processor designs are captured as parallel computer programs. Our
work includes three main themes: (a) techniques for customising the design of
FIP architectures, (b) a tool framework for generating and optimising executable
code for FIPs, and (c) extensions of the above to cover run-time reconfigurable
designs. Although FIPs can target ASICs, our focus is on targeting FPGAs.
Implementing FIPs on FPGAs allow us to explore the possibility of adapting
FIPs to the run-time characteristics of a system over a period of time.

4 Flexible Instruction Processors

FIPs consist of a processor template and a set of parameters [19]. Different pro-
cessor implementations can be produced by varying the template parameters.
FIP templates provide a general structure for creating processors of different
styles: for instance stack-based or register-based processors. The processor tem-
plates can be further enhanced with features found in modern high-performance
processors, such as superscalar and pipelined architectures. Various Java Virtual
Machines [10] and MIPS style processors [12] have been implemented. Our work
is intended to provide a general method for creating processors with different
styles.

When compared with a direct hardware implementation, instruction proces-
sors have the additional overheads of instruction fetch and decode. However,
there are also many advantages.

– FIPs allow customised hardware to be accommodated as new instructions.
This combines the efficient and structured control path associated with an
instruction processor with the benefits of hand-crafted hardware. The pro-
cessor and its associated opcodes provide a means to optimise control paths

Stack-based
processor

Fetch

Execute

Stack resources

instr 1

instr 2

...

#include stack
#include top_of_stack_reg
#include program_counter
chan fetchchan;

par{
{// -- Fetch module --
Fetch_from_memory(instr);
//send instr to Execute
fetchchan ! instr;
pc++;
...}

{// -- Execute module --
//recieve instr from Fetch
fetchchan ? instr;
switch (decode(instr))
 {
 #include stack_instr1
 #include stack_instr2
 ...}
}
}

Skeletal processor
template

Fetch

Execute

send Instruction

receive Done

receive
Instruction

decode()

switch()
{
 case :
 ...
}

instr 1
send Done

Instantiate
parameters

Fig. 2. A skeletal processor template. The Fetch module fetches an instruction from
external memory and sends it to the Execute module, which waits until the Execute
module signals that it has completed updating shared resources, such as the program
counter. This diagram also shows the instantiation of a skeletal processor into a stack
processor, and the Handel-C description of the stack processor. The par construct
allows statements to be executed in parallel. The statement c?x assigns the value read
from the channel c to the variable x, while the statement c!e writes the expression e

to the channel c.

through optimising compilers. Non-standard datapath sizes can also be sup-
ported.

– Critical resources can be increased as demanded by the application domain,
and eliminated if not used. Instruction processors provide a structure for
these resources to be shared efficiently, and the degree of sharing can be
determined at run time.

– Our FIP approach enables different implementations of a given instruction
set with different design trade-offs. It is also possible to relate these im-
plementations by transformation techniques [15], which provide a means of
verifying non-obvious but efficient implementations.

– FIPs enable high-level data structures to be easily supported in hardware.
Furthermore, they help preserve current software investments and facilitate
the prototyping of novel architectures, such as abstract machines for exact
real arithmetic and declarative programming [14].

FIPs are assembled from a processor template with modules connected to-
gether by communicating channels. The template can be used to produce differ-
ent styles of processors, such as stack-based or register-based styles. The param-
eters for a template are selected to transform a skeletal processor into a processor
suited for its task (Figure 2). Possible parametrisations include addition of cus-
tom instructions, removal of unnecessary resources, customisation of data and
instruction widths, optimisation of opcode assignments, and varying the degree
of pipelining.

When a FIP is assembled, required instructions are included from a library
that contains implementations of these instructions in various styles. Depending
on which instructions are included, resources such as stacks and different decode
units are instantiated. Channels provide a mechanism for dependencies between
instructions and resources to be mitigated.

The FIPs in our framework are currently implemented in Handel-C, a C
like language for hardware compilation supported by the DK 1 design suite
[4]. Handel-C has been chosen because it keeps the entire design process at a
high level of abstraction, which benefits both the design of the processor and
the inclusion of custom instructions. Handel-C also provides a quick way to
prototype designs. Our focus is to provide FIPs that are customised for specific
applications, particularly light-weight implementations for embedded systems.
Using a high-level language like Handel-C simplifies the design process by having
a single abstract description. A high-level language can also provide a mechanism
for demonstrating the correctness of the FIP [8, 15].

5 Customising FIPs

Modern instruction processors contain many features to enhance execution effi-
ciency; examples include superscalar, VLIW and EPIC architectures. The tech-
niques used by VLIW and EPIC architectures to reduce the ratio of instruction
fetches to executions can be incorporated into FIPs. Additionally FIPs provide
a mechanism for more complex performance trade-offs to be made. Execution
efficiency can be traded off with area, power consumption and functionality.

Custom instructions reduce the ratio of the time for instruction fetch and
the time for instruction execution, increasing the performance of the instruction
processor. Additional resource is introduced so area is increased. However due to
the increase in execution efficiency, it may be possible to lower the clock speed
of the processor while maintaining an acceptable level of performance. Examples
of such trade-offs will be given in Section 7.

FIP implementation Area (gates and latches) Cycles

(a) Sequential no multiplier 500 81
(b) Sequential with multiplier 606 39
(c) Sequential with custom instruction 687 20
(d) Pipelined with custom instruction 938 14

Table 1. Various FIPs with different area-efficiency trade-offs for the sum of squares
computation. Area results are taken from technology independent estimates provided
by the DK 1 design suite. FIP (a) is an accumulator style processor that implements
multiplication with repeated additions. FIP (b) is the same as (a) except that it has
a multiplier unit. FIP (c) has dedicated resources to calculate the sum of two squares.
FIP (d) is a pipelined version of (c).

Let us consider a simple example. Table 1 shows FIPs with different trade-
offs for calculating the sum of the square of two numbers. FIP (a) is small but
relatively inefficient. FIP (b) is larger since it contains a multiplier unit. Including
custom instructions and pipelining also greatly improves the performance, but
also increase the area. Custom instructions can be hand-crafted or generated
automatically, by directly connecting up the data path of the sequence of opcodes
that make up the sum of squares function. As Table 1 shows, higher performance
can be achieved at the expense of area. If however area is constrained, FIP
functionality will have to be reduced, making the FIP less flexible. This would
thus correspond to a right movement in the FIP design spectrum in Figure 1.
Section 7 contains more such examples.

Different styles of custom instructions can be incorporated into FIPs. Ex-
amples of such custom instructions include look-up table based instructions and
streaming style instructions [20].

6 Compilation Strategy

Our design flow is described in Figure 3. The input to the design environment is
a specification of the application. The application specification can take several
forms; C or Java for instance. At this stage, user design options can be included
to constrain speed, area or resources used.

The FIP library contains templates of different processors, such as JVM or
MIPS for instance. The profiling step collects data such as frequency of certain
combination of opcodes and resources required. The initial set of parameters
derived from the user’s specification is augmented by information gathered by
the FIP profiler. The FIP template generator creates an initial FIP.

At this point, the design flow is split into an analysis step and FIP instantia-
tion step. The analysis step involves analysing sharing possibilities and introduc-
ing custom instructions. The custom specification is profiled and code candidates
for implementation into custom instructions are analysed. Run-time reconfig-
urable possibilities are also explored. The FIP instantiation stage involves archi-
tecture optimisations on congestion, scheduling, speed, area and latency. Custom
instructions selected by the analysis step is also instantiated. Technology-specific
optimisations, such as using vendor-provided macros or technology-specific fea-
tures like block RAMS, can also be applied at this level. The completion of
these two steps results in source code for the application, decision condition in-
formation (to detail when to configure to this FIP) and the FIP configuration
information. FIP instantiation and analysis can be iteratively employed to pro-
duce different variations of FIPs with different characteristics to achieve good
speed-area trade-offs. The decision condition information is used by the run-time
environment to decide if this FIP is required for execution.

The FIP selector stage selects one or more FIP implementation and compiles
the source code into code executable by that FIP. The executable code, decision
condition information and FIP configuration information is then provided to the
FIP management system for execution.

Customisation specification:
eg. application source code and data

FIP Profiler

FIP analysis:

Analyse operations for
optimisations and

operations for custom
instructions.

Identify run-time and
reconfiguration possibilities.

FIP instantiation:

Architecture optimisations,
scheduling, congestion
detection, technology

independent optimisations

FIP configuration
information

FIP builder

Instruction
information

Processor
architecture
information

Decision
condition

information

FIP library

FIP Selector

Annotated
source code

FIP compiler

Executable
FIP code

Decision
condition

information

FIP
configuration
information

FIP
management

system

FIP template
generator

Fig. 3. FIP design flow. This diagram shows the steps involved in producing a FIP
tuned to a customisation specification.

Fig. 4. The PGen design tool allows a Java program to be compiled and analysed.
It also allows custom instructions to be created. FIPs and their associated executable
code can also be generated.

Figure 4 shows PGen, an implementation of our design flow. The window
labelled “Application code” shows a Java program as the custom specification.
The Java code can be compiled and inspected with the Java Class View window.
The Java Class View tool analyses the compiled code and provides information
such as the number of JVM opcodes used, the frequency of their use, the opcodes
used by various functions in the class, and the data stored in the JVM’s constant
pool. This step corresponds to the analysis block in Figure 3. This information
is used to instantiate the FIP. The right pop-up box shown next to the project
window, shows PGen suggesting the function nextNum as a candidate for im-
plementation as a custom instruction. Once the user is satisfied with the design,
a FIP and its associated executable code is produced.

The run-time environment is responsible for the execution and management
of the system. It maintains a database of available FIPs, their associated ex-
ecutable code and a decision condition library. If configuration occurs too fre-
quently, the overall performance of the system can suffer. The run-time environ-
ment provides a way to fine tune the frequency of reconfiguration. For instance,
it can decide that a more efficient FIP cannot be introduced if the reconfigura-
tion time is unacceptable. During execution, a FIP can keep track of run-time
statistics, such as the number of times that user-specified functions are called,
or the most frequently used opcodes. These run-time statistics can be used to
adapt the FIP. Further information about the run-time environment for FIP can
be found elsewhere [20].

0

10000

20000

30000

40000

50000

60000

70000

Sieve Atom Loop Atom Logic Atom String Atom

Embedded CaffineMarks 3.0 Tests

T
es

t s
co

re
s

AMD Athlon 1600+ (1.4GHz)
FIP (40MHz)

Fig. 5. Caffine Mark 3.0 results. Higher scores are better. On the AMD machine, the
benchmark is executed on Sun Microsystem’s Hot Spot JVM version 1.3.1 02.

7 Implementation and Evaluation

This section describes various implementations of FIPs for the Java Virtual Ma-
chine and for implementing the AES algorithm, and compares their performance
against general-purpose processors and custom hardware.

7.1 CaffineMark 3.0 Benchmarks

The embedded CaffineMarks 3.0 [17] Java benchmark is a set of tests used to
benchmark performances of JVMs in embedded devices. We have compiled four
of the six benchmarks in this set. The Sieve Atom implements a classic sieve of
Eratosthenes to find prime numbers. The Loop Atom uses sorting and sequence
generation to measure optimisation of loop instructions. The Logic Atom tests
the speed of decision-making instructions. The String Atom measures the effi-
ciency of string manipulation and finding substring within strings. The other
two tests that have not yet been implemented involve floating-point calculation
and method invocation speed testing.

Figure 5 shows the performance of a FIP-JVM (clocked at 40MHz) com-
pared with a JVM running on an AMD Athlon XP 1600+ (1.4GHz) machine.
The FIP contains custom instructions that help accelerate the execution of the
benchmarks. The FIP implementation, despite running on a slower clock, out
performs the conventional processor on all but one of the test. For that test, the
Loop Atom, the FIP when clocked at 65MHz can achieve the same performance
as the conventional processor.

7.2 AES

We illustrate our approach with another example using the AES (Rijndael) al-
gorithm [13], an iterated block cipher with variable block and key length.

We have two implementations. Our first implementation, FIP (i), is aug-
mented by a single custom instruction that directly connects the data paths for
the individual component transformations. This achieves an encryption of 128
bits of data with a 128-bit key in 99 cycles.

The AES specification suggests that the AES can be accelerated by unrolling
several of the AES functions into look-up tables. Our second implementation,
FIP (ii), utilises this method and achieves an encryption of 128 bits of data with
a 128-bit key in 32 cycles.

Implementations Cycles/Block Hardware resources Mbps/MHz Flexible

Software[5] (C/C++) 340 0.4 Yes

FIP (i) 99 1770 Slices 2 BRAMs 1.3 Yes

FIP (ii) 32 1393 Slices 10 BRAMs 4 Yes

Hardware[25]
(Spartan II 100-6)

11 460 Slices 10 BRAMs 11.5 No

Hardware[11]
(Virtex-E 812-8)

1 2679 Slices 82 BRAMs 129.6 No

Table 2. Various AES implementations. Blocks are 128 bits with 128 bit keys. The
C/C++ implementation is written for the Pentium family of processors. FIP implemen-
tations are written in Java and run on a sequential version of the JVM implemented on
a Spartan II 300E-6. The hardware implementation on the spartan is latency optimised
and performs at 0.52 Gbps (45MHz). The hardware implementation on the Virtex-E
runs at a data rate of 7 Gbps (54MHz).

Table 2 compares different implementations of the AES algorithm. The fastest
reported C/C++ implementation, by Gladman [5], achieves an encryption speed
of about 350Mbps on a 933MHz Pentium 3.

Running at 40MHz, FIP(i) encrypts at 51.7Mbps and FIP(ii) at 160 Mbps.
FIP(ii) performs ten times better than software, in a Mbps per MHz compar-
ison. Hand-placed hardware implementations provide good performance, but
cannot be used for general computations. This flexibility has been compromised
to improve performance. However these hardware implementations can be incor-
porated into FIPs as custom instructions [20].

8 Concluding Remarks

The FIP approach offers a framework for trading off speed, flexibility and area.
It provides the flexibility afforded by instruction processors, and custom in-
structions can be introduced to improve performance. Our proposed design-time
and run-time environments provide a means of customising these processors and
compiling code for them. They also provide a mechanism for these processors to
adapt to run-time conditions, depending on usage patterns.

Current and future work includes improving the efficiency of our FIP im-
plementations, and refining the tools for automating the support for custom
instructions.

Acknowledgements

The support of Celoxica Limited and the UK Engineering and Physical Sciences Re-

search Council (Grant number GR/N 66599) is gratefully acknowledged.

References

1. Altera Corporation. Excalibur Embedded Processor Solutions.
http://www.altera.com/html/products/excalibur.html.

2. Altera Corporation. Nios Embedded Processor System Development.
http://www.altera.com/products/devices/nios/nio-index.html.

3. P. Op de Beeck et al. CRISP: A template for reconfigurable instruction set proces-
sors. In Field Programmable Logic and Applications. Springer, LNCS 2147, 2001.

4. Celoxica. DK 1 Design Suite. http://www.celoxica.com.

5. B. Gladman. Implementations of AES (Rijndael) in C/C++ and Assembler.
http://fp.gladman.plus.com/cryptography technology/rijndael/.

6. J. Gray. Building a RISC system in an FPGA. In Circuit Cellar: The magazine
for computer applications, pp. 20–27. March 2000.

7. S. Hauck. The chimaera reconfigurable functional unit. In Proc. IEEE Symp. on
Field Programmable Custom Computing Machines, pages 87–97, 1997.

8. J. He, G. Brown, W. Luk and J. O’Leary. Deriving two-phase modules for a multi-
target hardware compiler. In Proc. 3rd Workshop on Designing Correct Circuits.
Springer Electronic Workshop in Computing Series, 1996.

9. B. Kastrup, A. Bink and J. Hoogerbrugge. ConCISe: A compiler-drive CPLD-
based instruction set accelerator. In Proc. IEEE Symp. on Field Programmable
Custom Computing Machines. IEEE Computer Society Press, 1999.

10. T. Lindholm and F. Yellin. The Java Virtual Machine Specification (2nd Ed.).
Addison-Wesley, 1999.

11. M. McLoone and J. McCanny. Single-chip FPGA implementation of the Advanced
Encryption Standard algorithm. In Field Programmable Logic and Applications,
LNCS 2147. Springer, 2001.

12. MIPS Technologies Incorporated. MIPS processors. http://www.mips.com.

13. National Institute of Standards and Technology. Advanced Encryption Standard.
http://csrc.nist.gov/encryption/aes.

14. C. North. Graph reduction in hardware. Master’s thesis, Oxford University, 1992.

15. I. Page. Automatic design and implementation of microprocessors. In Proc.
WoTUG-17, pages 190–204. IOS Press, 1994.

16. Fachgebiet Datentechnik, Universität Paderborn. The BUILDABONG project.
http://www-date.upb.de/RESEARCH/BUILDABONG/buildabong.html.

17. Pendragon Software Corporation. CaffineMark 3.0 Java Benchmark.
http://www.pendragon-software.com/pendragon/cm3/index.html.

18. R. Razdan and M. D. Smith. A high-performance microarchitecture with hardware-
programmable functional units. In Proceedings of the 27th Annual International
Symposium on Microarchitecture, pages 172–180, 1994.

19. S. Seng, W. Luk and P. Cheung. Flexible Instruction Processors. In Proc. Interna-
tional Conference on Compilers, Architecture and Synthesis for Embedded Systems.
ACM, 2000.

20. S. Seng, W. Luk and P. Cheung. Run-time Adaptive Flexible Instruction Proces-
sors. To be published in Field Programmable Logic and Applications, 2002.

21. H. Styles and W. Luk. Customising graphics applications: techniques and program-
ming interface. In Proc. IEEE Symp. on Field Programmable Custom Computing
Machines. IEEE Computer Society Press, 2000.

22. J. Teich and R. Weper. A joined architecture/compiler design environment for
ASIPs. In Proc. International Conference on Compilers, Architecture and Synthesis
for Embedded Systems, 2000.

23. Tensilica Incorporated. Xtensa Configurable Processor.
http://www.tensilica.com/technology.html.

24. Triscend Corporation. The Configurable System on a Chip.
http://www.triscend.com/products/Index.html.

25. N. Weaver and J. Wawrzynek. Very high performance, compact AES implementa-
tions in Xilinx FPGAs. http://www.cs.berkeley.edu/∼nweaver/sfra/rijndael.pdf.

26. M. Wirthlin and B. Hutchings. A dynamic instruction set computer. In Proc.
IEEE Symp. on Field Programmable Custom Computing Machines, pp. 99–107.
IEEE Computer Society Press, 1995.

27. Xilinx Incorporated. PowerPC Embedded Processor Solution.
http://www.xilinx.com.

28. Xilinx Incorporated. MicroBlaze Soft Processor.
http://www.xilinx.com.

Entropy Decoding on TriMedia/CPU64

Mihai Sima1;2, Evert-Jan Pol2, Jos T.J. van Eijndhoven2,
Sorin Cotofana1, and Stamatis Vassiliadis1

1 Delft University of Technology, Department of Electrical Engineering,
Mekelweg 4, 2628 CD Delft, The Netherlands,

fM.Sima,S.D.Cotofana,S.Vassiliadisg@et.tudelft.nl
2 Philips Research Laboratories, Department of Information and Software Technology,

Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands,
fevert-jan.pol,jos.van.eijndhoveng@philips.com

Abstract. The paper describes a software implementation of an MPEG–compli-
ant Entropy Decoder on a TriMedia/CPU64 processor. We first outline entropy
decoding basics and TriMedia/CPU64 architecture. Then, we describe the refer-
ence implementation of the entropy decoder, which consists mainly of a software
pipelined loop. On each iteration, a set of look-up tables partitioning the Variable-
Length Codes (VLC) table defined by the MPEG standard are accessed in order
to retrieve the run-level pair, or detect an end-of-block or error condition. An
average of 21.0 cycles are needed to decode a DCT coefficient according to this
reference implementation. Then, we focus on software techniques to optimize the
entropy decoding software pipelined loop. In particular, we propose a new way
to partition the VLC table such that by exposing the loop prologue to the com-
piler, testing each of the end-of-block and error conditions within the prologue
becomes superfluous. This is based on the observation that either an end-of-block
or error condition will never occur within the first table look-up. For the proposed
implementation, the simulation results indicate that an average of 16.9 cycles are
needed to decode a DCT coefficient. That is, our entropy decoder is more than
20% faster than its reference counterpart.

1 Introduction

The introduction of digital audio and video was the starting point of multimedia because
it enabled audio and video, as well as text, figures, and tables, to be used in a digital form
in a computer and be held in the same manner. However, digital audio and video require
a tremendous amount of information bandwidth unless compression technology is used,
which in turn calls for a large amount of processing. For example, National Television
Systems Committee (NTSC) resolution MPEG-2 [1] decoding requires more than 400
MOPS, and 30 GOPS are required for encoding.

TriMedia/CPU64 is a VLIW core targeted for real-time processing of multimedia
streams [2]. Although its processing power allows significant processing of video data,
the VLIW core itself was intended to be integrated on-chip with a set of hardwired
co-processors which can perform other tasks with stringent real-time requirements in
parallel. An example of such co-processor is the Variable-Length Decoder (VLD) [3].

One of the drawbacks of the hardwired solution is the lack of flexibility, since a
different full-custom circuit is needed for each particular task. Software programmabil-
ity ensures that a single device can be applied in a range of different products and can
adapt to quickly evolving standards in the media domain. Therefore, a software solution
which can provide the needed performance is always preferred to the hardware solution.

When the application exhibits data and instruction-level parallelisms,
TriMedia/CPU64 has proved significant speed-up over previous TriMedia families [4].
However, the speed-up is not so high when parallelism is not available. Entropy de-
coding [5, 6] consists of Variable-Length Decoding (VLD) followed by a Run-Length
Decoding (RLD), both VLD and RLD being sequential tasks. Due to data dependency,
entropy decoding is an intricate function on TriMedia, since a VLIW architecture must
benefit from instruction level parallelism in order to be efficient.

An entropy decoder implementation on TriMedia/CPU64 which can decode a Dis-
crete Cosine Transform (DCT) coefficient in 21 cycles has been proposed by Pol [7].
The VLD is implemented as a repetitive look-up into the Variable-Length Codes (VLC)
table defined by MPEG standard, where each iteration analyzes a fixed-size chunck of
bits. When a coefficient is completely decoded, a run-level pair is generated, otherwise
an offset into the VLC table is generated. By employing software pipeline optimiza-
tion techniques, run-length decoding for the previous decoded symbol is carried out
simultaneously with the variable-length decoding of the current symbol.

In this paper we demonstrate that significant improvement over the reference solu-
tion is possible if four optimizations are used:

1. partitioning the VLC table in such a way that by exposing the prologue of the
software pipeline loop to the compiler, an end-of-block symbol or error will never
be encountered within the prologue;

2. using an extended barrel-shift TriMedia-specific operation;
3. storing the lookup tables in such way that all the fields (run, level, table offset, etc)

are each located within the boundaries of a byte. This way, the extraction of each
and every such field can be done in a single cycle by TriMedia–specific operations;

4. using variable chunck size, in order to reduce the total size of the tables.

The testing database for our entropy decoder consists of a number of pre-processed
MPEG conformance strings from which all the data not representing DCT coefficients
have been removed. Therefore, such strings include only run-level and end-of-block
symbols. The simulations carried out on a TriMedia/CPU64 cycle accurate simulator
indicate that 16.9 cycles are needed to decode a DCT coefficient with the proposed im-
plementation. That is, our entropy decoder is 20% faster than its reference counterpart.

As an evaluation of the absolute performance of the entropy decoder we propose,
we would like to mention some figures claimed by our competitors: 33 cycles per coef-
ficient which exploits SIMD–type operations of a Pentium processor with MultiMedia
eXtension (MMX) are claimed by Ishii et al. [8], and 26 cycles per coefficient on an
TMS320C80 media video processor are claimed by Bonomini et al. [9].

The paper is organized as follows. Section 2 gives some background information
concerning MPEG compression standard and TriMedia/CPU64 architecture. Entropy
decoder implementation issues are presented in Section 3. The experimental framework
and results are presented in Section 4. The final section concludes the paper.

2 Background

The MPEG standard [6, 10] uses a large number of compression techniques to decrease
the amount of data. Data compression is the reduction of redundancy in data repre-
sentation, carried out to decrease data storage requirements and data communication
costs.

A typical video codec system is presented

Digital
video
out

Decoder
Entropy
Lossless

Lossless
Entropy
Coder

EncoderDigital
video

in Lossy
Source
Coder

Channel

Decoder

Decoder

‘‘Lossy’’
Source

Fig. 1. A generic video codec.

in Figure 1 [5, 6]. The lossy source coder per-
forms filtering, transformation (such as Dis-
crete Cosine Transform (DCT), subband de-
composition, or differential pulse-code mod-
ulation), quantization, etc. The output of the
source coder still exhibits various kinds of sta-
tistical dependencies. The (loseless) entropy
coder exploits the statistical properties of data
and removes the remaining redundancy after
the lossy coding.

In MPEG, the couple DCT + Quantization is used as a lossy coding technique.
The DCT algorithm processes the video data in blocks of 8 � 8 pixels, decomposing
each block into a weighted sum of amplitudes of 64 spatial frequencies. At the output
of DCT, the data is also organized as 8 � 8 blocks of coefficients, each coefficient
representing the contribution of a spatial frequency for the video block being analyzed.
Since the human eye cannot readily perceive high frequency activity, a quantization
step is then carried out. The goal is to force as many DCT coefficients as possible to
zero within the boundaries of the prescribed video quality. Then, a zig-zag operation
transforms the matrix into a vector of coefficients which contains large series of zeros.
This vector is further compressed by an Entropy Coder which consists of a Run-Length
Coder (RLC) and a Variable-Length Coder (VLC). The RLC represents consecutive
zeros by their run lengths; thus the number of samples is reduced. The RLC output data
are composite words, referred to as symbols, which describe a run-level pair. The run
value indicates the number of zeros by which a (non-zero) DCT coefficient is preceeded.
The level value represents the value of the DCT coefficient. When all the remaining
coefficients in a vector are zero, they are all coded by the special symbol end-of-block.
Variable length coding is a mapping process between run-level /end-of-block symbols
and variable length codewords, which is carried out according to a set of tables defined
by the standard. Not every run-level pair has a variable length codeword to represent it,
only the frequent used ones do. For those rare combinations, an escape code is given.
After an escape code, the run- and level-value are coded using fixed length codes.

In order to achieve maximum compression, the coded data does not contain specific
guard bits separating consecutive codewords. As a result, the decoding procedure must
recognize the code-length as well as the symbol itself. Before decoding the next sym-
bol, the input data string has to be shifted by a number of bits equal to the decoded code
length. These are recursive operations that generate true-dependencies.

Subsequently, we will focus on the entropy decoding, i.e., on the operation inverse
to entropy coding. We will briefly present some theoretical issues connected to variable-
length decoding and run-length decoding.

2.1 Entropy Decoder

In MPEG, the entropy decoder con-

B
ar

re
l−

sh
if

te
r

Feed−back path

Feed−forward path
Run

Level

Code−Length

Look−up
Table

Accumulator
acc_code_L

Bit parser

MPEG−compliant string

Fig. 2. Variable-length decoding principle.

sists of a Variable-Length Decoder
(VLD) followed by a Run-Length
Decoder (RLD). The input to the VLD
is the incoming bit stream, and the out-
put is the decoded symbols. As depic-
ted in Figure 2, a VLD is a system
with feedback, whose loop contains a
Look-Up Table (LUT) on the feed-for-
ward path and a bit parser on the feed-
back path. The LUT receives the var-
iable-length code itself as the address
[11] and outputs the decoded symbol
(run-level pair or end of block) as well as the codeword length, code length. In order
to determine the starting position of the next codeword, the code length is fed back
to an accumulator and added to the previous sum of codeword lengths, accumulated
code length . The bit parsing operation is completed by the barrel-shifter (or funnel-
shifter) which shifts out the decoded bits.

In connection with the hardware complexity, we would like to note that the longest
codeword excluding Escape has 17 bits. Therefore, the LUT size reaches 2 17 =

= 128 K words for a direct mapping of all possible codewords. Regarding the per-
formance of a variable-length decoder, it is worth mentioning that the throughput of a
VLD is bounded by a value inverse to the latency of the loop [12].

Conceptually, for each

L1 L2

0 1 2 3 4 5 6 7 8 9 10 63

R0=0
R1=3 R2=5

nz_coeff_pos_init = −1

nz_coeff_pos_0 = nz_coeff_pos_init+R0+1 = 0

nz_coeff_pos_1 = nz_coeff_pos_0+R1+1 = 4

nz_coeff_pos_2 = nz_coeff_pos_1+R2+1 = 10

L0

Fig. 3. Run-length decoding principle.

run-level pair returned by the
VLD, the run-length decoder
outputs the number of zeros
specified by the run value and
then pass the level through.
In a programmable processor–
based platform, a way to op-
timize this process is to fill
in an empty vector with level
values,L, at positions defined

by run values, as depicted in Figure 3: the position of a non-zero coefficient,
nz coeff pos, is computed by adding the run value, R, and an ’1’ to the position of the
previous non-zero coefficient. This common strategy has been widely used in previous
work [1, 7, 13] and will be used subsequently, too.

In connection with the software implementation of the entropy decoder we propose,
we would like to mention that both VLD and RLD are sequential tasks. Consequently,
entropy decoding is an intricate function on TriMedia, since a VLIW processor must
benefit from instruction-level parallelism in order to be efficient.

The next subsection will outline some elements of the MPEG-2 standard related to
variable-length decoding.

2.2 MPEG-2–compliant Variable-Length Decoding

MPEG-2 defines four tables for en-
intra vlc format 0 1

I DC coefficient Y B12 B12
C B13 B13

AC coefficient B14 B15
NI 1st & subsequent B14 B14

coefficient

Table 1. Selection of VLC tables

coding the DCT coefficients: B12, B13,
B14, and B15 [1]. Which table is used
depends on the type of image – intra
(I) or non-intra (NI), luminance (Y)
or chrominance (C) – and a bit-field,
intra vlc format, in the macro-
block header, as shown in Table 1. In
general, this means that a single stream
uses all tables, and the tables can be switched per macroblock and/or block.

In the decoding process of DCT coefficients, there are a few exceptional cases to be
dealt with:
1. The DC coefficient for intra macroblocks: this coefficient is encoded through the

B12/B13 tables, depending on the block type: luminance or chrominance.
2. Escape: escape code is 6 bits long, followed by 6 bits run and 12 bits signed level.
3. end-of-block: this is a 2 or 4 bit code, depending on the intra vlc format bit.

Apart from these cases, the decoding follows “normal” coding rules. The maximum
code-length is 16 bits plus a sign bit. A code determines a run and a level value. A
variable-length code is followed by a sign bit that indicates the sign of the level value.

We conclude this section with a review of the TriMedia/CPU64 VLIW core.

2.3 TriMedia/CPU64 architecture

TriMedia/CPU64 is a simulated proces-
Global Register File

15 read ports + 5 write ports

Bypass Network

128 registers 64 bit

Instruction Decoder

Fig. 4. TriMedia/CPU64 organization.

sor designed to be used in the development
process of future 64-bit VLIW cores. Its ar-
chitecture features a very rich instruction set
optimized for media processing. Specifically,
TriMedia/CPU64 is a 64-bit 5 issue-slot
VLIW core, launching a long instruction ev-
ery clock cycle [2]. It has a uniform 64-bit
wordsize through all functional units, reg-
ister file, load/store units, on-chip highway
and external memory. Each of the five op-
erations in a single VLIW instruction can
in principle read two register arguments and
write one register result every clock cycle. In addition, each operation can be option-
ally guarded with the least-significant bit of a fourth register, in order to allow for
conditional execution without branch penalty. The architecture supports subword par-
allelism; for example, operations such as additions/subtractions, shuffle, elementwise
multiplexing, on eight 8-bit unsigned integers (vec64ub), or on four 16-bit signed inte-
gers (vec64sh) are possible. Super-operations, which occupy two adjacent slots in the
VLIW instruction, and map to a double-width functional unit are also supported. The
current organization of the TriMedia/CPU64 core is presented in Figure 4.

3 Entropy decoder implementation

According to the reference implementation [7], the VLD is implemented as a repeated
table-lookup. Each lookup analyzes a fixed size chunk of bits (for example,
LOOKUP ADDRESS WIDTH = 6 or 8) and determines if a valid code was encountered
or some more bits need to be decoded. In any case, the number of consumed bits rang-
ing from the smallest variable-length code to the chunk size is generated. In case of a
valid decode, i.e., hit, a run-level pair is generated, or an escape or end of block flag is
set. If a miss is detected, i.e., more bits are needed for a valid decode, an offset into the
VLC table for a second- or third-level lookup, table offset, is generated. This process of
signaling an incomplete decode and generating a new offset may be repeated a number
of times, depending on the largest variable-length code and chunk size.

The following basic stages can be discerned in the reference implementation of the
entropy decoder on TriMedia/CPU64:

1. Initializations.
2. Barrel-shift the VLC string according to the accumulated code-length value.
3. Table look-up (look-up address computation, table look-up proper). The table

look-up returns a 32-bit word containing all the fields mentioned at Stage 4.
4. Field extraction: run, level, code length, valid decode, end of block, escape,

table offset.
5. Update (modulo-64) the accumulated code-length:

acc code length = acc code length + code length
If an overflow has been encountered, advance the VLC string by 64 bits.

6. Exit the loop if end of block has been encountered.
7. Handle escape if escape has been encountered.
8. Run-length decoding: de-zig-zag, followed by filling-in an empty 8� 8 matrix.
9. Go to Stage 2.

The Stage 8 – run-length decoding – is folded into the loop, such that loop pipelining
is employed [7]. That is, the run-length decoding for the previous decoded symbol is
carried out simultaneously with the variable-length decoding of the current symbol.

Updating the acc code length value is carried out modulo-64. The main idea is to
match this process with the transfer capabilities of the 64-bit version of TriMedia. That
is, a new chunk of 64 bits of information to be decoded is read on overflow. Also, we
would like to emphasize that the VLC-related information is stored into the lookup
table in a packed format, as 32-bit unsigned integers, as depicted in Table 2. Therefore,
a sequence of masking and shifting operations are needed to extract these fields.

Table 2. The original VLC table format.

end-of-block (stop) escape valid run level table offset code-length
No. of bits 1 1 1 5 8 12 4
Position 31 30 29 28-24 23-16 15-4 3-0

To make the presentation self consistent, the reference implementation of the en-
tropy decoding routine is presented in Algorithm 1. All identifiers written with capital
letters are regarded as constants. In the sequel, we will provide some additional infor-
mation regarding this algorithm, highlighting efficiency-related issues.

Algorithm 1 Entropy decoder routine – reference implementation
1: set-up the test-bench (store the VLC lookup table, read the VLC string into memory, etc.)
2:
3: for i = 1 to NO OF MACROBLOCKS do
4: for j = 1 to NO OF BLOCKS IN MACROBLOCK do
5: table offset FIRST TABLE OFFSET

6: nz coeff pos ZZ 0

7: run 0

8: valid decode 0

9:
10: loop
11: barrel-shift the VLC string with acc code length positions
12: lookup address the leading LOOKUP ADDRESS WIDTH bits from VLC string
13: lookup address lookup address + table offset
14: retrieved 32 bit word VLC table[lookup address]
15:
16: nz coeff pos ZZ nz coeff pos ZZ + run
17: nz coeff pos invZZ table[nz coeff pos ZZ]
18: 8� 8 matrix[nz coeff pos] level
19: nz coeff pos ZZ nz coeff pos ZZ + valid decode
20:
21: extract code length, run, level, table offset, escape, valid decode, end of block from

retrieved 32 bit word
22:
23: acc code length acc code length + code length
24: if acc code length � 64 and not(escape) then
25: continue f—————————-> go to loopg
26: end if
27: if end of block flag is raised then
28: break f——————————-> initiate the next for iteration (block-level)g
29: end if
30: if acc code length � 64 then
31: advance the VLC string by 64 bits
32: acc code length acc code length - 64
33: end if
34: if escape flag is raised then
35: run next 6 bits from VLC string
36: level next 12 bits from VLC string
37: acc code length acc code length + 6 + 12
38: end if
39: end loop
40: end for
41: end for

The entropy decoder routine consists of a first for loop (lines 3–41) cycling over all
macroblocks in the MPEG conformance string, a second for loop (lines 4–40) cycling
over all blocks in a macroblock, and an inner (infinite) loop labeled loop (lines 10–
39), cycling over all DCT coefficients in a block. The inner loop is left only when an
end of block is encountered (lines 27–29).

The initializations for block-level decoding are performed at lines 5–8. Table look-
up, i.e., variable-length decoding, is carried out at lines 11–13. Lines 15–18 implement
run-length decoding, which, as we already mentioned, is folded into the loop in order
to employ loop pipelining. Field extraction is performed at line 20. The barrel-shifting
(line 11) is done on an 128-bit field, by means of a TriMedia–specific operation:

bitfunshift Rsrc 1 Rsrc 2 Rsrc 3 ! Rdest 1 Rdest 2

where Rsrc 1 and Rsrc 2 are the two 64-bit registers storing the leading 128 bits of
the VLC string to be shifted, the Rsrc 3 defines the shifting value, and Rdest 1 and
Rdest 2 are the two 64-bit registers storing the 128-bit shifted field. Obviously, only
the value stored into Rdest 1 register will be used for the look-up procedure. It should
be mentioned that since acc code length is updated modulo-64 (lines 30–33), at least
47 bits are available in Rdest 1 for the next decoding iteration in the most defavorable
case (this can be easily verified by assuming that acc code length = 63 at line 34).

A particular optimization technique has been used in order to keep the most likely
iteration (that is when no more incoming bits from the MPEG string are needed, and
none of the escape, end of block, and error conditions is raised), as short as possible.
According to this technique, the escape flag is also set to ’1’ when any of the escape,
end of block, or error conditions occurs. In this way, a jump to the beginning of the
inner loop is taken when none of the above mentioned conditions is raised (lines 24–
26). All the exceptional cases are managed after this jump: end of block at lines 27–
29, modulo-64 updating and advancing the VLC string at lines 30–33, and escape at
lines 34–38. It should be mentioned that there is no flag to indicate an error condition.
When an error is encountered, end of block = 1 and valid decode = 0 simultaneously.
Therefore, the loop will be left because the end of block flag is set. However, it is the
responsibility of the entropy decoder calling routine to detect if a valid end of block
has been detected or an error has occured. Since this subject is beyond the goal of the
paper, it will not be analyzed in the sequel.

In connection to the efficiency of the reference implementation, we would like to
specify that the major drawback of the software pipeline is that only variable-length
decoding for the first DCT coefficient will be performed during the first iteration, the
code associated with run-length decoding being dummy. That is, the method penalty is
the overhead needed to fire-up the software pipeline. Since the number of non-zero DCT
coefficients in a block is rather small, ranging, for example, between 3.3 and 5.8 for non-
intra macroblocks [7], the number of iterations per block is also small. Consequently,
this overhead can be significantly large.

In the sequel, we will discuss the improvements that we propose with respect to
decoding of non-intra macroblocks. That is, the VLC table will be the B14 table defined
by the MPEG standard if we will not state otherwise.

To improve the performance of the entropy decoder, we propose the following
changes in respect with the reference implementation:

– The prologue of the pipelined loop [14] is exposed to the compiler. Since the
VLC table does not have “holes” in the region of short code-length coefficients
(i.e., each and every entry in the VLC table in that region corresponds either to a
short codeword which can be decoded in a single iteration, or to a long codeword
which will be decoded in two or more iterations), there are no incoming bit com-
binations which do not have a meaning within the prologue. Therefore, an error
condition will never be raised. Moreover, since an end of block symbol is not al-
lowed for the first coefficient in a block, an end of block condition will never be
encountered, too. Consequently, testing the end of block flag (lines 27–29 in Algo-
rithm 1) within the prologue becomes superfluous and can be eliminated. For this
reason, a very simple code consisting of a first-level look-up, folowed by an ex-
traction of the code length, run, level, lookup address width, table offset, escape,
valid decode (and, notable, no extraction of the end of block flag) can efficiently
fire-up the software pipeline.

– Barrel-shifting is carried out by means of an extended bitfunshift TriMe-
dia specific operations.

bitfunshift 3 Rsrc 1 Rsrc 2 Rsrc 3 Rsrc 4 ! Rdest 1 Rdest 2

The main idea is to gain flexibility over the modulo-64 operation by performing
the barrel-shift operation on 3 � 64 = 192 bits instead of 2 � 64 = 128 bits. In
this way, the modulo-64 operation can be postponed, since additional 64 bits are
available for decoding over the standard implementation.

– The lookup returns a 64-bit value instead of a 32-bit value. The main idea is to
store each of the code length, run, level, lookup address width (which defines the
chunk size of the next look-up), table offset, escape, valid decode (signals a hit),
and end of block fields within the boundaries of a byte (that is, in an unpacked way
instead of a packed one). Since extracting a byte from a 64-bit value takes only 1 cy-
cle on TriMedia, our solution is two times faster than using a pair of masking and
shifting operations required by the 32-bit approach. The cost of such approach is a
double-size look-up table. It is still an open question which approach is better with
respect to a particular TriMedia cache size, as the cache misses may become a bot-
tleneck when the performance evaluation is made for a complete MPEG decoder.
The new format of the VLC table format is presented in Table 3.

– The chunk size is variable, which leads to a more compact look-up table. Accord-
ing to our experiments, there are enough empty slots in the TriMedia instruction
format for an entropy decoding task. Consequently, a variable chunk size does not
introduce real dependencies.

In connection with the Table 3, several comments should be provided. The VLC
table is a one-dimensional array of vectors, where each vector contains eight unsigned
bytes. In order to keep the number of instructions as low as possible, we propose to
store the sign bit of each and every codeword into the lookup table.

Table 3. The proposed VLC table format.

code-length run level table offset lookup address width escape valid decode EOB
No. of bits 8 8 8 8 8 8 8 8
Position 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

According to Table B14, the level value ranges between�40 � � �+ 40. Thus, 7 bits
(less than 1 byte) are sufficient to represent all the values. However, precautions have to
be taken to convert level to a signed integer after extraction (Algorithm 2).

Algorithm 2 Converting the level from 8-bit unsigned integer to a 16-bit signed integer

#define LEVEL FIELD 5

int16 level;

retrieved vec64ub = VLC table[lookup address];
level = (int16) ub get(retrieved vec64ub, LEVEL FIELD);
level = (int16)((level� 24)� 24); /� 32-bit processing �/

The least significant byte has been allocated for end of block (EOB) flag. Since the
TriMedia C compiler recognizes expressions of the form (E1&1), the least significant
bit of this byte is set to ‘1’ when an end of block condition is raised. This way, the
condition for leaving the loop can be written as follows:

Algorithm 3 TriMedia-specific code for testing the end-of-block condition

#define END OF BLOCK FIELD 0

uint8 end of block;

for (;;) f
retrieved vec64ub = VLC table[lookup address];
end of block = ub get(retrieved vec64ub, END OF BLOCK FIELD);
if (end of block & 1)
break;

g

The table offset field defines the partitioning of the B14 into smaller lookup tables.
The B14 table has been splitted in eight tables (first, second, third, forth, fifth, sixth,
seventh, eighth) which are presented subsequently. We mention that, in order to improve
the readness, we preserved the order of the rows as in the MPEG standard.

VL code Run Level

1s 0 1
011s 1 1
0100 s 0 2
0101 s 2 1
0010 1s 0 3
0011 1s 3 1
0011 0s 4 1
0001 10s 1 2
0001 11s 5 1
0001 01s 6 1
0001 00s 7 1
0000 110s 0 4
0000 100s 2 2
0000 111s 8 1
0000 101s 9 1
0000 01 Escape

Table 4. First table

VL code Run Level

10 End of Block
11s 0 1
011s 1 1
0100 s 0 2
0101 s 2 1
0010 1s 0 3
0011 1s 3 1
0011 0s 4 1
0001 10s 1 2
0001 11s 5 1
0001 01s 6 1
0001 00s 7 1
0000 110s 0 4
0000 100s 2 2
0000 111s 8 1
0000 101s 9 1
0000 01 Escape

Table 5. Second table

1st prefix VL code Run Level

0010 0 110 s 0 5
001 s 0 6
101 s 1 3
100 s 3 2
111 s 10 1
011 s 11 1
010 s 12 1
000 s 13 1

Table 6. Third table

1st prefix VL code Run Level

0000 001 0 10s 0 7
1 00s 1 4
0 11s 2 3
1 11s 4 2
0 01s 5 2
1 10s 14 1
1 01s 15 1
0 00s 16 1

Table 7. Forth table

1st prefix VL code Run Level

0000 0001 1101 s 0 8
1000 s 0 9
0011 s 0 10
0000 s 0 11
1011 s 1 5
0100 s 2 4
1100 s 3 3
0010 s 4 3
1110 s 6 2
0101 s 7 2
0001 s 8 2
1111 s 17 1
1010 s 18 1
1001 s 19 1
0111 s 20 1
0110 s 21 1

Table 8. Fifth table

1st prefix VL code Run Level

0000 0000 1101 0s 0 12
1100 1s 0 13
1100 0s 0 14
1011 1s 0 15
1011 0s 1 6
1010 1s 1 7
1010 0s 2 5
1001 1s 3 4
1001 0s 5 3
1000 1s 9 2
1000 0s 10 2
1111 1s 22 1
1111 0s 23 1
1110 1s 24 1
1110 0s 25 1
1101 1s 26 1
0111 11s 0 16
0111 10s 0 17
0111 01s 0 18
0111 00s 0 19
0110 11s 0 20
0110 10s 0 21
0110 01s 0 22
0110 00s 0 23
0101 11s 0 24
0101 10s 0 25
0101 01s 0 26
0101 00s 0 27
0100 11s 0 28
0100 10s 0 29
0100 01s 0 30
0100 00s 0 31

Table 9. Sixth table

1st prefix 2nd prefix VL code Run Level

0000 0000 001 1 000s 0 32
0 111s 0 33
0 110s 0 34
0 101s 0 35
0 100s 0 36
0 011s 0 37
0 010s 0 38
0 001s 0 39
0 000s 0 40
1 111s 1 8
1 110s 1 9
1 101s 1 10
1 100s 1 11
1 011s 1 12
1 010s 1 13
1 001s 1 14

Table 10. Seventh table

1st prefix 2nd prefix VL code Run Level

0000 0000 0001 0011 s 1 15
0010 s 1 16
0001 s 1 17
0000 s 1 18
0100 s 6 3
1010 s 11 2
1001 s 12 2
1000 s 13 2
0111 s 14 2
0110 s 15 2
0101 s 16 2
1111 s 27 1
1110 s 28 1
1101 s 29 1
1100 s 30 1
1011 s 31 1

Table 11. Eighth table

All eight tables are stored into memory one after another, i.e., in a concatenated
way. The number of address bits for each table is related to the maximum length of the
variable-length codes. That is, Tables first and second have each 8 address bits, Table
sixth has 7 address bits, Tables third and forth have each 4 address bits, and Tables fifth,
seventh, and eighth have each 5 address bits. Thus, the sizes of the tables are as follows:

Table No. of address lines Size table offset
(lookup address width) (64-bit words)

first 8 2
8 = 256 0

second 8 2
8 = 256 0x100

third 4 2
4 = 16 0x200

forth 4 2
4 = 16 0x210

fifth 5 2
5 = 32 0x220

sixth 7 2
7 = 128 0x240

seventh 5 2
5 = 32 0x2c0

eighth 5 2
5 = 32 0x2e0

Table 12. Number of address lines, size, and offset for each VLC table

with a total of 768 64-bit words, which means 6 KB.
The decoding procedure can be exemplified on Figure 5. Let us suppose that the

following string is to be decoded: 10000000000011000110.... The table offset
is initialized to 0, that is the first table is being pointed to. Also, lookup address width
is initialized to 8, which means that the first 8 bits of the string, i.e., 10000000, will be
regarded as address into the first table. The following values are retrieved: code length
= 2, run = 0, level = 1, table offset = 0x100, and lookup address width = 8. Which
means that the second table will be accessed during the second iteration.

After shifting out the two bits decoded at the previous iteration, the leading eight
bits, i.e., 00000000, will be regarded as address, this time into the second table. By
looking-up, code length = 8, table offset = 0x240, and lookup address width = 7.
That is, the sixth table will be accessed. No valid run-level pair has been detected.

At this moment the accumulated code length is 10. Therefore, the leading 10 bits
have to be shifted out from the input string. Then, the next seven bits, i.e., 0011000, are
regarded as address into the sixth table. Again, no valid run-level pair is detected. The
code length = 3, table offset = 0x2c0, lookup address width = 5. That is, the seventh
table will be accessed.

After incrementation, the accumulated-code-length = 13. After shifting out the lead-
ing 13 bits, the next five bits, i.e., 10001 are the address into the seventh table. The
look-up procedure retrieves the following values: code length = 5, run = 0, level = -
32, lookup address width = 8, table offset = 0x100 bypassing the first table. That is,
all subsequent coefficients of the 8� 8 block will use only the Tables second - eighth.

Finally, the accumulated-code-length is 18. The next eight bits to be sent as address
to the second table are: 10xxxxxx. An end of block symbol is detected, and the table-
offset = 0; that is, the first table is to be accessed for decoding of a new block.

E
O

B
!

1st

2nd

th

O
R

th6 th 5

th

4th5 3E
R

R
O

R

4

...

5th

N
O 6

C
L

R
/L

th

...
5 5

0
0
0
0

s

rd

A
dd

re
ss

O
ff

se
t

0
x
1
0

0
x
1
0

L
oo

k−
up

 T
ab

le

...

3

...

...

8

...

th

C
L

R
/L

5

...

0
0
0
0

s

1
1
1
1

s

0
x
1
0

0
x
1
0

O
ff

se
t

L
oo

k−
up

 T
ab

le

A
dd

re
ss

6th

1
1
1
1

s

8th 7th

...

...

...

4th

rd

C
L

R
/L

4 4

0

0
0
s

1

1
1
s

A
dd

re
ss

...

0
x
1
0

0
x
1
0

L
oo

k−
up

 T
ab

le

...

...

...

3

5

C
L

R
/L

4 4

0

0
0
s

1

1
1
s

A
dd

re
ss

0
x
1
0

0
x
1
0

O
ff

se
t

L
oo

k−
up

 T
ab

le

...

...

...

7th

O
ff

se
t

C
L

R
/L

5 5

0

0
0
0
s

1

1
1
1
s

A
dd

re
ss

O
ff

se
t

L
oo

k−
up

 T
ab

le

0
x
1
0

0
x
1
0

...

......

2nd

2nd

1st
2nd

2ndrd

0
1
1
s

x
x
x
x

0
1
0
X

s
x
x
x

0
0
1
1

X
s
x
x

0
0
1
0

1
s
x
x

0
0
1
0

0
x
x
x

0
0
0
1

X
X
s
x

0
0
0
0

1
X
X
s

0
0
0
0

0
1
x
x

0
0
0
0

0
0
1
x

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

C
L 8 8 7 6 8 7 6 5 6 5 4 3

R
/L

1
1
s
x

x
x
x
x

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
2
0

0
x
2
1

0
x
2
2

0
x
2
4

O
ff

se
t

1
0
x
x

x
x
x
x

0

0
1
1
s

x
x
x
x

0
1
0
X

s
x
x
x

0
0
1
1

X
s
x
x

0
0
1
0

1
s
x
x

0
0
1
0

0
x
x
x

0
0
0
1

X
X
s
x

0
0
0
0

1
X
X
s

0
0
0
0

0
1
x
x

0
0
0
0

0
0
1
x

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

C
L 8 8 7 6 8 7 6 5 6 5 4 2

R
/L

1
s
x
x

x
x
x
x

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
1
0

0
x
2
0

0
x
2
1

0
x
2
2

0
x
2
4

O
ff

se
t

A
dd

re
ss

A
dd

re
ss

L
oo

k−
up

 T
ab

le

L
oo

k−
up

 T
ab

le

C
L

n/
a

R
/L

0
0
1
x

x
x
x

0
0
0
1

x
x
x

0
0
0
0

x
x
x

4 3
0
1
X
X

X
X
s

7
1
X
X
X

X
s
x

6

n/
a

O
ff

se
t

L
oo

k−
up

 T
ab

le

n/
a

0
x
2
c

0
x
2
e

0
x
1
0

0
x
1
0

A
dd

re
ss

E
R

R
O

R

E
O

B
2

E
SCn/
a

n/
a

n/
a

E
SCn/
a

n/
a

n/
a

n/
a

n/
a

n/
a

n/
a

F
ig

.5
.T

he
flo

w
ch

ar
t

of
th

e
va

ri
ab

le
-l

en
gt

h
de

co
di

ng
pr

oc
ed

ur
e.

The entropy decoder implementation we propose is presented in Algorithm 4. As it
can be observed, the prologue of the inner (infinite) loop (lines 17–45) has been exposed
to the compiler (lines 4–15). Since an end of block or error condition will never occur
on the first table lookup (line 7), testing the end of block condition during the prologue
becomes superfluous and, therefore, has been eliminated.

Special considerations have to be provided with respect to modulo-64 operation.
As me already mentioned, since the extended bitfunshift TriMedia-specific oper-
ation is used, more flexibility in postponing the modulo-64 operation is gained. Indeed,
there is no such operation within the prologue. However, from the MPEG syntax point
of view this is not entirely correct. Assuming that acc code length is 63 at line 36,
it will become 81 at line 45. Considering that an end of block is encountered, then
acc code length = 83. If this situation occurs during the decoding of the first block
in a macroblock, and if the subsequent five coded blocks in the same macroblock
include each an escape sequence followed by an end of block, then acc code length
= 83 + 5� 24 + 5� 2 = 213, that is more than the limit of 192 bits. Fortunately, this
case is not statistically relevant (we did verify it on all MPEG conformance strings
mentioned in the subsequent section). Fortunately, this exceptional situation can be
overcomed without much penalty by augmenting the escape handling code within the
prologue (lines 11–15) with a modulo-64 operation.

The same strategy of exposing the prologue of the loop to the compiler can be
applied for decoding of intra blocks, since an end of block can never occur during the
decoding of an DC coefficient. However, special precautions have to be taken in order
to deal with errors.

Finally, it should be mentioned that standard optimization techniques such as loop
unrolling or grafting [15] cannot be applied, because that would introduce awkward
escape code and/or barrel-shifting processing.

4 Experimental results

The testing database for our entropy decoder consists of a number of pre-processed
MPEG conformance strings, or scenes, from which all the data not representing DCT
coefficients have been removed. Therefore, such strings include only run-level and end-
of-block symbols.

For all experiments described subsequently, the MPEG-compliant bit string is as-
sumed to be entirely resident into the main memory. In this way, side effects associated
with bit string acquisition such as asynchronous interrupts, trashing routines, or other
operating system related tasks, do not have to be counted. Moreover, saving the re-
constructed 8 � 8 matrices into memory, as well as zeroing these matrices in order to
initialize a new entropy decoding task are equally not considered. Since both proce-
dures can be considered parts of adjacent tasks, such as IDCT or motion compensation,
they are subject to further optimizations at the complete MPEG decoder level. Thus, in
our experiments, the run-length decoder will overwrite the same 8 � 8 matrices again
and again. With these assumptions, the only relevant metric is the number of instruction
cycles required to perform strictly entropy decoding. Therefore, the main goal was to
minimize this number.

Algorithm 4 Entropy decoder routine with the prologue exposed to the compiler
1: for i = 1 to NO OF MACROBLOCKS do
2: for j = 1 to NO OF BLOCKS IN MACROBLOCK do
3: nz coeff pos ZZ 0

4: barrel-shifting the VLC string
5: lookup address the leading FIRST LOOKUP ADDRESS WIDTH bits from VLC string
6: lookup address lookup address + (FIRST TABLE OFFSET� 4)
7: retrieved vec64ub VLC table[lookup address]
8:
9: extract code length, run, level, table offset, lookup address width, escape,

valid decode from retrieved vec64ub fend of block field is not extracted!g
10: acc code length acc code length + code length
11: if escape flag is raised then
12: run next 6 bits from VLC string
13: level next 12 bits from VLC string
14: acc code length acc code length + 6 + 12
15: end if
16:
17: loop
18: barrel-shift the VLC string
19: lookup address the leading lookup address width bits from VLC string
20: lookup address lookup address + table offset
21: retrieved vec64ub VLC table[lookup address]
22:
23: nz coeff pos ZZ nz coeff pos ZZ + Run
24: nz coeff pos invZZ table[nz coeff pos ZZ]
25: 8� 8 matrix[nz coeff pos] Level
26: nz coeff pos ZZ nz coeff pos ZZ + valid decode
27:
28: extract code length, run, level, table offset, lookup address width, escape,

valid decode, end of block from retrieved vec64ub
29: acc code length acc code length + code length
30: if acc code length � 64 and not(escape) then
31: continue f—————————-> go to loopg
32: end if
33: if end of block flag is raised then
34: break f——————————-> initiate the next for iteration (block-level)g
35: end if
36: if acc code length � 64 then
37: advance the VLC string by 64 bits
38: acc code length acc code length - 64
39: end if
40: if escape flag is raised then
41: run next 6 bits from VLC string
42: level next 12 bits from VLC string
43: acc code length acc code length + 6 + 12
44: end if
45: end loop
46: end for
47: end for

Table 13. Entropy decoding experimental results.

Scene Block Workload Scene Reference Proposed Improvement
type profile implementation implementation

(*.m2v) (coeff.) (bit/coeff.) (cycle/coeff.) (cycles) (cycle/coeff.)

batman I (B15) 172,745 5.5 21.85 2,843,376 16.5 22.5 %
NI 266,485 4,592,358 17.2

popplen I (B15) 47,003 5.3 20.19 777,553 16.5 17.3 %
NI 28,069 475,326 16.9

sarnoff2 I (B14) 80,563 5.1 21.9 1,387,489 17.2 23.3 %
NI 36,408 577,388 15.9

tennis I (B14) 12,345 6.1 21.77 210,011 17.0 20.7 %
I (B15) 120,754 1,937,808 16.0

NI 137,756 2,527,395 18.3

ti1cheer I (B15) 80,818 5.1 20.75 1,311,687 16.2 21.9 %
NI 51,680 836,082 16.2

The results for entropy decoder are presented in Table 13. The figures indicate the
number of instruction cycles needed to decode the pre-processed MPEG string. The last
column of the table specifies the relative improvement of the proposed entropy decoder
versus its reference counterpart. Unfortunately, only the average number of cycles per
coefficient has been disclosed for the reference implementation [7].

It is also worth mentioning that the absolute performance of the proposed entropy
decoder ranges between 15:9 � 18:3 cycles/coeff., with the mean 16:9 cycles/coeff.
This is a very good result with respect to both 33:0 cycles/coeff. needed for variable-
length decoding and Inverse Quantization (IQ) on a Pentium processor with MultiMe-
dia eXtension (MMX) claimed by Ishii et. al [8], and 26:0 cycles/coeff. achieved on an
TMS320C80 media video processor by Bonomini et al. [9]. The additional IQ function-
ality considered by the referred papers is not a real concern for us, since our preliminary
results indicate that a significant number of operations related to inverse quantization
can be still scheduled in the delay slots of the table lookup.

To make an absolute estimation of the performance we achieved, we mention that
the maximum MPEG-2 compressed bit rate for Main Profile – Main Level (MP@ML)
is 15 Mbit/s. For 16.9 cycle/coefficient, and an average of 5.4 bit/coefficient [7], the
following rate can be processed in real-time by our implementation:

5:4
bit

coefficient
� 200 � 106

cycle
sec

�

1

16:9

coefficient
cycle

� 64
Mbit

sec

That means that less than one-quarter of the computing power of the processor is used,
or, equivalently, four MP@ML strings can be simultaneously (entropy) decoded.

5 Conclusions

We proposed a new entropy decoder implementation on TriMedia/CPU64 processor
VLIW core which has the prologue exposed to the compiler. The VLC tables are or-
ganized in a special way such that an end of block or error will never be encountered
during the prologue. By running preprocessed MPEG-2 conformance strings including
only run-level and end of block symbols, we determined that the proposed entropy de-
coder is approximately 20% faster than its reference counterpart. In future work, we
intend to evaluate the performance improvement for a complete MPEG decoder.

References

1. ***: MPEG-2 Video Codec. MPEG Software Simulation Group, WWW address:
http://www.mpeg.org/MPEG/MSSG/

2. van Eijndhoven, J.T.J., Sijstermans, F.W., Vissers, K.A., Pol, E.J.D., Tromp, M.J.A., Struik,
P., Bloks, R.H.J., van der Wolf, P., Pimentel, A.D., Vranken, H.P.E.: TriMedia CPU64 Ar-
chitecture. In: IEEE Proceedings of International Conference on Computer Design (ICCD
1999), Austin, Texas (1999), 586–592.

3. ***: TM-1000 Data Book. Philips Electronics North America Corporation, TriMedia Prod-
uct Group, Sunnyvale, California (1998).

4. Riemens, A.K., Vissers, K.A., Schutten, R.J., Sijstermans, F.W., Hekstra, G.J., Hei, G.D.L.:
TriMedia CPU64 Application Domain and Benchmark Suite. In: IEEE Proceedings of In-
ternational Conference on Computer Design (ICCD 1999), Austin, Texas (1999), 580–585.

5. Sun, M.T.: Design of High-Throughput Entropy Codec. In: VLSI Implementations for Image
Communications. Volume 2. Elsevier Science Publishers B.V., Amsterdam, The Netherlands
(1993), 345–364.

6. Mitchell, J.L., Pennebaker, W.B., Fogg, C.E., LeGall, D.J.: MPEG Video Compression Stan-
dard. Chapman & Hall, New York, New York (1996).

7. Pol, E.J.D.: VLD Performance on TriMedia/CPU64. Private Communication (2000).
8. Ishii, D., Ikekawa, M., Kuroda, I.: Parallel Variable Length Decoding with Inverse Quanti-

zation for Software MPEG-2 Decoders. In: Proceedings of the IEEE Workshop on Signal
Processing Systems (SiPS97), Leicester, United Kingdom (1997), 500–509.

9. Bonomini, F., Marco-Zompit, F.D., Milan, G., Odorico, A., Palumbo, D.: Implementing an
MPEG2 Video Decoder Based on the TMS320C80 MVP. Application Report SPRA332,
Texas Instruments, Paris, France (1996).

10. Haskell, B.G., Puri, A., Netravali, A.N.: Digital Video: An Introduction to MPEG-2. Kluwer
Academic Publishers, Norwell, Massachusetts (1996).

11. Lei, S.M., Sun, M.T.: An Entropy Coding System for Digital HDTV Applications. In: IEEE
Transactions on Circuits and Systems for Video Technology 1 (1991), 147–155.

12. Lin, H.D., Messerschmitt, D.G.: Finite State Machine has Unlimited Concurrency. In: IEEE
Transactions on Circuits and Systems 38 (1991), 465–475.

13. Sima, M., Cotofana, S., Vassiliadis, S., van Eijndhoven, J.T.J., Vissers, K.: MPEG Mac-
roblock Parsing and Pel Reconstruction on an FPGA-augmented TriMedia Processor. In:
IEEE Proceedings of International Conference on Computer Design (ICCD 2001), Austin,
Texas (2001), 425–430.

14. Johnson, W.M. Superscalar Microprocessor Design, Prentice Hall, Englewood Cliffs, New
Jersey (1991).

15. ***: Book 2 – Cookbook. Part D: Optimizing TriMedia Applications. TriMedia Technolo-
gies, Inc., TriMedia Technologies, Inc., Milpitas, California (2000).

€ pug ol sr surols.{s droruaur pal€alJolur ur ualqord ledrcurrd eq1 'ero;aroq,1,
'uotleper8ap ecueurro;rod l€rluepqns € ur sllnsar pu€ lcrguoc E s" ol poJroJor sI

uolltsnlls B qcns 'paurroyrad aq lou urc ssacc€ 1a11ered oql snql opporu l(rotuaur
oru€s oql ur arl uaryo 1a11ered ur passocce oq ol sprr"Jado oql d1a1eun1rogu6

'polarqc€ oq u€c dnpaeds ploJ-O 'pacuera;ar erts salnporu aq1

IIB tr€q1 de,tr e qcns ur salnporu S lerro polnqrrlsrp aq rrec sassacc€ @ g1 'salnpout

froruetu tuorogrp ol polcaJrp aq ol sossacce drouraru snoau€llnrurs lererras 8ur
-.rrto11e dq pasBarcur fl rllpr&\putsq droureur aql 'suralsr{s snornard ar{} qxoq uI

'(dt '3t.{ ur u^\oqs sr drouraur pexeldrllnur-ecuds e;o uer3etp :1co1q ltdtc
-urrd 's{utsq {roureru lualoJlp ol slrun Surssacord uor; qled uorlecrunrutuoc 8ut
-ptirord roJ {Jo.rXou uorlcouuoeJalut ue sermbar rualsds f:oureur aql 'uoppq lou
sr dcuelel droureur aql snql'sesnq a1dr11nru ralo froureur oql ol luos are slsenbor
ssoco€ IBraAas ''a'r 'Surssocord qry1g ur pasn aJB sarJoruoru paxeldrlpur-ecedg

'(e)f '3lg uI patcrlsnlll sI

drouaur pexaldrlpur-erurl B Jo ue.r8erp 4co1q ledrcur.r4 'selcfc 7 rerye paurro;rad
oq uec ssoccts puocas aq1 'r1ueq frouaur oru€s aql ur orl spu€rodo aql JI '{uq
frorueu luoJaglp ts olur luos sr lsenbar qceg 'solcfc olrlncasuoc 1e snq e18urs

e ralo rualsds dlorrteur oql ol slsanbal ssocce I Surpuas ,(q uapplq st felep qql
pue aleldruoc o1 salcdc I errnbar llrrr\ sossacce drouatr41 'orurl ssacc€ drorueur
prre arurl alcfc .rossacord aq1 qcleu ol pasn ore salJoruaru paxaldtlpur-eurr;,
'8uue1dr1pru eceds ro ourrl Joqlla lroldxa surelsds droureru po ealrolur oql 'lBJa
-ue8 u1 'solnporu ro squeq {rouretl luepuadapur aldrlpru ro^o palnqrJlsrp sI €}Bp
araqrrr FurrreeFelur droruaw sr esodrnd € qcns rog enbruqcal pot{$lq€}sallail. auo
'saJnloalnlcJ€ rosseco:d ur sacJnosal leuorlelndruoc pue frourau uaa \loq sol€r
raJsueJl eltsp as.€orcut o1 pasodord uaaq a €q sonbtuqcal ItsJoAas sread aql rarr6

uol+cnpor+ul

'PossncsIP

osl€ sr rol€raua3 ssarppe Surpuodsarroc aql Jo amlf,nJlg 'qfFual ,{€rr€ aql
sr N aror{na Z/ttt o+ I urorJ saplrls oarl-3o-ra,nod aq} ge slroddns amaqf,s
pasodord arlJ 'o/r\l-Jo-sra,rod are passatoe aq oX i(erre go qfual aql pu€
solnpour ,trouaur luapuadapur lagered Jo Jaqrunu aql l€q? paumsse s-I lI
'pasodord sr suralsfs.frouraur po €alralur paqJletu uo ssac3e uotlelnurrad
oprJls JoJ aruaqcs ssarce lalered oe{-lJrg:uoJ e (reded sFI? uI '+JeJlsqV

t5' ln+g{ueutare C' seuonl'e1eqe1' ou.re []
pu€1ul,{ 'aredmea IgItt-NI.{ 'tgg xog '6'4 'fBolouqca;;o ,Qlsra,rruq aradurea

uour^rBf s€uor\l pu€ €lg)I"J orur€f

stllalsds,{rorua141 po^Balra}ul
ur ssaf,Dv uollBlmurad aplrls

I

(b)(a)

Fig. L. Interleaved memory systems: (a) time-multiplexed and (b) space.multiplexed.
M6: Memory module. PEp: Processing element.

method to distribute data over the memory modules in such a way that conflicts
are avoided. For this research problem several solutions have been proposed,
which assume that parallel accesses are most likely to be made to subsections
of matrices such as rows, columns, or diagonals. The developed methods try to
support as many access patterns as possible or provide conflict-free access to
specific access patterns.

The method distributing data over modules is referred to as an access scheme,
which is a function mapping addresses into storage locations. since the memory
system contains Q memory modules, a storage scheme performs two mappings;
it maps an.l{:2"-bit address a: (on_r,on_z,...,o0)" into a flogel-bit
module address rn and into a row address r defining the storage location in the
selected memory module.

The most simple access scheme is to obtain row and module addresses by
extracting fields from the address @, i.e., n-L : a mod Q; , : l"/e. Such a
scheme, low order interleaving, is illustrated in Fig. 2(a). This scheme performs
well in linear access but the performance is degraded when other type of access
patterns are used [1]. Row-rotation (alternatively skewed) scheme was introduced
in [2] to support larger set of access patterns. In principle, the row address r is
generated as earlier but the module address is formed by extracting two log e-
bit fields from the address a. The two fields are added to obtain the module
address, *: (omodQ) +I"/Ql modQ) as shown in Fig. 2(b). In [3], row-
rotation scheme was generalized as a periodic storage scheme, which supporrs
irregular and overlapped access patterns. Several improvements for this scheme
has been proposed; in [4], a scheme supporting rows, columns, diagonals, coils,
band diagonals, block diagonals, etc. is proposed.

In [5], the adder used in module address generation in row-skewing schemes
was replaced by bit-wise exclusive.oR (xoR) operation as depicted in Fig. 2(c).
such a scheme is a linear transformation and sometimes called as a XoR scheme.
The linear transformations have two advantages over row-rotation schemes: com-
putation of module address is independent on the number of memory moduies
and it has flexibility in performing address mappings [rj. The flexibility of the
interleaved memory system is even improved if the number of memory mod-
ules is larger than the number of parallel accesses. Especially prime numbers of
modules are powerful [6].

t
i

I

sopporu drorueur;o raqunu aql lnq [1] ur poroprsuoc $ saprrls lera^as ro; yoddng
'uorlc€rlxo plog ssarppe JoJ rogrqs € pu" suorl"Jodo g6y asrt\-lrq fluo Surrrnbar
alduns flauerrye $ uorl€luoualdur aqg, 'ssarppe lerlrur due pue qfuel ,{erre fue
roJ poruJoJJad aq uec saprrls Jo ssocc€ aorJ-lclguoc '[g] ur pasodord sr sq15ua1

.,(erre lererras lnq aplJls elEurs e Surlroddns auroqcs uorl€uroJsu€r1 rsaurl y
'palroddns oq 01 paau sqfual der.re lerarres

;r fllercadsa 'xelduoc sr uorleluauroldrm or{} lnq saprrls o.rq-;o-ronod I€JaAos
slroddns qcrqrrr 'pasodord sr 'selnporu Jo Jaqunu oql se aru€s oql sr sassacc€

1a11erud Jo roqrunu aql ''a'l 'sure1s.,{s paqcl"u JoJ uorl"ruJoJsu€r} rcauq ts
([Z]

uI 'passaccts $ luatuela {}{ frarra ''e'l '{ lunoruu luelsuoc e fq ragp sassoccts

aAllncasuoc aql aJaqid. ssacce oprJls sr uralled ssocce posn uolgo 'cgrceds aug

'uoll€ruroJsrr€rt r€oulT (") por 'uo11e1or-.ror (q) 'Bmaeapegur JapJo-./rol
(e) :ua1si(s a1npornt € uo Jolcal luaurala-Zt B JoJ sar[aqrs ssacc€ Jo saldurexg .e.31.{

t-r'r
_l

T--T'
AAtxl wwT6T6Ti;l =E

(")

8Z 6Z 0t It
9Z ?Z LZ 9Z

7,2 tZ 07, rZ
61 8I 2I 9I
UI II

'I
9I

6 8 IIOI
92V9
tuI0
I Z T OIu

8Z It 0t 6Z
97, t7, LZ 9Z

zz Iz 0z tz
61 8I ZI 9I
AI 9I }I TI
6 8 IIOI
99VL
tzi0
E Z I Ou)

It 0t 6z 8u
8Z 9Z 9Z VZ

tz zz tz 0z
61 8i ZI 9I
9I

',I
TI ZI

IIOI 6 8

L99V
tzi0
E Z T OUI

I

needs to be greater than the number of parallel accesses. However, the scheme
supports strides of form a2". In [9], Iinear transformations has been discussed
both in matched and unmatched systems.

While the memory interleaving has been studied in supercomputer area, it
has received a little consideration in embedded systems. In [10], a memory syn-
thesis method supporting interleaved memories is proposed. The address gen-
eration is based on look-up tables containing the access vectors present in the
given appiication. In [11], a method is proposed for reducing the number of con-
flicts in given application and reordering the accesses such that the number of
memory modules is minimized. An alternative approach is taken in [12], where
the objective is to reschedule the order of accesses such that the data can be
distributed over several memories.

In this paper, a linear transformation scheme for a specific access pattern,
stride permutation access, is proposed. The scheme provides conflict-free ac-
cess to all the strides of powers-of-two for an array of a power-of-two length.
The address computation consists of bit-wise XOR operations and results in
Iess complex implementation than the previously reported schemes supporting
several strides.

The organization of the paper is the following. In Section 2, stride permuta-
tion is defined and some of its properties are given. Motivation for developing
an access scheme for this access pattern is provided by describing some applic-
ations exploiting stride permutations. In Section 3, constraints for stride access

schemes are given. The proposed access scheme is described in detail and its
implementation is discussed. Conclusions are provided in Section 4.

2 Stride Permutation

Stride permutations can be described with the aid of matrix transpose; stride.
by-S permutation of an N-element vector can be performed by dividing the
vector into ,S-element sub vectors, organizing them into S x (N/S) matrix form,
transposing the obtained matrix, and rearranging the result back to the vector
representation [13]. This interpretation implies that the stride ^9 has to be a
factor of vector length, i.e., N rem ,S : 0 where rem denotes remainder after
division. Another interpretation is to use indexing functions as used in the fol-
lowing formal definition.

Definition 1 (Stride Permutation), Let us assurne a uector X : (co, nr,. . . ,

rN-l). Stride-bg-S perrnutation reorders X as Y : (r.riv,s(g), ofrv,s(1), . . .,
cyN,slJv-r;)" where the i,nd,ea funct'i,orz fN,s(i) is giuen as

/,v,s(i): (i^9modN) + l;SlNl lN rem S:0, i:0,1,...,.|iI- 1 (1)

where l') i.s the fl.oor function.
The stride permutation can also be expressed in matrix form as Y : Pw.sX

where Ply,s is stride-.by-S permutation matrix of order N defined as

rD , _f1,iffn.:(mSmodI/) +lmSlNl
lPw,sl*n: to, oir,..*i* ''' J ,Trltn:0, 1,...,i/- 1 (2)

I ..-.--."*,-,-Ptr

lI x N 'aro;eraql 'uorlelnurrad 1ur-fq-oprrls o1 Surprocce rolcal luaurola-zp ar{l
Sutraproar dq pesodsuerl oq uec ruroJ Jolcol ts ur xrJleru lI x lI rrc lerll sold
-rul uoll"lnured aptrls;o uorlelerdralur asodsuerl xrJl€ru possnosrp ,{lsnor,tard
oql 'aldurexa Jod 'suorl€crldde lecrlcerd leralas alerl suorlelnurrad aprrlg

's/(s'z)ruc1 - ry 'aro;araqt 'pue (s'u)ruc1 sr luauretrnber
eq1 8uqg1q Joqunu lsallerus oqJ'u1a Jo rolcu e aq o1 s'Br{ s snq}'re8alur eq
ol seq t1 'sfutu: { ''o'l 'sfu tro a1dr11nu B sr ry }Bql sarldurr slqJ'ugo a1dr11nur

ts sr s{ ''a'l '0: ?, poru sry snql 'q st ,z'-26;o porrad l€ql arunss€ sn 1a1 (1
'sr\olloJ

lpsor aql pue ue1
- wz'-24'aro3ereq;, '-?'7 - r'&4 * &'uz1 ltsI{l pug o/'\'(I)

ul S'roJ uZ Sullnlllsqns fg'ra8alul uB sI I < ry araq/h -p""'1q+"12''zd'-qz'-zd

-
upou 1q1.11-16'-24 s€ uallrr.lr\ aq u€c (g) ur lcnpord aq1 ,u <q+D y(7 .too.td

(S) .tpoulq+o1T'uT4 _ nz,wz4oz'rZ4

:uoz4oynuuad apu+s o uz J1nsat sfromyo suotyoynttuad, apu?s aaqncasuog (6

I
(r) "z'-24 II : -zr

s/(s'z)uc1

'sp.tom nq7o uJ 's puo u {o a7&77nu,

uoututor $oela1fl sepuap (g'o)uc1 ataqn sf (s 'u)urc1 sx az'&'g lo poy,a4 (y
'sazq-tado"td

6utno77o[eqy qpm czpou,ad aro suoz?oJnuuad apu4g '(rt1gcrpo1.re4) 1 ,(.re11o.rog

'[71] uory ''3'a 'puno; oq uec rrraloaql snor.rrald eql roJ;oord eq;,

(g) D'Nde'Nd : e'N4o'ttr{ : co'Nd

uarq 'N > qD IeI '(suorqelmn.rad ap1.r1s Jo uol+Ezlrolc€d) I rualoaqJ

'8uvrro1oJ al{l q papFord are sasec qcns uI suotlelnuilad
oprJls Jo sarlradord otuos 'sZ : S'uT, - N 'ornl go sramod als sqlSuol dsrre
pu€ aprJls aql aJaq^\ sas"c lecrlcsrd o1 sa,tlesrno lrurl errr 'taded slql uI

I:,

I

:(seoraz luasardor sorrluo {uelq) Surrrrollog aqt sI rolra^ luatualo-8 u€ Jo
uorl€lnurod 6-,{q-oprrls ol palsrcoss€ e'8d xul€Iu uotlelnurrad aq} (oldur?xa Jod

^o
^8

xe
x2
xro
xl
^llX.

^t2

^t3

xto
x7
xrs O)

Fig' 3. Signal flow graphs of FFT algorithrns: (a) radix-2 and (b) radix-4 algorithm.
Fp: ,t-point FFT.

matrix stored into a memory array can be transposed by accessing its elements
in stride-by-N order.

The well known perfect shuffie permutation is a special case of stride per-
mutation, namely strid+.by-N/2 permutation of an .lf-point sequence, px,x/2.
Perfect shuffie has close relation to several practical algorithms; e.g., cooley-
Tbkey radix-2 fast Fourier transform (FFT) algorithm can be scheduled into a
form where the interconnections between the processing columns of the signal
flow graph are perfect shuffies. Radix-2 algorithms can also be derived into a
form where the topology is according to stride-by-2 permutation as illustrated
in Fig. 3(a). In radix-4 FFT algorithms, the interconnections can be stride.by-4
permutations as depicted in Fig. 3(b). Fast algorithms for other discrete trigo-
nometric transforms with corresponding topology exist, e.g., for discrete sine,
cosine, and Hartley transforms [15, 16].

stride permutations can be found also in trellis coding and especially in vi-
terbi algorithm used for decoding ofconvolutional codes. Convolutional encoders
are oflen described with the aid of a shift register model illustrated in Fig. 4.
The state of the encoder x1 at a given time instant t is defined by the contents
of the shift register. In l/n-rate codes, a single bit is fed into the shift register
at a time, thus there are two possible state transitions. This results in a trel-
lis diagram where the transitions form perfect shuffie as depicted in Fig. 4(a).
rn 2fn-rate codes, two bits enter the shift register at a time, thus four state
transitions are possible, which results in a stride.by-4 permutation in the inter-
connection as shown in Fig. (b).

The previous examples show that stride permutations have practical and
important applications in digital signal processing and telecommunications. Ap
plications in these areas are often hard real-time constrained and realized in
systems with relatively low clock frequencies, e.g., for extending battery life.
Therefore, parallel implementations are preferred, which implies also need to
access several operands simultaneously to increase the memory bandwidth.

Tlpical realizations for all the previous applications are recursive, i.e., small
kernels operate over an data array and the results of an iteration are used as op-

I

-or .{lsnor^ard aq1 u1 '([tg'st'0t'tI] '[62'tI 'gz'zl1 '[LZ'rr 'gz'0I] '[gz'6'vz,'g]
'It1,'L'7,7,'g] '[tz'9'02'P] '[6I 't'8I 'z]'[zt 'I '9I '0]) :rapro SurrrrolloJ oq] uI pauroJ
-rad aq plnoqs sossaocp aql :lFcgrp s1 eI'6Ejr ssacc€ agnqs 1ca;rad eq1 ,(llercadsg
'slcrguoc oJnpoJlur 9I'zed pu€ 8'ztd sassocce leql pug oru. 'alnpout atues aql olur
porols orB gI pu€ '3 'g slueutala oql X€ql 8urlou dg 'r'2e6. pue (z'zt4 tr'zt'6

roJ ssacc€ aoq-lcrguoc epraord 'd1e,rt1cadsa: '(c) pue (q)Z '31.f uI saruaqcs uorl€
-ruroJsuerl r€ourl pue uorl€loJ-^\oJ oqJ'slcluuoc acnporlul sraqlo oql 11y't'eedr
'ssacce rcaurl roJ ssocc" aa{-lctguoc fpo srrrolle (e)6 '8ld ul Sutneel;e1ur ropro
/trol aql .gl'zsdr pu" .s'ztd tr'zsd t?,'ztd (I'eed aJE as"c slql ur sassaccts uorlelnurrad
aprrls olqrssod aq;, 'salnpour frorueur rnoJ rolo polnqlJplp q (It' ' ' ' '1 'g) ,(rue
luaurola-Zt e 'eldurexa sql uI 'e '8ld o1 Surrre;er dq aldurexa uts ql1ll\ pol"rtr
-snp aq utsc suorltslnurrod eprrls roJ apou ssaccts ue dolarrep ol paou ar{J

'Z/ttt ol I ruorJ soprJls aq1 il€ ''e't'popaau ar€ soprrls luaragrp
g3o1 reqt pug orrr dllenluarrg'8/N'Nd o1 Sutprocce aq ppor{s p€ar lxou aq}
ltlantpedsog 'Sutraproar ltsuolllppt snor,rerd eq1 alesuadruoc ol ropro z/N'u4
ur paurro;rad oq ppoqs ssocce pear lxau aql '1 .{re11oro3 o1 Surproccy '.repro

z/N'Nd ur paurrograd aq plnoqs sossacce z/N'Nd lxau oql 'ero;eroq; dlpur3rro
paPualul s€'I'ffd'tepro reautl ut 1ou'Zlrv'rn;r JopJo ognqs 1ce;rad w oq [I/{
sllnsor aql ll|ou lnq Pourclqo ararn spueredo oqx oJoI{Ar suoll€col .r{toutaur orues
aql olq paJoxs oq ppoqs sllnsar eql 'pesn st derre drouratu elEurs e JI '(r'eld)
rapro r€aurl ur parols ar" sllnsor ar{} puts (8'erd) ropJo agnqs lceSrad ur p€ar are
spuerado '(e)f '3t,{ ur po}erlsnllr apoc Jo Surpocep IqJa}lA ur ''t'o lolulu ueql
JapJo lualogrp ur paruJoJJed st peor oq1 'uo-tlppe uI 'uolleJall lxau aql ur spu€ro

're1s13ar rlq :O '? 1u€1sfi arurl le 1nd1no :?rX '? lu€lsul
aurl 1€ alEls :?X '? Xu€lsul oIII.I? 1€ lndur :rilapot a\eruf7 (q) po" apoc eler-u/1
(e) :suorlrsuerl al€ls pa/{olp pue srapocua 1euollnlo^uoc ralsr8a.r qrus a18urg '?'31.{

(e) (q)

(l+,Xdr8=Crr". ,9{(t+? .?)3
= (c,r ,... d4r,

I

ported access schemes, stride access has been defined to access every kth element
while in perfect shuffie access P1y,1y72 elements with distances of 1 and N/2 need

to be accessed. This example illustrates the principal difference of the stride
access and stride permutation access.

3 Conflict-Flee Parallel Memory Access for Stride
Permutation

The previous discussion shows that there is need to perform several memory
accesses in parallel. In addition, it was found that when an N-element data array
is accessed according to a stride permutation, there will be need to support all
the strides from 1 to N/2. The solution proposed in this paper will be based on
Iinear transformations discussed in the following.

3.1 Linear Address Tlansformations

Linear transformations are based on modulo.2 arithmetic, thus the transforma-
tion can be expressed with binary matrices as

r : In-q(an-ltan-2r... ron-c)T;
m:Ta: (TslT7)a

(6)

(7)

where o : (arr-I, &n-2t .. . , a,o)" is the index address referencing the element to
be accessed, ? is a module transformation matrix, ft, is the rightmost q x q

square matrix in ? and ?r is the remaining q x n - g matrix in ?. It should be

noted that in this representation t'he least significant bit of a is in the bottom
of the vector. As an example, the matrix ? used in Fig. 2(c) is

rr_

In [17], the basic requirement for the data distribution has been derived as

follonrs.

Theorern 2, An'i,nterleaued rnemory system has a unique storage locati,on for
each ad&esseil element iff the matrin A1 has full rank.

In [8], it is even suggested that ? should have full rank and, in particular, the
main diagonal of ? should consists of 1.'s. Missing 1's in the main diagonal may
result in poor performance for linear access, PN,r. In addition, off-diagonal L's

complicate the construction of address generators.

In [1], stride accesses have been investigated with the aid of transformation
periodicity referring to the minimum period of the sequence of module num-
bers generated when consecutive addresses are used as the input sequence. This
results in the following requirement.

/oroto\
\ooror/' (8)

(o)

uorleruroJsu€r1 oql snql 'sserppe aq1;o ,{1rred aqf {q pougap $ ssarppe alnpour
oq1 'asec

"
qcns uI 'Z : S 'rua1sl(s frouroru-olr1 € ruorJ possacce or€ sluoruala

o.1$,1 arorln\'[Ot] ol passncslp sr ssocc€ ognrls lcayradJo os"c lerceds ry
.suorle.redo

uox osua-lrq oql 01ul papnlcw 10u 'pordoc dluo eru splag llq Ieuorlrpp€ aql lnq
surelsds,(rouraur poqclpruun rol [6] u1 pa1sa88ns dpee.qr q sF{I .ssorppe olnpour
eql Sutlcege sliq Jo raqrunu aq1 Suppe dq pasearcur aq u€c dlrcrporrad oq;

'ssorpp€ or{1 uro{ slrq
rnog Sursn dq paleraue3 sr ssalpp€ appour aqX l€qX 1c"J oql dq palcagar dpeerle
q qq.L '91 sr porrad aql ''a'r 'urunloc qlrnoJ oql regu sleade.r Surrepro eq1 l,.ror
qc€a ur sluotuala Jo ropro eql Supedruoc ,(q uees dFeelc oq uEc srq;, 'qSnoua
a8rel 1ou st eldurexa aql q posn auoqcs uolleurroJsrrtsrl r€aurl aq1 go dlrcrporred
oql l€ql satldrur A '8ld ul aldruexa aqtr ol polalar Z uorlcas ur uorssncsrp oqJ,

'saFporu Jo raqurnu aql puts

{f8ua1 d€rre orll {pea1c sougap qclq^r 'O'NJ :xrr?"ru uorl€uroJsuerl J€aurl aql roJ
uoll€1ou ltrau € acnpoJlur arrr 'aro;araqJ 'xrJl€ru arlt JoJ ralaurered e eroru.r(ue 1ou
sI aplJ?s arll 'ra^a^roH 'fl selnporu Jo raqunu puts tV q15uo1 iterre qcsa roJ cgrcads
aq IIIr saclJluru uorl€rrrJoJsu"Jl aql teql eugap suorldrunss? snorlord aql

:ssarpps oql uro4 s1lq luecgruSrs
lsonr b - u at{l Surlcerlxa dq paurelqo sl

"r(0r
t "' t7-b-utrt1-b-u1) : J ssaJpp€

mor l(g) ul roruea s" poruroJ sr ssarpp€
^ror

oql aroH 'ssarpp€ rtror 1rq-(D -u)
p

pu€ ssorpp" olnporu l(rouroru llq-b € acnpord ppor{s Surdderu ssarpp€ oql }€q}
ur slFsoJ slr{J'"2:5"on1-;o-sranod orB ssaccB uorlelnurred aprrls ur soprrls
oql oslts ltsql arunsse an 'uorlrppe u1 'suralsfs IBllS1p ur uorldrunsse lecrlce.rd
e d11en1ce sl qcrql\ 'oT, : b ortrl-;o-ramod B sr salnpotu droruaur Jo Joqurnu oql
leq1 aurnsse osle o \ '[91] Sutssarppp r€lncrrc Sururroy.red roJ srossacord aSC
ItsIcJaulluoc l€ralas uI posn ueaq fpeerle sBq lur€Jlsuoc us qcns 'serJepunoq proilt
-u ur parols aq pFoqs

"3
yo qfuel WI,tr,{erre ue 11as eq ol paau ssorpp€ l€r1rur oql

uo slursrlsuoc 1eqtr salldurl slr{J '"2 - 1ur 'orrr1-3o-rarrrod pue lu"}suor e sr q13uo1

,,{€rJts oql leql Sulurnsse dq sluaurarrnbar aql xeler 'la,te.troq '.,{eur arrr 'pau8rsap
aq xouuec auaqcs € ltsqtr s1sa33ns t uraroaqJ qBnoWIV 'suor?€lnturod eprrls
roJ oulaqcs ssoco€ uB dolarrap o1 slurq ouos saptloJd uorssncsp snoraerd eq;,

uollE+ruurod aplr+s JoJ auar{rs ssocrY 6'g

'[g] pauSisap aq touuec saplrls

i€Jolos Surlroddns auaqcs ssaccts aarJ-lcrguoc € slurerlsuoc snoraerd aql rapun
l"ql u/[oqs aq u?c 1I'sassacc€ 1a11ered s ur ecuo dpo pacuaraSoJ sr {uBq,{rouraur
qc€a teql saugap (q uorlrpuoc aq; derre aql Jo ssarpp€ I€rlrur pue qlSual d€rr€
aql Jo ssalpr€Ear aa{-lclguor sr ssocce aql l€ql saalueren8 (e uorlrpuoc eq;

' D poru f : fl pour 1,{p fiyuo O pour,Z(Sf + D): b poru J(S? +").(:
puD bS ctpouad (o

sx J ruloLu uozgotu^to{suo-t4 Joauzl aqy Sz aa$-yczpfuoc sz sa?^.toutau.r

nZ : 0 raao ssarro apTtls
"Z

: g 'uaysfis fi^tou,au, faqrpu u/ 'g rrraJoarlJ

I

mo L 2 3---T123
5476
1011 8 I
15 14 13 12

17 16 19 18

20 2L2223
27 262524
30 31 28 29
34 35 32 33
39 38 37 36
40 4L 42 43
45 44 47 46
51 50 49 48
54 55 52 53
57 56 59 58
60 61 62 63

Fig.5. Access scheme for 64-element array on 4-memory system corresponding to
transformation matrix in (10): (a) module address generation and (b) contents of
memory modules.

matrix T2^2 is a vector of n elements of L's. This implies that the additional
bits should be included into the bit-wise XOR operations, i.e., each row in ?w,e
should contain multiple 1's.

The use of diagonals have been suggested in [8] thus the obvious solution
would be to add diagonals to ?. Let us illustrate this approach with an example
where 64element axray is distributed over four memory banks. In such a ca.se,

the transformation matrix T6a,a would be the following:

Taa,a: (10)

This will result in the storage depicted in Fig. 5 and it is easy to see that
all the stride permutation accesses with power-of-two strides from I to 32 are
conflict-free. Performed computer simulations verified that the transformation
matrix can be designed by filling the matrix with q x q diagonals in cases where
t? rem g:0; transformation matrices Tp2o,2t can be obtained by concatenating
k identity matrices ,[0.

The next question is how the matrix is formed when n. rcm q f 0. For this
purpose, additional l's need to be included into ?N,O. h [8], such l's where
added as diagonals or antidiagonals off from the main diagonals. In [17], the
main diagonals may contain 0's thus the additional l's are spread over the matrix
for fulfilling the full rank requirement. This results in the fact that rows may
contain large number of ones, thus the number of bits needed in XOR-operations
is increased. The effect is even worse in approach used in [7] where the rows may
contain different number of lts; one row is full of 1's. another contains only a

/rororo\
\ororor/'

'o/h1-Jo-Janilod € sl salnpou r(rorueru Jo Jaqunu aql aroqlt surals.{s
r{roruaut pa^Bolralm paqcletu uo soprrls orrrl-yo-rerrrod olqrssod aqtr IIB ro; '0.6 o1

dn sqlFual rteJre ''e'r 'sosec lecrlcerd ur ssacce uorlelnured epr.rls yellered eel;
-lcrguoa sapr,tord ouoqcs ssacce pasodord aql leql olels utsc o/r\ 'aro;e;aq1 'pue
slclguoc due pug lou plp uorl€lnrurs olrsualxo ar{J 'ozZ o} rU ruo{ pa}€rolr aro^\
yo sqfual .{erre orvll-;o-reao,od aq; 'aa{- crguoc aq ol pogrro^ s€.rrr ssocc€ lelered
qc"a pu€ r-uz'' '''tZ,'oZ: g :ond.]-Jo-sre.rrrod alqrssod oq1 1e Surre.loc saprJls q3l/ri\

peruro;rad aJa.& sossarce uorlelnturod oprrls oql IIE'(O'1ur) rred roleurered qcea
ro.f 'r_16' ' ' ''rZ'oZ: b ''a'r 'oaa4-yo-srar*od go sroqunu elqrssod aql IIB Joloc ol
PoIJ€ stsrr\ @ selnpour {rorueur Jo roqunu alq!'uZ: 1rr qg5ual ,{efie uelr8 e rog
'aarJ-lclguoc sr ssocc€ qceo 1"ql 8ur.{;rra,r pu€ suorXezrue8ro eSerols SurleleueS
dq suorlelnurrs ralnduroc qll,tl paUIJaA uaaq sBrI a[raqcs ssecce pasodord aq;,

'gI ol I ruo4l o^\1-Jo-srel.od yo soprrls aql II€ JoJ

pelroddns sr ssocc? uorlelnrurad oprrls or{} leql ueas aq u€c Xr ure8e acu6 'g'Erg
ur polerlsnlp sr v'zttr o1 Surprocce parols salnpour d.rorueur oql Jo s1ualuoc aqJ

(zr)(l l; ?;) :'*,
Fur,rolloJ aql sl

?'uEJ pu" U '8ld ul urnoqs aldurexo oql ol uorlnlos e saprrrord qceordde srq;,
'(o) ot

Sutprocce pour"lqo sr ssoJpp"
^\or

aqJ 'uorlerado UOX asr^t-lrq solouap @ oraq^\

(rr)lnlfi- z- (bpour u'b)pc? -b+u).1 : (z)r'u,
0:ry

' I - b("'!I!0 : ?'uPou(?+6fh2 O : r*
&)''"t

si\olloJ s'B pazrl€ruJoJ aq u€c auraqcs ssoccB

arllua arlJ 'rosrlrp uoulruoc lseleer8 aq1 sr (.)pc8 orar{^r ba'ueJ ur posn aq flpt
sauo ((bporu?l'D)pcF-Dau) pe ur nV'urunloc Surpecerd aql q ^\or

ruolloq
aql uro{ panurluoo oq IIpr 1r 'aaor dol aql }H nl,!\ leuo8ep aql ;1 'paceld searl

urunloc lsorugal aql q I oraq-&\ /dor oqtr o^oqt sr qclq^{ 'rrroJ e ur O'Ng go uunloc
lsourlq8r.r oql ruo{ pag€ls sr Eu1lg pue lq8rr oqX ol {cpq sderrrr leuo8ep lerlred
Furureruar aq; 'peceld sr puo8erp lerlred e 'xrrleru or{l Jo lJol aqtr ul alqtsl€ ts

oceds q8noua lou $ araql JI 'pue reuroc ra,ro1 1q3rr oql ruo{ 3ur1re1s sleuo8erp
tltrlirr 4JXetu uolleluJoJsusJl aql 11g eM'0 * D urar u orol{,r\ sosec ut 'orogoraq;

'{fua1 ,{€rre aqX uo luapuadaput uotltsod aures aq} ut sfe.rrlle
are asoql 'o 3o sxrq luecgru8rs ls€ai oql JoJ pauroJrad a.re suorlern8guoc oqx [€
;r ',tro11 'Surxeidrlpru Surrrnbor e8ueqc ,(eur suorlerado UOX otut papnlcut aq
ol peau qcrr{rr.\(?o slrq ssarppp aq+'HV xIrltsru ur or€ s.I aqlJI'sa8ueqc qfuol
,("JJ€ aql uaq.&r uorl€Joue3 ssarppe aql Jo uorlern8gum aql sasea luauro8u€rr€ u€
qcns '(Z) ur J xrJleru leu6uo aql ul

"y
ol ''o'-r rO'N;;o ped lq8rr aql ol pal"rl

-uocuoc aq ppoqs slrq l€uorlrpp€ aql 1eq1 saqdurl uorssncsrp snolrard aq;
'u ol I uorJ sarJe^ :aqleSol

po,UOX sllq Jo roqunu 'aser e qrns uI '{fua1 ,(erre lueregrp roJ luaragrp aq mid
xtrl€ru uorl€ruJoJsu"rl aql ocurs palroddns oq ol paau sqfual ,{erre leranos uaq.la,

^\arl
Jo lurod uorlelueualdrur aql urorJ alqegoJruocun fleurarlxe q slqJ '1 e13urs

I

rno L 2 3- 0 3-TT
7456
109811
13 14 15 12

19 16 17 18

20 23 22 2l
25 26 27 24
30 29 28 31

Fig. 6. Contents of memory modules when a 64-element array is stored into a 4-memory
system corresponding to transformation matrix in (12).

3.3 Address Generation

Before going into implementations, we may investigate the structure ?rv,g when
N is varied. In practical systems, Q is constant; the number of memory modules
is only a design time parameter. As an example transformation matrices for 64-

module systems are illustrated in Fig. 7 and few observations can be made from
the structure of the matrices.

First, the matrices contain two principal diagonal structures: concatenated
diagonals from the bottom-right corner to left and additional off-diagonals. The
concatenated diagonals imply that the address a should be divided into g-bit
fields and bit-wise XOR is performed between these fields. Since the concatenated
diagonals in matrix for a shorter array is included in matrix for longer arrays,

several array lengths can be supported easily; shorter arrays can be supported
by feeding 0's to the most significant address bits.

The second observation is that the off-diagonals affect at most the q - 1

least significant bits of the address o. In fact, (11) dictates that the number
of 1's in off-diagonals is g - gcd(q,n,modq). In addition, the structure of off-
diagonals depends on the relation between n and g but, since, in practice, q

is constant, the structure depends on array length. However, there are only q

different structures; the off-diagonal structure has periodic behavior when the
array length is increasing. In Fig. 7, one complete period is shown and Tergz,o+

would have the same off-diagonal structure as ?rze,oa.

The structure of off-diagonals implies that several array lengths can be sup
ported if a predetermined control word configures additional hardware to per-
form the functionality of the off-diagonals. Such a configuration is actually simple
by noting that the form of off-diagonals in different array lengths indicates ro-
tation of least significant bits in a. The number of bits rotated is dependent on

the relation between n, and q.

According to the previous observations, the computation of the module ad-
dress rn can be interpreted as follows. First, the address a is divided into g-bit
fields Fi starting from the least significant bit of o, i.e., Fi : (oiq1q-r, aiq+q-2,
..., &iq+r,aao)T.If e: nmodq) 0, the e most significant bits of a exceeding

aql ol soraz Surctsld pus D ssoJpp" ar{t Jo s1rq lu€cgrufts lsral ((a,D)pc8
aql 8u-IlcBrlxa fq paurroJ sI (oo'"''?,-bn'r-br) : X plag 1rq-b e ,ga1q

lSOIu

-b)
(er),(-uO

t' " (Z-u'D'l-uO) :
I

sI qclq^r
'1(01'" ''(-eI'r-'I) : ? rolca^ llq E se palctsJlxa oJB JapJoq >1co1q 1rq-b aq1

'sua1s,{s,trornoE g JoJ uorleraua3 ssoJpps alnpoul roJ saJrrXtsIu uorttsuroJstr€.\l .l .Sl_{

(tooooorooooo\
10r00000r0000 |

I ootoooool ooo | : rs,e6orr

1000r00000r00 |
10000r00000r0 |
\ooooorooooor/
(ttooooroooo\
10rr0000r0001
I g g r r 9 gg9 I 99 | :'e'8'ozl,
looorrooooro I

10000r00000r I
\I0000T00000/
Itotooorooo\
10r0r000r00 |

| 9919999910 l:un'u.07
1000r00000r I

IIooorooooo I
\0r000r0000/
(toooooroo\
10r00000r0 |

| 99l999ggl | -un,.,ns
lroorooooo I

Iorooroooo I
\00r00I000/
/toooooro\
f orooooor I

I lttggggg l:'e'eser
10r0r00001
Ioororooo I
\000I0I00/
/rooooor\
Irrooooo I

l9ll999g l:,'azv 100rr000 |

1000rr00 |
\oooorro/

I

Fig. 8. Principal block diagram of module address generation. Rctrl: rotation control.
FSctrl: field selection control.

significant bits;

X:(0,...,0,os_gcd(q,e)_lr...,ot,or)T. (14)

The bit vector X is rotated g : (n - g mod q) bits to the left to obtain a bit
vector O - (oq-r,...,o6)?, i.e.,

O : rotln-q; -"a q (X) (1S)

where rotn(') denotes g-bit left rotation (circular shift) of the given bit vector,
i.e.,

rot, ((41-1, ek-2,. .. , oo)T) :
(o*-n-trak-g-2r..., ae, &k-lt, ., t ak-g*lt ax-g)r .

Finally the module address rn is obtained by performing bit-wise
eration between the vectors Ft, X, and ,L:

(16)

XOR op

(17)
[,'n (g\!-f'-' oro*.) , i] e

-' :
I J, o

";
o (o I!oot-' o,n*n) ,i < e

A principal block diagram of the module address generation according to the
previous interpretation is illustrated in Fig. 8. This block diagram contains a
rotation unit shown in Fig. 9, which computes the vector o. This unit obtains
q-l least significant bits of o as an input and the gcd(q, e)-l most significant bits

Uoddns u'c eruoqcs posodoJd oqJ .qfual ,{erre eq1 uo luopuadepur ssarpp€ oql
Jo sllq luecgru8rs lseal I - D aql uo peurro;.rad ere suorlerado ltsuorXrpp" oql
IIe osec sHx uI 'rolereueS ssorpp" alnpolu oql 01ul Jaurqs $ol llq-D e Surpnlcur
{q pegoddns aq uec sqfual fer:e le.rarr,os l"ql u^\oqs ser,'\ U

.oraz $ ssorpp€
F-Ilru! oql pue luelsuoc q qfual derre eq1 leql altlcrp suorldrunsse pasn aq;

'suorle.redo UOX asrid,-1rq dpo
Surrrnbar aldrurs sr uorlereueE ssarppg alnpour aqJ .suorl€lnurs relndruoe qlpra
poglJo sp/'l qcrq^\ 'oa{-lcrguoc oJ€ sassocce uorlelnrurad oprJls ort\1-Jo-rearrod
elqtssod oql IIB 'as€c srql qI .sappour lfrouaru luapuadepur 6Z JoAo pa]nqrrtr
-slp orB slualualo eTep u7, lpql porunssB .,sn6, 1I 'pesodord se,l\ suals{s droruau
Poqcl"ru JoJ oruoqcs ssscr€ uorl€lnrurad aprrls aaq-lcrguoc B ,reded s.Iql uI

suorsnlcuoc ,

'pa8ueqc fl passocc€ eq o1 derre aq1 3o qfuel oql uaqnd, dluo pagrporu
aq ol spaou pro r loJluoc slql .rala.d\oH 'uorlelor pue uorlcolos 1rq Eurugep proin
loJluoc pouruJalapoJd elEurs e fluo sarrnber uorleluaureldur pasodo:d eqtr u1
sqtr8ua1 derre lueregrp ro3 poddns arlJ .palroddns oq ol poou sql8uel derrr
IBJoAos uoq^r suorl€luatualdrur salecrldruoc qcrqn ,s1rq ssarpp€ u aql IIB arrnbar
qrox ao'os '[2,] ul ''3'e 'serueqcs roqlo ur arq^\ sauq llq z + fb/ul lsou 1e uo
peuuo;red sl HOX ltsnpt,rtpur qcue ,uorleraua8 sserppe oqX uI .g .BI.{ uI urel8erp
Icolq sql ruo{ uaos aq u"c oruaqcs pasodord eq1;o e3eluu pts ur€tu aqJ

'paurelqo u p rolcarr 1rq-b
aql 'ge1 aql oX sllq 6 pelelor uaql $ X rolca paurclqo ar{l puts rolcerl lndur
aql qlp\ uorleredo ONV osr^\-lrq e Sururro;red ueq11 's(0 eJ€ slrq luecgru8rs
?sotu I - (a'D)pc-F oql pue s(I ore slrq luecgru8rs ls€al (a,D)pcF - D aq1 areqn
'-r((0/'V'"''z-.b{-) -_31'rolcerr xlq €Jo pre ar{tr r{ll/lr po}colas oq usc strq asar{J
'r(oo'tor"''r9-(a(D)pot-Dor1-(a(b)pca-bot0,...,0)

-)r JolcoA xlq-D € ruJoJ ol
'q8norqX pessed or" slrq luecgru8rs 1see1 (a,D)pcF-D aql snql ,paoraz are lndur;o

'uorlereua3 ss?rpp€ appoul ul lgn uo!1tslor;o urer8erp 1co1q pdrcurrd .6 .q,{

t-bo

I

different initiai addresses but arrays need to stored into n-word boundaries.
However, this is not a strict requirement and such a restriction is already present
in some addressing modes in commercial DSp processors.

stride permutations are found in several DSp applications where smail ker_
nels are iterated thus a special addressing scheme supporting the access pattern
provides advantage especially when rong arrays are used, e.g., in FFT. The access
scheme can also be used in application-specihc

".ruy
p.o."=rsors where operands

need to be reordered according to stride permutation. In such cases, multi-ported
memories can be avoided when an interleaved memory system is used. F\rrther_
more, the proposed scheme can provide memory-efficiency since double buffering
is avoided.

References

1' Harper III, D.T.: Increased memory performance during vector accesses through
the

'se
of linear address transformations. IEEE tans. co"mput. 41 (1gg2) 227_2i02. Budnik, P., Kuck, D.: The organization and use of parallel m"mori"s. IEEE 11arx.

Comput. 20 (192i) 1566-1b69
3' wijshoff, H.A.G., van Leeuwen, J.: The structure of periodic storage schemes for

parallel memories. IEEE tans. Comput. 84 (19g5) Sbt_SOS
4. Deb' A.: Multiske*j"e :3 nover technique flr optimal parallel memory access.

IEEE Tlans. Parallel and Distrib. Syst. Z(1996) S-gS_AOa-
5. Flailong, J.M., Jalby, w., Leflant, J.r XoR-schemes: A flexible data organization inparallel memories. In: Proc. Int. conf. parallel processing, st. charres, IL, u.s.A.

(1e85)
6' Gao, Q.s': The chinese remainder theorem and the prime memory system. In:

Proc. Int. conf. computer Architecture, san Diego, cA, u.s.A. (19"93) 3gz-3407' Norton, A., Melton, E.: A class of boolean linear transformations for conflict-free
power-of-two stride access. In: proc. Int. conf. paraller processing, st. charles,IL, U.S.A. (1987) 247_254

8' Harper III, D.T': Block, multistride vector, and FFT accesses in paraner memory
systems. IEEE tans. Parallel and Distrib. Syst. 2 (1991) 4g_51

9. valero, M., Lang, T., peiron, M., Ayguad6, E.: cojlict-iree access for streams in
multimodule memories. IEEE tans. Comput. 44 (199b) 694_646

10' chen, s., Postula' A.: synthesis of custom interreaved'memory systems. IEEEtans. VLSI Syst. 8 (2000) Z4-89
1l' Lin' H., wolf, w.: codesign of interreaved memory systems. In: proc. Int. work-
-^ :l:p Hardware/Sofbware Codesign, San Diego, CA, Ii.S.A. (2000) 46_50
12' wuytack, s., catthoor, F., de Jong, G., M"an, H.i.o., rrait*iri"g the required

memory bandwidth in wsl system realizations. IEEE tans. vlSl"syst. z (i999)
433*441

L3' Granata, J., conner, M., Tolimieri, R.: R.ecursive fast algorithrns and the role of
the tensor product. IEEE tans. Signal processing 4O I1SOZ; ZOZ1_ZOfO

14' Davio, M.: Kronecker products and shuffe algebra. iBpE tl.*. comput. B0
(1e81) 116*125

15. Astola, J., Akopian, D.: Architecture-oriented regular algorithms for discrete sine
and cosine transforms. IEEE tans. signar processing 4z (19gg) 1109-1124

L6. Takala, J., Akopian, D., Astola, J., Saaiinen, J.: Constant g**!tt .tgorithm for
discrete cosine transform. IEEE tans. signal processing a=s lzoooy rdao_tgas

I

6L9-992 Gnt) VZ Surssecor4 leu8rg
'qcaadg ('lsnocv 'sue{l gggl 'arcapr€q Jdd Jo Iortuoc pagr-ldqs :'q ,uaqog .61

(goor)
'V'S'n 'VC 'guoura"14 ''cu1 'fSolouqca; u8rsaq .,ta1a1.rag 'samleed prre samlca?rqo
-rV :sFluauepur\rl rossa)ord dSO :'V'g 'aa.J ''v 'iu€qoqs ''f ':a]g ''q'6 '..{e1sde1

w-rs (€66r)
6p '1nduo3 'sne"\l gggl 'srossaco.:d rolcol roJ sarrortraur pa^€airolul :'S'C 'FIoS

'8I

3uu1co1c aq1 8m4rur fq paaarqee sr sa3els aurladrd aq1 ;o Surcuepg '([SZ]-[SZ]

'[ZI] o8els augadtd drarra ro; sluawele Surssaaord Jo Jaqunu em"s aql esn salnl
-celrgcJs patrrledrd l"clss€lr 'raaoruoq 'sarnlenrls eseql luaualdurr o1 pafoldura
uaaq seq 3mu4ad1d 'q8noq1 ue^g 'la^al ol la^al " uro.g pocnper acrrrrl sr puSrs
passaao:d aq1 yo qfual eql araq^r (saaeqco) uorlrsodmocep Jo sla^al (1) praras dq
passacord sr puSrs lndw aq1 uorleluasardar sTrll qI '(r 'fl.r eas) s.Lr11q Jo uorlpl
-uasardar {u€q rallg pemgrnrls-eort aql uo paseq [gZ] (VaU) urq1rro8ry pluer.{d
alrsrnral{ aqt lloldxa sernlcalrgrr" aseqlJo 1so111'('c1a'[Of] q ra11g lalleredaql
'[sf]{gf] ul sernlcelrqcrs aqt '[gT] uI IV arnlcallqrr€ oql 'arenpreq palqnop B

qlprr Pepl^ord ere,(aq1 uoqaa [71] uI sarnlcellqcrts aarql eql ''3'a) pau3rsep uaoq
aAeq 's,cc 19, flaleulxordde;o porred e Suarq 'sacraap Jo raqumu a8rel c osJy
'('afa '[gt] w ZV amlcetqcrts eql '[lf]-[Zf] ur pesodord sacrlep aq1 ''3'a) seldues
g Sur.ireq acuanbas B Jo I \C e alnduroc o1 (s,cc) salcfc 1co1c NZ 1seel 1e ernber
qclqia secpap flrxsldmoc eft^rpJ€q ttlol eql eJe tuaql Suoury 'eJ71\CI Jo uollst
-ueuraldurr erts,lrpreq roJ [gZ]-[ZT] pasodord uaaq fpee:p a eq sornlcellqcre OISV
Jo reqrunu ts 'J1.;1\g ;o uorlulndmoc almll"er paau suorltscqdde fueur acurg

'0002 cgdf sB qcns sprspusls l€uorlBura?m Jo slsBq aql auocaq e^tsq spo
-qletn uolssarduroc paseq ;,711\11 'cla'hT] uorssardurocap/uorssardruoc qcaads '[61]
sanbruqcel Surssacord lerfts '[6]-[9] '[1] Sulssaco.rd oapu pue a8eun Jo seqcurq
luaragrp '[2] aurcrpaurolq '[g]-[S] stsfpue learratunu :suorlecrldde 3o a3uer aprat
e o1 paqdde flryssaccns pu€ parpnls u€q sBq leqq uorlrsoduocop aFeun/pu
-3rs ro; onbruqcal tuolcga up q [l]-[t] (,f,fvfA) uroJsu"-\l tala

" \ etercsrq arlT,

uor+cnPor+ul I

'sde.rre crJop,{$russ sE paluarualdnrr eq u?c pu€
seqcllas ro uol?cerruor (+ndu1 aq+ Jo qfual aq1 uo Surpuadap) 3uo1 lreq
-pseJ ur€+uoc 1ou op daqX 'pe11or1uoc dsse pun le1n5el oJB sarn+calqcrv
'su5rsap ;16q Sulpgxe eq+ ol pareduroc srrlsue+"pJaqr arm+-€er? lualloc
-xe e+tsr+suortrep puts uor1Bzllr+n erBi prerl Jo %00I dlaleurrxordde q1r,ra

ur.ro;rad sa.rn+oe+nlcJa pasodord aql (+tmome exeilpxpq ua,u3) ursualpred

Jo Ie al ,{laaa 1y '(,{e1ap ro lndq3nolq+) acuzurro;red eql prre (uorldums
-uoc raaaod ro/pue ea.re dlqc) lsoc agl uaaulaq go Surperl yo Sm,raol1e snr{l
urslalpred;o laaay 8rn,{rea q+Iaa paluaureldurr eq ,{eur sra-rnlcalrgrrv 'uol?
-e1uasa.rda.r qdrrS,u,og 4aq1 uo paseq pasodord are (sg1q) smro;suu.r1

+elalBrrd. elercsrp roJ sarn+ce+rqcre peuledrd-1a1pled elq€1ers .lr€rlsqv

trof, ' ET{ouoIIeT{Jo,0'anc' PTle0
puepld 'aradure; 'g31tt-ds '1-nlolorsrn 'ra1ua3 qrJeasag €rxoN

uaureleddel aIIIA pu" 'uaulerunel r4y 'eqnr1 rr1a4 'uerqro^an.g prae(

srrrroJsuB{l }ala^B.a\ a+arcsrcl roJ sarn]ca+Trlcrv
poulladld-IolterBd alqBlecs +ualcgg r(HEtH

Fig. 1, Tlee-structured flowgraph representation of a l-D DWT

frequency twice smaller from a stage to stage (see, e.g., [23]-[2b]). As a conse-
quence of under-utilization of processing elements (PEs), the typical efficiency
(i.e. hardwa,re utilizs,trien) for these architectures strongly decreases with the
number of decomposition levels. Approximately 100% of efficiency is achieved
only in conventional architectures based on lifting scheme (see [a]) which, how-
ever, a.re either non-pipelined or employ only a restricted (two stage) pipelining
[17], [18] and, in addition suffer from extensive either memory (chip area) or
control requirements. The highest throughput achieved in known architectures
is .Ay' clock cycles per N-point Dwr. Twice faster performance is achieved in
highly (about 100%) effcient architectures developed in [22]-[28] by including
approximately twice lower number of PEs from a stage to stage.

In [29]-[30], fl,owgraph representation of DWTs (see examples on Figs. 2 and
3) has been suggested as a useful tool in designing pa.rallel/pipelined DWT ar-
chitectures. In particula,r, this representation fully reveals para,llelism inherent to
every octave as well as it clearly demonstrates data tra.nsfers within and between
octaves. This allows to combine pipelining and parallelism to achieve a higher
cost-efficient performance. This means implementing octaves in a pipelined mode
where pipeline stages are parallelized at varying from stage to stage level. Incor-
porating varyrng level parallelism within pipeline stages allows to design parallel-
pipelined devices with perfectly balanced pipeline stages.

In this work, general architectures of several DWT architectures operating at
approximately 100% hardwa,re utilization are proposed based on the flowgraph
representation of DWTs shortly described in Section 2. The proposed structures
may be implemented in different ways. In particular, they are scalable meaning
that they can be implemented with va.rying level of parallelism giving oppor-
tuniby to trade-off between the hardware complexity and performance. several
possible realizations of the proposed general structures are discussed in Section
3. The resulting a,rchitectures demonstrate excellent time and moderate area per-
formance as compared to the conventional DWT architectures as follows from
the discussion in section 4. Throughputs of the a.rchitectures may vary between
NL/2J time units (at the minimum level of paralletism) up to even one time
unit (at the theoreticar maxim'm level of paraltelism) per an N-point DWT
with J octaves and filters of the length ,t. The proposed a.rchitectures axe regu-
lar and modular, easy controlled, and free of a feedback or a switch. Thev can
be implemented as semisystolic arrays.

I

'sqCSual tall$ rtrBJ+rqJ? Jo essJ preueS aq+ o+ pepusdxa r([ssa eJ? s+lnsrer aqJ
'rsqurnu ue^a u? sr qJnlj6. qqSueJ eures eq+ a^?q o+ sJelJg q+oq 3tunss'B ej6. /tlrrtsJc rod r

I 'r[r(0")'"''r(to)J sB pelouep sl {r'"''ro srolcaa

uurnlocJo uorltsueltscuoc pu" 'salq€rJ" qrl€JcsJo srolcel (t x c_*z) eJ€ (1 r... rt

:
L[,t - r-*z)d1fp'"''(o){fi"] : 1ff

pon ',l$ - r*dl?1*, ,{dli4
: lfia

araqna aporopnasd SurnolloJ eql se ua11rr,n aq usc mqlrro8p Burpuods
-orror aqJ 'c rolcal lndw aq1 Suraq rolcerl qcns 1sJg aql selqe-rrts qcl"Jcs
Jo rolcol luarrnr * de tf)If xlrlew asrrds

" Jo uorl"rrldrlpru Jo salnlrlsuor
t['"''I: f,'a8els qlf aql araqrrr,(saaelco Jo sla el uorlrsodtuocap pa11uc oqe)
sa8ep 1 4 petnduroc sl Ji!\C aql ,(Z)-(I) uorleluasardar aq1 Bmldopy

- '
' (* r*Z x g c

-*Z)
azF aql Jo rolurado egnqsun pe;rad aql Jo xrrl"tu

"qf
q .ra

pue '(rsreqg aq1 ;o ql8ual aql sl 7 dlerrqcedsar ,sra11g ssed-qftq pue ssed-alo1
eq+ Jo squerDsaor Jo srolcal aql axe [?V,...

,rr1] : dH ptrB ["?,...
,Tl] : d.? ereq&r

0 "' 'Irt "' zrl rrl
0"'"?"'zLrl
0 "'0 071t"'
0"'0071"'

zqht "' 0 0 7V...tq

A "' ht"'ztl rV 0 0
0 "' 0 0 7u "' zLlul
zI II ... 0 0 "l '.. 0?:to

zt! rq ... 0 O 7q -.' ttt
z? rI .'. 0 0 7l ... €?

]"

\G/
00
00 ztl rr!
q IT.

' (r+t-*z-*"[,0

o "'7I"'q rI

0"'0071"'
00
lrI

:arnlcnrls Buyrrollog aq1 Fur,req f, a8els 1€ x.rJl€ru (r+r*Z x r+t_*Z) srsfpue aq1 s1 f6 pw'(r+{_*Z- *Z: ry) xrrgeur (v x ry) gp,iipt aq1sr l7 eraqaa
(r)

f '"''r : !: @H :u5 f S t ,{r;H.
fOH: H

:sactrleur asreds;o lcnpord aql ss peurroJ sr qclq^\ N x iI rapro Jo
xrf,lurrr JMCI aql sl I{ pu" 'flaarlcadsar

,
*Z : N {fua1 Jo srolral 1nd1no aq1

pue lndur aql are
r[t-arn,...,od] : d pue

,[r-rrc,...,oo] : c eraq.&\ ,*.H:n
urroJsrr"Jl J€arnl € st ruJoJsu€Jl lele^€^r elarc$p e ,uorlrugap xrrluru aq1 Burs;y
'uollcas sgl uI peqrrcsep oEB sr paseq er€ sarnlcnrls pesodord eql qc1q,n uodn

urqltroSle ctseq aqJ '[OS]-[OZ] ur sernlralrgcJe J,111\CI paqadrd/1ail"red luarcga
Sutuftsap ur luarcse frarr aq 01 uA\oqs uaeq sgq qrrq.&r uorq€luasarda.r qde.r8rr'rog
Iaql 01 aAIrrB o? sJ/ylo aql Jo uolllugep x.ul€m eql asn ai$ uorlcas slql qI .[TI]
-h] suorfruqap xrJleru Jo aueqcs 3mry1 ,arnlcnr?s ecrllel ,4ueq ra11g parnlcnJls
-eaJl sB qcns s&1lq Jo suorl€luasarda:/suorlrugap a^r1"uJell" ["Ja as are aJeg,T.

SJ/KCI
roJ $uqtr.rotly tal1ered prre uor+Bluasa.rdeg qde.r8molg ?,

I

Algorithrn 1.

1. set "ftr: l"!']tol, ...,,ftr(z* - r)]': ",
2a. For j :1,...,J compute

,ytr : f"fltol, ...,rf)r1z*-i - r)]" 'od
,E)r: f"f;lfol, ...,"f)r1z*-i - r)]", *h"."

: Dj'r9;'),

or, equivalently,
2b. For i :0, ..., 2*-i - I,
Form the vector //* a subvector of length ,L of the vector rf), *

/ /

e : frf;t)tzt1,af;l)1zt* 1),..., ,(;;D11zt+, - 1) mod 2--r+1)).|".

Compute

"f\tr.l
: Lp .6;

3. trbrm the output vector y:

"!if (r)
: Hp.ni

(3)lk*)', ("sr)'j'

l"':), "'i'" , "'i;" , .,"!}?,"!l?]t

computation of the Algorithm 1 with the matrices Di of (2) can be clearly
demonstrated using a flowgraph representation. An example for the case -|y' :
f; : 8, L : 4,J : 3 is shown in Flg. 2. The flowgraph consists of J stages,
the j-th stage, j : 1, ..., J, having 2*-i nodes (depicted as boxes on Fig. 2).
Each node represents a basic DWT operation (see Fig. 2(b)). The ith node,
i : 0, ..., zm-i - 1, of the stage j : 1, ..., J has incoming edges from .L circularly
consecutive nodes 2i,2i+1,(2i * 2) mod Z*-i+t...,(2i, + L - 1) mod yn-i+r of
the preceding stage or (for the nodes of the first stage) from inputs. Every node
has two outgoing edges. An upper (lower) outgoing edge represents the value of
the inner product of the vector of low-pass (high-pass) filter coefficients with the
vector of the values of incoming edges. Outgoing value of a stage are perrnuted
according to the perfect unshufle operator so that all the low-pass components
are collected in the first half and the high-pass components a.re collected at the
second half of the permuted vector. Low pass components are then forming the
input to the following stage or (for the nodes of the last stage) represent output
values. High-pass components represent output values at a given resolution.

Essentially, the flowgraph representation give an alternative, rather demon-
strative and easy-to-understand definition of discrete wavelet transforms. It has
several advantages, at least from implementation point of view, as compared to
the conventional DWT representations such as tree-structured filter bank, lifting
scheme or lattice structure representation [30].

:ruroJ aql Jo sl cO uaql ,g : ? pw
Z : T * ! - f l(eldurexa rog .f6 Jo suurnloc ?, - I +11.e_12 lsrs aql puts s/r{or

*l-rZ lsrg oql Jo Surlsrsuoc xlrl"m e aq lg larl 'suorltslou 3mno11o; ldope sn 1a1

qderFnog laeduroc aq1 o1 Surpuodsa:roc sdacord leuorqelnduroc elsrlsnlp oJ
'epou fraae ,{q poluase.rdal sanIB Jo reqrunu aql rrl fpo

potcagar sI qC5uel &!\C eqJ 'qfua1 rallll put sla el uorlrsoduocop Jo reqrunu
aqt uo dpo 1nq J11IO aql Jo q13uol aql uo puodep qou saop qdurSrrrog 311q
lceduroc eql Jo arnlcnrls aqq ltsql a+oN 'sanlts^ 1nd1no r,uz Jo 1as e sluasardar
a8ep 1se1 aql Jo epou aql Jo llnsal Eq:a1g ssed-no1 ro epou € Jo llnslar 3urre11g
6sed-q81q e o1 SurDuodsauoc a8po EuloBlno draaa ,osJy .apou d.ra,ra o1 parfrsse
arc sanlel palnqupp dyrerodrual t_uz lo les ts r!6.ou araqn ,1 t-.. t1 : .f,

,a3up

'qt-f sll lts sapou t-1Zse1 qde-fmog ;111g lceduroc eqJ't'SI.{ uo u^roqssr
n : T't : / astsc aql JoJ uo-rlBluesardar qdrr8aaog lcedruoc JIIG ts 3o eldue
-xe uv 'J,ll/\o Jo uorlBluesatdat qdot6no{ (atn .to) lcndu,oc ulBtqo rlrou uEr e&r

'auo uI surallud 7**Z eW SqErepq 'aatlco frarra s1r o1 quuFrs lndug aql Smur-ro;

;o f8alerls cgrcads B qllrr\ JAIO lu1od- 1Z E se pareprsuo) eq rrBr uralled fra
-^A '(Z '31.{ uo suor8er Sulqcteq o,rrl eqt aas) suralled repuns.Z/il Jo slsrsuoc
qdurFnog J/yt(eql ttql eas utc auo (ru e3ot)) 1" suorlecqddr go lsour aq1 q)
iI e8ol) 1 ftnmnssv 'uorlslrasqo Fur,uo11o; aql uo posuq eurocrelo aq uBD acueru
-eluocrn sIqJ 'N Jo sonl' la38rq rog aBJBI d.le Sureq;o ecuerualuocur uts ser{
paluaserd uaaq 1af sBq lI sB sJ,i!\CI Jo uorlsluasa.rder qdu:Fmog eq1 'ranalloll

'(t:t 'f:l ,gt:N) JA\C C-I B Jo uor+B+uesarda.r qde.r5u,old .Z .SId

tel

\
\\\.
\-\
\:
'i ril::

I

tr-<o! k-rolrs 1"- cr!{otI \3 = (rE

Fig. 3. Compact flowgraph represeutation of a l-D DWT (, : 4, "I : B).

Let us a,lso conventionally divide the vector offl) of (3) into subvectors
o$-1,8):

"9pt)("
.2J-i+t: (s * 1) .2J-i+r - tr, e:0,..., 2^-J -1, where

here and throughout the text the notation a(a: b) stands for the subvector of
o consisting of the a-th to Lth components of s. Then the input of the j-th,
j .: L,;..:J, octave within the s-th compact DWT flowgraph is the subvector
6$-t,s) (0 :2t-i+r + 1, - 3) of the vector

being the concatenation of j!e-vqg!o-r ,y,;',") with the circularly next e3 - L
vectors where Qi : ltI, - \/Zt-i+t|. --

with these notations, the computational process represented by the compact
flowgraph can be described with the following pseudocode.

Algori.thrn 2.
1. For e:0,...,2 -r -1 setcl!'):o(s.2r :(s+1).2r-i);
2. For i :1,...,J
For s: 0,,,.,2 -J -l
2.1. Set 60-1's) accorrling to (4)

2.2. esrnFut" l{"ff')t, ("g'9)']r - bi.io-l,") (0 : 2.r-i+r +, - 3) ,

ut vecror , :
fktt

,) ' ,...,(*rr,^-'-'))

f"g,g)\' (,9:^ '-')) 1-rr,or\
r (

-Q,z*-r
-r))'l '

.\"Hp) ,..., \..rrp) ,..., *Hp') ,..., \"ir, /)

(htrlsla151600\
D.:f 9 0 {t l'zlsl+lsIs

I"r- lh1h2h3h+hshao o I

\0 0 hl hzhzhqhshu/

6u-r,s) :
l("tt"-".,--',)',..., (,!;''ufa5

r)ma'--',)']
(4)

8m1nor €ltp 't urqlrro8Jy eql Jo T dalg aq1 sluauraldrur 1co1q lndur €l€p aqq
rnaraq^r (sg4) sluemela rossecord;o {colq B prre {colq 8w1nor tsl€p B Sunrreluoc
a3e1s qeea sa8els emladrd 1 pue {colq lndul sl€p

"
Jo slsrsuoc arnlralrgcle eql

sas€r r{loq uI 'samlrelrqr:e 1 add,1 tn luasqs are tnq sernlrelrqrre Z ad4l uI
lueserd aJE qrrq^r'suorlceuuoc qcrdap serq poqsep araql{ I'31.{ uo paluasard
-'sernlDolrqc*r*s_;::dff

x.j:J;TJ"l$T jt'"?l,*fi Hffi ix*un
ssed-q8-rq pue ssed-rno1 qll6a salelro 1" qlyrl rrrroJsrrtrl lelelts \ alarcsJp frerlrqre
luaweldnn seJnlcolrqort I \O eJoc eql yo sadfl qlog 'flaalpadsar ,ernlcalrqcru

J,l!\o uollnloser alqtsu puE ernlceIqcJB Jl!\o aloc-rllntu sts o+ parraJar puB
amlcelrqcr€ &t{C eror Jeqlra uo peseq pepnJlsuoc Smaq seJntcelrgcr" J tO
reqlo o \t sB Ile r se 'eatnlcay,rlcrD J6IO ero'r A edfi,1 puo I adfrI sB ol paJJeJar

'sarnlcalrgcru IA\O Jo saddl orrrl Jo seJnlcnrTs lureueS luesard ar\ uorlcas s1ql uI

sorn+colrqcrv I71tO pasodo.r4 eqa g

'
{r-*Z+ (f) * s.) r' 5 (f) *e 1eq1 qcns f} x?m : T1

pue {.--Z + (/) * s > 5' < (f) * s 1uq1 qcns f} ulur : 11 erau^\ patueureldmreru
zft"' (rf

- .f, saaelco erll Jo suorleredo 1 - (f) * I * r_*2,...,(t) * s : e deqs
aq? l" 'praua8 uI 'Jla 'palueuraldurr aJ€ sa Blro oi{q lsrg ;o suorle.rado fluo
I - (S) * s'"''(Z) * 5' : a sdals 1e 'paluaureldun eJB al"lro lsrg aql fpo ;o
suorlelnduoc T - (Z) * s'"''(I) * s : g sdels 1y'I - (f) * I I r,*Z','.,(!) * a : a sdels aql Surrnp aeeld arye1 t urqlIJoBIV yo uorlelnduroc t€ql eloll

('6 urqlr.rofty go g dolg aeg) .rope,r 1nd1no aq+ rnrod .g

' (e - Z t *t-rZ: 0) 11r;*"-",1,q9'tq -

alnduro3 .g.g

(l) o1 Suprorm 116;*"_",1_ng leS .I.Z
1e1p.red ul op zf '"''rf - f .rog'I - (f) * s* r.*2,...,(Zt) *a: s rog.U

:{t - rz' (t +
";

: r7,'s)n : €,o'1, +as I - r-*2,'"'(0 : s' rog'r
.g tttt17.z.to67y

''o':ur3: (/) *
"

alouep a/t\ araq^r uorlezfltsar I \O peqladrd-1e1ered qcns sluosard
opocopnasd 3qrao11o; eql 'suorl€zqeer peuledrd-1a11ered ,tlur1red ro peurladrd

lalered luercge frea o1 elrtJp a./r\ spoqleu olu4 aql Swurquroc (rarraru,o11 .euo

1:€u aql ol elulco tre rtro.g pe Fq sr suorlerado Jo requnu eql aru-rs luerclgeur aq
plnorlr sllorltszrpar peurtedrd dlrood pue plered fFood qlog .uorlBzrlsar

J.d/io
patrqadrd € ol alrrr" o1 alqrssod s 1r lapred uI f roJ e1c.,{c (pelsau) aqt 3r41uaura1d
-uI pu€ s puu f, :o; sa1c,{c Jo rapro 3u1sau eql Supueqcxe i{g .uorlenlaer

J/y1O
lalpred " ol a rJxe zfpsea uec euo lalered uI 6 roJ a1c,{c aql Surlueuraldru-1

, lr(,.n."-sfi")' r(,,r,.'-ff4]

fc)

t

g
o

6

g
o
oo

'A!'
E

n

E

a
Eoo

s
o

6
5

n
llo

Fig.4. The general structure of rype 1 a.nd rype 2 core DWT architecuures

blocks are responsible for steps 2.1, and blocks of pEs a,re for computatious of
the steps 2.2. The two types mainly difier by the possibility of daia exchange
between PEs of the same pipelins stage which are possible in Tlpe 2 but not in
Tlpe 1 architectures.

The data input block of the core DWT architectures of both types may be
realized as word-serial as yell as word-parallel. In the former case the data input
ll.*.::*tt: d.lrTet

(word-serial) inpur porr wbich is connected to a length
2" shift register (dashed lined box on Fig. 4) having a word-parallel output from
its every cell. In the latter .9"e the data input block simply consists of 2i pa,railei
input ports. In both cases the data input brock has zJ paraltet outputs connected
to the 2r inputs of the data routing tlo.k or the first pipetio"

"tig;
3.t TVpe 1 Core DWT Architecture
The basic operation of the Algorithm B (Step 2.2) is equivalent to Zr-i pairs of
vector-vector inner products:

,1i,s*s*(iD(i) : Lp .6(i-1,(s-s*U))il (2i :2i + L _ l),

01 sIId roJ porred aql s€ llun en4t ts augep 8n lel
(ecuerue^uor rod .ernparqcrB

&!l(I aroc 1 adAl aql Jo s{colq eql Jo 1(llFuollcuru aqrrcsap ,$ou sn lerl .emtcagscru aqrJo (T_T+ [_rZ)yw,'... G_rz)lr* slndlno 1s(I - i+.r_r Z) ol q+(s_ rZ) eql mrog 't '... 'I: f,63rp aqpdid trf "qr Jo sgd [-rztro slndlno puoces 'eJnlcelrscrB aq1lo (6)po 1nd1no qm aqr sr aEels
'qtf 'lsBI eqt Jo gd (auo) aq1 go 1nd1no $rg eqJ 'aEup ,p(1 * .f) ,yau eq13o
1co1q Ewqnor Bltsp aqt Jo (T - 9*r?,)6+ils31..

. . ((0)(r+Osa7 slndur f*12 er{t ol
pelceuuoc aru prrt a8els 1eq1 yo (I - c_rg)

(Os d
O,

. . ' ,(0) (OsdO slndliro aql urroJ
'T - f '"' '1 - .f,'e3eqs aurladrd ql.f eql Jo {Id {_rZ Io slndlno lsrtg

.a8u1s eruus
aq1 go (r'fg4.) ga 't - !*r2."'.0 : ?

,q+l aql lo s1ndu1 d aql 01 pelcauuoc are
a8els'1'' "''I : !'U1 { aq1 p r1colq Eurlnor B1ep eqt Jo (1 - d a 4){!)ea o 6,..., 1t
* 4){$)auo6,(t7)Q}aaog slndlno d aarlncesuoC .gd fraae ;o msqaller€d 3o
Ie^al eql Sqqgcsap uorltssmeer aql Jo Jalarrrered e $ o*? ; d areqal sqndlno
oaq puu slndur d *,{ gd _t*S

..Aa
F& lo slndm aql ol palceuuoc (g - a

*;';.c*r7)(t)aaoo'" ''(g)(f)auoo slndlnb Z-d*.r.+g-rZpua 'e8ep aql ol gndur
aq1 Ewtnro; (T - r +s_rZ)

(f)sa7 , ' . . ,(6) (OsaJ slndu! i+i _ rZ Burarq >po1q Furlnor
Bltsp ts Jo els.rsuoc eJnlcaTgcJB I/y\C aroc 1 ad^,$ aqlJo ,1 r... 11 : f

,e3up euqedrd
qlt eql 'luraue8 u1 'sa8ep aqladrd 1 pue (aaoqu peqlrcsep dp*arp) polq 1ndul
Bltsp B Jo slsrsuoc ernlce$qcJe aq; .a3r1s a13ms e Jo stld ueed\leq suor+ceuuoc ou
ere ereql sl tgrn 'seurt peq&p gllal pepldep suorlaeuuoc ou ertl ereq+ areqn 7.flg
z(q peluesard sr arnlcelr(pJts J/$,O eroc 1 ed.(1 eql Jo ernlaruls preue8 eq;

(g urq11-ro31g go g dalg eas) .ro1ce,r 1nd1no eq+ urros .g
(y)axs: (9)11r;."-f;fia t(z)atg - (t)11ry*"*"{frt +"s

o:{
: (q a du * lZ) ((.4*"-

",,
* r, gr+d,z/ 3 * (,?) ars' : (p) ang

1-d

0:{
:(E 1 du * ?Z) (e)*"_",r_qe,r+d\7 + Q,)atg : (g)atg

1-d

,tlprluenbes op I -dI'"' '0: u.rod
!0: (CdHS eg: (z)azg 1eg

1a1p.red q op I - f*rZ('.'
r0 : ? ra4.Z.Z

(?) o1 Euprocs (1gy*e_e,1_rrg teS .T.?

1e1p.red q op ef '"''rf - f .ro.{,T - (f) * I * r_*2,...,(I) *s : a ro.{ .U

l(t- rZ.(t +"; : ,7.s)t: t"{J" +as I - r-*Z'"'
(0: s JoJ .I

.y.g tu,t11?.to6yy
's^rolloJ sB pa$pou aq feur g urqlrro8yy ,slql qlll\ .sllnser aql Jo

uolltsInumccts qt1rri (l > t) d qfual go spnpord rauu-r ld/fl : dI lo acuanbes e
o1m pasodtuocep flsnopqo aq utse 7 qfuel go lcnpord rerrm JolreA-rolcea itraaa
'putsq reqlo eql uO '1a1pred u palueuraydur aq feur slcnpord rarrq aqt 11V

I - e - rZt"'
rg : ?' (I - I * ?Z | ?Z) g<tf)+s-s),1-r)? .

d H : (g
- pZ * ?) 11r;,c_a,61o

{z)

(g)

I

complete their one operation (which is equal to the period between successive
goups ofp data to enter to the PE) and let us consider an operation step ofthe
architecture to consist of .Lo time nnits.

The data iaput block serially or in parallel accepts and in parallel outputs
a, group of components of the input vector at the rate of 2J componenw per
operation step. Thus, the vector

"lt;")
ir formed ou the outputs of the data

input block at the step 3 : 0, ..., 2 -J - I.
The data routing block of the stage j:1,...,J, iE a circuitry which at the

first time unit n : 0 of its every operation step accepts in parallel a vector
of 2J-i+t components, and then at every time unit n : 0,.1.,L, - I of that
operation step it outputs in parallel a vector of 2J-i+t + p - i componenrs
rw,np + 1, ..., (n + 1)p + 2J-j+t - 3 of a vector being the. concatenation (in the
chronological order) of the vectors accepted at previous Qi -l steps, where

A : f(r-* -2) /2t-i+tl i : r,...,J. (8)

The functionality of the PEs us€d in the Tlpe 1 core DWT architecture is to
compute two inner products (6) and (7) of the vector on its p inputs with two
vectors of predetermined coeffi.cients during every time unit and to accumulate
the results of both inner products computed during one operation step. At the
end ofevery operation step, the two accumulated results pass to the two outputs
of the PE and new accumulation starts. Possible structures of pEs for the Tlpe
1 core DWT architectures are presented on Fig. b for the case of arbitrary p
,p:l,p:2, a,ndp: trm,*, (Frg.5, (u), (b), (c), and (d), respectively). These
structures a.re for the "generic" Dwr implementation independent of the filter
coefficients. They can be easily optimized for specific filter coefficients.

It is easy to show that the architecture implements computations according
to Afuorithm 3.1 though with extra delay when L 1L^o*. The extra delay is
the consequence of the flexibility of the architecture for being able of implement-
ing DWTs with arbitra.ry filter length L s L^o while Algorithm 3.1 presents
computation of a DWT with a fixed filter length tr. In fact, the a.rchitecture
is designed for the filter length I.* but also implements DWTs with shorter
filters with s slighfly increa.sed time delay but without loosing in time period.

Denote

s(o) :0, 3(r) : I',:,0", j : t,...,J. (e)

The delay between input and corresponding output vectors is equal to

rd@r): (z*-t + seDll,lel (10)

time units. The throughput or the time period (mea^sured as the the intervals
between time units when successive input vectors enter to the architecture) is
equal to fpQI) time units, where

rp@D :2^-r lL/pl (11)

'l(la,rpcadsar 'sgd ;1r gXua prre gd eno qg'u' sarlpalduroc auil+ agl e.rB (X),2 p,t"
(t)-tr, araqa ((X).f,-X) /{AOO1. (f)Z) : flr sJ uor+€zmtn ereu'preq ro fcuarcga eq; .
dpo 1nq 1ndu1 aq1 Jo e4s eql uo Ernnuedep suollcouuoc 3uo1 ro 'qclptrs B '{req
-paoJ E ure+uor lou saop lI '[ZT] Jo arnlcellgcrc eql '3'a 'a>g1un (r{po 4co1c e

'dgerluassa 'q qaqrtr) Iorluoc {ssa tna speau puts .rqn3ar r(.rea $ aJnlcatlqcrt aql
1eql pelou eq pFoqs osIB lI 'sollrxeldruoc alerrpreq ptru arml aql go-operl ol
,$runlroddo ue serlrE osle rusqe[ts.red;o paal Smfrsn qlla arnpolglrJp aq] Jo
uorl€zrleer Jo ,Qryqssod aqJ 'sampalplc.r€ uArorDI 1sa1seJ eql Jo luql utqt ra sBJ

sult rZ oI7/ & q emlcotFlcre eql Jo tndqEnorqt aqt BnqJ '7_*ZI : (tC)rl
Pw 7--7, : (IC)U uoe,rqeq sau" uoll€luaualdwl aq1 1o d1rxelduroc poued
aun1 er{+ (tt) *oS &vroIIoJ ry 'd relaue.rud aq1 uo Supuadap ursnalpred go 1eaa1

Euu(.rea qll/{ pezrluor eq feu arnlca+rqc$ pesodord eqJ 'semqcelgcxB J/y\O
urlrou)l z(q permber sl slTun eu41 (l/)O lstsal lts;o por.rad oull € ttsq+ petou aq
oq€ pForls 11 fcuarcge e8ere,re %00T rruql ssal qciltr qc€eJ sornlralnpJa Jlrtq
peulladtd u,sou{ eql Jo lsom sBareqda (lAZl'[zZ]'[Zt] *.) sufrsep 66 peqledld

^reJ
c u! fpo peqcear s fcuapga asolc V 'sarlncalduroc popad eunl 'raAoerour 'ro

fepp eur11 o1 padsar qlla qloq eJnlcellrJcJts aql roJ po^alqcB s,r s(uorpnlrln erts^r

-preq) l(cuarcga Jo 04661 flaleuroordde 1eq1 uptqo altr (IT) pua (91) riloq

''o*T: d (p) :6 : d (c) :1 : a (q) ld f.rer11q.re
(e) :amlcelrqcrc I \O a.roc 1 add; aql roJ sgd eq+ Jo suor$azrlBer elqrssod .9.31.{

nlE rttd-€!{.qt roJ lrdnFE.E V

s.pp. Jorrrl v

I

connections of the maximum of o(r) Iength. Thus, it can be implemented as a
semisystolic array.

3.2 fype 2 Core DWT Architecture

when implementing the basic operations (6) and (z) of Algorithm 8.1, mul-
tiplicands needed for the time unit n: !,...,Lp - 1 within the branch i :
0,...,2J-i - p/2 - 1 can be obtained from the results obtaingd at step n - I
within the branch i + plz.With this observation, the following modification of
the basic algorithm may be derived. Denote

,l : {j:,tll"5l; -";i ,,_, ' h'x:

Algorithrn 3.2.
1. For s:0,...,2^-r-l-set "fP:x@.2r: (s*1) .rt -t),2. For I :.i* (1),.,,,?-*' +s* (J) - 1, For j : Jt,..,,J2 do in parallel
2.1. Set 6U-1,s-a+(j)) according to (4)
2.2. For i :0,...,zJ-i - 1 do in parallel
For /r : 0,...,p - I
{ set z(i,0, k) : l;f0-1,4-a*1i))Ql + k);

P-t p-l
Compute Sw(i) - Iozz,.e(i,0,k); Ssp(i) :'F.-trr(i,0,k);)
For n : 1,..., Lo - L do sequentially
For&:0,...,p-1

-

{ set z7p(i,n, k) : {
t.'^*r:\i.+:/2'n-r'k) rt kzr-i -p1z :

I
t.o1;etr'- r," -'*(j)) (zi*,b) tL t> Zt - i -p / z,

set z6p(i,n,le) : {n'^'*oz(;+p1z'n-1'tc) if t<zr-i -p/2 1
f.
i.o** a{"i- t,o-'ru)) (zi*}) 7f t>z' - i -p / z I

Compute S rc (i) : Sr, (4 +o.il z p (i, n, k) ; S u p (i) : s;;p (i)+pf z y1 p (i, n, k) ;,t:0 ft:O
set cfE-".(r))(i) : st p(i); rf,f-".o))1;; :,snp(i)
3. Form the output vector (see Step 3 of Algorithm 2)

The general structure of the Type 2 core DWT architecture is preented
on Fig. 4 where now the dashed lines showing connections between pEs of one
stage are valid. Except for p inputs and two outputs (later on called main inputs
and main outputs) every PE has now additional p inputs and p outputs (tater on
called intermediate inputs and outputs). Thep intermediate outputs of. pEi3aplz
a.re connected to the p intermediate inputs of pEii., ,i : O,...,2J-i _ Oii :'t.
other connections nrithin the Type 2 core DWT architecture are similar to those
within the Tlpe 1 core DWI a.rchitecture.

F\rnctionalities of the blocks of the Type 2 core DWT a.rchitecture are also
similar to those of the Tlpe 1 core DWT a.rchitecture. The difference is only
in the functionality of PEs which at every time unit n:0, ...,Lo_ 1of every

1t 1 for rb=0,...,p-1
tr,n/t.-o, for A:p,...,L-r

.r 1tq partdr{nu eq
p1nop a8ep auryadrd dreaa 1u egd Jo sreqrunu eql tnq sampalrpre erocrllnrr Jo
emlsrLrls praueS eql roJ ? '8rd Jeprsuoc weSe utsc auo snqJ .saIIIIl .l

1r Surpued
-xa dq amlrelrgrre a1lg aroc(-el3urs) Burpuodsarroc urog pamelqo lceg u1

(s1

am3 lftpr" &!\0 aJoc-r+Inur eqJ
.

f _*2,.--,I : .r ralams.red ineu e Smcnpo-r1m
,{q saqellp-m &!\O eJo?-glnur rqqlla pe^elqre sr usqe.Jprud Jo Ie^eI eqf uI ,(1I

TqDFg raqlrqil 'd raleurered eql uo Sugpuadep tusrlalltsJ€d Jo 1arra1 Fur,fte,r q1llll
pelrmqdw aq feur a^oqu paqrJrsep semlcelrgcre I l11 aJoc Jo se&(1 orq ary

sern+cellqcrv .f,/\^.C orocl+lntr tr g.g

'arnlslrqc-B Jl!\o eroc 6 ed.(tr aql ulqlp$ sgd rraellllaq suorlcerruoc
Fuql1pPa qlra poeldar ere emlcelTqcrla I/y\C aroc 1 ad,ft, eq+Jo e{colq Bulnor
s1rp Jo e^wls6ar gqs et{l leql q 6?mlcelrgcJt otq esagl ueejfilaq eruereigTp
aql, 'seqr.rrdum are.u'px€q puB erurl ueedqaq go-spBJl 30 flrunlroddo 8uurr3
EqFFrEd Jo Ie eI Smfrel qll,la prrB eJnlcelrgcr€ cqolsfsrmes e se pelueureldun
aq trnu g !ry fraa s1 1r ,relncrgrud qI.rulruqsoslts aJB sernlcelrqDrt o/n1 aseqtJo
SgqaFtrrvrp regto a'T. '(f f) pus (Ot) fq uaarF scrlzueputqc poFad eu4t pue
Irpp run q$a U't urqqroSly sluauraldun ernlcalrqcrr &!\C eroc g ed.(tr eq1
lsrp s us) auo arnqcalrgcJr! &!\C alor T ed{L eqlJo amc aql uI sB of JtsIrunS

.g.FId uo esoel ol
q-@s pedpep fpma eq uec "€Er? - d pue ,Z: d .I : d JoJ puts d frerlrqrr
.q sar4rn-Es 'g '?1.{ uo pelueserd sI Z : d;o esec eql roJ eJn+celqcr€ J11\g
anc a ad.(1 egl ro] sgd Jo ernlcnJls alqrssod V

.Sd aq1 ;o slndlno aftsrparurelrn
ntr of pesed are slcnpord lurod-dq-lu1od eql Jo qlnser aql epqrr\ gd eql Jo
rtn ryn uillur o,rr,l agl ol pes$d aJB prru petelruunccts are dals uorlr.redo auo
fqmp plnduo slcnpord Jeurn qloq Jo stpseg .gd eqf ;o slndur altsrperure tn
nF m pmrql euo aql sI +l T - d7 t... tt

- u slrun etllrl l" puB gd aq1 ;o slndur
d mu nF uo peuroJ euo eql Br r rolcal e{l 0 : u lrun arml eql lV .d7 ylq
r p tilpoxd grod-,(q-1ur.od e eqnduroc ol sB IIe r sn d qfual p dH prre /d? .i8r sFgeo peurEr4apaJd;o srolcea o^q qlrrrl slndur elarpetura+w ro urBrrr

-F-p d elt rc 'r ',(rs 'rolcaa e ;o slcnpord rarrm ofiq alndtuoc o1 sr dals uorlrrado

U: d b'n eq'TuB J;!\CI eror U eddJ eql roJ gd B Jo uos€zrleer alqrssod V .g .SId

ilnd:no
al elptuJttul

I

EilB rltd-qllq eB ,qt lEd slEr! v

(a)

(b)

Ftg.7. The variable resolution DWT architecture: (a) based on a single core DWT
a,rchitecture; (b) based on a multi-core DWT a.rchitecture.

The both types of multi-core DWT architectures a,re r times faster than the
(single-)core DWT architectures, that is a linea.r speed-up with respect to the
pararneter r is achieved. The delay between input and corresponding output
vectors is equal to

Td(cr): (z*-t +,s(J)) lL/pl /,
time units and the throughput or the time period is equal to

rpPI) :zm-r [Llpl /,

(12)

(13)
time units. Thus further speed-up and flexibility for trade.off between time and
ha,rdware complexities is achieved within multi-core DWT architectures. Ar-
chitectures are modular and regular and may be implemented as semisystolic
axrays. As a possible realisation of the multi-core DWT architecture for the case
of p : 7: tr** and r : 2*-J one can consider the DWI flowgraph itself (see
Frc. 2) where n.des (rectangles) should be considered as pEs and small circles
as latches. This example of reaJ.ization has been reported in [2g]-[B0l where it
was referred to as fully-parallel pipelined (Fpp) architecture.

3.4 Variable Resolution D.WT Architectures
The above-described architectures implement DWrs with the number of octaves
not exceeding a given number J. They may implement DWTs with smaller than

ar,('It")

'3Jnltsra1rl aq+ w peldaca" ,(luollluror sI 1I sB'alqsx qq+ uJ 'seJnpalrgcJB Ipuor+ue^uoc
3trros g+Ija sem+ralrqcxa pasodord aq+ Jo esusrrrJoy.rad aarleredruoc ? sluesa.rd 1 e1qul

acueruJoJrad oql Jo r(rennuns E pue suolsnlcuoC g.g

",-,zt Lx/tzJ w -- pt ' ppo sI#j:
I ";1'J::#)

: :l+(r - "*&) d7:y
ar" scrlsrJalcuJsqc eturl Ear" aql pue ,

LZ/)I) : d; sl
asec s.rQ1 rn uorlrpuoc Surcueleq aq; 'da1s uorlr.rado :ad saldurus J Jo a13r eql lts
s1p1p 1nd1no ,{qerras pue ldaccu .,(ga11ered ol sr {rolq Bmgnor €ltsp aql Jo &IIB
-uoll3unJ aqJ 'samlca+iqcrB .L/y\O l?rres p{rB aroc-rllnu eqg ueo/qeq palrasur sr
polq 8u1no-i €l€p €

^rou
areq.r ((q),f .St.{ aes) palcn.rlsuoc aq oqu feu arnlce?

-lq3r€ L!\c aroc-lllnu € uo pasBq arnlcalrqcr€ Jl!\c uo-rlnlosoJ elqtsrrs^ v
--rz/ Lx /tzJ ru : P.-r

araq.rr 's1nm au41 PJ rr1 J/y1O 1u1od-g ealco-/f e luatualdun ilI/rr pu€ sllg
ppo sr :l yr '1 - n*.e(r+x)l

"",ii
.i , 1, J")-',ir j :)r + (t - *'.2) dz: v

,ft"lot Jo tssuor IIr^r ernlcalrqcxe J,1tO
uorlnloser alq€rre^ aq? uorlrpuos slql qll/h .

Lz/x J : d ;r pagsrles aq ilr/tr qcrr{^l
i-x iTz) t Lalrl sauocaq uorrrpuoc Furcuepq eqt srrun ac4.- .-rz/ la/il At "l
L\\C tutoO-Ar alelro-ulEf e slueuraldun arnlceltqcr" g,7116 a:oi (g ad,\tr ro 1
ad-i1) eqi acws 'strun av4t LII/IZ) JnI tn peluetualdurr aq pFo^{ IA{C 1u1od-y,g
ue te{l os sng %> }I raqunu frerlrqru urpluoc 01 &trop palscs aq uec fary
(s{€d rappe-:ar1dr1pu ,sng) slrun crs€q IZ rc I reqlra Buy(oldura dl3umuodser

-:oc (f6i]-[pi]) .tton arng W ur ro ({91] '[71]) sqrun au4t WZ ur reqtre a14q 3w.od
-J-f E tuauraldur arnleral1l eql uI punoJ sarnlcelrr{rJ" Frres .(__rZlru): W)
L\\O lu1oO-.;ig aaelco-(uwt - ,t) sluauraldmr ernlcolnlrr€ lerras aql se ralseJ
ro lndq8norql aIII€s aql qlpr J/vlO lqod-N a tslco-uruf e lueuraldmr lsnru ernl
-]atrgD-re J,11O aroc eql slred orrrl aql uee^rleq Burcuupq eql a^afiIr€ oJ

.urE/ ? /f Je^eueq/r\
pe.\aqcE si uorlesr[ln ere^\pr€q Jo %00I ,(laleunxordde 1eq1 ferrr

"
qcns ur ernq

-catrgf,-re I1lO letras eqtr qlIA pacu"Fq aq uec 1r ursrlalpred Jo Ie el Bur.{rea
qrt.\\ p€tuatualdun aq ,{eu ernlcellgrru fu!\61 eroc eql eculs .J/$,C ene+co-/f
aqr,lo sa.reJco 'i*f - 11 lsl eql squauraldurr arnlcelrqrxe J11\q l"rras aql uoql
'arnrralrqcrE Jl!\o l"rras aq1 01 passed are arnlslrqcr" J/$,c aroc aql p (g)\no
aqr uroq sllnsar ssed-rrro1 eqJ 'J,/y1C a^eqro- [eql Jo sa €lco urEf 1srg eql sluaru
-aidun amlca?r-Trre J11\61 aroc aql .([ZZ] ,[OZ]-[Of] ,[Zf]-[lf]) auo paseq-Vdg rre
'acu"l$n 'roJ 'amlcelrqcJ" J.fylq prres frerlrqr€ u€ pu€ qa al uo-rlrsoduocap
='-f o1 Surpuodsauoc arnlcalrqcr" Jd\(I aroc € Jo s1$suoo lI .("),2 .ftg uo
Lr\oqs sr arn?relrq?re J11\o uollnlosar alqtsrr"^ eql Jo emlon:1s prauaS aq;

'uIEf Jequmu uerrrS e o1 pnba Jo ueql ra8rel s /1. ralauaq,r\
c4961 ,{laleurrxordde sureual arnlcalrgJJs aql ;o ,fcualcga aql speraq^r sa^"lco
Jo /f raqunu .{rerlrqre ql1/r\ sJ/v\(sluamaldmr arnlcalrgrr€ ;,II\(J uorlnlosar
alq€rrp"\ aqJ,.uorltssrnln ar"^rpr"q m ssol atuos q?I,l\ q8noql se^"lcoJo raqumu r

I

Table 1. compa.rative performance of some DWT architectures

Architecture {rea, A
number of BUs)

Period, fo AI;

\rchitectures
n [r+], [151

L 2N &N" L

Architecturs
in [lal-[1el

2L M 2N'L

qrchitectures

n [r2],[241
]L N JN"L

Architectures
,f [27],[28]

4Lor

Di=,lr'1zt-'1
N/2 x N"L

trPP DWT [2e]_[30]
lpipelined)

2NL(I- r/2r) I
(per vector)

zNL(r - r/2J)

LPP DWr [2e]-[so] zt (zr - r) N/2t N"L(2' - t)/2""-
x N2L/zr-r

Single-core DWT
fType 1 or 2)

2pl2' - | N fL/el /2r x Nzp[L/p]r /2r-1
Single-core DWT
P=l

z(2"-1 NL/2" = N"L" f2"

Single-core DWT
t=L-o, (l < tr**)

'2L^* \2' - 1 N/2" * nlzf l^J-
-

tr ufrul4

Vulti-core DWT 2pr\2" - | (N [r,lel) / (rzJ v
(N'plL/pl'\ / (rzr-r

Multi-core DWT,
r=4, P=I

8(2"-1 N L/2'+ = N"Lz /2r+t

Multi-core DWT
'=4, p=L^or(L
L-"*)

2rl^u(zt - t N/\r2') = (N'.0-*) / (r2r-rl

Variable resolution
ringle-core DWT
o > lR/21 (r S
2L)

zp(zr^n - 1) +
K x K2r^n

N l2LlKl /2r^

zNL/(Xzr^n1

= *'-'- .
K2rda- z

the a'rea of the architectures was counted as the number of used multiplier-adder pairs
which are the basic units (BUs) in DWT architectures. The time unit is counted as timeperiod of one mr'rltiplication since this is the critical pipeline stage. Cha.racteristics of theDWT architectures proposed in this paper (the last seven row' in Table 1) are given
as for arbitra.ry rer.lisation pararneters tr-o, p, and r as well as for some sxe.mples
of parameter choices. It should be mentioned-that the numbers of BUs used in theproposed a,rchitectures a.re given assuming the pE exarnples of Figs s a^rrd 6. (where
PE withp inputs contains 2p BUs). However, PEs could le turther olpti-i""a to involve
less number of BUs.

As follows from Table r, the proposed architectures, compa.red to the conventiona.r
ones, demonstrate excellent time characteristics at moderate a.rea, requirements. Ad_
vantages of the proposed architectures are best seen when *nsidsling the perform".nces

Sttf reslgct !" il; criterion, which is commonry used to estimaL p.r'formu,rr*" ofhigh-speed oriented architectures. Architectures presented in the first two rows of ra_

T

.glt-ggt.dd ,966I ,{eIN ,g .u,ZU.1oa ,Furssaco.rd
IBuFIS 1t+tftO

pue Sopry :11-sua1s{g prrt s1nrrrC uo .su?.\l gggl ,,,urroysur41 lela^?IA elarr
-qO er{l roJ sernlce1tqcfy IS'IA,, ,q,tlrI .f .I I prre ,sua,rg .141 ..g ,q1eue,rlqsr.n .W .?I

1eUFIS pue $rorl€rrrmtrnuo3,oorleurro;uy
uO 'JuoC '+r{ Sgg1 ..coJd

,,,urroJsue{l lala/rer,V\ elarrsr6l O-T Jo uorltslndwo3 aq1
JoJ arn+ce+urry ISTA +uelrgg uV. ,rcurn_Inqpp4 .S .V pu€ (rraunlural6 .B .V .tI

'gIIt-gIIt .dd ,
166I ,g .lo1 ,266I ,Smssacor4

leu8rg
pur 'qceadg 'scrlsnocy uo JuoC .lr{ SSSI ,.cor4 ,,,rtrJoysrrp.\l lala^€IA a+arrsrqJ
C-T eql 3o uorlelndurop .roy sder.ry cqolsdg lla1q,. ,rye4 .H -U pue ,uad .g .S .eT

-ur r'rcsgrv p*e euorlruBoeeu ural+ad
".*,

.f"tt,:1'r.ikilt#H ,.|$"":.|l

suJa++tsd prmosJo srsitleuy,,,ueursso.rg .y puB.la1-ro1q.1 ,+arnpe141-pue[uorx.,u .I1
.6661 ,cprapacv :(1N) {ro jtraN ,s1a1arre11 pue spueqqng .surroy

-su?.\tr :uolllsodurocaq puFrg uorlnlosa4l1nry ,peppag .y -U pue nsuqy .N .y .0I
'zttl-268I 'dd

'166I 'unf 'g'u '6t 1oa
.Surssaco.rd

IRuFIS uo 'su?"\l ggg1 .,gulrellrd e^rsrnceg
uoN lsBd rrr as.n rraql puu sre+Id UId rl€uaT-+roqg,, .lauraqnq .d prra noli{ .Z .6

'0Irz-I60u 'dd
'686I 'ZI 'u '29 '1oa 'Surssacor4 puirg ,qcaadg ,.pnocy uo .sue.\l gflfl ,,,qepol I
+eJe ? \ pue sa8euq ;o suorlrsodurmaq leuu?qC fcuanbagr1p141. ,+€ntsIi\I .C .S .g

'igg-gtS'dd ,t66I .tro (y$ erqdlagulqd ,.l"uv elms_erur; dcuanbeqq_aurr;
'dur,tg '1u1 ds-Sgfl 'cord ul,,surrogsue.g +ela^€71l eqJ uo paseg {roaerrra{al 6aeN
V :uol+sate6l a{IdS Cgg 1etcge1u1,, .lan8urgag .f.f prre ,+pel.rr3 .C ,Ilpeques .T .Z

'696I '.^lun e1e :(IC) ue tsH n.aNssurqlr.ro8ly
I?crreurnN prra sruroJsu€.1tr leJo^?Al +stsd ,ur1tplo,U .n pue ,uuugr.op -g ,up11{ag .g .g

'0Iz
-Igl'dd '6661 '11e1peg prre seuof :(11q) >1roa,raa11 ,suorlecrlddy rrerJl pue s+ala € \
ur srsdpuy lecrreurnN uT lale B71 ,uqrplog .A pue ,ueugrog -g ,upgfag .p .g

.6f-gg.dd ,6996 .loz, ,966I ,.JuoC gJdS .cord ,,,suo11cn.r1suop
s+ale^€l\ JtsuoSoquolg u1 dqdosolrv6 ,tdeN v :eruerJcs SulgIT aq;,, ,suapla,us ./y\ .,

'266I 'htrVIS ,(Vd) erqdlapepq6 ,s1a1aae7q uo sarnlceT ua; ,ssrsceqneq .I .S

'966I,ll?H-err1ual6 :(1111)
sgtp pooaaal8ug '3urpo3 pueqqns pue s+ala

"11\
(cvracerroy .f pue IIreTlaA .W .Z

't69-tlg 'dd '686I 'req ,ZI .u ,Z
'1on 'acua3rtla1r{ eurqr"tt pue sr*(puy urelltsd uo .sue-\l gggl ,,,uo11e1uesarda.g
lela ql6 eq; :uorlrsodruooaq puSrg uorqnyosertqnl l ro; it.roaq; v. ,lpII?I

I .C .S .I

saruoraJall

op raded sq1 ur pasodord saml:>alrgcm eql
se sarlnralduroc eErl prrB

"3JB Jo eStrer alqo<ag B i olJts 10u op lnq ecueur.ro;rad pooS
pu? uorpzl1rln aJB tpJeg %00I a^arqre pue permadrd a3els 1 exe rlsrqjd, suorltscr1qnd
snouald Jno rrro{ sam+c€lrrrrJ? luasard T elqtsr Jo sn6.oJ g1)fls 01 g}moJ aqJ .33u?urroJ
-rad .rood e ,{lluanbesuoJ prre uorlezrlrln eJtsepJraq .rood e qlra semlcs rqc.rB peunadrd
aBels 1 sluaserd I elq'r Jo d.oJ pr.nJr aq; 'sarlrxaldrso, tss.rp prrB erurr Jo eg'er epr.aa. e
ur Surlpsar ursrJelered Jo Ja al erJ+ ur eJqrxeB 3Joru qcnu aJe Ja^eidoq gcrq,s. s3rn1cal
-t-gcJ? Jno Jo acrrBruJoJJed nql o+ ,,leuorlrodord(! sr ecrrEtrrJoJJed f,raql os .seJn+ce+rgcJB

pasodord Jno roJ esm aql sr sB uor+esqr1n exe,dpr€rJ gggl i(lalernxordde 1e alerado
,taq1 pue seuo paurladrd (a3e1s o,raq r{po) pelcrrpar ro paurladrd-[ou raq]ra are r olq

15. J. Fbidman, and S. Manolakos, "Discrete Wavelet Thensform: Data DependenceArralysis and synthesis of Distributed Memory and control Array Architectures,,,IEEE T!sr'.. on Signal processing, vol. 45, n. 5, May 1gg7, pp. fisf_f SOS.16. K. K. Parhi, and J. ffisfftr.ni, "VLSI Ar;hitectures for Discrete wavelet Tr^ns_forms," IEEE Tba.ns. on VLSI Systems, vol. 1, n.2, 1gg3, pp. 191_202.17' T' C' Denk, and K. K. Pa.rhi, "systolic VLSI Architectures for l-D Discrete Wavelettansform," Proc. Thirty-second Asilomar conf. on signa.rs, svstems & comput_ers, 1998, vol. 2 pp. \22UI224.
18. G. Knowles, 'VLSI Architecture for the Discrete Wavelet ffensfs16,,, ElectronicsLetters, vol. 26, n. 15, 1gg0, pp. 11g4_11g5.
19. c' chaJ<rabarti and M. Vishwanath, "Efficient Realizations of Discrete and con-tinuous waveret Tbansforms: Flom single chip Implem""t"tio*-to r,rappings onSIMD Array Computem," IEEE Tra,ns. on Signal pro.es"ing, lrof. +S, n. 3, 1gg5,pp. 759-771.
20. c. chakrabarti, M. vishwanath, a.nd R.. M. owens, ,,Architectures for waveletTlansforms: A survey," Journar of vLSI signal processing, vol. ti,-o. z,1gg6, pp.L7t-t92.
2r' A' Grzaznzak, M. K. Mandal, s. pancha.natan, uvlsl Implementation of Discretewavelet tansform," IEEE tans. on vLSI systems, .,o1. 4, n. t-D;". 1996, pp.42I-433.
22. M. vishwanath, a.nd R.. M. owens, ,,A common Architecture for the DWT andIDWT," Proc., [BF,F Int. conf. on Application specific systems, Architecturesand Processors, lgg6, pp. 1g3-igg.
23' c' Yu, c. H. tlsieh, a,md s. J. chen, "Desing and Implementation of a HighlyEfficient VLSI Architecture for Discrete Wavelet Tlansforms,,, p.o"., fnpp nt.Conf. on Custom Integrated Circuits, lgg7, pp. 2ST-240.
24' s' B' syed, M. A. Bayoumi, "A scarable Ar"hit""tur" for Discrete waveret Tlans-form," Proc', computer Architectures for Machine perception (cAMp ,gs), lggs,pp. 44 -50.
25. F. Ma"rino, "A 'Double-Face' Bit-serial Architecture for the 1_D Discrete wavelettansform", IEEE Tbaos._on circuits and systems II - Analog a,nd Digital signal
-_ Processing,vol.4T, n. 1, Jan.2000, pp. 6b_21..
26. M. vishwanath, "The Recursive pyraua Algorithm for the Discrete waveletTba,nsficrm," IEEE Tbans. on Signal processing, vol. 42, n. 3, 1gg4, pp. 6Z8-672.27. F. Ma.rino, D. Gevorkian,j-oj_Jt 4j?1q ',Highly efficient ffirf"io*Tlf,ow_power

Architectures for the 1-D Dwr," IEEE Thans. on circuits *"a syrtuJ" II, Anarogand Digital Signal processing, vol. 47, No 12,2000, pp. 14g2_1b62.
28. F. Mariao, D. Gevorkian,.and J. Astola, "High_Speee;/L.*_p;;;; l-D DWT Ar-chitectures with higb efficiency," proc., tgnE ht. coni. on cir"uit, *ra systems,

Y"{ 2&31, Geneva, Switzerland, vol. S, pp. 3S7_J40.
29. D. Gevorkian, F. Ma,rino, S. Agaia,n,

"od
J. A"tolr, ,,Higlrly efficient fast archi_tectures for discrete waveret transforms based on their flowgraph refiesentation,,,

Proc., Int. Conf. EUSIpCO-2000, Sept. 2000, Tampere, f,i"f"oi.
30' D' Gevorkian, F. Marino, s. Agaian, and J. Ltola, "Flowgraph representation ofdiscrete wavelet transfo-rms and waveret packets for their efficie't parallel impre_mentation," Proc., TICSp Int. workshop on spectral tansforms,oi Logi" Designfor F\rture Digital Systems, June 2_8, 2000, Ta,rnpere, Finla.nd.

T

Automatic VHDL Model Generation of
Parameterized FIR Filters

E. George Walters III1, John Glossner2, and Michael J. Schulte1

1 Computer Architecture and Arithmetic Laboratory, Computer Science and
Engineering Department, Lehigh University, Bethlehem PA 18015 USA

2 Sandbridge Technologies, 1 N Lexington Ave, 10th Floor, White Plains NY 10601

Abstract. This paper describes a Java-based tool that automatically
generates structural level VHDL models of FIR Filters. Automatic gen-
eration of VHDL models allows the designer to rapidly explore the design
space and test the impact of parameters on the design. The tool is based
on a general purpose computer arithmetic component package developed
at Lehigh University and can easily be extended to enable rapid proto-
typing of other hardware accelerators used in embedded systems. In this
paper, we describe the effects of truncated multipliers in FIR filters. We
show that a 22.5% reduction in area can be achieved for a 24-tap filter
with 16-bit coefficients, and that the reduction error SNR is only 2.4 dB
less than the roundoff error SNR of the same filter with no truncation.
Using the techniques presented in this paper, the average reduction error
of the filter is several orders of magnitude less than the average reduction
error of the individual multipliers.

1 Introduction

The design of hardware accelerators for embedded systems presents many design
tradeoffs that are difficult to quantify without bit-accurate simulation and area
and delay estimates of competing alternatives. Structural level VHDL models
can be used to evaluate and compare designs, but require significant effort to
generate.

This paper presents a tool that was developed to evaluate the tradeoffs in-
volved in using truncated multipliers in FIR filters. The tool is based on a package
of Java classes that models the building blocks of computational systems, such
as adders and multipliers. These classes generate VHDL descriptions, and are
used by other classes in hierarchical fashion to generate VHDL descriptions of
more complex systems. This paper describes the generation of truncated FIR
filters as an example.

Previous techniques for modeling and designing digital signal processing sys-
tems with VHDL are presented in [1–5]. The tool described in this paper differs
from those techniques by leveraging the benefits of object oriented programming
(OOP). By subclassing existing objects, such as multipliers, the tool is easily ex-
tended to generate VHDL models that incorporate the latest optimizations and
techniques.

Sections 1.1 and 1.2 provide background necessary for understanding the
two’s complement truncated multipliers used in the FIR filter architecture, which
is described in Section 2. Section 3 describes the tool for automatically generating
VHDL models of those filters. Synthesis results of specific filter implementations
are presented in Section 4, with concluding remarks given in Section 5.

1.1 Two’s Complement Multipliers

Parallel tree multipliers form a matrix of partial product bits, which are then
added to produce a product. Consider an m-bit multiplicand, A, and an n-bit
multiplier, B. If A and B are integers in two’s complement form, then

A = −am−12m−1 +
m−2∑

i=0

ai2i and B = −bn−12n−1 +
n−2∑

j=0

bj2j . (1)

Multiplying A and B together yields the following expression:

A ·B = am−1bn−12m+n−2 +
m−2∑

i=0

n−2∑

j=0

aibj2i+j

−
m−2∑

i=0

bn−1ai2i+n−1 −
n−2∑

j=0

am−1bj2j+m−1 .

(2)

The first two terms in (2) are positive. The third term is either zero (if bn−1 =
0) or negative with a magnitude of

∑m−2
i=0 ai2i+n−1 (if bn−1 = 1). Similarly, the

fourth term is either zero or a negative number. To produce the product of
A × B, the first two terms are added “as is”. Since the third and fourth terms
are negative (or zero), they are added by complementing each bit, adding ‘1’ to
the LSB column, and sign extending with a leading ‘1’. With these substitutions,
the product is computed without any subtractions as:

P = am−1bn−12m+n−2 +
m−2∑

i=0

n−2∑

j=0

aibj2i+j +
m−2∑

i=0

bn−1ai2i+n−1

+
n−2∑

j=0

am−1bj2j+m−1 + 2m+n−1 + 2n−1 + 2m−1 .

(3)

Figure 1 shows the multiplication of two 8-bit integers in two’s complement
form. The partial product bit matrix is described by (3), and is implemented
using an array of and and nand gates. The matrix is then reduced using tech-
niques such as Wallace [6], Dadda [7], or Reduced Area reduction [8].

1.2 Truncated Multipliers

Truncated m × n multipliers, which produce results less than m + n bits long,
are described in [9]. Benefits of truncated multipliers include reduced area, de-
lay, and power consumption [10]. An overview of truncated multipliers, which

A a7 a6 a5 a4 a3 a2 a1 a0

×B b7 b6 b5 b4 b3 b2 b1 b0

1 a7b0 a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a7b1 a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a7b2 a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a7b3 a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a7b4 a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a7b5 a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a7b6 a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

1 a7b7 a6b7 a5b7 a4b7 a3b7 a2b7 a1b7 a0b7

p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Fig. 1. 8×8 partial product bit matrix (two’s complement)

discusses several methods for correcting the error introduced due to unformed
partial product bits, is given in [11]. The method used in this paper is constant
correction, as described in [9].

Figure 2 shows an 8× 8 truncated parallel multiplier with a correction con-
stant added. The final result is l-bits long. We define k as the number of truncated
columns that are formed, and r as the number of columns that are not formed.
In this example, the five least significant columns of partial product bits are not
formed (l = 8, k = 3, r = 5).

Fig. 2. 8×8 truncated multiplier with correction constant

Truncation saves an and gate for each bit not formed and eliminates the full
adders and half adders that would otherwise be required to reduce them to two
rows. The delay due to reducing the partial product matrix is not improved be-
cause the height of the matrix is unchanged. However, a shorter carry propagate
adder is required, which may improve the overall delay of the multiplier.

The correction constant, Cr, and the ‘1’ added for rounding are normally
included in the reduction matrix. In Figure 2 they are explicitly shown to make
the concept more clear.

A consequence of truncation is that a reduction error is introduced due to
the discarded bits. For simplicity, the operands are assumed to be integers, but
the technique can also be applied to fractional or mixed number systems. With
r unformed columns, the reduction error is

Er = −
r−1∑

i=0

i∑

j=0

ai−jbj2i . (4)

If A and B are random with a uniform probability density, then the average
value of each partial product bit is 1

4 , so the average reduction error is

Er avg = −1
4

r−1∑
q=0

(q + 1)2q = −1
4
((r − 1) · 2r + 1) . (5)

The correction constant, Cr, is chosen to offset Er avg. After rounding,

Cr = −round(2−rEr avg) · 2r = round
(
(r − 1) · 2−2 + 2−(r+2)

)
· 2r , (6)

where round(x) indicates x is rounded to the nearest integer.

2 FIR Filter Architecture

This section describes the architecture used to study the effect of truncated
multipliers in FIR filters. Little work has been published in this area, and this
architecture incorporates the novel approach of combining all constants for two’s
complement multiplication and correction of reduction error into a single con-
stant added just prior to computing the final filter output. This technique reduces
the average reduction error of the filter by several orders of magnitude, when
compared to the approach of including the constants directly in the multipliers.
Section 2.1 presents an overview of the architecture, and Section 2.2 describes
components within the architecture.

2.1 Architecture Overview

An FIR filter with T taps computes the following difference equation [12],

y[n] =
T−1∑

k=0

b[k] · x[n− k] , (7)

where x[] is the input data stream, b[k] is the kth tap coefficient, and y[] is
the output data stream of the filter. Since the tap coefficients and the impulse
response, h[n], are related by

h[n] =
{

b[n], n = 0, 1, . . . , T − 1
0, otherwise, (8)

Equation (7) can be recognized as the discrete convolution of the input stream
with the impulse response [12].

Figure 3 shows the block diagram of the FIR filter architecture used in this
paper. This architecture has two data inputs, x in and coeff, and one data out-
put, y out. There are two control inputs which are not shown, clk and loadtap.

Fig. 3. Proposed FIR filter architecture with T taps and M multipliers

The input data stream enters at the x in port. When the filter is ready to
process a new sample, the data at x in is clocked into the register labeled x[n]
in the block diagram. The x[n] register is one of T shift registers, where T is
the number of taps in the filter. When x in is clocked into the x[n] register, the
values in the other registers are shifted right in the diagram, with the oldest
value, x[n− T + 1] being discarded.

The tap coefficients are stored in another set of shift registers, labeled b[0]
through b[T−1] in Figure 3. Coefficients are loaded into the registers by applying
the coefficient values to the coeff port in sequence and cycling the loadtap
signal to load each one.

The filter is pipelined with four stages: operand selection, multiplication,
summation, and final addition.

Operand Selection: The number of multipliers in the architecture is config-
urable. For a filter with T taps and M multipliers, each multiplier performs

dT/Me multiplications per input sample. The operands for each multiplier
are selected each clock cycle by an operand bus and clocked into registers.

Multiplication: Each multiplier has two input operand registers, loaded by an
operand bus in the previous stage. Each pair of operands is multiplied, and
the final two rows of the reduction tree (the product in carry-save form) are
clocked into a register where they become inputs to the multi-operand adder
in the next stage. Keeping the result in carry-save form, rather than using
a carry propagate adder (CPA), reduces the overall delay.

Summation: The multi-operand adder has carry-save inputs from each mul-
tiplier, as well as a carry-save input from the accumulator. After each of
the dT/Me multiplications have been performed, the output of the multi-
operand adder (in carry-save form) is clocked into the CPA operand register
where it is added in the next pipeline stage.

Final Addition: In the final stage, the carry-save vectors from the multi-
operand adder and a correction constant are added by a specialized carry
save adder and a carry propagate adder to produce a single result vector.
The result is then clocked into an output register, which is connected to the
y out output port of the filter.

The clk signal clocks the system. The clock period is set so that the mul-
tipliers and the multi-operand adder can complete their operation within one
clock cycle. Therefore, dT/Me clock cycles are required to process each input
sample. The final addition stage only needs to operate once per input sample,
so it has dT/Me clock cycles to complete its calculation and is generally not on
the critical path.

2.2 Architecture Components

This section discusses the components of the FIR filter architecture.

Multipliers. In this paper, two’s complement parallel tree multipliers are used
to multiply the input data by the filter coefficients. When performing truncated
multiplication, the constant correction method [9] is used. The output of each
multiplier is the final two rows remaining after reduction of the partial product
bits, which is the product in carry-save form [13]. Rounding does not occur at
the multipliers, each product is (l + k)-bits long. Including the extra k bits in
the summation avoids an accumulation of roundoff errors. Rounding is done in
the final addition stage.

As described in Section 1.1, the last three terms in (3) are constants. In
this architecture, these constants are not included in the partial product matrix.
Likewise, if using truncated multipliers, the correction constant is not included
either. Instead, the constants for each multiplication are added in a single op-
eration in the final addition stage of the filter. This is described later in more
detail.

Multi-operand Adder and Accumulator. As shown in (7), the output of an
FIR filter is a sum of products. In this architecture, M products are computed
per clock cycle. In each clock cycle, the carry-save outputs of each multiplier
are added and stored in the accumulator register, also in carry-save form. The
accumulator is included in the sum, except with the first group of products for
a new input sample. This is accomplished by clearing the accumulator when the
first group of products arrives at the input to the multi-operand adder.

The multi-operand adder is simply a counter reduction tree, similar to a
counter reduction tree for a multiplier, except that it begins with operand bits
from each input instead of a partial product bit matrix. The output of the multi-
operand adder is the final two rows of bits remaining after reduction, which is
the sum in carry-save form. This output is clocked into the accumulator register
every clock cycle, and clocked into the CPA Operand Register every dT/Me
cycles.

Correction Constant Adder. As stated previously, the constants required
for two’s complement multipliers and the correction constant for unformed bits
in truncated multipliers are not included in the reduction tree but are added
during the final addition stage. A ‘1’ for rounding the filter output is also added
in this stage. All of these constants for each multiplier are precomputed and
added as a single constant, CTOTAL.

All multipliers used in this paper operate on two’s complement operands.
From (3), the constant which must be added for an m×n multiplier is 2m+n−1 +
2n−1+2m−1. With T taps, there are T multiply operations (assuming T is evenly
divisible by M), so a value of

CM = T (2m+n−1 + 2n−1 + 2m−1) (9)

must be added in the final addition stage.
The multipliers may be truncated with unformed columns of partial product

bits. If there are unformed bits, the total average reduction error of the filter is
T · Er avg. The correction for this is

CR = round
(
T · (r − 1) · 2−2 + T · 2−(r+2)

)
· 2r . (10)

To round the filter output to l bits, the rounding constant that must be used is

CRND = 2r+k−1 . (11)

Combining these constants, the total correction constant for the filter is

CTOTAL = CM + CR + CRND . (12)

Adding CTOTAL to the multi-operand adder output is done using a special-
ized carry-save adder (SCSA) which is simply a carry-save adder optimized for
adding a constant bit vector. A carry-save adder uses full adders to reduce three

bit vectors to two. SCSA’s differ in that half adders are used in columns where
the constant is a ‘0’ and specialized half adders are used in columns where the
constant is a ‘1’. A specialized half adder computes the sum and carry-out of
two bits plus a ‘1’, the logic equations being

si = ai ⊕ bi and ci+1 = ai + bi . (13)

The output of the SCSA is then input to the final carry propagate adder.

Final Carry Propagate Adder. The output of the specialized carry-save
adder is the filter output in carry-save form. A final carry propagate adder (CPA)
is required to compute the final result. The final addition stage has dT/Me clock
cycles to complete, so for many applications a simple ripple-carry adder will be
fast enough. If additional performance is required, a carry-lookahead adder may
be used. Using a faster CPA does not increase throughput, but does improve
latency.

Control. A filter with T taps and M multipliers requires dT/Me clock cycles
to process each input sample. The control circuit is a state machine with dT/Me
states, implemented using a modulo-dT/Me counter. The present state is the
output of the counter and is used to control which operands are selected by each
operand bus. In addition to the present state, the control circuit generates four
other signals: 1) shiftData, which shifts the input samples, 2) clearAccum,
which clears the accumulator, 3) loadCpaReg, which loads the multi-operand
adder output into the CPA operand register, and 4) loadOutput, which loads
the final sum into the output register.

3 Filter Generation Software
(FGS)

The architecture described in Section 2 provides a great deal of flexibility in terms
of operand size, the number of taps, and the type of multipliers used. This implies
that the design space is quite large. In order to facilitate the development of a
large number of specific implementations, a tool was designed that automatically
generates synthesizable structural VHDL models given a set of parameters. The
tool, which is named FGS, also generates test benches and files of test vectors
to verify the filter models.

FGS is written in Java and consists of two main packages. The arithmetic
package, discussed in Section 3.1, is suitable for general use and is the foundation
of FGS. The fgs package, discussed in Section 3.2, is specifically for generating
the filters described previously. It uses the arithmetic package to generate the
necessary components.

3.1 The arithmetic Package

The arithmetic package includes classes for modeling and simulating digital com-
ponents. The simplest components include D flip-flops, half adders, and full
adders. Larger components such as ripple-carry adders and parallel multipliers
use the smaller components as building blocks. These components in turn are
used to model complex systems such as FIR filters.

Common Classes and Interfaces. Figure 4 shows the classes and interfaces
which are used by arithmetic subpackages. The most significant of these are
VHDLGenerator, Parameterized, and Simulator.

Fig. 4. The arithmetic package

VHDLGenerator is an abstract class. Any class that represents a digital compo-
nent and can generate a VHDL model of itself is derived from this class. It
defines three abstract methods which must be implemented by all subclasses.
genCompleteVHDL() generates a complete VHDL file describing the compo-
nent. This file includes synthesizable entity-architecture descriptions of all
subcomponents used. genComponentDeclaration() generates the component
declaration which must be included in the entity-architecture descriptions of
other components which use this component. genEntityArchitecture() gener-
ates the entity-architecture description of this component.

Parameterized is an interface implemented by classes whose instances can be
defined by a set of parameters. The interface includes get and set methods
to access those parameters. Specific instances of Parameterized components
can be easily modified by changing these parameters.

Simulator is an interface implemented by classes that can simulate their opera-
tion. The interface has only one method, simulate, which accepts a vector of
inputs and returns a vector of outputs. These inputs and outputs are vectors
of IEEE VHDL std logic vectors [14].

The arithmetic.smallcomponents Package. The arithmetic.smallcomponents
package provides fundamental components including D flip-flops and full adders
which are used as building blocks for larger components such as registers, adders,
and multipliers. Each class in this package is derived from VHDLGenerator, en-
abling each to generate VHDL for use in larger components.

The arithmetic.adders Package. The classes in this package model various
types of adders including carry propagate adders, specialized carry-save adders,
and multi-operand adders. All components in these classes handle operands of
arbitrary length and weight. This flexibility makes automatic VHDL generation
more complex than it would be if operands were constrained to be the same
length and weight. However, this flexibility is often required when an adder is
used with another component such as a multiplier.

Figure 5 shows the arithmetic.adders package, which is typical of many of
the arithmetic subpackages. CarryPropagateAdder is an abstract class from which
carry propagate adders such as ripple-carry adders and carry-lookahead adders
are derived. CarryPropagateAdder is a subclass of VHDLGenerator and implements
the Simulator and Parameterized interfaces. Using interfaces and an inheritance
hierarchy such as this help make FGS both straightforward to use and easy to
extend. For example, a new type of carry propagate adder could be incorporated
into existing complex models by subclassing CarryPropagateAdder.

Fig. 5. The arithmetic.adders package

The arithmetic.matrixreduction Package. This package provides classes that
perform matrix reduction, typically used by multi-operand adders and parallel
multipliers. These classes perform Wallace, Dadda, and Reduced Area reduction
[6–8]. Each of these classes are derived from the abstract class ReductionTree.

The arithmetic.multipliers Package. A ParallelMultiplier class was implemented
for this paper and is representative of how FGS functions.

Parameters can be set to configure the multiplier for unsigned, two’s comple-
ment, or combined operation. The number of unformed columns, if any, and the
type of reduction, Wallace, Dadda, or Reduced Area, may also be specified. A
BitMatrix object, which models the partial product matrix, is then instantiated
and passed to a ReductionTree object for reduction. Through polymorphism (dy-
namic binding), the appropriate subclass of ReductionTree reduces the BitMatrix
to two rows. These two rows can then be passed to a CarryPropagateAdder object
for final addition, or in the case of the FIR filter architecture described in this
paper, to a multi-operand adder.

The architecture of FGS makes it easy to change the bit matrix, reduction
scheme, and final addition method. New techniques can be added seamlessly by
subclassing appropriate abstract classes.

The arithmetic.misccomponents Package. This package includes classes that
provide essential functionality but don’t logically belong in other packages. This
includes Bus, which models the operand busses of the FIR filter, and Register
which models various types of data registers. Implementation of registers is done
by changing the type of flip-flop objects which comprise the register.

The arithmetic.firfilters Package. This package includes classes for model-
ing ideal FIR filters as well as FIR filters based on the truncated architecture
described in Section 2.

The “ideal” filters are ideal in the sense that the data and tap coefficients
are double precision floating point. This is a reasonable approximation of infinite
precision for most practical applications. The purpose of an ideal FIR filter
object is to provide a baseline for comparison with practical FIR filters and
allow measurement of calculation errors.

The FIRFilter class models FIR filters based on the architecture shown in
Figure 3. All operands in FIRFilter objects are considered to be two’s comple-
ment integers, and the multipliers and the multi-operand adder use Reduced
Area reduction. There are many parameters that can be set including the tap
coefficient and data lengths, the number of taps, the number of mulipliers, and
the number of unformed columns in the multipliers.

The arithmetic.testing Package. This package provides classes for testing com-
ponents generated by other classes, including parallel multipliers and FIR filters.
The FIR filter test class generates a test bench and an input file of test vectors.
It also generates a .vec file for simulation using Altera Max+Plus II.

The arithmetic.gui Package. This package provides graphical user interface
(GUI) components for setting parameters and generating VHDL models for all of
the larger components such as FIRFilter, ParallelMultiplier, etc. The GUI for each
component is a Java Swing JPanel, which can be used in any Swing application.
These panels make setting component parameters and generating VHDL files
simple and convenient.

3.2 The fgs Package

Whereas the arithmetic package is suitable for general use, the fgs package is
specific to the FIR filter architecture described in Section 2. fgs includes classes
for automating much of the work done to analyze the use of truncated multipliers
in FIR filters. For example, this package includes a driver class that automatically
generates a large number of different FIR filter configurations for synthesis and
testing. Complete VHDL models are then generated, as well as Tcl scripts to
drive the synthesis tool. The Tcl script commands the synthesis program to write
area and delay reports to disk files, which are are parsed by another class in the
fgs package that summarizes the data and writes it to a CSV file for analysis by
a spreadsheet application.

4 Results

Table 1 presents some representative synthesis results that were obtained from
the Leonardo synthesis tool and the LCA300K 0.6 micron CMOS standard cell
library. Additional data can be found in [15], which also also provides a more
detailed analysis of the FIR filter architecture presented in this paper, including
reduction and roundoff error. The main findings are:

1. Using truncated multipliers in FIR filters results in significant improvements
in area. For example, the area of a 16-bit filter with 4 multipliers and 24
taps improves by 22.5% with 12 unformed columns and by 36.4 % with 16
unformed columns. We estimate substantial power savings would be realized
as well. Truncation has little impact on the overall delay of the filter.

2. The computational error introduced by truncation is tolerable for many ap-
plications. For example, the reduction error SNR for a 16-bit filter with 24
taps is 86.7 dB with 12 unformed columns and 61.2 dB with 16 unformed
columns. In comparison, the roundoff error for an equivalent filter without
truncation is 89.1 dB [15].

3. The average reduction error of a filter is independent of r (for T > 4),
and much less than that of a single truncated multiplier. For a 16-bit filter
with 24 taps and r = 12, the average reduction error is only 9.18 × 10−5

ulps, where an ulp is a unit of least precision in the 16-bit product. In
comparison, the average reduction error of a single 16-bit multiplier with
r = 12 is 1.56 × 10−2 ulps, and the average roundoff error of the same
multiplier without truncation is 7.63× 10−6 ulps.

Filter Synthesis Results Improvement Reduction Error
Total A ·D

Area Delay Product Total A ·D SNRR σR EAV G

T M r (gates) (ns) (gates·ns) Area Delay Product (dB) (ulps) (ulps)

12 2 0 16241 40.80 662633 — — — ∞ 0 0
12 2 12 12437 40.68 505937 23.4% 0.3% 23.6% 89.70 0.268 -4.57E-5
12 2 16 10211 40.08 409257 37.1% 1.8% 38.2% 64.22 5.040 -4.57E-5
16 2 0 17369 54.40 944874 — — — ∞ 0 0
16 2 12 13529 54.24 733813 22.1% 0.3% 22.3% 88.45 0.310 -6.10E-5
16 2 16 11303 53.44 604032 34.9% 1.8% 36.1% 62.97 5.820 -6.10E-5
20 2 0 19278 68.00 1310904 — — — ∞ 0 0
20 2 12 15475 67.80 1049205 19.7% 0.3% 20.0% 87.48 0.346 -7.60E-5
20 2 16 13249 66.80 885033 31.3% 1.8% 32.5% 62.00 6.508 -7.60E-5
24 2 0 20828 81.60 1699565 — — — ∞ 0 0
24 2 12 17007 81.36 1383690 18.3% 0.3% 18.6% 86.69 0.379 -9.18E-5
24 2 16 14781 80.16 1184845 29.0% 1.8% 30.3% 61.21 7.143 -9.18E-5

12 4 0 25355 20.40 517242 — — — ∞ 0 0
12 4 12 18671 20.34 379768 26.4% 0.3% 26.6% 89.70 0.268 -4.57E-5
12 4 16 14521 20.04 291001 42.7% 1.8% 43.7% 64.22 5.040 -4.57E-5
16 4 0 26133 27.20 710818 — — — ∞ 0 0
16 4 12 19413 27.12 526481 25.7% 0.3% 25.9% 88.45 0.310 -6.10E-5
16 4 16 15264 26.72 407854 41.6% 1.8% 42.6% 62.97 5.820 -6.10E-5
20 4 0 28468 34.00 967912 — — — ∞ 0 0
20 4 12 21786 33.90 738545 23.5% 0.3% 23.7% 87.48 0.346 -7.60E-5
20 4 16 17636 33.40 589042 38.0% 1.8% 39.1% 62.00 6.508 -7.60E-5
24 4 0 29802 40.80 1215922 — — — ∞ 0 0
24 4 12 23101 40.68 939749 22.5% 0.3% 22.7% 86.69 0.379 -9.18E-5
24 4 16 18950 40.08 759516 36.4% 1.8% 37.5% 61.21 7.143 -9.18E-5

Table 1. Synthesis results for 16-bit operands, output rounded to 16-bits (optimized
for area)

5 Conclusions

This paper presents a tool used to rapidly prototype parameterized FIR filters.
The tool is used to study the effects of using truncated multipliers in those fil-
ters. It is based on a package of arithmetic classes that are used as components
in hierarchical designs, and are capable of generating structural level VHDL
models of themselves. Using these classes as building blocks, FirFilter objects
generate complete VHDL models of specific FIR filters. The arithmetic package
is extendable and suitable for use in other applications, enabling rapid proto-
typing of other computational systems. As a part of ongoing research at Lehigh
University, the tool is being expanded to study other DSP applications, and will
be made available to the public in the near future.

References

1. Lightbody, G., Walke, R., Woods, R.F., McCanny, J.V.: Rapid System Prototyping
of a Single Chip Adaptive Beamformer. (In: Proceedings of Signal Processing
Systems) 285–294

2. McCanny, J., Ridge, D., Yi, H., Hunter, J.: Hierarchical VHDL Libraries for DSP
ASIC Design. In: Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing. (1997) 675–678

3. Pihl, J., Aas, E.J.: A Multiplier and Squarer Generator for High Performance
DSP Applications. In: Proceedings of the 39th Midwest Symposium on Circuits
and Systems. (1996) 109–112

4. Richards, M.A., Gradient, A.J., Frank, G.A.: Rapid Prototyping of Application
Specific Signal Processors. Kluwer Academic Publishers (1997)

5. Saultz, J.E.: Rapid Prototyping of Application-Specific Signal Processors (RASSP)
In-Progress Report. Journal of VLSI Signal Processing Systems for Signal, Image,
and Video Technology (1997) 29–47

6. Wallace, C.S.: A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic
Computers EC-13 (1964) 14–17

7. Dadda, L.: Some Schemes for Parallel Multipliers. Alta Frequenza 34 (1965)
349–356

8. Bickerstaff, K.C., Schulte, M.J., Swartzlander, Jr., E.E.: Parallel Reduced Area
Multipliers. IEEE Journal of VLSI Signal Processing 9 (1995) 181–191

9. Schulte, M.J., Swartzlander, Jr., E.E.: Truncated Multiplication with Correction
Constant. In: VLSI Signal Processing VI, Eindhoven, Netherlands, IEEE Press
(1993) 388–396

10. Schulte, M.J., Stine, J.E., Jansen, J.G.: Reduced Power Dissipation Through Trun-
cated Multiplication. In: IEEE Alessandro Volta Memorial Workshop on Low
Power Design, Como, Italy (1999) 61–69

11. Swartzlander, Jr., E.E.: Truncated Multiplication with Approximate Rounding. In:
Proceedings of the 33rd Asilomar Conference on Signals, Circuits, and Systems.
(1999) 1480–1483

12. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 2nd edition.
Prentice Hall, Upper Saddle River, NJ (1999)

13. Koren, I.: Computer Arithmetic and Algorithms. Prentice Hall, Englewood Cliffs,
NJ (1993)

14. : IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Std-
logic1164): IEEE Std 1164-1993 (26 May 1993)

15. Walters III, E.G.: Design Tradeoffs Using Truncated Multipliers in FIR Filter
Implementations. Master’s thesis, Lehigh University (2002)

	00 - Introduction_2002_SAMOS
	01 - Pimentel_2002_SAMOS
	02 - Hannig_2002_SAMOS
	03 - Derrien_2002_SAMOS
	04 - Realizations of the Extended Linearization Model
	05 - Alliot_2002_SAMOS
	06 - Wong_2002_SAMOS
	07 - Lagadec_2002_SAMOS
	08 - Lohani_2002_SAMOS
	Goal-Driven Reconfiguration of Polymorphous Architectures
	Sumit Lohani and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering, and
	Institute for Advanced Computer Studies
	University of Maryland, College Park MD 20742, USA
	{slohani, ssb}@eng.umd.edu
	1. Introduction
	2. Problem formulation
	, (1)
	Example 1: Consider a set of relevant metrics , where is the latency, is the average power consumption, and is the iteration period. Consider the goal . In , the constraint pair has higher priority than the constraint pair , which in turn has...
	Fig. 1. An overview of the system-level reconfiguration framework studied in this paper.

	3. Configuration management model
	3.1 Evaluation of configurations and goals
	. (2)
	or . (3)

	3.2 Configuration store
	3.3 Acceptability of configurations
	Definition 1: Given two goals and , we say that is acceptable for , denoted , if a configuration that satisfies is an acceptable implementation for . If , we also say that covers . Given a set of goals and a spe cific goal , the space of ove...
	Theorem 1: If we have a finite set of relevant goals, and the acceptability relation is a partial order, then there exists a unique, minimal set of goals such that
	, (4)

	Definition 2: Dominance relation: A point dominates a point if , where and denote th components of and , respectively.
	Example 2: Suppose that we have a single constraint metric, which is the average iter ation period of the system. Thus, the constraint associated with a goal can be expressed as the desired average iteration period . Suppose that in a particu...
	, and . (5)

	4. On-line configuration management
	Fig. 2. The CMF framework for goal-driven reconfiguration.
	Fig. 3. Definition of functions promoteConstraint and demoteConstraint from Figure 2.
	4.1 Issues related to configuration management
	P1. Find the minimum size configuration store and the goals that should be stored in it such that all the relevant goals are covered.
	P2. If one has a well-defined measure of “distance” between goals and the goal-pace is a metric space [4], then for a given fixed size configuration store, find the goals whose configurations should be stored such that the sum of the distance...

	5. On-line adaptation
	Fig. 4. An online adaptation approach for throughput optimization.
	, (6)
	. (7)

	6. Experimental results

	fft1
	0
	T
	278
	278
	278
	278
	256
	254
	254
	P
	.273
	.269
	.269
	.269
	.204
	.226
	.226
	fft1
	.359
	T
	309
	256
	251
	251
	251
	252
	259
	P
	.242
	.282
	.278
	.278
	.278
	.257
	.221
	qmf
	0
	T
	145
	242
	198
	198
	186
	170
	170
	P
	.133
	.117
	.098
	.098
	.088
	.096
	.096
	qmf
	.256
	T
	142
	164
	162
	162
	153
	153
	153
	P
	.136
	.127
	.110
	.110
	.110
	.110
	.110
	karp
	0
	T
	395
	353
	346
	342
	342
	342
	342
	P
	.131
	.158
	.156
	148
	.148
	.148
	.148
	karp
	.309
	T
	450
	352
	300
	342
	342
	346
	346
	P
	.115
	.155
	.159
	.151
	.151
	.148
	.148
	meas
	0
	T
	220
	212
	201
	184
	184
	184
	184
	P
	.054
	.075
	.059
	.021
	.021
	.021
	.021
	meas
	.405
	T
	185
	218
	212
	212
	212
	210
	196
	P
	.064
	.018
	.037
	.037
	.037
	.019
	.040
	Table 1. Experimental results for CMF.
	Fig. 5. On-line adaptation scheme. This is an elaboration of function onLineAdaptation, which is called in Figure 2. It is effectively a wrapper for specialized reconfiguration opti mizations.

	fft1
	0
	1
	37
	39
	42
	-
	fft1
	.359
	7
	56
	-
	-
	-
	qmf
	0
	8
	48
	-
	-
	-
	qmf
	.256
	0
	13
	36
	-
	-
	karp
	0
	4
	7
	9
	28
	28
	karp
	.309
	16
	-
	-
	-
	-
	meas
	0
	8
	28
	-
	-
	-
	meas
	.405
	3
	17
	17
	48
	-
	Table 2. Results for CMF tracking an applied goal.
	7. Conclusion
	8. References
	1. S. S. Bhattacharyya. Hardware/software co-synthesis of DSP systems. In Y. H. Hu, editor, Programmable Digital Signal Processors: Architecture, Programming, and Applications, pages 333-378. Marcel Dekker, Inc., 2002
	2. T. Blickle, J. Teich, and L. Thiele. System-level synthesis using evolutionary algo rithms. Journal of Design Automation for Embedded Systems, 3(1):23-58, 1998.
	3. M. Charikar and S. Guha. improved combinatorial algorithms for facility location and k-median problems. Proc. 40th Annual Symposium on Foundations of Com puter Science, 378-388, 1999.
	4. F. Chudak, “Improved approximation algorithms for uncapaciateted facility loca tion”, In R. E. Bixby, E. A. Boyd and R. Z. Rios-Mercado, eds., Integer Program ming and Combinatorial Optimization, Springer LNCS Vol. 1412, 180-194, 1998.
	5. T. Cormen et al. Introduction to Algorithms, McGraw Hill, 2000.
	6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the The ory of NP-Completeness, W. H. Freeman and company, 1999.
	7. J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a reconfigurable coprocessor. In Proceedings of the IEEE Symposium on FPGAs for Custom Com puting Machines, pages 24-33, April 1997.
	8. K. Jain and V. V. Vazirani, “Approximation algorithms for metric Facility location and k-median problems using the primal-dual scheme and Lagrangian relaxation”, Proc. Foundations of Computer Science, 1999.
	9. S. Lohani and S. S. Bhattacharyya. System synthesis for polymorphous comput ing architectures. Technical Report UMIACS-TR-2002-12, Institute for Advanced Computer Studies, University of Maryland at College Park, February 2002. Also Compute...
	10. D. B. Shmoys, E. Tardos, and K. I. Aardal. Approximation algorithms for facility location problems. Proc. 29th ACM Symp. on Theory of Computing, 265-274, 1997.
	11. S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:Scheduling and Synchronization, Marcel Dekker, 2000.
	12. E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal, “Baring it all to Software: Raw Machines”, IEEE Computer, September 1997, pp. 86-93.
	13. S. Wong, S. Vassiliadis, and S. Cotofana. Microcoded reconfigurable embedded processors: Current developments. In Proceedings of the International Workshop on System Architecture Modeling and Simulation, pages 207-223, July 2001.
	14. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257-271, November 1999.
	15. A. Y. Zomaya, “Parallel and Distributed Computing: The Scene, the Props, the Players,” Parallel and Distributed Computing Handbook, A.Y. Zomaya, ed., pp. 5-23, New York: McGraw-Hill, 1996.

	In Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation, Samos, Greece, July, 2002.

	09 - Seng_2002_SAMOS
	10 - Sima_2002_SAMOS
	11 - Takala_2002_SAMOS
	12 - Guevorkian_2002_SAMOS
	13 - Walters_2002_SAMOS

