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Message from the Organizers

The SAMOS Initiative is an International Informal Initiative that
emerged from de facto dependencies between leading research
programs conducted in Maryland (University of Maryland),

The Netherlands (Delft, Leiden, and Amsterdam Universities),
Paderborn (Paderborn University), and Rennes (IRISA), headed

by Shuvra Bhattacharyya, Stamatis Vassiliadis, Ed Deprettere, Andy
Pimentel, Juergen Teich, and Patrice Quinton, respectively.

The SAMOS 2001 workshop emerged from an attempt to organize

a visiting program among the above mentioned researchers: Why not
meeting each other in one place instead of organizing point-to-point
meetings? Stamatis Vassiliadis originating from the Island of Samos
in Greece proposed to meet there, and so it happened.

The SAMOS 2001 informal workshop was a successful event, and
the initiators decided to go for a 2002 workshop as well.

The workshop is by invitation only, and the selection criterion is

that the chance for research co-operation is maximized.

Embedded systems design is an emerging field of research that
addresses many challenging problems. No single expert is

capable of covering the whole field and, therefore, co-operation is
indispensable. Who can model applications; who can model
architectures; who can model mappings of applications into
architectures; who can perform exploration, and who can synthesize.
Why would a researcher try to master all aspects of embedded
systems design when an approach can be conceived in which
abstraction layers can be assigned to layer experts. The Embedded
systems design problem is a divide and rule game with a win-win
flavor. The SAMOS Initiative aims at identifying the players and
to get them involved in the game.



Modeling of Intra-task Parallelism in Sesame

Andy D. Pimentel, Frank P. Terpstra, Simon Polstra, and Joe E. Coffland

Computer Architecture & Parallel Systems group
Dept. of Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{andy, ftrpstra, spol stra,jcof fl an}@ci ence. uva. nl

Abstract. The Sesame environment provides modeling and simulation methods
and tools for the efficient design space exploration of heterogeneous embedded
multimedia systems. It specifically targets the performance evaluation of embed-
ded systems architectures in which task-level parallelism is available. In this pa-
per, we present techniques that allow Sesame to also model intra-task parallelism
exploited at the architecture level. Moreover, we describe a case study using a
QR decomposition application to validate our modeling concepts. To this end,
we were able to compare the performance estimates of our abstract system mod-
els with the results of an actual FPGA implementation. The results are promising
in the sense that they show good accuracy with minimal modeling effort.

1 Introduction

Modern embedded systems, like those for media and signal processing, often have a
heterogeneous system architecture, consisting of components in the range from fully
programmable processor cores to dedicated hardware components. Increasingly, these
components are integrated as a system-on-chip exploiting task-level parallelism in ap-
plications. Due to the high degree of programmability that is usually provided by such
embedded systems, they typically allow for targeting a whole range of applications with
varying demands. All of the above characteristics greatly complicate the design of these
embedded systems, making it more and more important to have good tools available for
exploring different design choices at an early stage in the design.

In the context of the Artemis (ARchitectures and meThods for Embedded Medla
Systems) project [19], we are developing an architecture workbench which provides
modeling and simulation methods and tools for the efficient design space exploration
of heterogeneous embedded multimedia systems. This architecture workbench should
allow for rapid performance evaluation of different architecture designs, application
to architecture mappings, and hardware/software partitionings and it should do so at
multiple levels of abstraction and for a wide range of multimedia applications.

In this paper, our focus is on a prototype modeling and simulation environment,
called Sesame [18]. According to the Artemis modeling methodology [19], this environ-
ment uses separate application models and architecture models and an explicit mapping
step to map an application model onto an architecture model. This mapping is real-
ized by means of trace-driven co-simulation of the application and architecture models,
where the execution of the application model generates application events that represent



the application workload imposed on the architecture. Application models consist of
communicating parallel processes, thereby expressing the task-level parallelism avail-
able in the applications. By mapping the event traces generated by different application
model processes onto the various system architecture components, this task-level par-
allelism is exploited at the architecture level. In addition, the underlying architecture
may also exploit intra-task parallelism inside a single trace. This paper presents the
newly added techniques Sesame applies to model architectures that exploit such intra-
task parallelism. Moreover, using a case study with the QR decomposition algorithm as
application, we demonstrate the effectiveness of our modeling methodology.

The remainder of this paper is organized as follows. Section 2 briefly describes re-
lated work in the area of modeling and simulation of complex embedded systems. Sec-
tion 3 gives a general overview of the Sesame modeling and simulation environment,
while in Section 4 we present a more detailed description of Sesame’s synchronization
layer. In Sections 5 and 6, we describe the methods applied to model intra-task par-
allelism and discuss their impact on Sesame’s synchronization and architecture model
layers. Section 7 presents some validation results we obtained from the case study with
the QR decomposition application. Finally, Section 8 discusses several open issues and
Section 9 concludes the paper.

2 Related work

Various research groups are active in the field of modeling and simulating heteroge-
neous embedded systems, of which some are academic efforts (e.g., [6, 11, 9]) and oth-
ers commercial [8] and industrial efforts (e.g., [5]). Many efforts in this field co-simulate
the software parts, which are mapped onto a programmable processor, and the hardware
components and their interactions together in one simulation. Because an explicit dis-
tinction is made between software and hardware simulation, it must be known which
application components will be performed in software and which ones in hardware be-
fore a system model is built. This significantly complicates the performance evaluation
of different hardware/software partitioning schemes since a new system model may be
required for the assessment of each partitioning.

A number of exploration environments, such as VCC [1], Polis [4] and eArchitect
[2], facilitate more flexible system-level design space exploration by providing sup-
port for mapping a behavioral application specification to an architecture specification.
Within the Artemis project, however, we try to push the separation of modeling ap-
plication behavior and modeling architectural constraints at the system level to even
greater extents. To this end, we apply trace-driven co-simulation of application and ar-
chitecture models. Like was shown in [18], this leads to efficient exploration of different
design alternatives while also yielding a high degree of reusability. The work of [15]
also uses a trace-driven approach, but this is done to extract communication behavior
for studying on-chip communication architectures. Rather than using the traces as input
to an architecture simulator, their traces are analyzed statically. In addition, a traditional
hardware/software co-simulation stage is required in order to generate the traces.

Finally, the Archer project [23] shows a lot of similarities with our work. This is
due to the fact that both our work and Archer are spin-offs from the Spade project [17].



A major difference is, however, that Archer follows an entirely different application-
to-architecture mapping approach. Instead of using event-traces, it maps symbolic pro-
grams, which are derived from the application model, onto architecture resources.

3 The Sesame modeling and simulation environment

The Sesame modeling and simulation environment [18], which builds upon the ground-
laying work of the Spade framework [17], facilitates the performance analysis of em-
bedded systems architectures in a way that directly reflects the so-called Y-chart design
approach [13]. In Y-chart based design, a designer studies the target applications, makes
some initial calculations, and proposes an architecture. The performance of this archi-
tecture is then quantitatively evaluated and compared against alternative architectures.
For such performance analysis, each application is mapped onto the architecture un-
der investigation and the performance of each application-architecture combination is
evaluated. Subsequently, the resulting performance numbers may inspire the designer
to improve the architecture, restructure the application(s) or modify the mapping of the
application(s).

In accordance to the Y-chart approach, Sesame recognizes separate application and
architecture models within a system simulation. An application model describes the
functional behavior of an application, including both computation and communication
behavior. The architecture model defines architecture resources and captures their per-
formance constraints. Essential in this modeling methodology is that an application
model is independent from architectural specifics, assumptions on hardware/software
partitioning, and timing characteristics. As a result, a single application model can be
used to exercise different hardware/software partitionings and can be mapped onto a
range of architecture models, possibly representing different system architectures or
simply modeling the same system architecture at various levels of abstraction. After
mapping, an application model is co-simulated with an architecture model allowing for
evaluation of the system performance of a particular application, mapping, and under-
lying architecture.

For application modeling, Sesame uses the Kahn Process Network (KPN) model of
computation [12] in which parallel processes — implemented in a high level language
— communicate with each other via unbounded FIFO channels. In the Kahn paradigm,
reading from channels is done in a blocking manner, while writing is non-blocking. The
computational behavior of an application is captured by instrumenting the code of each
Kahn process with annotations which describe the application’s computational actions.
The reading from or writing to Kahn channels represents the communication behavior
of a process within the application model. By executing the Kahn model, each process
records its actions in order to generate a trace of application events, which is necessary
for driving an architecture model. Initially, the application events typically are coarse
grained, such as execute(DCT) or read(pixel-block,channel id), and they may be refined
as the underlying architecture models are refined. We note that in the remainder of this
paper, computational application events will be referred to as execute events.

To execute Kahn application models, and thereby generating the application events
that represent the workload imposed on the architecture, Sesame features a process
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Fig. 1. Mapping a Kahn application model onto an architecture model.
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network execution engine supporting Kahn semantics. This execution engine runs the
Kahn processes as separate threads using the Pthreads package. For now, there is a lim-
itation that the Kahn processes need to be written in C++. In the near future, C and
Java support will be added. The structure of the application models (i.e., which pro-
cesses are used in the model and how they are connected to each other) is described in
a language called YML (Y-chart Modeling Language)[22]. This is an XML-based lan-
guage which is similar to Ptolemy’s MoML [16] but is slightly less generic in the sense
that YML only needs to support a few simulation domains. As a consequence, YML
only supports a subset of MoML’s features. However, YML provides one additional
feature in comparison to MoML as it contains built-in scripting support. This allows for
loop-like constructs, mapping & connectivity functions, and so on, which facilitate the
description of large and complex models.

The performance of an architecture can be evaluated by simulating the performance
consequences of the incoming execute and communication events from an application
model. This requires an explicit mapping of the processes and channels of a Kahn ap-
plication model onto the components of the architecture model. The generated trace of
application events from a specific Kahn process is therefore routed towards a specific
component inside the architecture model by using a trace-event queue. This is illustrated
in Figure 1. Since the application-model execution engine and the architecture simula-
tor run as separate processes?, these trace-event queues are currently implemented via
Unix named-pipes. Alternative implementations of the queues, such as using shared
memory, are foreseen in the future. If two or more Kahn processes are mapped onto a
single architecture component (e.g., when several application tasks are mapped onto a

! Running the application-model execution engine as a separate process also makes it easy to
analyze the application model in isolation. This can be beneficial as it allows for investigation
of the upper bounds of the performance and may lead to early recognition of bottlenecks within
the application itself.



microprocessor), then the events from the different trace-event queues need to be sched-
uled. The next section explains how this is done.

An architecture model solely accounts for architectural (performance) constraints
and therefore does not need to model functional behavior. This is possible because the
functional behavior is already captured in the application model, which subsequently
drives the architecture simulation. An architecture model is constructed from generic
building blocks provided by a library. This library contains template performance mod-
els for processing cores, communication media (like busses) and different types of
memory. These template models can be freely extended and adapted. All architecture
models in Sesame are implemented using a small but powerful discrete-event simulation
language, called Pearl, which provides easy construction of the models and fast simu-
lation [18]. The structure of architecture models — specifying which building blocks are
used from the library and the way they are connected — is also described in YML.

4 The synchronization layer

When multiple Kahn application model processes are mapped onto a single architecture
model component, the event traces need to be scheduled. For this purpose, Sesame pro-
vides an intermediate synchronization layer, which is illustrated in Figure 2. This layer
guarantees deadlock-free scheduling of the application events and forms the application
and architecture dependent structure that connects the architecture-independent appli-
cation model with the application-independent architecture model. The synchronization
layer, which can be automatically generated from the YML description of an application
model, consists of virtual processor components and FIFO buffers for communication
between the virtual processors. There is a one-to-one relationship between the Kahn
processes in the application model and the virtual processors in the synchronization
layer. This is also true for the Kahn channels and the FIFO channels in the synchro-
nization layer, except for the fact that the buffers of the latter channels are limited in
size. Their size is parameterized and dependent on the modeled architecture. A virtual
processor reads in an application trace from a Kahn process and dispatches the events
to a processing component in the architecture model. The mapping of a virtual proces-
sor onto a processing component in the architecture model is parameterized and thus
freely adjustable. Currently, this virtual processor to architectural processor mapping is
specified in the YML description of the architecture model. We are working, however,
towards an approach in which this mapping is specified in a separate YML mapping
description.

As can be seen from Figure 2, multiple virtual processors can be mapped onto a
single processor in the architecture model. In this scheme, execute events are directly
dispatched by a virtual processor to the processor model. The latter subsequently sched-
ules the events originating from different virtual processors according to some given
policy (FCFS by default) and models their timing consequences. For communication
events, however, the appropriate buffer at the synchronization layer is first consulted
to check whether or not a communication is safe to take place so that no deadlock can
occur. Only if it is found to be safe (i.e., for read events the data should be available and
for write events there should be room in the target buffer), then communication events
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Fig. 2. The three layers within Sesame: the application model layer, the architecture model layer,
and the synchronization layer which interfaces between application and architecture models.

may be dispatched to the processor component in the architecture model. As long as a
communication event cannot be dispatched, the virtual processor blocks. This is pos-
sible because the synchronization layer is, like the architecture model, implemented in
the Pearl simulation language and executes in the same simulation-time domain as the
architecture model. As a consequence, the synchronization layer accounts for synchro-
nization delays of communicating application processes mapped onto the underlying
architecture, while the architecture model accounts for the computational latencies and
the pure communication latencies (i.e., how long does it take to transfer an amount of
data from X to Y). Each time a virtual processor dispatches an application event (either
computation or communication) to a processor in the architecture model, it is blocked
(in simulated time) until the event’s simulation at the architecture level has finished.

The idea of concentrating synchronization behavior in a synchronization layer and
separating it from (the latencies caused by) data transmission behavior is somewhat sim-
ilar to the synchronization graph concept of [20]. However, our synchronization layer
seems to be more flexible since it is dynamically scheduled and behaves like a "Kahn”
process network in which the FIFO buffers are bounded. As a consequence of the dy-
namic scheduling of the synchronization layer and the architecture model (remember
that they both are executed in the same discrete-event simulation domain), dynamics
at the architecture level such as contention can easily be taken into account within the
synchronization layer.

5 Exploiting intra-task parallelism

Initially, Sesame only modeled the architecture’s processing cores as black boxes which
sequentially simulate the timing consequences of the incoming (linear) trace of appli-
cation events. However, the architecture under investigation may also want to exploit
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intra-task parallelism which is present in a single event trace from a Kahn application
process. For example, a processing element may have multiple communication units
which allow for performing independent reads and writes in parallel, or it may have
multiple execution units for concurrently processing independent computations. To sup-
port the modeling and simulation of such intra-task parallelism, we extended Sesame’s
model library with component models that allow for refining the virtual processors in
the synchronization layer and the processor components within the architecture models.

Figure 3 shows how a virtual processor in the synchronization layer, like the ones
depicted in Figure 2, is refined. The virtual processor component now acts as a front-
end to a range of (virtual) functional units. These functional units consist of read, write
and execution units which can operate in parallel. The new virtual processor component
has a symbolic-instruction window of parameterizable size in which it stores incoming
application events and with which it analyzes them for parallel execution. According
to the event type (execute event type, channel from/to which is read/written, etc.), the
virtual processor dispatches incoming events to the appropriate functional unit. The
number of entries in the symbolic-instruction window limits the number of outstand-
ing (dispatched but not finished) events in the virtual processor. A window size of one
implies sequential handling of the application events. In Figure 3, the arrows from the
functional units back to the virtual processor refer to the acknowledgments the func-
tional units transmit whenever the simulation of an event has finished.

The read and write units are connected via buffers? with other virtual processors,
like discussed in Section 4, in order to establish the modeling of synchronizations be-
tween Kahn application processes in accordance to their mapping onto the underlying
architecture. Hence, the read and write units do not dispatch a communication event to
the architecture model unless it is safe to do so, i.e., the event cannot cause a deadlock.
In addition, the execution and write units do not dispatch their incoming application
events to the architecture model before all dependencies for these events are resolved.

2 Per read or write unit, there may be multiple buffers connected.
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We will elaborate on this issue in the next section, which discusses the internal synchro-
nizations within a refined virtual processor component.

Figure 4 illustrates how the refined virtual processors can be mapped onto a pro-
cessor component in the architecture model which has been refined as well. The read
units from the virtual processors that are mapped onto the same processor at the archi-
tecture level, are connected to the read units of the processor in the architecture model.
Likewise, the virtual execution units are connected to the execution units of the proces-
sor architecture model, and so on. The functional units in the architecture model may
again be black-box models which sequentially account for the timing consequences of
the incoming application events dispatched by the synchronization layer. Alternatively,
they may also be further refined. For example, a refined execution unit may model in-
ternally pipelined execution of execute events. Furthermore, in the example of Figure 4
all communication units in the architecture model are connected to a bus model. In real-
ity, communication units within the architecture model may have different connections
with each other (directly across a bus or via shared memory, point-to-point, etc.).

6 Dataflow for functional unit synchronization

To properly model parallel execution of application events from a single event trace, the
dependencies between the events should be taken into account. For example, an execu-
tion unit in the synchronization layer may only dispatch an execute event to the execu-
tion unit in the architecture model when the read events it depends on have been sim-
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Fig. 5. Dataflow-based synchronization to resolve dependencies between functional units in a
virtual processor. The architecture shown in (a) exploits pipeline parallelism, which is illustrated
in (b).

ulated and delivered the required input for the execute. Likewise, a write event may be
dispatched to the architecture model when it is safe to do so and when the read/execute
events it depends on have been simulated.

Consider the example in Figure 5(a) in which a virtual processor is shown for a
processor architecture with a pipeline of two read units, one execution unit and two
write units. In this example, the trace generating Kahn process reads/writes from/to two
channels which are mapped onto separate read and write units. The execute events in
this example are dependent on the two preceding read events, while the two write events
are dependent on the preceding execute event. In Figure 5(b) the resulting pipeline
parallelism is illustrated.

The synchronization between the functional units in order to resolve dependencies
is done via buffered token channels. In Figure 5(a), for example, the read units have a
token channel to the execution unit. A read unit sends a token along its token channel
whenever a read event finished, i.e., has been simulated at architecture level. The size
of the token channel’s buffer determines how far the read unit can run ahead, or in other
words, the amount of internal buffering a read unit has. If the token channel’s buffer is



class v_read_unit

(-]

sig_room: (unit_id : integer)

{1

read : ()

{
bl ock(si g_roon); /1 block until there’s roomin token buffer
input_buffer ! get(); /1 wait until there’s data in input FIFO
ex_unit !! sig_data(unit_id); // send token to execution unit
virt_proc !! op_done(); /'l signal conpletion to virt. processor

}

{
while (1) {

bl ock( read, signal_room);

}

}

Fig. 6. Pearl code for a read unit object from the synchronization layer.

full, then the read unit stalls until the execution unit has removed one or more tokens
from the channel’s buffer. During such a stall, a read unit cannot handle new read events.

In our example, the execution unit reads the tokens generated by the read units. As-
sociated with each execute event type, there are two bitmaps. The first one describes on
which token channels the particular execute event is dependent, i.e., which read units
produce data needed by the execute event. The second bitmap describes which func-
tional units are dependent on the execute event. So, it relates to output token channels.

The execution unit must have received a token from all of the required token chan-
nels, implying that dependencies have been resolved, before the execute event may be
dispatched to the architecture model. Likewise, after an execute event has been simu-
lated at the architecture level, the execution unit sends tokens along the required output
token channels (as specified by the second bitmap). As a consequence, the write units,
which are waiting for tokens from the execution unit, are enabled to dispatch depen-
dent write events to the architecture model. To summarize, synchronizations due to
dependencies between functional units in the synchronization layer are handled using
the dataflow principle with token transmissions between the functional units. To be
more specific, this dataflow mechanism adheres to integer-controlled dataflow [7]. Of
course, the placement of token channels between functional units and their buffer sizes
are freely adjustable. For the time being, however, we slightly restricted the choice of
functional units as we currently assume that there can be only one execution unit per
processor. In Section 8, we come back to this issue and indicate how our modeling
concepts may be extended to support multiple execution units per processor.

To give an impression of how the implemented models look like, Figure 6 shows the
Pearl code for a read unit from the synchronization layer (the variable declarations have
been omitted). As Pearl is an object-based language and architecture components are
modeled by objects, the code shown in Figure 6 embodies the class of read unit objects.
As the explanation of the code is beyond the scope of this paper, the interested reader
is referred to [18] for a more detailed discussion of a Pearl code sample.



In our implementation, it is straightforward to change the policy defining when
token buffers can be read from or written to. More specifically, a functional unit can
wait until all of its required tokens are available before it retrieves the tokens from the
buffers or it can retrieve a required token whenever it becomes available. In the latter
case, the producer of the token may be unblocked earlier and thereby allowing it to
proceed with processing new application events.

We note that the synchronizations between functional units are only performed in
the synchronization layer and are not needed within the underlying architecture model.
This is because once application events are dispatched from the synchronization layer to
the architecture model, they are safe to simulate, i.e., they cannot cause deadlocks and
their dependencies have been resolved. This scheme nicely fits our approach in which
all synchronization overheads are accounted for in the synchronization layer.

7 A case study: QR decomposition

To validate the previously presented concepts on how to model the exploitation of intra-
task parallelism, we have performed a case study using a set of application model in-
stances of the well-understood QR decomposition algorithm. These application models
are the result of the Compaan work [14] done at Leiden University. The Compaan tool
is able to automatically generate Kahn application models from nested loop programs
written in Matlab, which in our case is the QR decomposition algorithm. In addition,
it can perform code transformations such as loop unrolling to increase task-level paral-
lelism inside applications [21].

The Kahn application models generated by the Compaan tool are suitable for a di-
rect implementation in hardware on an FPGA. For this purpose, application models
are translated into VHDL [10]. This gives us the unique opportunity to validate our
abstract architecture models against an actual FPGA implementation. In the VHDL im-
plementation of a Kahn application model, pre-defined node components are connected
in a network. This is done according to the connections between the processes in the
application model. The node components, which represent the functional behavior of
the Kahn processes in the application model, are implemented in a pipelined fashion
that is similar to the one shown in Figure 5. Conceptually, this means that each node
component contains a number of read and write units and a single execution unit. So,
besides exploiting task-level parallelism by the VHDL network of node components,
each node component also exploits intra-task parallelism using its internally pipelined
architecture.

Regarding the QR application, we studied five different instances of its application
model generated by Compaan. In each instance, the loops in the code have been un-
rolled a different number of times. This loop unrolling creates new Kahn processes,
thereby increasing the task-level parallelism available in the application [21]. Addi-
tional information on the Kahn application model of the QR decomposition algorithm
can be found in [10]. For each of the application model instances, we described the
structure of the application model in YML to be able to run the model with Sesame’s
application-model execution engine. As a side-note, it is worth mentioning that the gen-



eration of the YML descriptions of the application model instances is performed fully
automatically by means of a visitor tool.

Our Sesame architecture model, onto which the QR application model instances
are mapped, is similar to the VHDL implementation of a Kahn application model in
the sense that it also consists of processor components connected in a network with a
topology identical to that of the application model. Each processor component is mod-
eled with our refined (virtual) processor model (see Section 5) and uses the pipelined
architecture as shown in Figure 5(a). Between processor components in the architecture
model there are point-to-point FIFO channels.

Recall that the structure of Sesame’s architecture models is described in YML. Be-
cause of YML’s built-in scripting support, this allowed us to construct a generic reusable
template for the refined (virtual) processor model. The processor network in the archi-
tecture model is thus obtained by repetitively instantiating this template with possibly
different parameters and linking these processor instances together according to the
topology of the application model. This topology information is derived from our YML
description of the Kahn application model.

7.1 Experiments

Our first experiments were performed using a Sesame synchronization layer and archi-
tecture model with the following characteristics. The size of the FIFO buffers is 256
elements, which guarantees deadlock-free execution of the studied application model
instances [10]. The functional units of processor components as well as the FIFO buffers
are modeled as black boxes. Read and write operations to the FIFO buffers take 3 cy-
cles each as specified in [10], while all execute events® are handled in a single cycle.
The latter reflects the performance of a fully-utilized internal execution pipeline with a
single-cycle throughput. Moreover, the token channels between the functional units at
the synchronization layer have single-entry buffers. This means that the read and exe-
cution units cannot produce more than one result before consumption, i.e., they have
only limited internal buffering.

In Figure 7(a), the performance of the FPGA implementation (modeled in VHDL)
of the five QR application instances — with loop unroll factors of one to five — is shown.
The figure also shows the performance estimates of our black-box Sesame model for
these application model instances. These results are referred to as the base model in Fig-
ure 7. As shown in Figure 7(b), the black-box model yields an average error of 36% and
a worst-case error of 40% with respect to the performance results of the FPGA imple-
mentation. The Sesame (base) performance estimates show the correct trend behavior
but are consistently more pessimistic than those for the FPGA.

According to [10], the FPGA buffer implementation is based around a dual-ported
RAM, where our base model models single-ported buffers. This explains why the results
of the base model are pessimistic. As a next step, we "opened up” the black-box FIFO
model and adapted it to include dual-ported behavior. To this end, we modeled three
variants of dual-ported FIFO buffers. Two of these variants represent implementation
extremes, while the third one reflects the performance behavior of the actual FPGA

% In the QR application model, the execute events consist of vectorize and rotate operations.
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Fig. 7. Validation results of our Sesame models for the QR decomposition application against
the results from an actual FPGA implementation. The graph in (a) shows the (estimated) perfor-
mance for five application instances with different loop unroll factors. The table in (b) gives the
differences (in %) between estimates from our models and the FPGA numbers.

implementation. The results of these three dual-ported FIFO models are also shown in
Figure 7. The curve labeled with perfect dual-ported shows the performance estimates
when modeling the FIFO buffers as being perfectly dual-ported. The latter means that
read and write operations on a buffer can be performed entirely in parallel, even when
the buffer is empty. So, when receiving a read request in the empty buffer state, the
read is blocked until a write request is coming in after which the incoming (written)
data is immediately forwarded to the reading party. Consequently, both read and write
latencies are entirely overlapped.

At the other extreme, the curve labeled with slow dual-ported in Figure 7 shows
the Sesame performance estimates when modeling dual-ported FIFO buffers which are
entirely sequential at the empty state. So, when receiving a read request in the empty
buffer state, the read is blocked until a write has occurred and finished writing its data
into the buffer (in our model, this takes 3 cycles).

Finally, the curve labeled with refined dual-ported, shows the Sesame results when
incorporating more detailed knowledge on the actual FPGA buffer implementation into
our model. Details on the FPGA implementation indicated that a monolithic 3-cycle
read/write latency for the FIFO buffers does not reflect the actual behavior. In reality,
the throughput at both sides of a FIFO buffer is 1 operation per 3 cycles, while the read
latency turned out to be only 1 cycle. In our refined dual-ported model we have therefore
split the 3-cycle delay into three 1-cycle delays and placed them at the appropriate
places according to specification of the FPGA buffer implementation. This means that
we refined the timing within our model while keeping its abstract structure intact.

Three important conclusions can be drawn from the results in Figure 7. First, the
results reconfirm the modeling flexibility of Sesame. This is because we were able to
model the three dual-ported buffer designs by changing less than ten lines in the code of
the base model. Second, the results from the “perfect’ and ‘slow’ models — representing
the two FIFO buffer implementation extremes — immediately indicate that the average



accuracy of Sesame’s performance estimates must lie in the range of -21% and +32%.
In fact, our ‘refined” model demonstrates how close our performance estimates can
approximate reality since it yields an average error of only 3.5% and a worst case error
of 4.7%. Knowing that Sesame targets performance evaluation in an early design stage
and therefore models at a high level of abstraction, these accuracy numbers are very
promising. Third, our results indicate that the studied hardware implementations of the
QR decomposition application are highly sensitive to different FIFO buffer designs.
Since the performance estimates of the ‘perfect’ buffer model show a speedup of 68%
over the results of the “slow’ buffer model, the handling of the empty state in the FIFO
buffer seems to be an important design issue.

Since Sesame targets performance evaluation in an early design stage, where the
design space that needs to be explored typically is very large, the required modeling
effort and the simulation speed of Sesame is worth noting. The architecture models in
this case study, including the components in the synchronization layer, consist of less
than 500 lines of Pearl code. It takes Sesame about 16 seconds on a 333MHz Sun Ultra
10 to perform the architecture simulation for all five application model instances in a
batch.

8 Discussion

So far, we have assumed that in the set of functional units of a refined (virtual) pro-
cessor there is only one execution unit. Processing cores, however, might have multiple
execution units that can perform computations in parallel. We are currently investigat-
ing whether or not our dataflow approach is sufficient for dealing with dependencies
between execution units. In any case, for such inter-execution dependencies we need to
extend our dataflow scheme such that tokens are typed, like in the tagged-token model
[3]. With the typed tokens, an execution unit can differentiate between the production
of results from different execute event types. To support such typed tokens, the bitmaps
need to be extended from single-bit values to multiple-bit values to be able to specify
which token types are required for an application event.

Moreover, we currently use static bitmaps per execute event type. We found, how-
ever, that this causes problems when, for example, execute events of the same type
require data from different read units in different stages of the application model’s exe-
cution. This can be solved by dynamically adding the bitmap information to the execute
events in the traces.

9 Conclusions

In this paper, we presented the techniques applied by the Sesame modeling and simula-
tion environment to model intra-task parallelism exploited at the architecture level for
task-parallel applications. To this end, our processor models are refined to the level of
functional units which can operate in parallel and which are synchronized to resolve de-
pendencies by means of a dataflow mechanism. Using a case study, in which we were



able to compare our simulation results with the results from an actual FPGA imple-
mentation, we demonstrated that our modeling methodology is flexible and shows good
accuracy.
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Abstract. In this paper, we present a first approach for array-level
energy estimation during high-level synthesis when mapping piecewise
regular algorithms onto massively parallel full size processor arrays. In-
nately, piecewise regular algorithms have some power consumption friendly
properties, e.g., they may be mapped onto processor arrays with only lo-
cal interconnect and memory. In addition to these properties, we show
that the chosen mapping has a significant influence on the power con-
sumption. Our energy estimation approach identifies regions with de-
creased switching activity of functional units’ input operands. For these
regions with reduced activity, a lower power consumption can be directly
obtained from a generated table based model. Experimental results for-
tify the accuracy and efficiency of our methodology.

1 Introduction

Nowadays, low power has become an important design criterion last but not
least due to all the mobile phones and portable computers. These devices have
to handle increasingly computational-intensive algorithms like video processing
(MPEG4) or other digital signal processing tasks (3G), but on the other hand
they are limited in their power budget. The next generation of ULSI chips will
allow to implement arrays of hundreds 32-bit micro-processors and more on a
single die. Hence, parallelization techniques and compilers will be of utmost
importance in order to map computational-intensive algorithms efficiently to
these processor arrays.

In this context, our paper deals with the specific problem of estimating the
power consumption when mapping a certain class of loop-specified computations
called piecewise regular algorithms [24] onto a dedicated processor array. This
work can be classified to the area of loop parallelization in the polytope model
[8,15].

The rest of the paper is structured as follows. In Section 2, a brief survey
of previous work on low power is presented. Section 3 introduces the class of

* Supported in part by the German Science Foundation (DFG) Project SFB 376 “Mas-
sively Parallel Computation”.



algorithms we are dealing with. In Section 4, we examine the power consumption
of functional units in dependence on their input activity. Afterwards, an energy
estimation methodology when mapping regular algorithms to processor arrays is
described. The methodology and some results are discussed in Section 5. Future
extensions and concluding remarks are presented in Section 6.

2 Related Work

A lot of previous work in the area of low power design during high-level syn-
thesis has dealt with the issue of power estimation. Various methodologies for
generating accurate models for datapath power consumption were presented.

In general these power estimation techniques can be divided into simulative
and non-simulative categories. The non-simulative method in [16] estimates the
power consumption from an information theoretical point of view. In [14], the
authors describe a strategy called Dual Bit Type (DBT) model where not only
the random activity of the least significant bits, but also the correlated activity
of the most significant bits is taken into account. The method in [10] proposes a
modeling approach for functional units that are typically used in digital signal
processing systems, such as adders, multipliers and delay elements. Thereby, a
4-dimensional table-based [9] macro model is used by the authors.

Also, some works [3] focused on transformations at the algorithmic and the
architectural level to obtain low power designs. In [2], transformations for nested
loop programs are discussed. In [4, 18,19, 21], several scheduling and binding
techniques for low power are studied. Some energy estimations for processor
arrays with hierarchical memory structures are made in [6].

However, to the best of our knowledge, our work presented here is the
first which considers the relationship between space-time mappings of compu-
tation intensive algorithms and energy consumption. Here, we specify a power-
consumption model used in the methodology described afterwards for energy
estimation of piecewise regular processor arrays.

3 Notation and Background

3.1 Algorithms

The class of algorithms we are dealing with in this paper is a class of recurrence
equations defined as follows:

Definition 1. (Piecewise Regular Algorithm). A piecewise regular algorithm con-
tains N quantified equations

Si[I),...,S:[I],...,Sn[]]
Each equation S; [I] is of the form

xz[l] = fz(,ﬂ,‘][l—dﬂ],)
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Fig.1. In (a), an index space and the reduced dependence graph is shown. Some
possible mappings are depicted in (b).

where I € I; C Z"™, xz;[I] are indexed variables, f; are arbitrary functions,
dj; € Z" are constant data dependence vectors, and ... denote similar arguments.

The domains Z; are called index spaces, and in our case defined as follows:

Definition 2. (Linearly Bounded Lattice). A linearly bounded lattice denotes an
index space of the form

I ={IeZ"|I=Mrk+c N Ak > b}

where k € ZH, M € Z!, c € Z", A € Z™* and b € Z™. {k € Z! | Ax > b}
defines an integral convex polyhedron or in case of boundedness a polytope in 7.
This set is affinely mapped onto iteration vectors I using an affine transformation
(I =Mk+c).

Throughout the paper, we assume that the matrix M is square and invertible.
Then, each vector k is uniquely mapped to an index point I. Furthermore, we
require that the index space is bounded.

For illustration purposes throughout the paper, the following example is used.



Ezample 1. The well known matrix multiplication algorithm computes the prod-
uct C = A - B of two matrices 4 € RVM1*Ns and B € R¥3*M and is defined as
follows
N3
cij:Zaikbkj VlSZSNl/\lS]SNQ
k=1
A corresponding piecewise regular algorithm is given by

imput operations

a[i,O,k]<—aik ].SZSNl AN 1§k§N3
b0, 7, k]« by, 1<j< Ny A1<k<Ns
cli,5,0] <0 1<i< Ny A1<j<N,
computations

ali,j, k] — ali,j— 1,k Vijk)T=1€T

bli,j, k] — bli — 1,3, k] Vijk)T=1€eT

z[i,j, k] < ali, j, ] bli, j, k] V(ijk)T=I€T

cli, j, k] < [zy, 1+ 2,5kl Vijk)T=IeZ

output operation.
Cij HC[i,j,Ng] 1<i<N, A1<j<N,

The data dependence vectors are dg, = (01 0)T, dp, = (1 0 0)T, dee = (00 1)7,
daz = (000)T, dy, = (00 0)T, and d,. = (0 0 0)T. The index space is given by

IT={I=(ijk)T€Z|1<i<N;, A1<j<Ny; A1<k<Nz}

Computations of piecewise regular algorithms may be represented by a de-
pendence graph (DG). The dependence graph of the algorithm of Example 1 is
shown in Fig. 1 (a). The dependence graph expresses the partial order between
the operations. Each variable of the algorithm is represented at every index
point I € 7 by one node. The edges correspond to the data dependencies of the
algorithm. They are regular throughout the algorithm, i.e., a[i, j, k] is directly
dependent on ali,j — 1, k]. The dependence graph specifies implicitly all legal
execution orderings of operations: if there is a directed path in the dependence
graph from one node a[J] to a node z[K] where J, K € Z, then the computation
of a[J] must precede the computation of z[K].

Henceforth, and without loss of generality®, we assume that all indexed vari-
ables are embedded in a common index space Z. Then, the corresponding de-
pendence graphs can be represented in a reduced form.

Definition 3. (Reduced Dependence Graph). A reduced dependence graph (RDG)
G = (V,E,D) of dimension n is a network where V is a set of nodes and
E C V xV is a set of edges. To each edge e = (v;,v;) there is associated a
dependence vector d;j € D C Z™.

The RDG of the matrix multiplication algorithm is shown in Fig. 1 (a). Each
node v in the graph corresponds to one equation in the section computations of
the algorithm.

1 All described methods can also be applied for each quantification individually.



3.2 Space-Time Mapping

Linear transformations as in Eq. (1), are used as space-time mappings [12,17] in
order to assign a processor index p € Z"~' (space) and a sequencing index t € Z
(time) to index vectors I € 7.

()= m-(9)

In Eq. (1), Q € Z®=D*" and X\ € Z'*". The main reasons for using linear allo-
cation and scheduling functions is that the data flow between PEs is local and
regular which is essential for low power VLSI implementations. The interpreta-
tion of such a linear transformation is as follows: The set of operations defined
at index points A - I = const. are scheduled at the same time step. The index
space of allocated processing elements (processor space) is denoted by Q and is
given by the set @ ={p | p=Q -1 A I € Z}. This set can also be obtained by
choosing a projection of the dependence graph along a vector u € Z", i.e., any
coprime? vector u satisfying @ - u = 0 [12] describes the allocation equivalently.

Allocation and scheduling must satisfy that no data dependencies in the DG
are violated. This is ensured by the following causality constraint

A dij >0 V(’Ui,’l]j) e FE. (2)

A sufficient condition for guaranteeing that no two or more index points are
assigned to a processing element at the same time step is given by

rank (g?) - (3)

Using the projection vector u satisfying @ - u = 0, this condition is equivalent to
A-u# 0 [24].

Definition 4. (Iteration Interval) [26]. The iteration interval 7 of an allocated
and scheduled piecewise reqular algorithm is the number of time instances between
the evaluation of two successive instances of a variable within one processing
element.

Definition 5. (Block Pipelining Period) [13]. The block pipelining period of an
allocated and scheduled piecewise reqular algorithm is the time interval between
the initiations of two successive problem instances and is denoted by (3.

Lets consider the matrix multiplication algorithm introduced in Example 1 as a
problem instance. The whole matrices A and B have to read into the processor
array before the next pair can be read, the time between these input operations
is the block pipelining period 3. Let A be the schedule vector. Then, the block
pipelining period 8 may be computed as follows,

f=max{A-h} — min{) I} = max {A1—D)}.

2 A vector z is said to be coprime if the absolute value of the greatest value of the
greatest common divisor of its elements is one.



4 Power Modeling and Energy Estimation

In digital CMOS circuits, the dominant source of power consumption is switching
power [22]. The average power consumed by a CMOS gate can be computed using
the following equation,

1
Psw = §CLVd2de7

where C', is the gate output load capacitance, V4 is the supply voltage, f is the
clock frequency, and N is the average or expected number of output transitions
per clock cycle.

Due to the influence of the switching activity on the power consumption, our
main idea is to exploit the fact that power consumption is drastically reduced
when some inputs of a functional unit remain unchanged for n > 1 clock cycles.

Here, we want to discuss the impact of the space-time mapping on the
power and energy consumption respectively of the resulting processor array.
Our approach identifies regions with decreased switching activity of functional
units’ input operands and take these power savings into account. An estima-
tion methodology is presented in the following. This methodology estimates for
a given piecewise regular algorithm and a space-time mapping T the average
power consumption of the entire array.

Briefly described this methodology can be subdivided into two hierarchical
estimation steps,

— PE-level power estimation,
— array-level power estimation.
4.1 PE-level Power Estimation

A sketch of a typical processor element’s internal structure is shown in Fig. 2.
It consists of a core part where all the functional units are located, a controller,
and some delay registers. In the final paper version, we quantify the percentages

F 3

Core Register

Controller

Fig. 2. Schematically internal structure of one processor element.



of power consumption for the functional units Ppy, the control structures Pcyr,
and the registers Prg and these parts’ proportion of the overall power consump-
tion of one processing element. Then the power consumption of one PE can be
approximated as follows, Pruy(A, ) = Pru(u) + Poe1(A) + Pre(A).

For characterization of the functional units (adders, multipliers, etc.), stan-
dard register-transfer level power estimation tools from Synopsys [23] are used.

Table 1. Average power consumption of different functional units.

3

Pavg,A Pavg,B Pavg,C Pavg,D

26.97 uW 204.2 pW 212.0 uW 319.6 uW
22.33 pW 155.4 pW 164.0 pW 225.0 pW
18.82 W 138.6 uW 145.6 W 190.1 uW
4 16.99 pW 129.6 W 137.3 uW 175.1 uW
5 16.31 pW 125.4 pW 133.8 pW 164.3 uW
6 15.68 W 120.5 W 128.4 pW 159.4 pW
7 15.48 W 119.5 gW 125.2 uW 153.3 uW
8 15.29 uW 116.8 uW 124.4 pW 151.6 pW
9 15.09 pW 116.3 pW 123.7 uW 147.8 uW
10 14.89 uW 115.5 W 122.7 uW 145.8 uW
oo 8.49 W - - -

W N =

In Table 1, the average power consumption of some 16-bit functional units
are listed (A = ripple-carry adder, B = carry-save array multiplier, C' = carry-
save array multiplier with two pipeline stages, D = Wallace-tree multiplier with
three pipeline stages). Each functional unit has two input operands. The value
of one operand is assumed to be constant for n clock cycles; the other can change
randomly in every clock cycle. These values are visualized in Fig. 3 (a) for the
16-bit ripple-carry adder and Fig. 3 (b) for the multipliers respectively. The
curves are derived by regression, where the function is of type P = ag +a1e™" +
asne” ™ + azn?e~". The regression is good enough to have errors less than 2%.
Since we are only interested in integer multiples of the clock cycle for n, the
derived models may be stored in a table without too much effort.

4.2 Array-level Power Estimation

Based on the class of piecewise regular algorithms, we want to estimate the power
consumption for a given space-time mapping T = (Q \)T. It is obvious that the
cost (number of processor elements) and the latency is influenced by the space-
time mapping. In earlier work [11], we described how to determine the cost and
the latency as a measure for performance. Here, we just briefly outline the main
ideas. If we assume that processor arrays are resource-dominant, we are able
to approximate the cost as being proportional to the processor count. Fhrhart
polynomials [5,7] may be evaluated to count the number of points (processor
elements, #PFE) in the projected index space.
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Fig. 3. Average power consumption of some 16-bit functional units when one operand
is constant for n clock cycles and the other can change randomly in every clock cycle.



The latency is determined by solving a minimization problem which may be
formulated as a mixed integer linear program (MILP) [25,26]. Also, modified
low power scheduling and binding techniques like in [19,21] can be applied to
compute a suited schedule.

Here, we want to discuss the impact of the space-time mapping on the power
and energy consumption respectively of the resulting processor array. Our ap-
proach identifies regions with decreased switching activity of functional units’
input operands and take these power savings into account. An estimation algo-
rithm is presented on the following pages. The algorithm estimates for a given
RDG G, an index space Z, a space-time mapping 7', the number of processor el-
ements # PFE, and the block pipelining period § the average power consumption
Pirray of the entire array. The processor count #PFE and the block pipelining
period 3 of the array may be computed as described earlier in this paper.

Once, the average power consumption P,.ay of the entire processor array is
estimated, the energy consumption per problem instance is computed as follows,

E:ﬁ'Parray'

Without loss of generality, we assume in the following that the iteration period
7 is one and that each RDG node is mapped onto a dedicated resource. Our
estimation algorithm can be subdivided into two phases. In the first phase, the
worst case power consumption is computed, i.e., when the switching activity of
all functional units’ input operands is highest. Therefore, the power consump-
tion Ppg of one processor element is determined by summation of the power
consumption P,, (1) of all of its FUs

The one in the term P, (1) denotes that operands can change in every clock
cycle.

POWER ESTIMATION

INN' RDGG,I,T = (g), 4PE, and
OUT: Paray
BEGIN
Ppp — 0
FOR all nodes v € G DO
P, 1 < lookUpPower(v, 1)
Ppg « Ppg + Py1
ENDFOR
Parray — #PEPPE
FOR all edges e € G DO
11 d is dependence vector of edge e
12 node v < source(e)
13 node w « target(e)
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

IF (v = w) THEN
IF (S, is propagation equation) THEN
IF (Q-d=0) THEN
FOR all adjacent edges ¢’ of v
d' is dependence vector of edge €’
IF (d = 0) THEN
w « target(e’)
P, 1 « lookUpPower(w, 1)
P, 3 < lookUpPower(w, /3)
Parray — Parray - #PE . (Pw,l - P’w,ﬁ)
ENDIF
ENDFOR
ENDIF
ELSE
(k,m) < getOperandFixedCycles(T, v)
P,1 — lookUpPower(w, 1)
P, 1 < lookUpPower(w, k)
Parray < Parray —m - (Pw,l - Pw,k)
ENDIF
ENDIF
ENDFOR
END

Subsequently, the power consumption of the entire array is obtained by extrap-
olation of this value. In the second algorithm phase array regions with lower
switching activity are detected. Therefore, the whole reduced dependence graph
is traversed to examine self-loops®. These self-loops correspond to inputs of a
processor element. If these inputs remain unchanged for more than one period,
the switching activity is decreased and consequently also the power. It remains
to determine for how long inputs are constant and how many processor elements
are affected. Two cases can be differentiated:

1.

Propagation equations mapped onto itself. Propagation equations are
only used to distribute data from one processor to another. Due to the reg-
ularity and locality of the considered processor arrays, they occur very com-
monly. If such a propagation equation is mapped onto itself (Q - d = 0) no
data transport is needed, i.e., the data remains in one processor element
unchanged for § cycles until the next problem instance is fed into the array.
Thus, the switching activity of all adjacent nodes v; (functional units) in the
same processor element is reduced. Therefore, the estimation of the average
power consumption is decreased by P,, (1) — P,, (). As a propagation equa-
tion has global influence the activity is reduced in every processor element

(#PE).

. Other self-loops. These are the remaining inputs which may be constant

for k clock cycles. The number of processor elements with these constant

3 A self-loop is an edge where source and target node are the same.
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inputs is denoted by m. Let Z;,, be the input index space of variable in;.
Transforming this index space by () and counting the number of points in
the transformed space, gives m.

m = |{I€Zn71|I:QI1n1 A Iinl 61.1111}|

This counting problem is similar to the earlier described one and can also
solved by using Ehrhart polynomials. Once k and m are determined, the over-
all estimated power consumption can be reduced by m - (P, (1) — Py, (k)).

In the next section the overall algorithm is explained by means of discussing
some results.

5 Results

Reconsider the introductory Example 1. As an allocation we choose for the
addition a 16-bit ripple-carry adder and for the multiplication a three-stage
pipelined Wallace-tree multiplier. The input operations a and b are mapped
each to one resource of type input. The execution times of these operations are
zero. This is equivalent to a multi-cast without delay to a set of processors.
Furthermore, let u = (1 0 0)T be the chosen projection vector. Then, after
scheduling and cost calculus, we obtain the schedule vector A = (1 0 1) and as
cost #PFE = N, - N3. Now, with this information we are able to estimate the
power consumption by applying the proposed algorithm. First, the worst case
power consumption is determined, i.e., the switching activity of functional units’
when input operands change each both each cycle. Second, in the main part of
the algorithm, two types of equations with lower input activity are detected and
the overall power consumption is adapted.

C
4 2\ 4 N\ ' 2\ ' N\ ' N\
> = 162.0 > = 165.0 > = 172.0 > = 165.0 > = 165.0
Paa= 24.2 Pg= 237 Py= 242 Pg= 240 Pg= 239
- J A J & J & J \\ J
A B
4 2\ 4 2\ ' 2\ ' 2\ ' N\
Poui= 167.0 > = 169.0 > = 164.0 > = 168.0 > = 168.0
Paa= 82 Pua= 81 Pua= 81 Pua= 81 Paa= 82
A J - J & J & J & J
fo fo fo fo fo

Fig. 4. Processor array for u = (10 0)T, Ny =4, N =5, and N3 = 2.

The processor array for a projection in direction v = (1 0 0)T is shown in
Fig. 4. Due to this projection, the variable b is mapped onto itself. From this it
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follows that one operand of the multiplication remains unchanged for some time.
At the beginning of a computation, the whole matrix B is input simultaneously
to the array, whereas the matrix A is fed sequentially row by row from the left side
into the array. Since the matrix A has Nj rows, one operand of the multiplier is
fixed for 8 = N; clock cycles which significantly reduces the power consumption
in the multipliers by 45% (see Table 1). On account of the design regularity the
power savings can multiplied by #PFE (line 23 of the algorithm). The second
point where less power is consumed is the constant input variable c¢. One input
of the adders in the lower row of the processor array is permanently zero. This
partial areas with reduced power consumption in the array are determined by the
function getOperandFixedCycles. In addition to the time (k = co) where one input
remains unchanged, the number m = N5 of processors with reduced switching
activity is returned.

Table 2. Average power and energy consumption of different mappings.

u Psim  Pext Errext Pest Errest| Esim  Eest
(W] [bW] [%] [wW] [%] | [Pd] [p]]

(100)"|2020 3466 71.6 1928 -4.6 | 80.8 77.1
(010)T|1530 2773 81.2 1456 -4.8 | 76.5 72.8
(00 1)T[7260 6931 -4.5 6931 -4.5 |145.2 138.6

In Table 2, the power consumption for different projection vectors is shown,
where for illustration purposes, the upper boundaries of the index space are set
to Ny =4, Ny = 5, and N3 = 2. In the table, Py, is the exact value obtained
by simulation of the entire array. The worst case extrapolation (line 4-9 in
the algorithm) is denoted by Pext. The power consumption of our estimation
algorithm is labeled with P.. Whereas the simple extrapolation method has
errors up to 81%, our approach is very accurate with errors less than 5%.

Furthermore, the energy values per matrix multiplication in the table show
the significant influence of the chosen space-timing mapping. Different mappings
can lead to energy consumptions which differ up to a factor of two.

6 Conclusions and Future Work

A first study of a matrix multiplication algorithm has shown the great impact
of a chosen mapping to the average energy consumption of the resulting array
and the accuracy (errors < 5%) of our estimation approach when comparing it
with RTL power estimation tools from Synopsys [23].

Furthermore, our methodology is independent of the problem (array) size,
since, an estimation with Synopsys design tools has linear time and memory
complexity in dependence on the number of processor elements. Power estimation
for large processor arrays using the Synopsys design tools rapidly becomes crucial
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since memory usage is growing to GBytes and estimation time to several hours.
Exact comparisons of the complexity and also a quantification of the percentages
of power consumption for the functional units, the controller, and the registers
and these parts’ proportion of the overall power consumption of one processing
element are presented in the final version of this paper. First experiments of
matrix multiplication and LU decomposition have shown that since all data is
stored locally inside processor element’s registers, the part of the register power
consumption averages from ~ 10 — 15% of the overall power consumption.
Finally (in the final paper), our methodology will be verified for a piecewise
regular algorithm in a case study for LU decomposition. In Fig. 5, a piecewise

1
C
C—1
C—L+—1
(—I+——+—1
—H—_+—{1+—]
B A

T 1 1 1 1 l":l

L LI L L L
T 1 1 1 1 l":l

I L LI L L L
O—+—"r——_+—_F+—"T+—"1T+—1

Fig. 5. Sketch of piecewise regular processor array for LU decomposition.

regular processor array for LU decomposition is schematically shown. This array
can be subdivided in three pieces, where the parts A and B also change their
functionality over the time.

Our new estimation methodology is currently integrated into the PARO de-
sign system and can be used during the process of automated synthesis of regular
circuits. PARO is a design system project for modeling, transforming, optimiza-
tion, and processor synthesis for the class of piecewise linear algorithms [1,20].
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1 Introduction

The technological road map for embedded system design foresees important
changes in the design methodologies. 1P based designs and platform based de-
signs [26] are becoming mandatory because the complexity of the designs in-
creases very fast, and time to market requirements are shorter and shorter. On
the other hand, improvements of technology do not affect uniformly all elements
of a chip: memories, buses and power supply integration do not follow Moore’s
law. Hence, the main focus in hardware design has moved from high performance
and parallelism to other concerns such as optimizing memory size, hierarchy and
traffic, solving the bus bandwidth bottleneck, and minimizing power consump-
tion. Power-aware design can be considered as today’s most important problem,
but with the emergeance of network on chip [7], interfacing IPs efficiently be-
comes a major issue. The present paper addresses this latter problem.

Many designs rely on bus protocols to interface 1P, for example, AMBA or
CORE-connect bus. This tendency is amplified by the spreading of the platform
based design methodology which imposes the use of particular buses on the chip.
But the gap between the design clock cycles and buses clock cycles increases,
and therefore, the speed at which data can be fed into a design becomes the
major bottleneck for performance. Hence, a good design must be delivered with
an interface protocol that uses efficiently the bus bandwidth. Such an interface
is most often designed by hand, but clearly, automatic generation of interface
must be considered. This paper is mainly concerned with efficient bus protocol
interface definition for highly parallel design. Note here that some attempts to
plug FPGA chips directly to memories have been made [15]. In such a framework,
the interface synthesis may be very different from the one presented here. How-
ever, one part of the present work, namely, how to extract interface information
from the high-level specifications, remains valid, even if it has to be retargeted.

To be complete, the analysis of technological evolution should include trends
in the electronic design automation tools (EDA). Currently the software technol-
ogy provides satisfying tools for logic synthesis (i.e., synthesis from RTL speci-
fication.) But trends lead towards providing higher level design methodologies,



using new languages (SystemC for instance) and new methodologies (use of UML
specifications for instance). The research presented here belongs to a specific
domain which aims at compiling loops to hardware [21, 13, 10, 2]. In this field,
interfacing is also a major issue because applications operate on large data, sets
(usually streams in signal processing or images in multimedia) which must be
efficiently brought onto the chip. Again, design automation is a major issue and
the approach proposed in this paper focus on automatic interface design for
architectures compiled from loop nest specifications.

Based on the work done around the MMAlpha, tool (10, 8], we propose a solu-
tion to this problem for a particular class of architecture, namely linear regular
arrays. In this paper, we introduce the concept of application interface which
can be seen as the application dependent part of the interface for linear systolic
arrays. As all highly pipelined designs share many properties, it is possible to
define a generic application interface, i.e. an interface skeleton that is valid for
all linear arrays and that can be easily parameterized for each application imple-
mented. The experiments we report in this paper are oriented towards a FPGA
platform, but the concepts presented can be used for interfacing 1Ps on a SoC,
provided the 1P has some features that we will describe hereafter.

The underlying interface architecture that we consider in this paper is com-
posed of a bus (with fixed bandwidth and throughput, possibly including a faster
DMA mode) and of a Fifo interconnecting the bus and the application. The Fifo
allows data to be buffered when an interruption occurs at one of the bus ends.
The bus and the Fifo form what we call the hardware interface. On top of the
hardware interface is built an application interface whose réle is to rearrange
the data between the hardware interface and the application. This part of the
interface is application dependent and can be automatically produced by the
same kind of tools that generates the hardware of the application.

This paper is organized as follows. After a brief presentation in section 2
of the DLMS application which serves as an illustration throughout the paper,
we explain in section 3 the model of our application architecture. Section 4
details the various elements of the interface we target. In section 5, we describe
how data transfers are structured in phases and patterns to allow for efficient
communications. The generation of the interface, both software and hardware,
is presented in section 6. We then describe in section 7 the use of our interface
generator to implement automatically a DLMS filter on a FPGA board. Finally,
we present in section 8 related work and we conclude in section 9

2 The DLMS example

In this section, we introduce an example that will be used throughout to paper to
illustrate our interface design: the delayed least mean square algorithm (DLMS)
for channel error correction in signal processing applications.

Least mean squares adaptive filters are commonly used in signal processing
applications such as echo cancellation, system identification, speech coding and
channel equalization [11]. Unlike fixed coefficient Fir (Finite Impulse Response)



| X(n—2N+2)

pe(n—-N+1)

Fig. 1. Snapshot (at at ¢ = n— N + D) of the architecture obtained for the DLMS after
MMAlpha design process. N is the number of taps of the filter, D is the number of
delays in the feedback loop. N = 10, D = 12 and M = 100.

or 1R (Infinite Impulse Response) digital filters, the coefficients of adaptive dig-
ital filters such as the LMs filter are adapted at each iteration to obtain better
converge properties. It is well-known that recursive or adaptive digital filters are
difficult to pipeline due to the presence of a feedback loop. However, it is possible
to obtain a pipelined implementation by inserting delays in the recursive loop
of the coefficient update part. The corresponding algorithm is called a delayed
least means square (DLMS) algorithm.

By assuming that the adaptive digital filter is a Fir filter whose impulse
response is denoted by w; (n), the output signal y (n) is given by:

N-1

y(n) = zT(n)w(n) = E z(n — )w;(n), (1)

i=0

with £(0) = 0 and w(0) = O (bold variables denotes N-vectors: x(n) =
(z(n—N-1),... ,2(n)) and w(n) = (wo(n),... ,wnx_1(n))). The weight update
equations of the DLMS [12] are given by:

w(n +1) =w(n) + u e(n — D)z(n — D) (2)
e(n) = d(n) —y(n) @)

where d(n) is the desired signal.

A possible vLSI implementation of the DLMS [12] is represented in figure 1.
In [10], it has been shown that this architecture can be derived automatically
from functional specification to RTL description with the MMAlpha software,
based on the Alpha language [25]. At the end of this process, the architecture
presented in Fig. 1 is expressed as an AlpHard program, which is a subset of
Alpha, and the mapping between the functional specification and the hardware
implementation is obtained by means of the program of Fig. 2. More precisely, the



system firr : {N,M,D | 3<=N<=(M-D-1,D-1)}
(x : {n | 1<=n<=M} of integer[S,16];
d : {n | N<=n<=M} of integer[S,16])
returns (y : {n | N<=n<=M} of integer[S,16]);
var
d_mirrl : {t,p | D<=t<=-N+M; p=0} of integer[S,16];
yomirrl : {t,p | D<=t<=-N+M; p=0} of integer[S,16];
x_mirrl : {t,p | -N+D+i<=t<=-N+M; p=0} of integer[S,16];
x_mirr2 : {t,p | -N+2<=t<=-N+M+1; p=0} of integer[S,16];
Y1 : {t,p | N<=t<=M; p=N-1} of integer[S,16];

let
y-mirri[t,p] = y[t+N-D];
d_mirri[t,p] = d[t+N-D];

x_mirr2[t,p]l = x[t+N-1];

x_mirri[t,pl x[t+N-D];

yInl = Yi[n,N-1];

use firrModule[N,M,D] (d_mirril, y_mirri, x_mirrl, x_mirr2)
returns (Y1) ;

tel;

Fig. 2. The part of the AlpHard program (firr system, also called AlpHard interface)
which maps the functional specification (input z and d, result y) to the architecture
(firrModule system also called AlpHard module). This system contains the information
about the date and place where data should be entered (here for example, input in the
first processor: p = 0, and output in the last processor: p = N — 1). This program has
three parameters: N is the number of taps of the filter, D is the number of delays along
the feedback loop, and M is the number of input samples of the filter (for simulation
purposes.)

input flow x and the coefficient vector d of the initial firr algorithm are mapped
to new variables x mirr1, x mirr2, and d_mirri1, and the architecture itself is
represented by a instanciation of another Alpha program called firrModule (by
a use statement), which returns an output stream Y1. This stream is assigned to
the output variable y of program firr. All inputs and outputs of firrModule
are indexed by t and p which represent respectively the time and the processor
number to which these streams are assigned.

3 Application architecture model

This section models the interface we want to synthesize. We first state the as-
sumptions that we make regarding the type of application hardware that we
want to interface. Then we detail the information which is needed for interfacing
correctly the application architecture (e.g. firrModule in the DLMS application)
with its host architecture. Then we abstract this architecture by a number of
features that will constitute the input to interface generation.



3.1 Assumptions

Our assumptions regarding the application architecture concern four aspects: a
virtual clock, the model of linear array, inputs and outputs, and the bit width
of streams.

Virtual clock. The application architecture is a globally synchronous digital cir-
cuit in which all registers are controlled by a common virtual clock. This virtual
clock regulates the operation of the architecture, and can be frozen if, for in-
stance, the host is not ready to send input data or to read output data. This
assumption significantly reduces the control complexity inside the interface. In-
deed, the designer can assume that as soon as the clock of the architecture is
running, input data arrive as needed, and output data are captured by the bus
when they are produced. In our experimental designs which targets FPGA chips,
the virtual clock is naturally implemented using the clock enable signal of the
FPGA. We also assume that the operation of the architecture begins on a start
signal.

From now on, we call virtual date of a computation the number of virtual
clock cycles elapsed between the computation and the start time of the algorithm.

Linear arrays. The architecture must be a linear (1-dimensional) array. Inputs
and outputs are continuous streams of data, which means that all input or out-
put streams have a virtual starting date and a virtual ending date, and no
interruption occur inbetween these dates. It should be noticed that this assump-
tion prevents from interfacing partitioned arrays [4], and 2-dimensional arrays.
In partitioned arrays, data arrives in burst mode, i.e. uninterrupted streams of
data separated by long empty periods, and do not meet our assumption of con-
tinuous streams. However, the interface proposed in this paper could be easily
extended to cover this case because these bursts of data are known statically [5].
In MMAlpha, architectures can be generated for any 2-dimensional regular ar-
ray, but in practice, interfacing a 2-dimensional array requires a more complex
architecture, since more than one data has to be provided during one virtual
clock cycle.

Inputs and outputs. Any given input stream (resp. output stream) must arrive
in (resp. leave) a given fixed processor, called connection processor of the stream.
Notice that this processor may be different for each input or output stream. This
assumption is most often met by the type of architecture that we are dealing
with, and is easy to enforce if not.

Width of streams. We assume that the bit width of the streams is a divider of the
data bus width. As the bus is usually 32 or 64 bit wide, the bit width of variables
has to be a power of two (if it is not, the protocol will choose the smallest power
of two greater than the actual bit width, hence reducing the efficiency of the
interface.)
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Fig. 3. Standard architecture of the interconnection between a board and the host
(taken from a Spyder board [23]), together with a logical view of the Fifo mechanism
used between the bus and the application architecture.

3.2 Information needed for the interface

If the above assumptions are met, then the interface of the architecture can be
determined from the following information.

— The number of input and output streams. In the case of our example, the
firrModule system has four inputs (dmirri, ymirrl, x mirrl, x mirr2)
and one output (Y1).

— The name, bit width, connection processor, virtual starting and stopping
time of each stream. For instance input stream x.mirri is 16 bit wide and
is input in processor p = 0. The starting time is ¢t = —N + D + 1 and the
stopping time is t = —N + M + 1. All these informations can be extracted
from the AlpHard interface shown in Fig. 2 (see for example the declaration
of the x mirr1 variable in Fig. 2).

4 Interface model

In the previous section, we have described what we want to interface as well as
the information needed to define this interface. We now describe in more details
our model of interface. Fig. 3 presents a typical interface architecture, in the
case of the FPGA Spyder board [23]. The application hardware, here a DLMS
filter circuit, is mapped on the FPGA. The host and the DLMS are interconnected



by means of a PCI bus. A PcI bridge consisting of Fifos allows for a smooth
synchronization between the PCI bus and the application hardware.

In this section, we review in more details the elements of this interface: the
low level interface, the application interface, and the software and hardware parts
of the application interface.

4.1 Low level interface, and application interface

From now on, the interface is logically divided into two parts: the low level
interface, and the application interface.

The low level interface behaves logically as a Fifo. A parameter of the low level
interface is the Fifo bit width which we assume to be a power of 2. Notice that the
implementation of the low-level interface can take different forms, depending on
the target platform. In the case shown in Fig. 3, the Fifos of the low-level interface
are implemented using the memory of the Spyder board. Most commercially
available FPGA boards provide a similar low level interface [1, 3].

The application interface is the part of the interface that sends input data to
(resp. gets output data from) the application IP from (resp. to) the host in order
to implement a correct execution of the algorithm. The application interface is
naturally divided into the input interface which sends data to the array, and the
output interface which receives data from the array. These two parts are very
similar, and from now on we only deal with the input interface.

4.2 Software and hardware parts

The application interface is naturally divided into a software part and the hard-
ware part. The software part is composed of a program that sends data to the
Fifo. The hardware part is more complex: it is the de-multiplexing system which
gets the words out of the Fifo and sends them into the array. Of course, these
two parts must be compatible, i.e. the data should be taken by the hardware
part in the same order as they are produced by the software part. This is why
we propose to generate the software and the hardware simultaneously from the
interface AlpHard program shown in Fig. 2.

5 Structuring streams

To generate the application interface, we structure the input and output streams
using two notions: phases and patterns.

5.1 Phases

A phase is a sequence of successive virtual clock ticks during which all inputs
and outputs of the architecture are the same. For instance, one can see in the
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Fig. 4. The phases of the program of Fig. 2 for parameters values N = 10, D = 12 and
M =100

program of Fig. 2 that between clock cyclest = —N +2 and t = —N + D, only
the x_mirr2 stream enters the array. Hence the period of time

{t|-N+2<t<—-N+D} (4)

is a phase.

During a phase, data are sent to the Fifo word by word, these words having
the size of the Fifo width. For instance the x_mirr2 variable being 16 bit wide,
and if the Fifo 32 bit wide, two x_mirr2 data can be placed in one Fifo word
(remember that we assume that the bit width of all streams divides the Fifo
width).

We require the length of a phase to be a multiple of the F;io vv‘:nldth ratio.
If this is not the case, one can always break the phase in two sma?ller ptf-lases, in
order to meet this condition. In our example (32 bit wide Fifo and 16 bit wide
variable), this ratio is 2, and phase (4) contains D — 1 virtual clock cycles. If D
is even, this interval has to be divided into two phases: phase ¢, = {t| - N+2 <
t < —N + D — 1} and phase ¢ = {t|t = —N + D}.

To illustrate this, Fig. 4 shows the phases corresponding to the program of
Fig. 2, for N = 10, D = 12 and M = 100. We can see that ¢; = {t| -8 <t < 1}
and ¢ = {t|t = 2}.

Phases can be easily computed from the interface specification with elemen-
tary operations on the time intervals corresponding to each data. Indeed, time
intervals are obtained by projecting variable domains of Fig. 2 on the time index
t. In MMAlpha, these computations are done using the Polylib library [24].

5.2 Patterns

Inside each phase, a pattern describes in which order data are sent to the Fifo.
For instance, in phase ¢3 of Fig. 4, one can choose to fill a Fifo word with two



x_mirrl data and then the next Fifo word with two x_mirr2 data and repeat this
scheme 3 times so that 6 data of each stream are sent. In this case, the pattern
is (xmirr1,xmirr2). One can see that this case is simple because x_mirr1 and
x_mirr2 have the same bit width. In general, the choice of the pattern has to be
made in order to prevent deadlock situations.

6 Generating the interface

As seen in the previous section, the interface model is abstracted by the de-
scription of its phases and, for each phase, its patterns. We now explain how
the software and the hardware parts of the interface are generated from these
informations.

6.1 Generating the software part

The software part of the application interface is the program run by the host to
send data to the input Fifo or read data from the output Fifo through the
PCI bus. Gererating it is far from being easy, as a set of loop nests has to
be synthesized. To do this, we produce the software part as a C program by
retargeting the Alpha to C compiler described elsewhere [20]. Fig. 5 shows part
of the C program generated to handle inputs and outputs of phases ¢g, ¢7 and
¢s. Each call to WriteFifo or ReadFifo activates a function of a low level
communication library.

Notice that this C program does not check whether the Fifos are ready to
accept or send data: the loops of this program should therefore be sliced with a
test on the number of slots available in the Fifo and a possible wait operation
of the processor if not enough resources are available.

6.2 Generating the hardware part: principles

The hardware part is generated in VHDL and is synthesized for the FPGA chip.
The architecture of the hardware part is illustrated by Fig. 6.

The hardware part is divided into the input interface and the output interface
which are almost symetrical. The main difference is that the interface is started
with a start signal (set up by the user, here indicating the virtual date t = —8),
while the output interface is started by a start_out signal set up automatically
(here at virtual date ¢ = 10).

We detail the organisation of the input interface represented on Fig. 6. Con-
sider an input, say input I1, ot the architecture, and let Wy, be the bit width of
I1. This input is connected to a 1oad32 component which is parameterized by
the bit width Wy of I1. The load32 component contains a shift register that
allows 32 bits to be read in parallel from the Fifo and Wi bits to be output
during 32/Wry clock cycles.

Each load32 component is connected to the Input Interface component.
The Input_Interface component receives data from the Fifo and store them in
the appropriate load32 shift register.



/* phase 6 : from 12 to 89 with variables:
{d_mirril, y_mirrl, Y1, x_mirrl, x_mirr2}=*/

for (t = 12; t <=89; t =t + 2) {
WriteFifo( (int *) (_d_mirrl + (t -12)));
WriteFifo( (int *)(_y_mirri + (t -12)));
ReadFifo( (int *)(_Y1 + (¢t -10)));
WriteFifo( (int *)(_x_mirrl + (t -3)));
WriteFifo( (int *)(_x_mirr2 + (t+8)));

}

/* phase 7 : from 90 to 90 with variables:

{d_mirrl, y_mirrl, Y1, x_mirrl, x_mirr2} (1 data sent)*/

t =90; {
WriteFifo( (int *)(_d_mirri + (t -12)));
WriteFifo( (int *) (_y_mirrl + (¢ -12)));
ReadFifo( (int *) (_LY1L + (t -10)));
WriteFifo( (int *) (_x_mirrl + (t -3)));
WriteFifo( (int *) (_x_mirr2 + (t+8)));

}

/* phase 8 : from 91 to 91 with variables:

{Y1, x_mirr2} (1 data sent)*/

t =91; {
ReadFifo( (int *) (_Y1 + (t -10)));
WriteFifo( (int *)(_x_mirr2 + (t+8)));

}

Fig. 5. C code generated for phases ¢g, @7, ¢s of Fig. 4 (for a 32 bit wide Fifo). d mirri
is an array storing value of the d mirri variable of the Alpha program.

The control of this architecture is provided by a hierarchical two level finite
state machine. The states of first level are the phases of the interface, and the
states of the second level are the variable names which define the patterns inside
a phase. Switching from one phase to the other is done by counting the number
of elapsed virtual clock cycles (for instance, we see on Fig. 4 that phase ¢; must
last 10 virtual clock cycles). An efficient control of the load32 shift register
allows the loading of a new Fifo word to be overlapped with the output of the
last data word to the application architecture. Hence, provided that the FPGA
clock frequency is high enough, the array is fed at the throughput allowed by the
bus. Usually, the FPGA clock can be set up fast enough because the application
design is highly pipelined but if, for instance, the input data is only 2 bit wide, the
FPGA clock frequency might have to be 16 times the bus clock frequency which
is probably not very realistic. All this process (and the application architecture
as well) can be frozen when the data coming out of the Fifo is not ready.

6.3 Efficient synthesis of the hardware part

It is important to indicate how to efficiently implement this protocol in VHDL,
as the efficiency of the final 1P is greatly influenced by the efficiency of the
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Fig. 6. Hardware part of the application interface for the DLMS

synthesis of the interface. The finite state automaton is completely generic, i.e.
identical for all application architecture meeting the assumptions of section 3.
The information on one phase (i.e. pattern, duration, active variables, etc) are
stored in a VHDL record. The automaton manipulates an array of record
whose size is the number of phases (here 10 phases.) With this implementation,
on can gather all the application dependent information in one file (except very
small changes like the declaration of components in the interface which depends
upon the number of inputs and their bit width). This file is built by extracting
information from the interface program of Fig. 2 using the same function for
finding the phases and pattern as during the C code generation for the software
part. Hence, compatibility between the software part and the hardware part
is very easy to ensure. Part of this file is shown in Fig. 7. This coding of the
automaton allows an easy automatic generation of the VHDL corresponding to
the interface for any application and moreover, a very efficient implementation
with commercial synthesis tools like Synopsys.

7 Experiments

The automatic interface generation was implemented and experimented for a
Spyder-X2 pcI board [23], based on a Xilinx Virtex 800 device. The architecture
of the board is shown in Fig. 3. In this board the host processor communicates
with the FPGA through the PcI interface using memory-mapped or DMA transfers.
The observed bandwidth between the host CPU and the FPGA is 8 MB/s at most.
The VHDL for the DLMS was synthesized automatically from an Alpha specifi-
cation down to AlpHard (see [10].) An important issue during the design process
was functional simulation. Thanks to the flexibility of the MMAlpha environ-
ment, we were able to use the same data from high level simulation down to the
detailed VHDL simulation, hence speeding up the design time and allowing fast
back annotation from hardware simulation to the high level synthesis process.
The application interface was generated automatically from the AlpHard in-
terface for the DLMS algorithm (Fig. 2) for the following values of the parameters:
N =10, D = 12 and M = 100. The width of the interface Fifos was 32 bits.



The synthesis was realized with the Synplify software [22]. Table 1 gives the
number of look-up tables (Lut) necessary for the synthesis of the DLMS alone, the
DLMS and the interface without the Fifos, and the total design. The clock cycle,
as estimated by the synthesis tool is also given. Finally, the throughput of the
interface is evaluated from the cycle time and the number of data that are pro-
duced by the architecture during each cycle. More precisely, the DLMS produces
one 16 bit y mirr value during each cycle. The table shows also the maximum
throughput of the PCI bus of the board, as observed for several designs.
One can draw some conclusions from this table.

— First, the hardware interface is not a limiting factor of speed for this design.
Indeed, the clock cycle is increased only by 1ns by the Fifos.

— Secondly, the PCI bus is clearly the limiting factor of the interface: there
is a factor of 8 in the best case between the bandwidth of the bus and the
bandwidth that could be achieved by the design. As was expected, the design
of such a high performance device is therefore limited by the communication
with the host.

Note however that this interface was not optimized since the xmirri and
xmirr2 streams are a shift in time of one another, hence only one of the two
streams needs to be sent through the bus. Moreover, the y_mirr1 stream should
in practice be taken at the output of the architecture and not sent from the
host (the values sent where obtained during simulations.) We choose this im-
plementation to validate the interface protocol: indeed, the interface has a more
complicated phase and pattern structure here (phases of one of two clock cycles,
phases with input and outputs, etc.).

| Design |[Number of LuT|Clock cycle (ns)[Throughput (MB/s)
DLMS 5938 (31%) 30 66.67 MB/s
DLMS + interface 6501 (34%) 30 66.67 MB/s
DLMS + interface 4 Fifos|| 6928 (36%) 31 64.5 MB/s
PCI bus (Max) — - 8 MB/s

Table 1. Result of the interface generation for the DLMS algorithm. Parameters: N =
10, D = 12 and M = 100. This table gives the number of lock-up tables occupied by
the design, in the Virtex XCV800 chip (the percentage of total LUTS used in a Virtex
XCV800 is given between parentheses), the clock cycle estimated by the synthesis tools,
and the (one-way) throughput of the interface. The maximum observed throughput of
the PCI bus of the Spyder board is given for comparison.

8 Related work and discussion

Most of the research on FPGA design focuses on the efficiency of the design itself
rather than the efficiency of the interface of the design. Tests are usually made



with data already in the on-board memory or with data arriving directly on
board via an Analog/Digital converter. References [14, 9]. describe manually
written interfaces.

In co-design oriented tools, because of the very general type of applications
dealt with, communications are usually implemented by a high level synchronisa-
tion mechanism which leads to complex protocols (for instance, remote procedure
call in CoWare [6].) Many FPGA compilation projects rely on control dominated
models like Petri nets [27, 17], or Communicating Sequential Processes [18]. The
advent of real-time operating system (RT0S) can also be a solution but efficiency
will probably be degraded.

In the development of high level design tools, attempts have been made to
automate interface generation. These attempts, as in the work presented here,
restrict the type of architecture interfaced. In Pico [21], the interface problem is
solved at run time by a bus arbiter. As the target architecture is partitioned into
a small number of processors, the efficiency of the interface is not the major issue.
Artemis [19, 13] relies on the Spade methodology [16] to implement efficiently
communicating Kahn process networks on buses.

The methodology that we propose for the interface generation presents sev-
eral novelties. First, the dynamic control is as low as possible. Indeed, it is
restricted to ensuring correct behaviour when an external event such as a bus
interruption occurs. Therefore, the efficiency of the interface can be statically
predicted. Secondly, the design is safe because the interface is compiled together
with the architecture, and moreover, the hardware and software parts are de-
rived from the same AlpHard program and using the same tool. Thirdly, we
have also briefly presented the simulation facilities that are available when a
complete automatic design path is set with a single tool such as MMAlpha. Fi-
nally, our model is generic, and it is not only an implementation dedicated to
the MMAlpha design flow but can be applied to any compiled architecture which
meets the characteristics of our model.

9 Conclusion

In this paper, we have presented a tool for synthesizing interfaces for linear regu-
lar architectures. Our model of interface is bus based and contains Fifos to cope
with interruptions in the flow of data arriving from the host. Qur interface is ap-
plication dependent, and is generated automatically from a high level description
of the application, as obtained using the MMAlpha tool. Both the software part
and the hardware part of the interface are generated from the same description
using the same set of tools, therefore ensuring these parts to be coherent. The
synthesis of the interface structures the data communications into phases and
patterns, and generates a C program to be run on the host, and a VHDL program
to be synthesized on the hardware platform. We have experimented this interface
generator on a DLMS algorithm automatically compiled on a Spyder FPGA board
and we have shown that the interface allows high performances to be reached
for this application.
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The Compaan Tool Chain

Realizations of the Extended Linearization M odel

Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere

Leiden Embedded Research Center, Leiden
University, Leiden, The Netherlands

At the Leiden Embedded Research Center, we are working towards a
framework called Compaan that automates the transformation of digital
signal processing (DSP) applications to Kahn Process Networks (KPNs).
These applications are written in Matlab as parameterized nested loop pro-
grams. This transformation is interesting as KPNs are well suited for map-
ping onto parallel architectures. Although the KPN semantic always as-
sumes that FIFO buffers can be used between processes, we have found
cases in which the FIFO is not enough as data may arrive in the wrong
order. To solve this order problem, we previously presented the Extended
Linearization Model (ELM) that describes a mechanism to reorder tokens.
The introduction of the ELM does not violate the Kahn Process Network
semantics; we still use a FIFO between a Producer and Consumer. The
ELM relays on some additional memory and a controller to perform the
reordering. The ELM model can be implemented in different ways. In this
chapter, we investigate four different realizations of the ELM. The realiza-
tions differ in the computational complexity of performing the reordering,
the kind of reordering memory used, and the size of the reordering mem-
ory.
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. Introduction

An appealing and fruitful methodology to deal with exploration or de-
signing applications - architectures pairs has become known as the Y-chart
approach, [1]. This approach embraces two fundamental notions: the sep-
aration of concerns and the abstraction hierarchy. The concerns are: the
application, the architecture, and the mapping. The abstraction hierarchy,
introduced in [2] as the abstraction pyramid, bridges - be it for exploration
or synthesis purposes - the gap between high level application specification
and low-level architecture specification by defining a number of abstrac-
tion levels and a corresponding stack of Y-charts. At each level, application
models, architecture models, and mapping models must match to make ex-
ploration and synthesis feasible.

Several research groups around the globe are currently experimenting
with this methodology, some explicitly and others implicitly. They are,
naturally, all focusing on different application domains which lead to dif-
ferent views on this methodology. Applications in the realm of automotive,
multimedia, and communications have different requirements, constraints,
and boundary conditions which result in different challenges.

The Leiden Embedded Research Group focuses on applications that
can be specified as parameterized affine Nested Loop Programs (NLPs).
The group has been developing and implementing the Compaan tool chain
to translate such applications from their imperative language specification
into Kahn Process Networks (KPN) [3]. The application specification lan-
guage is Matlab or C, and the tool-chain is a compiler through which a
range of KPNs can be obtained for any given application specified as a
parameterized NLP.

The processes in the Compaan generated KPNs are not (completely)
specified in an imperative model of computation because the distance be-
tween that model and the models in which architecture components - in
particular the processing units - are specified is too large. This is not spe-
cific to the application domain for which Compaan is an appropriate trans-
lation tool set; it is a problem that is revealed wherever the Y-chart method-
ology is used. Of course, the processes in KPNs may be specified in terms
of more than one model of computation. For example, one could be ob-
tained for the Control Data Flow Graphs model [4] or for one or more
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Global 2-D Array
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fori=1:1N,
forj=i1LN,
[AGD] = F(i):

for x = LN,
fory=x:L:N,

token = fifo.Get(in);

If:( token );

end
end

Figurel. The Standard Linearization Model

Dataflow Network models [5].

The Process Network Model (PN) in Compaan is the Kahn Process
Network (KPN) model [6], which consists of concurrent autonomous pro-
cesses that communicate in a point to point fashion over unbounded FIFO
channels using a blocking-read synchronization. The strength of a Process
Network is that it uses no global memory and no global scheduler. This
makes a KPN very appealing for further implementation into hardware [7].

In the Compaan KPN processes, each process executes an internal func-
tion following a local schedule. At each execution (also referred to as it-
eration) this function reads/writes data from/to different FIFOs. An input
port domain (IPD) of a process is the union of the iterations at which the
process’s function reads data from the same FIFO. An output port domain
(OPD) of a process is the union of the iterations at which the process’s
function writes data to the same FIFO. Each FIFO uniquely relates an
input port to an output port forming to an instance of the classical Pro-
ducer/Consumer pair [8].

One of the tools in the Compaan Tool Chain is Panda. Panda accepts as
input the description of a Polyhedron Reduce Dependence Graph (PRDG)
and transforms this PRDG into a Process Network (PN). This transforma-
tion is done in a number of steps. One of the steps involved is the Lin-
earization, in which a high dimensional data structure (e.g., matrix A[z, 7])
is linearized into a single linear stream of data. In case of Kahn process
networks, the linearization model is a FIFO buffer as shown in Figure 1.
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In the top part of this figure, a producer and consumer process are given
that communicate the data array A[ i , j ] using global memory. In the lin-
earization step, this communication is replaced with a FIFO buffer, leading
to the producer/consumer processes given in the lower part of Figure 1. Ob-
serve that in the top part, the indices i and j are used to address matrix A. In
the bottom part, the reference to A has been eliminated. The for-loops only
describe an order and data produced by the function is placed on the FIFO
buffer. There are cases, however, in which a FIFO as the Linearization
Maodel (LM) no longer holds. If the order data is produced is different from
the order data needs to be consumed, a FIFO buffer no longer is enough.
In [9], we have proposed an extension to the LM, which we called the
Extended Linearization Model (ELM). This model includes an additional
reordering mechanism that consists of a Controller unit and some Reorder-
ing Memory. The ELM preserves the semantics of the KPN model. As we
will show in this chapter, the ELM can be realized in different ways and
each realization has its own strength and weakness. Based on these realiza-
tions, alternative hardware/software mappings of the Compaan generated
network onto different platforms are feasible.

[1. In Order/Out of Order case:

Consider the two KPN processes in Figure 2 with node domains P = {
p, I } and C= {c, K}, respectively that are collections of atomic nodes
p(i,7) and c(z,y) defined on the domains I = {(4,7)| 3 <j < NA1<
i<N-2tand K ={ (z,y)| 2<z<N—-1A2<y< N-—-1}re-
spectively. In the first process one of the OPDs is O= { out, J } that
is a collection of atomic output ports out (i,j) defined on the domain J =
{(4,7)] 3<j<NAi+2<jA1<i< N -2} Inthe second process
one of the IPDs is | = { i n, L } that is a collection of atomic input ports
i n(x,y) defined on the domain L = {(z,y)| 2<z < NAz<yA2<
y < N}. Thereisamapping M (i = z — 1; j = y + 1;) relating these two
port domains. Hence, these two ports form a Producer/Consumer pair. A
token produced by the atomic node p(z, 5) is put on the FIFO channel re-
served for the edge domain (O, | ) through the atomic output port out (i,j),
and will be consumed by the atomic node c (z, y) through the atomic input
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Figure 2. A Producer and Consumer process. Of the Producer we show
the output port domains (OPDs) and of the Consumer, we show the in-
put port domains (IPDs). Each OPD is uniquely connected to another IPD
via a FIFO. Over this FIFO, tokens are communicated that adhere to the
mapping given by the mapping matrix M. In this example, OPD1 is con-
nected to IPD2 via FIFO1. The Producer/Consumer with the FIFO form
an instance of the classical consumer/producer pair.

port i n(i+1, j-1) that gets the token from this channel.

Since the KPN processes are sequential processes, no two atomic ports
in a port domain are active at the same time. That is, there is an order
among the atomic output ports in an output port domain, and there is an
order among the atomic input ports in the corresponding input port do-
main. In [9], we have defined the rank function that expresses in a pseudo-
polynomial form this order of execution in a particular domain. The rank
function is derived using the Ehrhart theory that expresses the number
of integral points inside of a polytope as a pseudo-polynomial expres-
sion [10]. A pseudo-polynomial is a polynomial with periodic coefficients.
This theory has been extended recently for parameterized polytopes [11].
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As a consequence, the expression of the rank function is in general a set
of pseudo-polynomial expressions depending on the parameters. Examples
of the rank functions will be shown later when various realizations of the
ELM are discussed.

In Compaan, the sequential ordering of atomic nodes firing in a node
domain is in lexicographical order, which means these nodes are sched-
uled according to a loop nest. The ordering in which tokens are put on a
channel is the same as the order in which atomic nodes are fired. Because
the channel is a FIFO channel, a consumer can only get the tokens from the
channel in the same order. This represents the in-order case. However, de-
pending on the lexicographical schedule of the consumer’s atomic nodes,
the consumption of the channel tokens may follow a different order than
the order in which these tokens were put on the channel. This represents
the out-of-order case. To work correctly in the out-of-order case, a Con-
sumer needs a mechanism to restore the consumption order. This mecha-
nism relays on the use of private reordering memory for temporary storage
of tokens. Once stored, the tokens can be consumed in the correct order.
This reorder mechanism is modeled as the ELM.

[1l. TheExtended Linearization Model in more detail

Producer Consumer

for x = 1:1:N, A
fory =x:1:N,
token = Controller.getFrom(x,y);
F.(token);
end

end

unbounded FIFO

—{[I1

fori=1:1N,
forj=i:LN,
fifo.Put(F,(i,j));
end

end

Memory B

c

>| Controller| <a—s|

Figure3. The Extended Linearization Model

The main elements in the Extended Linearization Model are the local
reordering memory and the Controller. Because the tokens can no longer
be read directly from the FIFO, as they may arrive in the wrong order,
they are delivered by the Controller to the function unit. In this way, the
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Controller takes care of supplying tokens to the consumer Function in the
right order. In Figure 3, a schematic representation is given of the ELM.
It shows the Consumer process (A), the Reorder Memory (B), and the
Controller (C).

A. TheProcessDescription (A)

The process description in the ELM is different from the process de-
scription when using the LM. Instead of getting tokens directly from a
FIFO, the function gets its tokens from the Controller. Hence function call
fifo.Get (See the lower part of Figure 1) is replaced with the call to the
Controller function getFrom.

B. TheMemory (B)

The Memory stores tokens allowing the Controller to reorder tokens
into the order required by the Consumer process. Two kinds of memory
are possible: Random Access Memory (RAM) and Content Addressable
Memory (CAM). The two kinds of memory differ in the way they are
addressed. The implementation of the Controller depends on the type of
the memory.

C. TheController (C)

The Controller converts the sequence tokens are produced into the se-
quence they have to be consumed. The Controller performs this reordering
by addressing the reordering memory (B). This functionality is exposed
externally to the Consumer process by the function getFrom(x,y) that re-
turns the token to function Fg; for an arbitrary iteration point (z, y).

The behavior of the Controller is shown in pseudo code in Figure 4.
The get ReadAddr ess(x, y) determines the memory address of the
token needed at the iteration (z,y). Next, the Controller checks whether
the token is already available at that address by calling the function enp-
t yMem If the token is present, it is read from that address by calling the
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Token t getFron(x,y) {
doubl e address = getReadAddress(x,y);
if( ! emptyMem(address) ) {
return readFromMem(address);
} else {
return readFromFifo(address);

}
}

Figure4. The components in the Controller.

function r eadFr omvem Otherwise, the Controller starts to read tokens
from the FIFO and stores them in the memory until the desired token ar-
rives at the address of interest. The procedure of reading from FIFO is
initiated using the function call r eadFr onti f 0. Storing tokens into the
memory implies that for each token read from the FIFO, a certain address
is generated. Depending on the type of memory used, different procedures
are available to generate this address. These procedures are realized as the
function getWriteAddress inside the function r eadFr onFi f o .

IV. Realizations of the Extended Linearization M odel

ELM
[ PseudoPolynomial ] [ Linear ] [ Segment ] [CAM ]

Realizations of the ELM

Figure5. Four Model Instances

The ELM can be realized in four different ways as shown in Figure 5.
The realizations differ by the way the function getReadAddress and func-
tion getWriteAddress are implemented and by the type of memory used as
reordering memory. To compare the four different realizations, the follow-
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ing three characteristics are relevant:

The complexity of the addressing mechanism the computational com-
plexity of the controller functions getReadAddress and getWriteAd-
dress.

The dimension of thereordering memory the number of the storage lo-
cations needed to perform the reordering.

The generality of therealization the class of algorithms for which Com-
paan can derive KPNS.

To introduce the four realization, we use as an example the Producer/Consumer
pair given in Figure 6. The graphical representation of the domain descrip-
tions of the Producer/Consumer pair is shown in the top part of Figure 7.
Because the order the Producer produces data is different from the order
the Consumer consumes, an ELM realization is needed in the linearization

of the Producer/Consumer pair.

for (int i=1;i<=Nt2;i++){ for (int y=4;y<= N y++){
for (int j=1;j<= Ni++){ for (int x=1;x<= N+2; x++){
if (2] >=i+6){ if (x <= 2*y-6){
ali,j] = Fp(); Fe(a[x,y]);
} }
} }
} Producer } Consumer

Figure6. Running Example

V. PseudoPolynomial realization

The PseudoPolynomial realization is based on the fact that the order
of the iterations inside an OPD can be expressed as a pseudo-polynomial,
which is the rank function discussed earlier in this chapter. In general, the
getReadAddress function of the Controller is a pseudo-polynomial func-
tion. In Figure 7, the iteration points of the OPD are perfectly enclosed
by a shape that we call the linearization shape. The pseudo-polynomial
expression is computed by calculating the rank function inside the Lin-
earization shape. This consists of adding several pseudo-polynomials R,
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Pr'oducer Consumer
i, Mapping N
N=8 10214218 921924 226 228 229 230 NeB Bag R Ew s wn]
7 |ttt e 29%%61’—’1 1 SRR NeY
! g o0 12 ' 1
6 34 8912 416 19‘22 o 6 ”7‘ ﬂ‘ 9‘ 10‘ 11‘ 12‘ 7: T _
s 2 1dnds 5 |15 S0 B
j A T :
4 +o—e
3 |- 3
2 2
1
i 1[’234 6 7 8 9 10=N+2 y 12345678 910=N2
T,' X
1
1 Address Address
K FIFO 15 [token 16
1 16 [token 17
B e
1 [I:I:I:I:I:I:U Controller 17 [token 18
18 [token 19
19 [token 20

20 [token 21
21 [token 22
22 (token 23
23 [token 24
24 [token 25
25 [token 26
26 [token 27
27 [token 28
28 |token 29
29 [token 30

The Linearization shape is ajusted
to the shape of the Producer domain

Reordering Memory

Figure7. The PseudoPolynomial realization.

P,, ... P,, where n is equal to the dimension of the Linearization shape. For
our running example, the rank is the sum of the two pseudo-polynomials

P and P:

rank(i,j) = Pi(i,7) + P2(3, )
Pi(i,5) = (i — 1) * N + (=1/4) %% — 2 x4 +[2,9/4]; W
Py(i,7) =5+ (=1/2) xi + [-3,-7/2],

rank(i,j) = —1/4xi® + (N — 5/2) i+ j + [-1,—5/4]; — N.

To obtain the getReadAddress function, the rank needs to be composed
with the mapping M (z, y) and the result is equal to :

getReadAddress(x,y) = rank(i, j) o M (z,y)
= —1/4%2>+ (N -5/2)xz+y (2
- [175/4].72 - N.
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The rank polynomial contains all the information needed by the Con-
sumer process to reorder the token correctly. For this realization, tokens
are written into the reorder memory following the sequence into which
they arrive from the FIFO. Therefore, the function getWriteAddress is a
simple increment. The dimension of the reordering memory is equal to
the number of iteration points in the OPD. For the Producer/Consumer of
Figure 6, the dimension is equal to (N —4) x (N + 2)/2. The computa-
tional complexity of addressing the reordering memory can be quite large.
It requires the evaluation of a pseudo-polynomial expression like, for ex-
ample, the one given in equation 2. In general, the PseudoPolynomial re-
alization is valid only for the cases when an OPD is a polytope. Under
certain conditions, the realization can be extended for cases an OPD is not
a polytope [12].

V1. Linear realization

The Linear realization is based on the classical Linearization of an n-
dimensional array into a one-dimensional array [13, 14]. The classical
Linearization shows that a rectangular shape can be addressed using a
simple polynomial. Inspired by this concept, we relax the Linearization
shape to the smallest rectangular that includes the producer domain (OPD).
Consequently, the getReadAddress that results is always a simple linear
function. The rectangular Linearization shape is shown in Figure 8, and
the rank function is as follows:

rank(i,j) = (N —=3)* (i —1)+j — 4. (3)

The getReadAddress function is obtained by composing the rank function
with the mapping function M (z,y), and the final polynomial expression
is :

getReadAddress(z,y) = rankp(i,j) o M(z,y)
=(N-=-3)x(z—-1)4+y—4.
The consecutive order inside the Linearization shape, however, can get
disturbed. This happens when an OPD doesn’t have a rectangular shape

and therefore, more iteration points are enclosed by the Linearization shape
than necessary. As a consequence, these additional iteration points are also

(4)
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19 [token 18 44 [token 29
20 NULL 45 ULL
21 NULL 46 ULL
22 |token 19 47 ULL
23 [token 20 48 ULL
24 |token 21 49 [token 30
Reordering memory

Figure8. The Linear realization

ranked by the rank function, disturbing the consecutive order. Looking at
Figure 8, we see that after iteration 10 follows iteration 11. However, iter-
ation 11 does not belong to the OPD. The next iteration belonging to the
OPD has rank 12 and hence the order becomes 10, 11, 12. Consequently,
the Controller cannot rely any longer exclusively on the order tokens are
read from the FIFO; the eleventh token read from the FIFO should be writ-
ten at the address 12. Therefore, the Controller cannot use a simple incre-
ment for the getWriteAddress function.

To re-create the correct sequence of addresses, the Controller relays on
a function that assigns to incoming tokens the correct order number inside
the OPD. This function is called the recover function. This function re-
implements at the Consumer side the logic used to schedule the iteration
points inside the OPD.

The advantage of this realization, is that the function used to address the
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reordering memory is always a linear expression depending on the coordi-
nates of the consumer iteration point. A disadvantage is that need for the
recover function. Moreover, the extra iteration points enclosed by the lin-
earization shape result in empty memory slots (represented by the “Nulls”
in the memory in Figure 8). In the example, the memory requirement is
equal to the dimension of the Linearization shape, i.e., to (N — 3) % (N +
2), but only half of this space is actually used.

VIl. Segment realization

The PseudoPolynomial realization results in good memory usage, but
the addressing formula can be very complex because of the irregularities
it contains as expressed by the periodic coefficients. On the other hand,
the Linear realization results in simple addressing but potentially wastes
a lot of memory. We now present the Segment realization that combine
the best features of the two approaches discussed so far: simple addressing
mechanism and efficient memory usage.

The Segment realization is based on the fact that pseudo-polynomials
can be decomposed into a linear part and a non-linear part as shown in
Figure 10. The linear part describes the consecutive order, the non-linear
part described the non consecutive order. At the Producer side, the order
changes at iteration points at which the innermost nested loops start to
iterate again from their lower bound value. We say that a non-linearity oc-
curred at iteration point (IP) and using the notion of these IPs, the Segment
realization computes the value of the pseudo-polynomial using a Segment
Number and a Segment Displacement as is shown in Figure 10. How the
Segment Number and Displacement are computed is explain later on in the
chapter. Because the segment number and displacement are pre-computed,
a pseudo polynomial cannot be evaluated in a parameterized way, as is
possible in the PseudoPolynomial realization. Hence, parameter values in
a NLP have to be fixed in order to use the Segment realization.

Writing data into the reordering memory occurs in the same way as
in the PseudoPolynomial realization. The Controller writes tokens in the
Reordering Memory as they arrive from the FIFO. The detection of the
IPs at which the consecutive order get disturbed, is done by the recover
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Figure9. The Segment realization

function that duplicates the Producer for-loops at the Consumer side. With
each occurrence of an IP, a Segment Number and Segment Displacement is
associated. Each such number pair is used by the Controller to determine
the value of the Pseudo polynomial. Let’s see how writing and reading
takes place in the Segment realization. The writing is implemented in the
getWriteAddress and the reading is implemented in the getReadAddress
Writing a token happens in the following way. Initially, the Controller
contains an internal counter that is set to zero. The recover function keeps
track of whether the order is linear or non-linear. if the order is linear, a
token is read from the FIFO, and the internal counter is incremented by
one. If the order is non-linear, the Controller allocates a new entry in the
Segment Memory. It writes in the entry the current value of the iterator in
the Segment Displacement field and the currently value of the counter in
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PseudoPolynomial - Non-Linear Linear Non-Linear
getReadAddress(x, y) = ((-1/4)* x"2:x*(N-2) + [2,9/4] x -N] + [y J+(-1/2) + [-3, ~7/2] x]

v v
P1(x,y) P2(x, y)

SegmentNumber y — SegmentDisplacement

Segment -
getReadAddress(x, y) = SegmentNumber + 'y - SegmentDisplacement

Figure 10. Computation of a Pseudo Polynomial using a Segment Num-
ber and a Segment displacement stored in the Segment Memory.

the Segment Number field.

In Figure 9, the Producer starts at iteration (1,4), which immediately
results in an IP for iterator 7. Consequently, an entry is allocated in the
segment memory at address 0. The counter has a value of 0 and the iterator
is equal to 4, leading to entry (0,4) at address 0. Next, iterator ¢ moves
consecutive to iteration (1, 8). At the next iteration of 7, an IP occurs again.
A new entry is generated at address 1. The counter value is equal to 5 and
the value of 7 is again 4, leading to the (5,4) entry at address 1 and so one.

For a particular iteration point of the Consumer, the Controller deter-
mines the address from where data has to be consumed using a three-step
procedure. The three steps are:

stepl: (i,7) = Mapo (z,y).
step2: Segment = SegmentMemory(i — istart)- (5)
step3: address = Segment nymper + J — S€gment pispiacement-
In Figure 9, the Producer starts from the iteration (start, Jstart), Which
is equal to (1,4). Suppose the Consumer wants to obtain the token for

iteration (4,6). In step 1, the iteration is mapped in an iteration at the
Producer and is equal to (4, 6) (i.e., the mapping is identity). In step 2,
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the segment is found associated with this iteration. In step 2, 44+ 1S equal
to 1 and 7 is equal to 4. Hence, the segment number is 3, which is address 3
in the segment memory were entry (14, 5) is stored. In step 3, the address
in the reordering memory is calculated as 14 + 6 - 5 = 15. At address 15, the
token is stored that was generated at the 16th iteration by the Producer. This
is the token needed by iteration (4, 6) of the Consumer as can be verified
by inspection in Figure 9. The memory size of this realization is equal with
the size of the DataMemory plus the size of the SegmentMemory. In our
example the size of the DataMemory is N?/2 + 1/2N — 6 (the same as
the memory size from the PseudoPolynomial realization) and the size of
the SegmentMemory is N + 2. Hence, the total memory size is equal to
N2/2 +3/2N — 4.

VIIl. CAM realization

The CAM realization uses a Content Addressable Memory (CAM) as
reordering memory. In a CAM, a key is used instead of an address to ac-
cess the content of the memory. The entry used in the CAM realization
is given in Figure 11. It shows that each entry in the CAM consists of a
key, the token associated with the key, and a field called multiplicity. We
explain later what the term multiplicity means. The CAM approach works,
because to each token produced at the producer OPD an unique key can be
associated. The Controller can reproduce this key to obtain the token the
Consumer requires at a particular iteration.

IKEY | token |mu|tip|icity‘

\— how many times this token will be
consumed by Consumer iteration points
the token produced by the Producer

the search key (attached by the Controller)

Figure1l. The CAM entry

For the CAM realization, the function getReadAddress generates a key
instead of an address. The generation of the unique key can be done in dif-
ferent ways. We compute the rank function inside the Producer based on
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an Node domain instead of an OPD. Another possibility would have been
to use a classical linearization polynomial. In general, the shape of a Node
domain results in a simple polynomial instead of a pseudo-polynomial and
it therefore easily calculated. Using the rank, a unique number is associ-
ated that is equal to the order of the iteration inside the Node domain of
the Producer. To illustrate this, consider again the Producer/Consumer pair
from Figure 6. Suppose that the Node domain is defined as

C={(,j)|]1<i<NA1<j<N+2},
Then the rank is given by
rank(i,j) =i* N + j.

By composing the rank with the mapping M (z,y) we obtain the ge-
tReadAddress function:

getReadAddress(xz,y) =z« N + y. (6)

For a given iteration point (z, y) of the Consumer process, the getReadAd-
dress function determines the unique key for that iteration using equa-
tion 6. For this key, the Controller checks (using function EmptyMem) if a
token already exists in the CAM by searching all keys for a match. If no
match can be found, the token is not stored yet.

If the key exists, the token associated with the key is retrieved from
the CAM by function readFromMem. If the token doesn’t exist, the Con-
troller keeps loading data from the FIFO into the CAM. This happens in
function ReadFromFifo. To each token the Controller loads, it attaches an
unique key given by the function getWriteAddress and multiplicity num-
ber. Loading data from FIFO stops upon arrival of the token for which the
key (as given by getWriteAddress) is the same as the key the Controller is
searching for (as given by getReadAddress). The function getWriteAddress
is based on a recover function similarly to the recover function from the
Linear realization.

In general, a token is read only once by the Consumer process. There
are cases in which the same token is read more than once by the Consumer
process. This called a broadcast. A read from a FIFO is destructive and in
case of a broadcast, this would mean that a token needs to be send over
the FIFO as many times as needed, or that a token needs to be stored in
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memory and read from memory as many times as needed. In the CAM
realization, we implemented the latter option as it is more efficient.

To keep track of how many times a token is to be read, we have in-
troduce the notion of multiplicity [12], which indicates how many times a
particular token needs to be read by the Consumer process. Each time a
token is consumed, its multiplicity is decremented. When the multiplicity
reaches zero, no other iteration will need that token and it can be erased.
That location can be reused by other tokens. Hence, using multiplicity, the
Controller is able to free memory locations and consequently, this realiza-
tion uses the smallest possible amount of memory. The memory size (MS)
of the CAM is given by the next formula:

MS = max (read(z,y) — rankconsumer(z,y)) + 1. (7
(zy)eC

where C' represents a sub-domain of the Consumer domain where no two
points read the same token. In the case from Figure 6, C' is the whole
Consumer domain. The read function is the same as the getReadAddress
function from the PseudoPolynomial realization:

read(z,y) = —1/4*z? + (N —5/2) z +y — [1,5/4], — N. (8)

and the rankconsumer 1S the function that gives the order of the Consumer
iteration points:

rankconsumer (:E, y) = y2 — Ty +x + 11. (9)
According to equation 8 and 9 it resultes that:

MS = (ma)mxc(—l/él x 22+ (N —7/2)x —y*> + 8y — N — [11,45/4],).
x,y)€E

The maximum of this formula inside the C domain can be derived using
analitycal methods. In our case for N = 8, we have M S = 10. For more
informations about the read and the rank function, we refer to [9]. The
key to efficient memory usage is the ability to compute the multiplicity for
a token. However, this multiplicity is again computed using the Ehrhart
theory and may again be a pseudo-polynomial.
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IX. Comparing the different realizations

In the previous sections, we have shown four different realization for
the ELM. Each realization has its strength in terms of efficiency of mem-
ory usage and computational complexity of address the memory. In this
section we make some general remarks about the different realizations and
summarize the strengths and weaknesses of the four realizations.

A. General Remarks
i. Linearization Shapes

In the realizations, the Linearization shape of the OPD determines the
complexity of the getReadAddress implementation. We indicated that when
rectangles are enforced, simple polynomials result. There are application
domains where the rectangular shape is the natural Linearization shape, for
example, in imaging. In those cases, the Linear realization doesn’t have the
disadvantage of memory wastes and the need for a recover function. On
the other hand, we found more complex Linearization shapes in advanced
signal processing algorithms. In algorithms like QR or SVD, triangular
shapes are typical leading to complex pseudo polynomials.

ii. Parameterized versus Static realizations

We solved the Linearization under the assumption that we want to keep
the problem parameterized in the original parameters of the loop-bounds of
the parameterized NLPs. If, however, we need to provide a realization for
specific values of these parameters, we can come up with a much simpler
realizations of the Controller. The Segment realization already shows that.
In general, if we can evaluated the getReadAddress a priori, the Controller
becomes a simple look-up table.
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iii. RAM versus CAM

RAM is the most commonly used form of memory. It is simple, cheap
and widely available on todays FPGAs. But more and more, CAMs are
also becoming available. Now a days, there are FPGA platforms available
on the market that supports CAM blocks with high speed search time [15].

iv. Dense Polytopes

In the examples shown so far, we assumed that all nodes in the OPD and
IPD can be enclosed by a Linearization shape. There are cases, however,
in which we can find the exact shape, but still not all points are part of
the enclosure. We refer to these points are holes and they are introduced
when a for-loop is used with a stride other than one or when linear expres-
sions are used that contain operators like mod, div, floor, ceil, max, or min.
The holes affect the generality of the realizations presented in this chap-
ter. Not all of the discussed realizations can handle holes. For example, if
a Linearization shape encloses holes, these holes get also ranked, thereby
disturbing the consecutive order.

v. Recover Function

In three of the presented realizations, the function getWriteAddress is
based on the recover function. For each token read from the FIFO, this
function recovers the iteration at which this token was produced inside the
IPD. Basically such function duplicates the control from the IPD as a finite
state machine, which can be computationally expensive.

Instead of using the recover function at the Consumer, another approach
would be to tag the tokens produced at the OPD with additional informa-
tion. In this way, the Controller and memory have the same function as the
matching unit found in classical Dataflow architectures [16]. The problem
in these matching units was to find a lower bound on its memory, such that
a program wouldn’t deadlock. We have shown in equation 7 that we can
determine a lower bound on the memory such that no dead-lock occurs
given the class of parameterized NLPs.
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vi. Practical limitations

The Pseudo-Polynomial realization depends very much on the ability to
calculate the rank functions. We rely on the Polylib library [17], to com-
pute the rank function. Although this library has proven to be quite stable
and useful, this implementation of the Ehrhart theory is not always able to
compute the rank function. By selecting the Linear, the Segment, or the
CAM realization, we are always able to come up with a representation of
a KPN.

B. Summary

We have presented four different realization for the ELM. In Figure 12,
we compare these realizations for the Producer/Consumer given in Fig-
ure 6.

Linearization Memory size N=8 | Computational | recover | Generality
Model Complexity
Pseudo N?/2+1/2-N—-6 | 30 C1 No No
Linear N?-N-6 50 C2«Cl1 Yes Yes
Segment N?/2+3/2-N—4 | 40 C3~ C2 Yes Yes
CAM mazx(read — rank) 10 C4~C2 Yes Yes

Figure 12. Comparision of the ELM realizations

The table shows the memory requirements in a symbolic way for param-
eter N and when N = 8, the computational complexity of addressing the
memory (as done by function getReadAddress), whether a recover func-
tion is needed, and finally the generality of the approach. We can see that
the Segment realization uses more memory than the PseudoPolynomial
realization because the segment part consumes some memory. The advan-
tage of the Segment realization is that the Controller can fill the memory
in the same order tokens arrive. The Segment realization uses less memory
than the Linear realization. If you look to the computational complexity of
addressing in the Segment or Pseudo-Polynomial cases, you can see that
the complexity is less for the Segment realization although in both cases a
pseudo polynomial is evaluated. Finally, we observe that the CAM realiza-
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tion uses the least amount of memory but may require a relatively complex
addressing mechanism since the CAM realization requires the computa-
tion of unique key.

X. Conclusions

In this chapter, we have presented the Extended Linearization Model
(ELM). This model was introduced to solve out-of-order communications
of tokens between a Producer and a Consumer process. The ELM adds to
a process some additional memory and a controller without violating the
Kahn Process Network semantics; we still use a FIFO between a Producer
and Consumer. The Controller uses the local memory to re-order the tokens
in the order the Consumer expects the tokens. In the realization of the
ELM, the implementation of the Controller is the difficult part.

To implement the Controller, we make a lot of use of the rank function.
This function assigns to an arbitrary iteration a unique rank number that
indicates when it is produced. The rank function is in general a pseudo-
polynomial. We exploit the ability to derive such polynomial at compile
time to find realizations for the ELM at compile time. In the realizations,
we assumed that we only exchange tokens over a FIFO without any addi-
tional information. We did not assume tagging of tokens.

When realizing the ELM, we have seen that four different realizations
exist. The first realization is the pseudo-polynomial realization. It uses ex-
clusively pseudo-polynomials to solve the reordering case. The advantage
is that we can solve the reordering in a parameterized way. Because in
the most general case pseudo polynomial are involved, the implementa-
tion can be computationally complex. Also, the pseudo-polynomial can in
practice not always be calculated. If we relax the Linearization shape to the
smallest rectangular that encloses all iterations, we obtain a more simple
implementation. However, this might be at the expense of inefficient mem-
ory usage. If we want to avoid complex addressing and efficient memory
usage, the Segment realization is a good choice, although the solution is
not longer parameterized. Finally, we showed that we can use a key instead
of an address to retrieve the proper tokens. The calculation of this key is
in general a simple polynomial which is easy to realize. Also, the CAM
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realization requires the least amount of memory to solve the reordering of
tokens.

The KNPs derived by Compaan can be simulated using the YAPI frame-
work [18] or using the PN-domain in Ptolemy Il [19]. In both cases, we
have to implement the presented realizations in software. We are currently
able to implement in software, at compile time, the PseudoPolynomial, and
CAM realization. For these realizations, we have shown that we can derive
correct implementations. We verified this by running Compaan on a set of
applications written as parameterized NLPs.
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Abstract

In order to provide means to comparing functional and structural alternatives in an early stage
in the design of large scale array signal processing systems, in particular phased arrays for radio
astronomical observations, and to identify and isolate the functional and structural critical parts
of the specification of the system, we have specified, designed and implemented a scalable platform
that demonstrates the feasibility of a proposed specification and design exploration methodology.
The platform can be used for experimentation by the end-users whose findings will be taken into
consideration during the development and implementation of the ultimate exploration framework.
The Thousand Element Array (THEA) platform is a downscaled version of huge distributed radio
telescope which will be specified, designed and built in the next decade. It performs beamforming,
adaptive mitigation of radio frequency interference (RFI) and correlation for noise suppression.
The THEA digital back-end is a composition of blocks that are themselves heterogemeous compo-
sitions of modular and programmable/configurable library elements. The blocks come in families
and instances of them can be used for the specification and design of a large set of telescope con-
figurations. The data interfaces in particular permit multiple block combinations for optimal data
routing at system level. System composition is thus simplified and facilitates the system spec-
ification, exploration and design tasks of the designers, given the requirements and constraints
provided by the end-users. A set of specific hardware boards has been implemented which are hard-
ware instances of members of the families of blocks that were proposed after a careful analysis of
a range of different radio telescope requirements and constraints for families of applications. The
hardware blocks that have been selected for the THEA platform have been a compromise between
performance and flexibility objectives to allow the end-users to tune their requirements and to
validate the system. Moreover the key issues of a large scale system such as data management,
processing and control can be demonstrated with the current platform.



Introduction

Astronomers from all over the world are currently regularly meeting to discuss requirements,
constraints and boundary conditions for a number of very large radio telescopes that have to
be built in the coming twenty years or so. Examples of such telescopes are the Atacama Large
Millimeter Array (ALMA), [1], the Low Frequency Array (LOFAR), [2], and the Square Kilometer
Array (SKA), [3]. Besides being very high speed imagers, LOFAR and SKA will include hierarchical
beamformers and adaptive filters in space, time and frequency. These telescopes will be composed
of large clusters of distributed antenna elements that will be built on hierarchies of embedded
systems with hard real-time and very high throughput constraints, and data intensive process-
ing capabilities. However, astronomers do not provide system specifications. They only give
their input-output relations, modes of operation, and a number of metrics that they can use to
evaluate alternative system specifications and system designs. Moreover, the given requirements
and constraints may be incomplete or open for modifications at the time the designers - system
designers as well as software and hardware designers - take off for their parts of the complex
task of building such large systems. Thus, this process is not a chain of consecutive actions but
rather a action graph with many concurrent tasks and unavoidable dependencies between these.
Such huge project can only be undertaken with confidence if the design of such system is a well
structured, interactive and iterative trajectory that is based on a sound methodology. Indeed,
what the astronomers as initiators as well as end-users of the system would like to have to their
disposition is a transparent ezploration framework that they themselves can use to answer their
own what if questions. What if the cost is too high? What if we change the required resolution?
What if we add this or that mode of operation? Developing and implementing such an explo-
ration framework is itself a major effort that is to be undertaken well before the telescopes are
in place. Work in this direction is currently in progress, and although this paper is not intended
to elaborate on the underlying methodology it makes sense to briefly sketch it here because the
THEA platform which is the main subject of the paper, has been both a test case and a driver for
the methodology. Thus the building of a huge distributed radio telescope goes in three equally
important and partly paralleled phases: 1) the exploration of the specification space that emerges
from the system requirement parameters and constraints, 2) the exploration of the design space
that is defined by on the one hand, the model in which the specification is casted and, on the other
hand, the library blocks based implementation platform model into which the specification is to be
mapped, and 3) the implementation and realization of the final system itself. The first two phases
are iterative and interactive processes that are supported by fast simulation and metrics based
performance analysis tools and methods to accelerate the exploration trajectories. This can only
be achieved if the explorations are conducted at high enough levels of abstraction without delving
too deeply in the details. It has been demonstrated by several researchers that exploring at higher
levels of abstraction has greater impact on performance improvements and cost reductions than
can be obtained at the lower levels of abstraction. However, performance and cost measures at
the highest level of abstraction are partly imported from the lower levels, and for these to be
of sufficient confidence, critical parts have to be taken down to lower levels of abstraction where
some sort of fine calibration can be done and from where performance and cost numbers can be
safely injected in the higher levels of abstraction. The THEA platform has been the first attempt to
specify a scalable telescope prototype system for which the SKA telescope was taken as the large
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scale telescope that would then have to be shown to admit a specification that is a scaled version
of that prototype. It has been shown by one of the authors that this could indeed be done. Two
remarks are in place here. Firstly, not much exploration has been done to specifying the THEA
platform because no exploration framework was available yet. Only some sort of golden point
specification was aimed at. Secondly, the actual implementation of the THEA specification as a
prototype has demonstrated that without going through the design space exploration phase, the
direct implementation of the output of the specification exploration phase yields a system that
satisfies the requirements of the end-users. With direct implementation we mean an implementa-
tion that is composed of those off the shelf components that were used in the calibration steps of
the specification. The rest of the paper is organized as follows. In Section 1, we present the basic
trajectory that takes requirements to specifications. In section 2, we introduce the formation of
basic blocks into which processing tasks can be mapped for calibration. Finally, in Section 3, we
come to the way in which blocks are interconnected to reach the system level specification. Recall
that all this is in the context of the design of the THEA platform. The fore-mentioned design for
implementation trajectory, in which predicted technology advances are taken into account, has
not been considered. Instead, the specification was mapped directly into the blocks that have
been specified in the specification phase in terms of heterogeneous architectures in which the
components were off the shelf programmable and configurable devices.

1 Specification trajectory

Deriving a system specification from user requirements is essentially a structured iterative pro-
cess. It is structured in the sense that it is expressed in terms of available models and methods at
a number of abstraction levels that have well defined intra level and inter level interfaces. Reuse
of software and hardware entities is usually a condition and these entities must themselves be so
specified that they can be easily imported in the system specification with standardized interfaces
and easy to integrate internal measures of performance and cost. It is iterative because decisions
made at each and every level of abstraction are dependent on higher level decisions and have
impact on lower level decisions. It is a typical meet in the middle process in which the number
of abstraction levels that is visited depends on the degree of confidentiality that the end users
require the specification to be presented to them by the designers. In this section, we take a quick
look at this process, and we present the THEA platform that is used to run through that process.

1.1 The global picture

As shown in Figure 1, deriving a system specification from the given requirements is a process
that runs iteratively through several levels of abstraction.

First, the user defined requirements that come as input-output requirements, constraints and
boundary condition, are translated into a high level specification that is a functional and structural
decomposition of these requirements: a network of communicating and interacting behaviors.
That decomposition is not unique and, therefore, some exploration and metrics based analysis is in
place. Issues of concern are sensitivity, concurrency, orthogonality, and computational complexity
and variability of the individual behaviors in the network. Measures such as latencies of tasks
and throughput of signals are still not available at this level, they instead are derived constraints.
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Figure 1: A design trajectory to extract specifications from requirements and the different levels
of abstraction for the application to architecture mapping, application decomposition
and composition

Nevertheless, there is a rough indication of computational latencies based on counts of atomic
operations in the executable specifications of the behaviors. Next, critical subsystems are identified
and taken one level down the abstraction hierarchy for further decomposition and exploration.
This provides refined indicators of performance and cost. If necessary, this process of identifying
critical parts, refinement and further exploration can be repeated until a level is reached where a
final calibration can be performed. This calibration consists of mapping of (parts of) behaviors at
this level of detail into state-of-the-art components and obtaining sufficiently accurate numbers
expressing performance and cost. These numbers are then exported back into the first higher
level of abstraction where the performance and cost measures are expressed as performance and
cost numbers of blocks that are heterogeneous compositions of the lower level components. The
stage in which blocks are defined and specified is denoted level 3 in Figure 1. From there on, all
higher levels are specified, recursively, in terms of compositions of blocks. The blocks so defined
and specified are members of families of blocks that are made available in a library. This library,
together with block connection rules and methods to obtain performance and cost measures of the
block compositions from the performance and cost measures of the block themselves constitute a
platform of which various instances can be selected and analyzed.

1.2 The platform

During a feasibility study, the requirements are changing due to feed back to and interaction
among the users and experts. This is not only the case in the specification phase, it is likewise so in
the design phase because of emerging new technology or even because of unexpected modifications
in constraints and boundary conditions which may emerge from the users side or from the designers
side. With a platform, including a transparent exploration framework, the users as well as the
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_esigners are given options to reconfigure the system specifications fast and to adapt to such
“hanges. The modifications may enter at any level of abstraction and may ripple down and up the
ferarchy; in all cases, the end-users must get answers to their what if questions in a reasonably
short time and with a reasonable degree of confidence. What does the platform consist of?
[t is a framework that contains libraries of entity specifications, rules by which entities can be
:mported in models, means to evaluate performances and costs of the models, means to explore
alternatives, and feedbacks to support a fast exploration process that can yield feasible solutions
to the specification (modification) or the design (modification) problems. For the THEA platform,
one library contained executable specifications (written in the Matlab algorithm development
environment) of signal processing tasks, such as filters in space, time and frequency, Fourier
rransforms, adaptive RFI suppression algorithm and correlation algorithms. Another library
-ontained off the shelf components, such as DSPs and FPGAs. Yet another library contained
‘amilies of blocks that are heterogeneous architectures built on the off the shelf components.
Also available were means to map (parts of) signal processing algorithms into the components to
extract performance and cost numbers at this level of abstraction. The interfaces of the blocks
were so defined that interconnection of blocks yield correct compositions by construction with
throughputs as required. Scalability is also guaranteed at this level. For the THEA platform case,
blocks were not readily available and have had to be designed and specified while developing
the platform and served to evaluate the various THEA digital back-end applications, such as the
multi-direction beamformer [4] and the spectrometer [5]. These blocks have also been shown to
be consistent for the specification of the ALMA correlator [6], and the LOFAR and SKA stations [7].
The blocks have been specified and designed with a good compromise between programmability
and efficiency in mind. They are crucial entities in light of the required scalability of the platform
and, therefore, we take a closer look at them in the next section.

2 The THEA building blocks

The building blocks that have been specified for the THEA platform are intermediate entities
that are suitable for the specification of larger systems. To be more specific, assume that the
specification of a subsystem of a large system is given in terms of three models: a behavioral
model, for example a Kahn Process Network [8], an organizational model, for example a set of
building blocks embedded in an interconnection network, and a mapping model that relates the
two other models. Then, after selecting values for the parameters in the three models, an instance
of the platform is created and the evaluation of that instance provides a complete specification
instance for the subsystem. The resulting platform instance is not necessarily an implementation
architecture - though it can be physically realized (as it has been), it is in general, a model of
specification in its parts of which the necessary metrics can be evaluated, and that, at the same
time is within the constraints and boundary conditions imposed by the designers themselves: what
can be done, and also what cannot, is well defined and well structured. Once the subsystem is
specified that way, the larger (sub) system can be easily specified as well because the platform is
scalable: Kahn Process Networks are compositional and so are the other two models and, hence,
the platform. In the next several subsections we zoom in on the block structure, the internals of
a block, and the notion of families of blocks.



2.1 The block structure

In Figure 2 a typical building block is shown as a hierarchy of elements in a class diagram. This
object oriented structure makes the evaluation of performance and cost numbers easy because
those are inherited from the elements forming the block.

<<|nterface>> <<Interface>>
Input Qutput
1
% T
y APbus
APbus
MSP
o
FPGA

APEX1500

{/ get resources()

Figure 2: A building block specified as a UML class diagram

As an example here, the class MSP is constructed with the aggregation of interfaces and FPGAs
classes. A specific interfacing object called APBus that represents a particular physical bus has
been attached to the interfaces and n FPGA objects of type APEX1500 are created. The methods
of the MSP class can access the objects methods that are linked to mapping information of a
process network, or a combination of them, on a architecture block. The component’s static
properties are also easily inherited. As an extension, the combination of these within a model at
a block level is accessible for higher system architecture constructions out of blocks such as MSP.

Another view is proposed in Fig. 4 to represent the blocks and the elements of a block within a
particular topology. This determines the composition of a block and it introduces the constraints
of the internal data distribution. The properties of the block related to the topology are taken
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czre in the performance evaluation. As defined later on, when the topology of the blocks are
s:milar, the block belong to families sharing the same rules for performance evaluation.

Because any platform is application specific, the building blocks here have also been defined
=nd specified with the radio astronomy applications in mind. These applications are character-
:zed by huge data bandwidths, very high data throughputs, and processing requirements that
are increasing in volume, quality, and flexibility. Thus, the digital part of the platform must
not only sustain high throughputs and data intensive computations, but also high level real time
-ontrol for interaction with a remote front-end and a distributed computing facility. The domi-
nating requirements, however, are the quality, speed, and accuracy of the computations and the
interconnections. With respect to the building blocks themselves, these requirements are partly
inherited from their constituent components and partly embedded in the way these components
are interconnected. As a result, the building block components had to be carefully selected as
well. Recall that the building blocks as well as their constituent components are parts of the or-
zanizational model in the three-model platform. Processes and channels in the behavioral model
are mapped, using the mapping model, onto these building block components that have timing
behaviors, performances and costs that are known from their specifications in the component
library. These specification may be given in terms of models and methods, that may or may not
correspond to physical devices. In the case of the THEA platform, the components have been the
entities at the lowest level of abstraction in the organizational model and have been modelled
after physical devices. The next subsection deals with the rationales after the selection of these
components.

2.2 Selection of components

Given that the application domain is advanced radio astronomy, the execution of several signal
processing algorithms in real-time and at a sustained high throughput, the components that
have been selected are Digital Signal Processors (DSP), Memories, Interfaces and Interconnection
Networks. Standard CPUs have also been selected for less demanding control processing. Because
CPUs and DSPs have fixed architectures and standard communication busses, and Memories are
usually large lumped memory banks, those components do not form a complete set as they are
excluding mixtures of processing and interconnections in a distributed way could be efficiently
mapped into them. Therefore, FPGAs have also been selected as component because they have
no fixed architectures, and fast and efficient communication networks in which high throughput
processing units and distributed memory can be embedded and easily configured. Of course,
the building blocks as such are not specified after the components have been selected. Recall
that components are calibration elements in the specification phase. Thus some algorithm and
mapping exploration must be carried out to validate the calibration procedures and to provide
performance and cost numbers for alternatives on that level of abstraction. Here is an example.
An adaptive RFI mitigating beamformer consists of two parts: A space filter, which in essence
is an inner product of two complex valued vectors - say of 16 entries each, viz., a signal vector
output by the antenna array, and a weight vector that is varying in time to track and null the
RFI in the beamformer, and an adaptive-weight estimation algorithm that figures out what the
optimum weight vector should be for effective RFI nulling. On passing, it is instructive to note
that human made radio frequency signals may peak up to 70 dB above the ambient noise level,
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whereas the signals of interest that come from fainted stars and galaxies may delve down to 70
dB under that noise level. Now, a measure of complexity of the complex valued inner product is
easy to obtain from the specification of that function in the behaviorally model of the platform:
it is 16 complex multiplications and 15 complex additions. The calibration of that function in the
organizational model of the platform is easy in case the function is to be mapped into a DSP: The
specification of any DSP includes the performance and cost for that function. However, for THEA as
for the other systems of concern here, no DSP can achieve the fast pace at which consecutive inner
product evaluations have to be executed. Therefore, a calibration in an FPGA may be a better
choice. Indeed, it is relatively easy to map the inner product as a systolic array into an FPGA.
In this case, it is even not necessary to do so, because the specification of any FPGA will provide
cost and performance of a single complex multiply-add pair, and a simple extrapolation can yield
sufficiently accurate performance and cost measures, not only for the space filter itself, but also for
the achievable throughput. This is what has been done for the development of the THEA platform.
No further alternatives have been explored. See e.g., [9] for an exploration case on executable
specifications of the inner product. The situation is dramatically different and more complicated
for the adaptive weight estimation algorithm. Indeed, there are many adaptive weight estimation
algorithms all deferring in terms of accuracy, complexity, latency and throughput. Figure 3 shows
the minimum execution time for three different weight estimation algorithms when using a DSP
for calibration (or implementation). If higher accuracy or faster update rates are required, other
algorithms have to be explored and other calibration or implementation (models of) devices have
to be conceived.

DSP TMSC67

Subspace
tracking
(PastD)

Subspace
direct (eigen
sys.)
Minimum
Variance |
(MVDR)

Eacm (ms) ]
@ projection (ms)

Weight estimation
technique

0 5 10 15

execution time (ms)

Figure 3: Example of exploration: the adaptive weight estimation in the THEA spatial RFI nulling
using a floating point DSP for calibration/prototyping for three different nulling algo-
rithms

Although the number of components that have been selected for the THEA platform specification

(and prototyping) is reasonably small, there are still many ways in which these components can
be interconnected to be promoted to building blocks. It would be very appealing if one could do
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with only one building block but that is too optimistic. Indeed, executable specifications of signal
processing algorithms that can be mapped on components are commonly tasks or processes that
occur in process network specifications that are decompositions of higher level processes. It is
typically these higher level process decompositions that are mapped on building blocks. However,
different higher level processes have unequal process network decompositions and widely varying
constraints that are imposed on them. At first glance, one might expect that a large number of
building blocks would have to be available in the block library. It turns out that the definition
and specification of only a moderate number of building blocks is sufficient. More precisely, only
a handful of building blocks or, more precisely, of building block families are needed. We shall
take a closer look at these families in the next subsection.

2.3 Block families

Roughly speaking, a block family relates to a platform much as a building block relates to
a platform instance. That is to say, a block family is a parameterized heterogeneous collection
of components into which certain specific behaviors can be mapped effectively and efficiently
and others not. The block’s structure induces data exchanges properties from and to elements
in a specific way. Such properties are common within a family. Therefore the families are the
abstraction level for a block composition. A member of the block family distinguishes itself from
another member in that it performs better or worse and at a lower or higher cost than other
members. Table 1 lists the families that have been identified during the development of the THEA
platform. The symbolic representation of members of these families is shown in Figure 4.

The block definition results of a separation and aggregation of architectures and application
likely to be most efficiently hosted by a generic architecture design as presented in Tab. 1. The
techniques for efficient processing on the generic elements impose constrains that are element and
block combination specific. Defining a generic block is a trade-off to satisfy the main applications
requirements. Such requirements are data exchange related : memory and interface location and
access and processing power related : distribution, pipelining dependencies. Therefore to enlarge
their usage, the platforms have been built with a large number of connections and the fastest
interfaces available at a board level. Thanks to the latest chip density improvements the cross
connections could be limited mainly to a single integrated board. The re-scaling of the system
according to new technology shifted most of the data routing complexity in individual modules,
thus drastically improving the system performance and robustness.

We take a closer look at them in the next six subsections.

24 Detailed description

2.4.1 Matrix shuffling/processing

The block called MSP is emphasized in Fig. 2. It can be used as a basic shuffling device crossing
a great number of lines. Filters, cross and auto-correlators or coherent adders are examples of
applications with vectors or matrices as input formats. Their refinement into process networks
can be matched to a matrix network with elementary processing nodes. The regularity of the
application and the chip internal structure of a FPGA are therefore very similar. At board level,
a multi-FPGA system with a matrix network topology is the extension of the optimum system
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Table 1: Families of building blocks from which building block instances have been selected for
the specification of the THEA platform.
Block family | Target processes |

Matrix shuffling / processing Central processing
Cross-correlation
Adaptive cancelling / nulling

Beamforming
Fast pipeline processing Distributed processing
Data flow online filtering
Spectometer
Fast control processing Complex memory circulation

Array decomposition and processing
Space / time / frequency analysis
Application control

High speed link Mass data transfer
Cluster connection
Mass routing
RT control lines connection
Remote data transfer
Remote RT control

Selection Massive Cache-storage
Data Multiplexing / routing
IDC Band mixing

Band separation
Analog / Digital conversion
Main acquisition and control Monitoring
Network support
Hardware support
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on chip implementation. The mesh topology [10] was used for very large scale implementation of
a single application over a board or multiple boards such as telescope correlators [11]. A variant
with a radix topology is proposed for the current platform enhancing the cross node flow for
multi-beaming operations [4]. Matrix shuffling within a mesh is coupled with large processing
capabilities at the knots. The integration and the large number of pins in a FPGA, make this
device very attractive for the data crossing on chip. Most of the elementary processing on the
data flow can be efficiently distributed on the board limiting the intermediate data storage.

Table 2: Matrix shuffling processing block

1 Current features I Standard block |
6 FPGA, APEX 400-1500 (Altera) Mesh processing topology
I/O : 384 lines at 40 MHz, 16Gbit/s Large pipelined I/O rates
Ext. bus : 32bit 10MHz [12] Block I/O transfer (control/acquisition)

2.4.2 Fast pipeline processing

If the array is made large, the internal and external memory bandwidth in a FPGA is decreasing
and deteriorates the system’s performances by spanning the memory bus over the array, this is
demonstrated in [13] [14] and can not be easily solved with hand optimized memory skews. When
matrix shuffling is not a main task for instance for online filtering, fast real time digital signal
processing is required with immediate access to large RAM blocks. For the THEA spectrometer
application, the memory constrains were higher than the largest FPGA internal memory and DSP
structures were selected instead. The fast processing is inserted in the data pipeline processing
blocks. The sustained telescope high data rates are reached by duplicating the processing units
on blocks of data with fluid access to dual temporary memory and interfaces. The architecture
with interfaces, memory and processing elements routed with a cross bar element is easily config-
urable and can host a large variety of applications. The level of computation is simply raised by
duplicating the number of processors if required. Such systems on chip are proposed in the next
generation of FPGA [15]. After prototyping of the acquisition routine as well as the processing on
a DSP chip for the spectrometer application, a block with sufficient processing and memory width
was commercially available for THEA at the scale of a board called PMP8 [16] see performance
in Tab. 3. The fast processing unit can be pipelined or connected to a common bus for additional
processing power.

2.4.3 Fast control processing

Control processing stands for advanced processing with complicated arithmetic or control func-
tions. This block is directly connected to the devices handling the data flow and consequently
is real time specific. Nevertheless, the control processing is not directly receiving the raw data.
For THEA, the control processing constrains were high and had to be implemented in a guaran-
teed real time environment like a fast DSP tied loop to the row data stream. Eventually, The
processing-control could also be shared by the PC CPU with lower response constrains. The fast
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Table 3: Fast pipeline processing

[ Current features Standard block ]
8 DSP TMSC6201 Dedicated for distributed processing
50042250 MB/s burst interface Fast sustained I/O rates

2 independent 128 MB SDRAM Large memory resources/high bandwidth
1 DSP TMSC6201 / 6 points cross-bar | Multiple cross-bar/ controller/sequencer
Ext. bus : PCI 32bit 33MHz Block I/0 transfer (control/acquisition)

\!

Figure 5: Industrial PC host for 16Gflops fast processing platform and data acquisition

PCI connection and fast dedicated bus to a DSP for external communication was commercially
available. The Daytona board from Spectrum is a real time control board for relatively fast and
complex response see features in Tab. 4.

2.4.4 Acquisition / main control

The system infrastructure is often an important cost driver in back-end designs. It was chosen
to simplify the system composition by separating processing nodes with independent control and
acquisition capabilities. The personal computers are in that respect capable of hosting multiple
embedded systems on a PCI bus with control and power supply. VME and compact PCI were not
chosen because of their higher cost for equivalent or lower acquisition performance. The hardware
support of THEA is an industrial PC for fast access to the control and processing boards for data.
acquisition via the PCI bus. The PC is connected to an Object Request Broker via an ethernet
network for a central control with a client server application.
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Table 4: Fast control processing

I Current features

| Standard block |

2 DSP TMSC6701 (float)

4 points Cross bar

2 independent 1 MB SRAM
Ext. bus : PCI 32bit 33MHz

2 independent 64 MB SDRAM

Accurate / fast complex processing
Dedicated for data / memory circulation
Large memory resources / high bandwidth
Fast memory addressing / high bandwidth

Block 1/O transfer (control/acquisition)

Figure 6: Combination of 3 blocks. SCS, MSP, HSL

Table 5: Acquisition main control

Current features

Standard block

Pentium ITI
100 Mbit/s ethernet connection
Ext. bus : 8§ x PCI 32bit 33MHz

Support: hardware/communication/scheduling
Standard network interface
Multi-Blocks I/O transfer(control/acquisition)
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2.4.5 Selection, cache storage

The selection is a new block compared to traditional designs, it gives the flexibility to map different
applications’ specific data reduction schemes. This module can act as a cache or re-circulation
memory for the entire system at the antenna sampling frequency full resolution. The data acquired
-an then be transmitted at a lower rate to a fast processing platform.

Table 6: Selection cache storage

[ Current features Standard block |
8 * 64 bit SDRAM modules Cache storage / large I/O rate
In: 384 lines at 40 MHz, 16Gbit/s Time / channels multiplexer
Out : 160 MB/s synchronous interface | Independent scheduled controllers
Ext.bus:PCI 32bit Multi-Blocks I/O transfer

2.4.6 High speed link

Given the high distribution rates, specific high-speed links have been developed for remote con-
nection. The high speed modules are also a solution for optimum modularity. Each of the blocks
described previously are modular with zero delay, zero electric disturbance point to point links
that can easily connect multiple modules or multiple instruments. Clock and synchronization
pulses are concurrently sent on an additional fiber, the system can consequently be distributed
physically far apart along with every data and synchronization lines.

Table 7: High speed link

f Current features ! Standard block ]
Giga bit ethernet Tx, Rx Serial/parallel interface
out : 10 clock + synchro pulse Multiplexers
out : 384 lines / 40 MHz Independent I/O channels
in : 10 x 1 Gbit/s Domain interface (Ex: opt./ dig.)

3 A scalable back-end

3.1 Block connection

A system is scalable if its elementary blocks can be extended. For the generic platform the
raise in processing capacity is given by a connection to another identical block. Consequently,
the primary processing blocks of the THEA back-end are input/output symmetrical, as shown in
Fig. 8 for cascading of processing capacity without obstructing the data flow. In some cases, the
high speed data link interfaces can also be used to extend a matrix connection. The industrial
PC, compact, widely spread and easy to connect via ethernet boards on a dedicated network is
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Figure T: Different acquisition architectures

the host for the more dedicated hardware. Indeed, the PCI bus can distribute the power and the
non time critical data.

3.2 Data routing

The control is strongly pyramidal and the data flow is linear. Actions are pipelined syn-
chronously and some mechanize data crossing. Therefore, one of the main challenge in setting a
generic platform was the design of elementary and complex processing with very large number
of lines 392 data bits at 40 MHz for data crossing. For that reason the balance between the
data flow and the processing is of prime importance. The approach here was to build modules
based on the fastest interfaces and the maximum data flow on a board for a given application.
The phased array beamformers and interferometers back-ends in radio astronomy in general are
measuring cross products of elementary channels at very high bandwidth. The new generation of
FPGAs such as the APEX 20K from Altera and VIRTEX from Xilinx, permits extremely flexible
data routing within a single chip. Unfortunately, telescopes constrains are following Moore’s laws
and the systems are still spanned over several chips, boards and clusters of boards. The THEA
beamformer is an application example overtaking the capacity of a single chip but a combination
of 6 chips on a board (see [17]) allows optimal routing and maximum integration.

3.3 An object oriented control approach

The generic platform is a physically distributed embedded system that can be connected to a
hierarchical scalable control system via network interfaces illustrated in Fig. 9. This approach for
the control of THEA called TECH, described in [18], is implemented by a peer-to-peer communi-
cation through distributed Corba objects [19] as shown in the deployment diagram in Fig. 9. It
offers transparent access to data and methods from all processes. The back-end blocks or objects
from a software point of view are connected to TECH. Each block is embedded in a device driven
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Hierarchical control Deployment diagram

Figure 9: On this figure the tree of the object oriented software control is shown as well as the
control deployment via CORBA for concurrent client applications

by actions. Consequently, the platform can be extended and upgraded from or within a pyramidal
architecture. This structure is adequate for team work on the project but also for maintenance. As
a base for a more generic back-end, independent drivers can be re-used for a different application.

Conclusion

We have presented the THEA platform which is a case study in ongoing investigations deal-
ing with methodologies to designing specifications from requirements and implementations of the
specifications. The implementation of such a methodology should provide a transparent frame-
work for fast exploration and getting user satisfying answers to the user’s what if questions.
The development and implementation of the THEA platform has been a first and successful trial to
structure the whole specification and prototyping project. The configurability and programma-
bility of the platform offer exploration and validation facilities, not only for the relatively small
scale Thousand Element Array, but for the distributed signal processing functions in all currently
investigated radio telescopes. The platform is currently used as a versatile back-end for a telescope
connected to the necessary control of the instrument. In the context of the the ALMA, LOFAR and
SKA feasibility studies, different applications and technical solutions were proposed by different
groups. A comparison of these proposals based on the THEA methodology and platform helped at
an early stage of the project to establish specifications. Requirements, processing techniques as
well as technology are likely to change within the development and first integration steps of the
different large telescopes, yet the impact of the modifications can be evaluated and anticipated
using such scalable platform of which the THEA platform is exemplary. What remains to be done
is to improve the exploration part of the specification and design methodology. Work in this
direction has to some extent been done [9] and the expertise gained with the THEA platform has
been of great help to specify what exploration methods and tools are worth focusing on in order
to make a platform based design of next generation telescopes really useful for those who provide
the requirements and will be the users of these telescopes.
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Abstract. The advent of microprocessors in embedded systems has significantly
contributed to the wide-spread utilization of embedded systems in our daily lives.
Such embedded systems can be found in devices ranging from simple controllers
found in power plants to sophisticated multimedia set-top boxes found in our
homes. This is due to the fact that microprocessors, called embedded processors
in this setting, are able to perform huge amounts of data processing required by
embedded systems. In addition and equally important, embedded processors are
able to achieve this at affordable prices. This has resulted in the fact that much
effort must be placed in the design of embedded processors. In the last decade, we
have been witnessing several changes in the embedded processors design fueled
by two conflicting trends. First, the industry is dealing with cut-throat competi-
tion resulting in the need for increasingly faster time-to-market times in order

to cut development costs. At the same time, embedded processors are becoming
more complex due to the migration of increasingly more functionality to a single
embedded processor in order to cut production costs. This has led to the quest
for a flexible and reusable embedded processor which must still achieve high
performance levels. As a result, embedded processors have evolved from simple
microcontrollers to digital signal processors to programmable processors. We
believe that this quest is leading to an embedded processor that comprises a pro-
grammable processor augmented with reconfigurable hardware. In this paper, we
highlight several embedded processors characteristics and discuss how they have
evolved over time when programmability and reconfigurability were introduced
into the embedded processor design. Finally, we describe in-depth one possible
approach that combines both programmability and reconfigurability in an inte-
grated manner by utilizing microcode.

1 Introduction

A technology turning point that made embedded consumer electronics systems an ev-
eryday reality has to be the advent of microprocessors. The technological developments
that allowed single-chip processors (microprocessors) made the embedded systems in-
expensive and flexible. Consequently, microprocessor-based embedded systems have
been introduced into many new application areas. Currently, embedded programmable
microprocessors in one form or another, fr@8Abit micro-controllers ta32-bit digital

signal processors arl-bit RISC processors, are everywhere, in consumer electronic



devices, home appliances, automobiles, network equipment, industrial control systems,
etc. Interestingly, we are utilizing more than several dozens of embedded processors in
our day-to-day lives without actually realizing it. For example, in modern cars such as
the Mercedes S-class or the BMW 7-series, we can find over 60 embedded processors
that control a multitude of functions, e.g., the fuel injection and the anti-lock braking
system (ABS), that guarantee a smooth and foremost safe drive. The employment of
embedded processors appear to grow in an exponential curve. Furthermore, it has been
postulated [22] that the sales trend of embedded processors (microprocessors in this
setting) will significantly outperform the sales of general-purpose PC processors.

In this positional paper, we describe several characteristics of embedded processors
and investigate how these characteristics have changed over time driven by market re-
guirements such as faster time-to-market times and development costs reductions. We
will show that two strategies have been widely used to meet such market requirements,
namely programmability and reconfigurability. Finally, we show a possible future direc-
tion in the embedded processor design that merges both strategies and thereby providing
flexibility in both software and hardware design at the same time.

This paper is organized as follows. Section 2 introduces a general definition of em-
bedded systems, discusses the characteristics of embedded systems that follow from
the definition, and provides an in-depth discussion of traditional embedded processors
characteristics. Section 3 discusses the need for programmability and several examples
of such an approach. Section 4 discusses the use for reconfigurability and discusses
how it affected the embedded processor’s characteristics. Section 5 continues our dis-
cussion by describing what we think is the direction for future embedded processor that
combines programmability and reconfigurability. Furthermore, we show an example of
such an approach called the microcoded reconfigurable MOLEN embedded processor.
Section 6 concludes this paper by stating several key observations in this paper.

2 Traditional Embedded Processor Characteristics

Embedded processors are a specific instance of embedded systems in general and there-
fore adhere to the characteristics of embedded systems. In this section, we provide a
more traditional view on embedded processors by stating their characteristics deduced
from our general definition of embedded systems:

Definition: Embedded systems are (inexpensive) mass-produced elements of a larger
system providing a dedicated, possibly time-constrained, service to that system.

Before we highlight the main characteristics of embedded systems, we would like
to comment on our one sentence definition of them. In most literature, the definition of
embedded systems only states that they provide a dedicated service — the nature of the
service is not relevant in this context — to a larger (embedding) system. However, we be-
lieve that all the issues related to the specification and design of embedded systems are
very much anchored in the market reality. Consequently, in our opinion when we refer
to embedded systems as mass-produced elements we draw the separation line between
application-specific systems and embedded systems. We are aware that the separation



line is quite thin in the sense that embedded systems are mostly indeed application-
specific systems. However, we believe that low-production application-specific systems
can not be considered as embedded systems, because they represent a niche market
with very different set of requirements. For example, in low-production scenarios cost
is usually not important while it is almost paramount for embedded systems to achieve
low cost. Finally, we include the possibility for time-constrained behavior in our defini-
tion, because even if it is not characteristic to all the embedded systems it constitutes a
particularity of a very large class of them, namely the real-time embedded systems.

The precise requirements of an embedded system is determined by its immediate
environment. However, we still can classify the embedded system requirements in:

— Functional requirements are defined by the services that the embedded system
has to perform for its immediate environm&ruch services usually include data
gathering and some kind of data transformation/processing.

— Temporal requirements are the result of the time-constrained behavior of many
embedded systems thereby introducing deadlines (explained later) for the service(s).

— Dependability requirements relates to the reliability, maintainability, and avail-
ability of the embedded system in question.

In the light of the previously stated embedded systems definition and requirements,
we briefly point out what we think are the main characteristics of more traditional em-
bedded processors and discuss in more detail the implications that these characteristics
have on their specification and design processes. The first and probably the most im-
portant characteristic of embedded processors is that thegpgigcation-specific.

Given that the service (or application in processor terms) is known a priori, the em-
bedded processor can be and should be optimized for its targeted application. In other
words, embedded processors are definitely not general-purpose processors which are
designed to perform reasonably for a much wider range of applications. Moreover, the
fact that the application is known beforehand opens the roathdaware/software
co-designi.e., the cooperative and concurrent design of both hardware and software
components of the processor. It is misleading to think that application-specific proces-
sors can not be programmed, because the signals controlling the processor can be per-
ceived as rudimentary processor instructions, e.g., firmware or microcode [29], which
could be re-arranged thus programmed. The hardware/software co-design style is very
much particular to embedded processors and has the goal of meeting the processor level
objectives by exploiting the synergism of hardware and software.

Another important characteristic of embedded processors isdtatic structure.

When considering an embedded processor, the end-user has very limited access to soft-
ware programming. The utilized software is provided by the processor integrator and/or
application developer, resides on ROM memories, and is not visible to the end-user. The

! The immediate environment of an embedded systems can be either other embedded systems
in the larger system or the world in which the larger system is placed.

2 In accordance with our embedded systems definition, embedded processors are mass-produced
application-specific processors. Therefore, we consider graphics processors in game consoles
to be embedded processors. On the other hand, graphics processors intended for military sim-
ulators are not since they are not mass-produced.



end-user can not change nor reprogram the basic operations of the embedded processor,
but he is usually allowed to program a (different) sequence of basic operations.

Embedded processors are essentially non-homogeneous processors and this char-
acteristic is induced by thiketerogeneousharacter of the process within which the
processor is embedded. Designing a typical embedded processor does not only mix
hardware design with software design, but it also mixes design styles within each of
these categories. To put more light on the heterogeneity issue, we depicted in Figure 1
(from [16]) an example signal processing embedded processor. The heterogeneous char-
acter can be seen in many aspects of the embedded processor design as follows:

— both analog and digital sub-processors may be present in the system;

— the hardware may include microprocessors, microcontrollers, digital signal proces-
sors (DSPs), application-specific integrated circuits (ASICs);

— the topology of the system is rather irregular;

— various software modules as well as a multitasking real-time operating system.

Control panel real-time controller
operating process
system

User
ASIC microcontroller
. f T system bus
DSP host port host port
assembly programmable programmable ||
code DSP DSP CODEC
memory interface memory interface
| dual-ported memory | DSP analog
assembly interface
code

Fig. 1. Signal Processing Embedded Processor Example (from [16]).

Generally speaking, the intrinsic heterogeneity of embedded processors largely con-
tributes to the overall complexity and management difficulties of the design process.
However, one can say that heterogeneity is in the case of embedded processors design a
necessary evil. It provides better design flexibility by providing a wide range of design
options. In addition, it allows each required function to be implemented on the most
adequate platform that is deemed necessary to meet the posed requirements.

Embedded processors are atsass-producecelements separating them from (low-
production) application-specific processors. This characteristic imposes a different set
of requirements for the embedded processor design, because embedded processor ven-
dors face fierce competition in order to gain more market capitalization. An example re-
quirement involves the cost/performance sensitiveness of embedded processors making
low cost almost always an issue. Other related design issues include: high-production
volume, small time-to-market window, and fast development cycles.

A large number of embedded processors perfamaktime processing introducing
the notion ofdeadlinesRoughly speaking, deadlines can be classified in: hard real-time



deadlines and soft real-time deadlines. Missing hard deadline can be catastrophic while
missing soft deadline only results in some non-fatal glitches. Both types of deadlines
are known a priori much like that the functionality is known beforehand. Therefore,
deadlines determine the minimum level of performance that must be achieved. When
facing hard deadlines, special attention must also be paid to other systems connected to
the embedded processor since they can negatively influence its behavior.

3 The Need for Programmability

In the early nineties, we were witnessing a trend in the embedded processors market
that was reshaping the characteristics of traditional embedded processors as introduced
in Section 2. Driven by market forces, the lengthy embedded processors design cycles
had to be shortened in order to keep up with or stay in front of competitors. In addi-
tion, production and development costs had to be reduced in order to stay competitive.
By highlighting the traditional embedded processors design, we discuss "large scale”
programmability which has been used to address these two issues.

The heterogeneity of the embedded systems demanded a multitude embedded pro-
cessors to be designed for a single system. This was further strengthened by the disabil-
ity of the semiconductor technology at that time to produce large chips. As a result, the
multitude of embedded processors requires lengthy design and verification times, espe-
cially for their interfaces. On the other hand, subsequent design cycles could be signif-
icantly reduced if only a small number of the embedded processors requires redesign.
This delicate balance between long initial design cycles and possibly shortened subse-
quent design cycles was disturbed when advancing semiconductor technology allowed
increasingly more gates to be put on a single chip. Fueled by the need to incorporate
increasingly more functionality into (in order to distinguish yourself from competitors)
and to decrease the cost of embedded systems, the functionalities of embedded proces-
sors were expanded. More complex and larger embedded processors did not decrease
the initial design cycles. However, the subsequent redesign cycles were increased, be-
cause we are dealing with highly optimized circuits meaning that subsequent designs
are not necessarily easier than the initial ones.

In the search for design flexibility in order to decrease design cycles and reduce
subsequent design costs, functions were separated into time-critical functions and non-
time-critical ones. One could say that the embedded processors design paradigm has
shifted from one that is based on the functional requirements to one that is based on
the temporal requirements. The collection of non-'time-critical’ functions could then
be performed on a single cHipThe remaining time-critical function are to be imple-
mented in high-speed circuits achieving maximum performance. The main benefit of
this approach is that the large (possibly slower) chip can be reused in subsequent designs
resulting in shorter design cycles. Moreover, the large chip also exhibits a more general-
purpose behavior and its design becomes more like the design of general-purpose pro-

% One could argue that programmability has always been part of embedded processors. However,
programmability introduced in this section significantly differs from the limited (low-level)
programmability of traditional embedded processors.

4 Possibly implemented in a slower technology in order to reduce cost.



cessors. The design of general-purpose processors can be divided into three distinct
fields [14]: architecturq implementation, and realization.

In Section 2, we stated that more traditional embedded processors are application-
specific and static in nature. However, in this section we also stated that increasingly
more functionality is embedded into a single embedded processor. Is such a processor
still application-specific and can we still call such a processor an embedded processor?
The answer to this question is affirmative since such a processor is still embedded if
the other constraints (mass-produced, providing a dedicated service, etc.) are observed.
Given that increasing functionality usually implies more exposure of the processor to
the programmer, embedded processor have become indeed less static as they can now
be reused for other applications areas due to their programmability. In this light, two
scenarios in the design of programmable embedded processors can be distinguished:

— Adapt an existing general-purpose architectureand implement such an archi-
tecture. This scenario reduces development costs albeit such architectures must be
licensed. Furthermore, since such architectures were not adapted to embedded pro-
cessors still some development times is needed to modify such architectures.

— Build a new embedded processor architecturérom scratch. In this scenario, the
embedded processor development takes longer, but the final architecture is more
tuned towards the specific application the embedded processor is intended for.

Several examples of the first scenarios can be found. A well-known example is the
MIPS architecture [4]. In this case, the architecture has been adapted towards embedded
processors by MIPS Technologies, Inc. which develops the architecture separately from
other embedded systems vendors. Another well-known example is the ARM architec-
ture [1]. Itis a RISC architecture that was firstly intended for low-power PCs (1987), but
has been quickly adapted to become an embeddable RISC core (1991). Since then the
ARM architecture has been subject to numerous modifications and/or extensions in or-
der to optimize it for targeted applications. A well-known implementation is the Stron-
gARM core which was jointly developed by then Digital Semiconductor and ARM Ltd.
This core was intended to provide high performance at extreme low-power. The most
current implementation of this core developed by Intel Corp. is called the Intel PCA
Application Processor [3] intended for PDA handhelds. Other example general-purpose
architectures that have been adapted include: IBM PowerPC [2], Sun UltraSPARC [8],
the Motorola 68000/Coldfire [5], and many more. An example of the second scenario is
the Trimedia VLIW architecture [9] from Trimedia technologies, Inc. which was origi-
nally developed by Philips Electronics. Its application area was multimedia processing
and can now be found in many televisions, digital receivers, and other digital video
editing boards. Figure 2 shows a block diagram of the Trimedia TM-1300 processor. It
contains a VLIW processor core that controls the other specialized hardware cores and
performs other functions that do not need real-time performance.

Summarizing, the characteristics mentioned in Section 2 can be easily reflected in
the three processor design stages (architecture, implementation, and realization). The
characteristic of embedded processors being application-specific is exhibited by the

5 The architecture of any computer system is defined to be the conceptual structure and func-
tional behavior as seen by its immediate user.
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Fig. 2. The Trimedia TM-1300.

fact that the architecture only contains those operations that really need support from
the applications set. The static structure characteristic exhibits itself by having a fixed
architecture, a fixed implementation, and a fixed realization. The heterogeneity char-
acteristic exhibits itself by the utilization of programmable processor core with other
specialized hardware units. In addition, a multitude of different functional units exist
on the programmable processor core. The mass-produced characteristic is exhibiting
itself in the realization process by only utilizing proven technology that is therefore
cheap and reliable. The requirement of real-time processing exhibits itself by requiring
architectural support for frequently used operations, extensively parallel (if possible)
implementations, and realization incorporating high-speed components.

Finally, a wide variety of design issues also have their impact on the architecture,
implementation, and realization of an embedded processor. However, due to the vast
variety of design issues, such as cost, performance, cost/performance ratio, high/low
production volume, fast development, and small time-to-market windows, we refrain
ourselves from discussing these issues in the light of architecture, implementation, re-
alization of embedded processors. However, it must be clear that each design issue has
a certain level of impact on the architecture, implementation, and realization of an em-
bedded processor.

4 Early Time Reconfigurability

In the mid-nineties, we were witnessing a second trend in the embedded processors
design that was reshaping the design methodology of embedded processors and conse-
quently redefined some of their characteristics. Previously, in the design of embedded



processors application-specific integrated circuits (ASICs) were still commonplace and
the design of ASICs required lengthy design cycles. It requires several roll-outs of the
embedded processor chips in question in order to test/verify all the functional, temporal,
and dependability requirements. Therefore, design cycles of 18 months or longer were
commonplace rather than exceptions. A careful step towards reducing such lengthy de-
sign cycles is to use reconfigurable hardware, also referred to as fast prototyping. This
allows embedded processor designs to be mapped early on in the design cycle to re-
configurable hardware, in particular field-programmable gate arrays (FPGAS), enabling
early functionality testing and thereby reducing the number of chip roll-outs. However,
such hardware initially were limited in size and therefore only small parts of embedded
processor designs could be tested. Consequently, still roll-out(s) of the complete chip
(implemented in ASICs) were still required in order to test the overall functionality.

In recent years, the reconfigurable technology has progressed in a fast pace and it
has currently arrived at the point that embedded processor designs requiring million(s)
of gates can be implemented on such structures. In addition, the performance gap that
existed between FPGAs and ASICs is rapidly decreasing. This development in tech-
nology has also changed the role of reconfigurable hardware in embedded processors
design. Instead of only serving fast prototyping purposes, embedded processors im-
plemented in reconfigurable hardware are actually being shipped in final products. An
additional benefit of this development is that bugs found in such embedded processors
can be easily rectified resulting in much higher user satisfaction. Furthermore, design
improvements can also be easily incorporated during maintenance sessions. In the fol-
lowing, we revisit the embedded processor characteristics mentioned in Section 2 and
investigate whether they still hold in case embedded processors are build using FPGAs.

application-specific Embedded processors built utilizing reconfigurable hardware
are still application-specific in the sense that the implementations are still targeting such
applications. Utilizing such implementations for other purposes will prove to be very
hard or it will not achieve the required performance levels.

static structure This characteristic has been affected the most by the utilization
of reconfigurable hardware. From a pure technical perspective, the structure of a recon-
figurable embedded processor is not static since its functionality can be changed, either
during maintenance or during operation. However, we have to consider the frequency
of this happening. In most cases, an implementation is chosen for the reconfigurable
embedded processor and it is not changed anymore between maintenance intervals.
Therefore, from the user’s perspective the structure of the embedded processor is still
static. In the next section, we will explore the possibility that the functionality of an
embedded processor needs to be changed even during operation.

heterogeneous This characteristics is still very much present in the case of recon-
figurable embedded processors. We have added an additional technology into the mix
in which embedded processors can be realized. For example, the latest FPGA offering
from both Altera Inc. (Stratix [7]) and Xilinx Inc. (Virtex 1l [10]) integrates on a single
chip the following: memory, logic, 1/O controllers, and DSP blocks.

mass-produced This characteristic is still applicable to reconfigurable hardware.
Early on, reconfigurable hardware has only been used to verify the functionality of
design and therefore were not implemented in actual shipped embedded processors. As



the technology progressed, it allowed reconfigurable hardware to be produced at much
lower costs and therefore opening the possibility of actually shipping reconfigurable
hardware in actual products. This is actually the case at this moment.

real-time Inthe beginning, we were witnessing the incorporation of reconfigurable
hardware only for non-'time-critical’ functions. As the technology of reconfigurable
continue to progress and making reconfigurable hardware much faster, we are also wit-
nessing their incorporation in actual products where real-time performance is required,
such as multimedia decoders.

5 Future Embedded Processors

In Sections 3 and 4, we have shown that both programmability and reconfigurability
have been introduced into the embedded processor design trajectory born out of the
need to reduce design cycles and reduce development costs. Programmability allows
the utilization of high-level programming languages (like C) and thereby easing ap-
plication development. Reconfigurability allows designs to be tested early on in terms
of functionality and diminishes the need for expensive chip roll-outs. The merging of
both strategies in the embedded processor design (if possible) will result in two main
advantages. First, the design flexibility is hugely increased, because it allows easy de-
sign space exploration in both software and hardware. Second, it allows rapid applica-
tion development since the software and hardware can be realized utilizing high-level
programming and hardware description languages. When correctly incorporated, the
combination of programmability and reconfigurability allows embedded processors to
change their functionality dynamically during operation (in run-time).

The mentioned advantages and enabling FPGA technologies have even resulted in
that programmable processor cores are under consideration to be implemented in the
same FPGA structures, e.g., Nios from Altera [6] and MicroBlaze from Xilinx [11].
However, the utilization of programmable embedded processors that are augmented
with reconfigurable hardware also poses several issues that must be addressed:

— Long reconfiguration latencies: When considering dynamic run-time reconfigu-
rations, such latencies may greatly penalize the performance, because any compu-
tation must be halted until the reconfiguration has finished.

— Limited opcode space:The initiation and control of the reconfiguration and exe-
cution of various implementations on the reconfigurable hardware require the in-
troduction of new instructions. This puts much strain on the opcode space.

— Complicated decoder hardware:The multitude of newly introduced instructions
greatly increased the complexity of the decoder hardware.

In the following, we discuss one possible approach [28] (introduced by us) in merg-
ing programmability with reconfigurability in the design of embedded processors. The
approach utilizes microcode to alleviate the mentioned problems. Microcode consists
of a sequence of (simple) microinstructions that, when executed in a certain order, per-
forms “complex” operations. This approach allows “complex” operations to be per-
formed on much simpler hardware. In this section, we consider the reconfiguration
(either off-line or run-time) and execution processes as complex operations. The main
benefits of our approach can be summarized as follows:



— Reduced reconfiguration latenciesMicrocode used to control the reconfiguration
process allows itself to be cached on-chip. This results in faster access times to the
reconfiguration microcode and thus in turn reduces the reconfiguration latencies.

— Reduced opcode space requirement&y only pointing to microcode (explained
later), we only require (at most) three new instructions and not separate instructions
for each and every supported operation.

— Reduced decoder hardware complexityDue to the inclusion of only a few in-
structions, complex instruction decoding hardware is no longer required.

In Section 5.1, we revisit microcode from its beginnings to its current implementa-
tion within a high-level microprogrammed machine. In Section 5.2, we discuss in-depth
our proposed MOLEN embedded processor. Finally, in Section 5.3, we briefly highlight
several other approaches in this field that are comparable in one way or another.

5.1 Revisiting Microcode

Microcode, introduced in 1951 by Wilkes [29], constitutes one of the key computer en-

gineering innovations. Microcode de facto partitioned computer engineering into two

distinct conceptual layers, namely: architecture and implementation. This is in part
because emulation allowed the definition of complex instructions which might have

been technologically not implementable (at the time they were defined), thus project-
ing an architecture to the future. That is, it allowed computer architects to determine a
technology-independent functional behavior (e.g., instruction set) and conceptual struc-
tures providing the following possibilities:

— Define the computer’s architecture as a programmer’s interface to the hardware
rather than to a specific technology dependent realization of a specific behavior.

— Allow a single architecture to be determined for a “family” of implementations
giving rise to the important concept of compatibility. Simply stated, it allowed pro-
grams to be written for a specific architecture once and run at “infinitum” indepen-
dent of the implementations.

Since its beginnings, as introduced by Wilkes, microcode has been a sequence of
micro-operations (microprogram). Such a microprogram consists of pulses for operat-
ing the gates associated with the arithmetical and control registers. Figure 3 depicts the
method of generating this sequence of pulses. First, a timing pulse initiating a micro-
operation enters the decoding tree and depending on the setup register R, an output is
generated. This output signal passes to matrix A which in turn generates pulses to con-
trol arithmetical and control registers, thus performing the required micro-operation.
The output signal also passes to matrix B, which in its turn generates pulses to control
the setup register R (with a certain delay). The next timing pulse will therefore generate
the next micro-operation in the required sequence due to the changed register R.

Over the years, the Wilkes’ model has evolved into a high-level microprogrammed
machine as depicted in Figuré.4n this figure, the control store contains microin-
structions (representing one or more micro-operations) and the sequencer determines

5 The memory address register (MAR) is used to store the memory address in the main memory
from which data must be loaded of to which data is stored. The memory data register (MDR)
stores the data that is communicated to or from the main memory.
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Fig. 3. Wilkes’ microprogram control model [29].

the next microinstruction to execute. The control store and the sequencer correspond to
Wilkes’ matrices A and B respectively. The machine’s operation is as follows:

1. The control store address register (CSAR) contains the address of the next microin-
struction located in the control store. The microinstruction located at this address
is then forwarded to the microinstruction register (MIR).

2. The microinstruction register (MIR) decodes the microinstruction and generates
smaller micro-operation(s) accordingly that need to be performed by the hardware
unit(s) and/or control logic.

3. The sequencer utilizes status information from the control logic and/or results from
the hardware unit(s) to determine the next microinstruction and stores its control
store address in the CSAR. It is also possible that the previous microinstruction
influences the sequencer’s decision regarding which microinstruction to select next.

It should be noted that in microcoded engines not all instructions access the control
store. As a matter of fact, only emulated instructions have to go through the microcode
logic. All other instructions will be executed directly by the hardware (following path
(o) in Figure 4). That is, a microcoded engine is as a matter of fact a hybrid of the
implementation having emulated instructions and hardwired instruétions

5.2 Microcoded Reconfigurable MOLEN Embedded Processor

In this section, only a brief description of the MOLEN embedded processor is given,
We refer to [28] for a more detailed description. In its more general form, the pro-
posed machine organization can be described as in Figure 5. In this organization, the

" That is, contrary to some believes, from the moment it was possible to implement instructions,
microcoded engines always had a hardwired core that executed RISC instructions.
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I_BUFFER stores the instructions that are fetched from the memory. Subsequently, the
ARBITER performs a partial decoding on these instructions in order to determine where
they should be issued. Instructions that have been implemented in fixed hardware are is-
sued to the core processing (CP) unit which further decodes them before sending them
to their corresponding functional units. The needed data is fetched from the general-
purpose registers (GPRs) and results are written back to the same GPRs. The control
register (CR) stores other status information.

MEMORY
I_BUFFER
cp
i
CR
GPR

Fig. 5. The proposed machine organization.

The reconfigurable unit consists of a custom configured unit (E@uY thep:-
code unit. An operatichperformed by the reconfigurable unit is divided into two dis-

8 Such a unit could be for example implemented by a Field-Programmable Gate Array (FPGA).
9 An operation can be as simple as an instruction or as complex as a piece of code of a function.



tinct process phasesetandexecute Thesetphase is responsible for configuring the
CCU enabling it to perform the required operation(s). Such a phase may be subdivided
into two sub-phases: partiakt (p-se) and completeset (c-sef). The p-set sub-phase

is envisioned to cover common functions of an application or set of applications. More
specifically, in thep-set sub-phase the CCU igartially configured to perform these
common functions. While thp-set sub-phase can be possibly performed during the
loading of a program or even at chip fabrication time, ¢kt sub-phase is performed
during program execution. In theeset sub-phase, the remaining part of the CCU (not
covered in the-setsub-phase) is configured to perform other less common functions
and thuscompletingthe functionality of the CCU. The configuration of the CCU is
performed by executing reconfiguration microcBtgither loaded from memory or
resident) in theu-code unit. In the case that partial reconfigurability is not possible or
not convenient, the-setsub-phase can perform the entire configuration. &kecute
phase is responsible for actually performing the operation(s) on the (now) configured
CCU by executing (possibly resident) execution microcode stored ipithemde unit.

p-set/ c-set / execute

[ opc [rrP] pCS-a/or

opcode address
resident/pageable
(0/1)

Fig. 6. Thep-set c-set andexecuteinstruction formats.

In relation to these three phases, we introduce three new instruatise$:p-set,
and execute Their instruction format is given in Figure 6. We must note that these
instructions danot specifically specify an operation and then load the corresponding
reconfiguration and execution microcode. Insteadptket c-set andexecuteinstruc-
tions directly point to the (memory) location where the reconfiguration or execution
microcode is stored. In this way, different operations are performed by loading different
reconfiguration and execution microcodes. That is, instead of specifying new instruc-
tions for the operations (requiring instruction opcode space), we simply point to (mem-
ory) addresses. The location of the microcode is indicated by the resident/pageable-bit
(R/P-bit) which implicitly determines the interpretation of the address field, i.e., as a
memory addresa (R/P=1) or as @-CONTROL STORE addressCS-« (R/P=0) indi-
cating a location within th@u-code unit. This location contains the first instruction of
the microcode which must always be terminated bgadop microinstruction.
The pu-code unit: The pu-code unit can be implemented in configurable hardware.
Since this is only a performance issue and not a conceptual one, it is not considered
further in detail. In this presentation, for simplicity, we assume thatjhreode unit
is hardwired. The internal organization of thg@-code unit is given in Figure 7. In
all phases, microcode is used to perform either reconfiguration of the CCU or control
the execution on the CCU. Both types of microcode are conceptually the same and
no distinction is made between them in the remainder of this sectionpifede
unit comprises two main parts: the SEQUENCER and#@ONTROL STORE. The

10 Reconfiguration microcode is generated by translating a reconfiguration file into microcode.
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SEQUENCER mainly determines the microinstruction execution sequence ape the
CONTROL STORE is mainly used as a storage facility for microcodes. The execution
of microcodes starts with the SEQUENCER receiving an address from the ARBITER
and interpreting it according to the R/P-bit. When receiving a memory address, it must
be determined whether the microcode is already cached ip-@@NTROL STORE

or not. This is done by checking the RESIDENCE TABLE which stores the most fre-
quently used translations of memory addresses sf@ONTROL STORE addresses
and keeps track of the validity of these translations. It can also store other information:
least recently used (LRU) and possibly additional information required for virtual ad-
dressing' support. In the cases thatp€S~ is received or a valid translation into a
pCS~ is found, it is transferred to the 'determine next microinstruction’-block. This
block determines which (next) microinstruction needs to be executed:

— When receiving address of first microinstruction: Depending on the R/P-bit, the
correctpCS is selected, i.e., from instruction field or from RESIDENCE TABLE.

— When already executing microcode: Depending on previous microinstruction(s)
and/or results from the CCU, the next microinstruction address is determined.

The resultingpCS+ is stored in thep-control store address registgiGSAR) before
entering theg-CONTROL STORE. Using theCS-, a microinstruction is fetched from
the p-CONTROL STORE and then stored in the microinstruction register (MIR) before
it controls the CCU reconfiguration or before it is executed by the CCU.

11 For simplicity of discussion, we assume that the system only allows real addressing.



The p-CONTROL STORE comprises two sectidfisnamely aset section and an
executesection. Both sections are further divided intéxed part andpageablepart.
The fixed part stores the resident reconfiguration and execution microcode sétthe
and executephases, respectively. Resident microcode is commonly used by several
invocations (including reconfigurations) and it is stored in the fixed part so that the per-
formance of thesetandexecutephases is possibly enhanced. Which microcode resides
in the fixed part of thep-CONTROL STORE is determined by performance analysis
of various applications and by taking into consideration various software and hardware
parameters. Other microcodes are stored in memory and the pageable parpof the
CONTROL STORE acts like a cache to provide temporal storage. Cache mechanisms
are incorporated into the design to ensure the proper substitution and access of the mi-
crocode present in the CONTROL STORE.

5.3 Other reconfigurability approaches

In the previous section, we have introduced a machine organization where the hardware
reconfiguration and the execution on the reconfigured hardware is done in firmware
via the p-microcode (an extension of the classical microcode to include reconfigura-
tion and execution for resident and non-resident microcode). The microcode engine is
extended with mechanisms that allow for permanent and pageable reconfiguration and
execution microcode to coexist. We also provide partial reconfiguration possibilities for
“off-line” configurations and prefetching of configurations. Regarding related work we
have considered more than 40 machine proposals. We report here a number of them that
somehow use some partial or total reconfiguration prefetching. It should be noted that
our scheme is rather different in principle from all related work as we use microcode,
pageable/fixed local memory, hardware assists for pageable reconfiguration, partial re-
configurations, etc.. As it will be clear from the short description of the related work,
we differentiated from them in one or more mechanisms.

TheProgrammable Reduced Instruction Set Computer (PR|3&} attaches a Pro-
grammable Functional Unit (PFU) to the register file of a processor for application-
specific instructions. Reconfiguration is performed via exceptions. In an attempt to
reduce the overhead connected with FPGA reconfiguration, Hauck proposed a slight
modification to the PRISC architecture in [20]: an instruction is explicitly provided to
the user that behaves like a NOP if the required circuit is already configured on the array,
or is in the process of being configured. By inserting the configuration instruction be-
fore it is actually required, a so-callednfiguration prefetchingrocedure is initiated.

At this point the host processor is free to perform other computations, overlapping the
reconfiguration of the PFU with other useful work. TBaeChipintroduced by Wittig

and Chow [30] extends PRISC and allows PFU for implementing any combinational or
sequential circuits, subject to its size and speed. The system proposed by Trimberger
[27] consists of a host processor augmented with a Fprogrammable Instruction

Set AcceleratofRISA), much like the PRISC mentioned above. Concerning the man-
agement and control of the reprogramming procedure, Trimberger mentions that the
RISA reconfiguration is under control of a hardwired execution unit. However, it is

12 Both sections can be identical, but are probably only differing in microinstruction wordsizes.



not obvious if an explicit SET instruction is available. TReconfigurable Multimedia
Array Coprocesso{REMARC) proposed by Miyamori and Olukotun [24] augments

the instruction set of a MIPS core. As the coprocessor does not have a direct access
to the main memory, the host processor has to write the input data to the coprocessor
data registers, initiate the execution, and finally read the results from the coprocessor
data registers. An explicit reconfiguration instruction is provid@drp designed by
Hauser and Wawrzynek [21] is another example of a MIPS derived Custom Comput-
ing Machine (CCM). The FPGA-based coprocessor has a direct access to the standard
memory. The MIPS instruction set is augmented with several non-standard instructions
dedicated to loading a new configuration, initiating the execution of the newly config-
ured computing facilities, moving data between the array and the processor’s own regis-
ters, saving/retriving the array states, branching on conditions provided by the array, etc.
The coprocessor is aimed to run autonomously with the host processorOnéhip-
98introduced by Jacob and Chow[23], the computing resources are loadéeimand

when a miss is detectedlternatively, the resources afge-loadedby using compiler
directives. Several comments regarding these assertions are worth to be provided. If an
on-demand loading strategy is employed, then the user has no control on the reconfig-
uration procedure. In the pre-loading strategy, an explicit reconfiguration instruction is
provided to the user and the reconfiguration procedure is indeed under the control of the
user. PRISMProcessor Reconfiguration Through Instruction-Set Metamorphosis

of the earliest proposed CCM [12][13], was developed as a proof-of-concept system, in
order to handle the loading of FPGA configurations, the compiler inserts library func-
tion calls into the program stream [13]. From this description, we can conclude that an
explicit reconfiguration procedure is available. Gilson [17] CCM architecture consists
of a host processor and two or more FPGA-basethputing devicesThe host con-

trols the reconfiguration of FPGAs by loading new configuration data through a Host
Interface into the FPGA Configuration Memory. The reconfiguration process can be
performed such that when one computing device is being reconfigured and, therefore,
is idle, the others continue executing. The write into the configuration memory instruc-
tion can play the role of an explicit reconfiguration instruction. Therefopegdoading
strategy is employed. Schmit [26] proposes a partial run-time reconfiguration mecha-
nism, calledpipeline reconfiguratiomr striping, by which the FPGA is reconfigured at

a granularity that corresponds to a pipeline stage of the application being implemented.
An application which has been broken up into pipeline stages can be mapped to a striped
FPGA. The pipeline stages are knowrstiipes the stages of the application are called
virtual stripes and the hardware stages which the virtual stages are loaded into are
calledphysical stripesThe PipeRench coprocessor developed by a team with Carnegie
Mellon University [15][18] is focused on implementing linear (1-D) pipelines of arbi-
trary length. PipeRench is envisioned as a coprocessor in a general-purpose computer,
and has direct access to the same memory space as the host processor. The virtual stripes
of the application are stored into an on-chip configuration memory. A single physical
stripe can be configured in one read cycle with data stored in such a memory. The con-
figuration of a stripe takes place concurrently with execution of the other stripes. The
Reconfigurable Data Path Architectu(eDPA) is also a self-steering autonomous re-
configurable architecture. It consists of a mesh of identical Data Path Units (DPU)[19].



The data-flow direction through the mesh is only from west and/or north to east and/or
south and is also data-driven. A word entering rDPA contains a configuration bit which
is used to distinguish the configuration information from data. Therefore, a word can
specify either a SET or an EXECUTE instruction, the arguments of the instructions be-
ing the configuration information or data to be processed. A set of computing facilities
can be configured on rDPA.

6 Conclusions

In this positional paper, we have described several characteristics of embedded pro-
cessors that were logically deduced from embedded systems characteristics in general.
Driven by market requirements, two strategies were followed in order to reduce design
cycles and development costs. First, programmability was introduced as a means to
combine all non-"time-critical’ functions to be performed by a 'general-purpose’-like
embedded processor. Such an embedded processor could then be reused in subsequent
design and thereby greatly reducing design cycles. Second, reconfigurability was ini-
tially only utilized as fast prototyping. Over time, technological advances in reconfig-
urable hardware in terms of size and performance have led to the fact the reconfig-
urable embedded processors are actually incorporated in shipped embedded systems.
We believe that the future of embedded processors design lies in the merging of both
strategies. Programmability allows the utilization of high-level programming languages
(like C) and thereby easing application development. The utilization of reconfigurable
hardware combines design flexibility and fast prototyping. At the same time, the pro-
cessing performance of reconfigurable hardware is nearing that of application-specific
integrated circuits. Finally, in this paper we have highlighted one possible framework
in which future embedded processor design can be performed. The proposed MOLEN
embedded processor combines software programming (by utilizing a programmable
processor core) with hardware programming (utilizing microcode to control the recon-
figurable hardware). Such an approach provides possibilities in combatting several is-
sues associated with reconfigurable hardware.
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Abstract. The Madeo framework is divided in three parts for low level
architecture modelization and tools, high level logic synthesis, and com-
putation modeling and synthesis. This paper describes a compilation
technique used in the second part to allow programming of arbitrary
primitives associated to object classes.

The compiler handles methods associated to set or interval of values. It
produces a network of lookup-tables equivalent to the function calls that
are translated into logic tables and mapped to a target reconfigurable
architecture.

A first effect of this technique is to reduce the logic complexity mostly
at high level taking advantage of sparse set of values. A second property
is that high level compilation techniques can be applied on expressions
independently of language semantics. Detailed results are given in the
case of a Reed-Solomon RAID coder/decoder generator.

1 Introduction

General context

Integration technology is providing hardware resources at high rate while the
hardware development methods are progressing slowly. This can be seen as the
repetition of a common situation where a mature technical knowledge is provid-
ing useful possibilities in excess of current method capabilities. An answer is to
change the development process in order to avoid work repetition and to provide
more productivity by secure assembly of standard components.

This situation is also known from computer scientists since it has been en-
countered earlier in the programming language story[DC90]. The first ages of
this story are: (1) symbolic expression of computations (Fortran), (2) structured
programs (Algol, Pascal), (3) modularity, and code abstraction via interfaces
and hiding (Ada, Modula2, object oriented programming).

Modularity came at the age where efficient engineering of large programs
was the main concern, and when the task of programming was overtaken by the
organization problems. System development can be considered as a new age for
computer architecture design, with hardware description languages needing to
be transcended by higher level of descriptions to increase productivity.



Companies developing applications have their specific methods for design and
production management in which they can represent their products, tools and
hardware or software components. The method that ensure the feasibility of a
product is leading technical choices and developments. It also change some of the
rules in design since most of the application is achieved in a top-down fashion
using components or code generators reaching the functional requirements.

Reconfigurable architectures

FPGAs are one of the driving forces for integration technology progresses, due
to their increasing field of applications.

Like software and hardware programming languages, reconfigurable architec-
tures are sensitive to scale mutations. As the chip size is increasing, the char-
acteristics of the application architecture change, with new needs for structured
communications, more efficiency on arithmetic operators., and partial reconfig-
urability. The software follows slowly, migrating from HDL to HLL. Preserving
the developments and providing a sane support for production tools is, in our
opinion, a major issue.

Madeo

MADEO is a medium term project that make use of open object modeling to
provide access to hardware resources and code portability on reconfigurable ar-
chitectures.

The project structure has three parts that interact closely (bottom-up):

1. Reconfigurable architecture model and its associated generic tools.
The representation of practical architectures on a generic model enables shar-
ing of basic tools such as place and route, allocation, circuit edition[LB00].
Mapping a logic description to a particular technology is achieved using the
algorithms packed into SIS[Sa92], or hierarchical and parallel synthesis from
Lemarchand’s PPart[Lem99]. Specific atomic resources can be merged with
logic, and the framework is extensible.

2. High level logic compiler. This compiler produces circuits associated to

high level functionalities on a characterization of the above model. Object
oriented programming is not restricted to a particular set of operators or
types, and so we provide the capability to produce primitives for arbitrary
arithmetics or symbolic computing.
At an intermediate level, the compiler handles a graph of lookup-tables car-
rying high level values (objects). Then this graph is translated into a logic
graph that will be mapped on hardware resources. The translator makes use
of values produced in the high level environment that allows to implement a
lot of classic optimizations without attaching semantics to operations at the
language level.

3. System and architecture modeling. The computation architecture in
its static or dynamic aspects is described in this framework. For instance,



these are generic regular architectures with their associated tools, processes,
platform management and system activity.

The compiler can make use of logic generation to produce configurations,
bind them to registers or memories, and produce a configured application.
The ability to control placing and routing given by the first part, and synthe-
sis from the second part, allow to build complex networks of fine or medium
grain elements.

The paper focuses on the logic compiler. Historically, this work has taken
ideas from the Lin, Whitcomb and Newton symbolic translation to logic as de-
scribed in [LWNO1]. Relation with the object oriented environment has been
described in [LP96] with limited synthesis capabilities that are removed in cur-
rent work. System modeling and program synthesis has been demonstrated on
the case study of a smart sensor camera[FLLP99] based on the same specification
syntax as the one used in the current work.

The paper describes the general principles used for specification and logic
production, then it gives more details on the transformations that are achieved.
An illustration is given with the example of a coder/decoder family for RAID
systems with quantitative results.

2 A framework for logic synthesis

2.1 Architecture modeling

Reconfigurable architectures can mix different grain of hardware resources: logic
elements, operators, communication lines, buses, switches, memories, proces-
S0rS. ..

Most FPGAs provide logic functions using small lookup memories (LUT)
addressed by a set of signals. As seen from the logic synthesis tools, an n-bit
wide LUT is the most general way to produce any logic function of n boolean
variables. There are known algorithms and tools for partitioning large logic tables
or networks to target a particular LUT-based architecture.

LUTs are effectively interconnected during the configuration phases to form
logic. This is achieved using various configurable devices such as programmable
interconnect points, switches, or shared lines. Some commercial architectures
also group several LUTs and registers into cells called configurable logic block
(CLB).

Our model for the organization of these architectures is a hierarchy of ge-
ometric patterns of hardware resources. The model is addressed via a specific
grammar[LB00] allowing the description of concrete architectures. Given this
description, generic tools operate for technology mapping, placing and routing
logic modules. See figures 6 and 7 for a view of the generic editor. Circuits such
as operators or computing networks are described by programs realizing the
geometric assembly of such modules and their connection.

Using this framework, few days of work are sufficient to bring up the set of
tools on a new architecture, with the possibility to port application components.



On a concrete platform, it is then necessary to build the bit-stream genera-
tion software by rewriting the configuration descriptions to the basic tools. Two
practical examples are the xc6200 that has a public architecture and has been
addressed directly, and the Virtex addressed through the JBits API. We are also
working on industrial prototype architecture.

2.2 Programming considerations

Applications for fine grain reconfigurable architectures can be specialized with-
out compromise, and they should be optimized in terms of space and perfor-
mance. In our views, there is an abusive advantage given to the local performance
of standard arithmetic units in the synthesis tools and also in the specification
languages.

A first consequence of this advantage is the restricted range of basic types
coming from the capabilities of ALU/FPUs or memory address mechanisms.
Control structures strictly oriented toward sequentiality are another aspect that
can be criticized. As an example, programming for multimedia processor accel-
erators remains procedural despite all the experience available from the domain
of data parallel languages. Hardware description languages have rich descriptive
capabilities, however the necessity to use libraries led the language designers to
restrict their primitives to a level similar to C.

Our aim is to produce a more flexible specification level with direct and effi-
cient coupling to logic. This implies allowing easy creation of specific arithmetics
representing the algorithm needs, letting the compilers automatically tune data
width, and modeling computations based on well understood object classes.

To reach this goal, specifications with symbolic and functional characteristics
are used, jointly with separate definition of data on which the program will
operate. Data are objects that have binary representation.

Sequential computations can be structured in various ways by splitting pro-
grams on register transfers, either explicitly in the case of an architecture descrip-
tion, or implicitly during the compilation. In this case, high level variables are
used to retain a state with known initial values, the compiler retrieving progres-
sively the other states by enumeration [LP96]. Figure 1 shows a diagram where
registers are provided to hold state values associated to high level variables that
could be instance variables in an object.

In this paper we will consider the case of methods without side effect, oper-
ating on a set of objects. For sake of simplicity we will rename these methods
'functions’, and the set of objects, *values'. Interaction with external variables is
not discussed in this paper. The input language is Smalltalk-80, variant Visual-
woks, also used to build the tools and to describe the application architectures.

2.3 Execution model

The execution model targeted by the compiler is currently a high level repli-
cation of LUT-based FPGAs. We define a ‘program‘ as a function that needs
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Fig. 1. State machines can be obtained by methods operating on private variables
having known initial values.

to be executed on a set of input values. Thus the notion of program groups at
once the algorithm and the data description. Our program can be embedded
in higher level computations of various kind, implying variables or memories.
Data descriptions are inferred from these levels. The resulting circuit is highly
dependent from the data it is intended to process.

An execution is the traversal of a hierarchical network of lookup tables in
which values are forwarded. A value change in the input of a table implies a
possible change in its output that in turn induces other changes downstream.
These networks reflect the effective function structure at the procedure call grain
and they reflect an algorithmic meaning. Among the different possibilities offered
for practical execution, there are cascaded hash table accesses, and use of general
purpose arithmetic units where they are detected to fit.

Translation to FPGAs needs binary representation for ob jects. This is achieved
in two ways, by using a specific encoding known to be efficient, or by exchanging
object values appearing in the input and output for indexes in the enumeration
of values. Figure 2 shows fan-in and fan-out cases with the aggregation of indexes
in the input, and the next index selection from the table. Basically the low level
representation of a node is a PLA having in its input the Cartesian product of
the indexes, and in its output the aggregation of indexes for downstream.

There are some important results or observations from this exchange:

1. data paths inside the network do not depend anymore on data width but on
the number of different values present on the edges.

2. depending on the interfacing requirements, it will be needed to insert nodes
in the input and output of the network to handle the exchanges between
values and indexes.
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Fig. 2. Fan-in: index are aggregated to form an address in the table. Fan-out: the same
index is presented to each table downstream.

3. logic synthesis tool capabilities are limited to medium grain problems. To
allow code production for FPGAs, algorithms must decrease the number of
values down to nodes that can be easily handled by the logic generation
layer. Today, this grain is similar to the 8-bit microprocessor grain.

4. decreasing the number of values is the natural way in which functions oper-
ates, since the size of a Cartesian product on a function input values is the
maximum number of values produced in the output. The number of values
carried by edges is decreasing either in the hierarchy structure or in a graph
flow. There is no possible divergence and the efficiency of an algorithm can
be stated to be its ability to quickly decrease the data amplitude on which
logic complexity depend.

2.4 Type system

Language types appear to the programmers as annotations for checking code
consistency and binding to architecture resources. The type system we are using
does not restrict programming to this kind of binding. It is only intended to
specify any possible set of values appearing in the program input or inside the
computation network. In the object environment, it is supported by a set of
classes supporting operations.

Implicit or explicit collections of values are denoted by intervals or sets. Class-
based types are associated either to classes having a finite number of instances



(booleans, bytes, small integers), or to user defined new functionalities, including
arithmetics. Unions are resulting from operations on the two previous types.

2.5 A short illustration

To illustrate the programming interface, let us comment the case of a multiplier
operating on small floating point numbers. The numbers are represented as a
sign, an exponent and a fractional part. The multiplication is described in a
class supporting secondary methods for adding exponents, multiplying fractional
parts, and normalizing the result.

sign: signA significand: significandA exponent: exponentA
sign: signB significand: significandB exponent: exponentB

| sign exp mant normalize |
sign := self computeSignFor: signA and: signB.
exp := self computeExponentFor: exponentA and: exponentB.

mant := self computeSignificandsFor: significandA and: significandB.
normalize := self normalize: mant.

@Xp := exp + normalize.

mant := mant / (10 raisedTo: normalize) .

Depending on the data amplitude in each node inputs, the compiler will make
the choice to develop hierarchically or not. In the first case the node will directly
have its table computed. In the second case a new graph is produced which is
accessible from the node.

The code presented is executable in the high level environment. To be trans-
lated into logic, it is necessary to provide a characterization of the objects pre-
sented the various fields as boolean and intervals tailoring the arithmetic. In the
case of parameters of small amplitude, in the order of 8bits, the compiler succeeds
to produce the necessary logic locally optimized. For lower amplitudes synthesis
could have been achieved directly, and a post-optimization effectively succeeds
to improve the logic in an order of 25%. To fix an upper limit, a global post-
optimization by standard SIS algorithms achieved on a 10 bits floating multiplier
was achieved in 6 hours. The circuit was synthesized for a LUT-4 architecture,
and the post-optimization decreased its size from 180 to 140 cells.

For higher amplitudes, it will be needed to split the fractional part and to
handle it in an array.

It can be noticed that these operators implement general operations on cus-
tom arithmetic. By restricting the operands to one, or a small set of values, the
logic complexity can decrease dramatically at the point where the operation is
simply a change in binary representation.



Fig. 3. Development interface showing the high level code for floating point multiplier
and the corresponding execution graph. The 3 nodes at the bottom of the figure output
(left to right) the sign, the exponent and the fractional part. Boxes in the graph can
be inspected to check the types carried on edges, as shown figure 4

Fig. 4. Inspectors on nodes of figure 3 graph. At the left, internal aspects of a node
with inputs, output, and generated logic presented in the right pane in BLIF format.
In the middle the inputs is an array of 2 parameters. The 2 other windows show value
characterizations for the output and an input.



3 Compiler flow

3.1 Flat expressions

In a first stage, let us consider a program where the number of values appearing
in the input of each function call is compatible with an efficient logic synthesis
for a LUT-n FPGA architecture. As each node can be directly synthesized, we
have a flat expression in opposition with hierarchical expressions that will need
additional compilation contexts for some of the function calls.

As a Smalltalk development environment is used, there were an obvious in-
terest to use this language syntax for ’programs’ targeting FPGAs. Immediate
benefits are the reuse of the standard compiler front-end and use of the existing

classes.
logic net '
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function values

optimizations
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Fig. 5. Compiler flow

1. Building the value network
The first compilation stage consists in building an acyclic flat graph which
nodes are lookup tables based on objects and which edges allow to pass
values downstream.
As stated, the syntax tree is produced by the standard compiler. The directed
acyclic graph (DAG) is built by analyzing the syntax tree and variable use.
Local variable references are eliminated. At this stage nodes are still hold-
ing function calls receiving edges from the function parameter list, or other
nodes.
To replace these nodes by lookup tables, the values are propagated pro-
gressively from the function parameter list. A graph traversal is achieved,
building a table for each node having defined inputs.
During this transformation care must be taken of dependencies in vari-
able used in fan-out to fan-in subnets. As an example, the composition
h(f(z,¥),g(x,z)) has a smaller output than h(f(z,y),g(t,z)) because of
the dependency on variable z. A number of inputs in the fan-in node h and
upstream are not useful and can be deleted by constraining the Cartesian
products in f and g tables'. Lot of conditional computations fall in this case.

! This mechanism is very important but is not yet implemented at this date



2. High level optimization and building the index network
After this first stage we have a situation similar to a compiler having a lan-
guage semantic knowledge because the tables have inferred stronger proper-
ties from the message executions. It is time to apply high level optimizations
such as elimination of constant nodes and dead code or subexpression fac-
torization. This imply backward and forward processing on the DAG.
The next transformation is the translation of the DAG by deducing index
based tables from associations of value tables. This is achieved by generating
index for values. Care must be taken of class based types to preserve their
special encoding.

3. LUT based optimizations and architecture mapping
Index path optimizations involves the detection of subnets with particular
topologies. As an example, linear cascade of tables can be collapsed in a single
table. For logic translation, each index-based table is given to logic synthesis
tools to produce an equivalent binary description. At this stage we must also
take into account the size of LUT memories in the target architecture. The
result is a hierarchical logic description which is a binary equivalent for the
high level program.
The last stage is to place and route the logic graph using the generic tools
in the framework, producing a hardware module for further system handling
and binding.

3.2 Hierarchical aspects

In section 3.1 we supposed that the program can be directly synthesized at each
function call. We are now considering the more general case where calls must be
developed to reach this condition.

The logic needed to implement a particular function call depends on the
expressed algorithm, the number of parameters, the number of possible values for
parameters and the original encoding of values in the higher level environment.
A valuable property of an algorithm is its ability to quickly decrease the number
of values present on graph edges. This gradual decrease comes from function
calls that are processed in the same way as their root function, for every node
showing an excessive complexity related to synthesis.

When the compiler reaches a condition where logic tools will be inefficient, it
creates a new compilation context and process recursively the call. The context
will return a structured logic description that will be installed as part of the
current level production. :

The technical form of a logic description associated to a compiled program is
a hierarchical BLIF description that can be partially flattened for further logic
optimization, and partially placed under control of a floor planner. In this case
each developed function call has its corresponding circuit component assembled
in the global hierarchy.

A more speculative compiler built-in function is type partitioning. When a
data set appears to be too much large, the compiler can divide the type in
order to reach a grain suitable with synthesis. Automatic type division by the



compiler should be considered only as a quick approximation, since the function
algorithms are normally written to manage synthesis complexity at high level.

A similar situation is the knowledge of a ’best encoding’ for values. As an
example, the order of elements in a Galois field has an influence on the logic
complexity of basic operators. If these operations are dominant in the code, type-
based rules must be managed by the compiler to prevent new type generation
in node outputs.

4 A RAID error correction case study

The procedure for flat expressions is illustrated by the example of a RAID system
correction system. In RAID system redundancy for error correction is kept using
Reed-Solomon (RS) coding over Galois Fields. Here we have made the choice
of a field with 2¢ elements. We will concentrate on the implementation of the
encoder/decoder parts. We will talk of n : m RS indicating a RS schema where
m checksum disks are used as redundancy for n disks of data.

Basically, the encoder part will take the n streams to be stored in the data
disks to generate the m streams to be stored in the redundant disks. This makes
for a unique reconfiguration for a given n : m schema.

On the other hand, the decoder part will take the streams stored on disks
and return the original data streams. When all stored streams are available,
the decoders simply return the data from the data disks. However, if one (or
up to m) disks fails, the original data may need to be reconstructed from the
checksums.

The use of FPGA for encoding/decoding seems appropriate mainly for two
reasons:

— There may be little or no performance loss due to error correction. The cost
is paid only when a disk failure happens (transition from disk working to
disk non-working).

— It will provide the system with added flexibility. The ability to mutate the
circuits will allow the same hardware to be used for different failure schemas.

We have based our case study in the encoding/decoding in a word-by-word
basis. This means that, as we are talking of Galois Fields 2, we obtain cir-
cuits that take data from the streams in groups of 4 bits. As the operations for
different words are independent, it is possible to replicate the circuits to work
on multiple data words simultaneously (at the expense of logic space) to meet
desired performance.

4.1 Reed-Solomon introduction

Reed-Solomon (RS) coding allows correction of up to m errors using m checksum
words. For a system with n data words allowing error recovery for m failures, a
total of n + m words should be stored.



The basic idea of RS coding is to build a system with n + m rows and n
columns. All rows are built to be independent. Recovery from up to m errors is
possible as we could always take the available words and build a system that is
solvable. Solving that system by any technique (like Gaussian Elimination) will
provide the original data words.

Encoding: at this point we need to build m additional independent equations.
To achieve that, we will use the Vandermonde matrix and compute its associated
independent terms that will serve as checksums. This can be done by perform-
ing the following operation (where d;...d, are the data words to encode and
C1-..Cp its associated checksums):
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So in case of an error on a word of data, we can compute its value by solving
a system involving n rows of the equation. This will be possible as long as we
have n valid values in the independent term vector; that is, there are less than
N errors.

Arithmetic over Galois Fields is used as the algebra needed to solve the system,
as is closed over a field of finite size.

For a more detailed description of RS coding using arithmetic over Galois
Fields, the reader may refer to Plank’s tutorial[P1a99]. Other interesting bibli-
ography comes from C. Paar et al., for example [PR97] provides information on
GF operator complexity and implementation on FPGAs.

4.2 Encoder/decoder specification

Our objective is to obtain configurations for the encoding/decoding using RS
over Galois Fields. We are targeting a system that has a reconfigurable part to
do both, encoding and decoding. We will need a configuration for the encoder



and several configurations for decoding, one for each working condition (set of
words missing). This can be applicable to RAID systems, where the working
condition (disk failure) can be considered rare, and the cost of reconfiguration
in such a case will have little impact.

The specification has been developed in three steps:

Reed Solomon specification. The specification generates the equation 2. This
is specified as a Smalltalk class that has methods for encoding/decoding data.
The class has been build in order to allow the number of data and checksum
words at instance creation, so it can be used for any encoding size. The spec-
ification has been tested by exhaustively performing error correction using
conventional arithmetic.

Development of Galois Field arithmetic class. A Galois Field 24 for Small-
talk has been developed (GF16). The operations implemented are those
needed in our problem, following the guidelines shown in [Plag9]. Using
Smalltalk’s powerful polymorphic nature, we can apply the Reed Solomon
class using the new arithmetic. We have performed an exhaustive test of the
RS coding using the Galois Field arithmetic in order to test correctness.

Extraction of error correction expressions. Building an arithmetic-like class
that records the operations performed, we can build the expressions for the
encoding of checksums, as well as for the decoders in a given working condi-
tion. Those expressions can be packed into method code that will be compiled
to build the configurations.

As a note, the above specification took a few hours to be done, with no initial
experience on Reed-Solomon coding.

4.3 Expression compilation

From the specification, we can take the expressions for the encoders/decoders
and compile them to logic. The steps below show the most important effect of
the implementation as handled in our framework.

Type inference. After building the DAG, all edges are typed. In this case, the
inputs are data and checksum words, all of type GF16.

Constant folding. Due to the generated nature of our expressions, there are
plenty of operations over constants. Those are all removed in this steps. Also
operations wielding a constant result (like multiplication by 0) are removed.

Dead code removal. As a result of removing multiplication by 0 operations,
and due to the nature of automatically generated expressions, it is possible
that there are expressions whose result is never used, so they are removed.

Code factorization. That is, common sub-expression elimination.

Operator LUTification. This step is the first one towards architecture bind-
ing. It transforms the symbolic operations into look up tables suitable for
logic synthesis.

No-op removal. Unary operators whose output is equivalent to its input are
removed.



Operator fusion. Unary operators are removed by fusing them with its pro-
ducer/consumer operators. We assume that this will provide a better imple-
mentation.

Circuit production. Several circuits have been produced to collect practical
information of the results.

4.4 Encoders/decoders statistics

Tables 1 and 2 display respectively statistics for the 3 necessary encoders and
all the possible decoders for disk failures. The tables has columns showing the
decrease in the number of GF16 operators, average number of inputs per oper-
ator, and the critical path in the network of operators. The meaning of rows is
the observed value after each optimization operation as described in section 4.3.
Correctness has been checked at the logic level by selecting random inputs
and verifying the output after logic synthesis using SIS simulate command.

Table 1. statistics for encoders-RS4:3.

Compiler operators|average|critical
operation input| path
type inference 12 2 6
constant folding 8 2 5
dead-code removal 8 2 5
code factorization 8 2 5
operator to LUT 8| 1.375 5
no-op removal 5 1.67| 3.67
operator fusion 3 2 3

Table 2. statistics for decoders-RS4:3.

Compiler operators|average|critical
operation input| path
type inference 85.08 2| 11.24
constant folding 11.68 2| 7.65
dead-code removal 11.68 2| 7.65
code factorization 10.41 2| 17.65
operator to LUTs 10.41 1.43| 7.65
no-op removal 7.42 1.65( 5.75
operator fusion 4.5 2| 3.625




Table 3. Compiler result for disk 1 decoder, with disks 1 and 2 broken

Compiler operators|average|critical
operation input{ path
type inference 90 2 15
constant folding 30 2 12
dead-code removal 30 2 12
code factorization 30 2 12
LUTification 30 1.47 12
no-op removal 21 1.67 9
operator fusion 14 2 8

Table 4. Compiler result for disk 2 encoder

Compiler operators|average|critical
operation input| path
type inference 24 2 10
constant folding 16 2 9
dead-code removal 16 2 9
code factorization 16 2 9
LUTification 16 1.44 9
no-op removal 14 15 8
operator fusion 7 2 7

4.5 Specific 8:2 case with circuit generation

This time, the case of a RAID system with 8 data disks and 2 redundant disks is
considered. The compiler result is given for the encoder on error correction disk
2 (Table 4), and then for the decoder on first data disk, with data disk 1 and 2
in failure (Table 3).

These circuits has been optimized and mapped to 2 different architectures
having 2-LUT and 4-LUT cells. The table 5 shows the compared characteristics
of the encoder and decoder on these architectures. Each one has a routing channel
of size 8 inside the cell patterns, providing a first run success. Some parameters
are extracted that can be used at a higher level, as an example for system
management of the reconfigurable logic resources, or for making choices in the
compiler generation code strategy. Notice that at the end of optimization on
LUT, it is easy to generate processor code and table contents equivalent to the
network of reconfigurable logic cells.

The table has two parts for post-assembly optimized logic and simple struc-
tured assembly as it is used for floor planning. The presented characteristics
are:

. total circuit area in number of cell patterns,

. gates used in this area,

. number of inputs for the circuit,

. effective number of cells used to implement logic,

= D =



5. the average of used inputs in module cells including the border
6. the same measure for cells in (4)

Notice that (3)+(4)=(2), with (4) being low. The circuit is I/O dominated.
Gates used in (3) disappear when the module is connected to other architecture
element.

Routing cost (7) is an estimation on the number of resources allocated for
connections. Critical path (8) is the maximum number of cells and other re-
sources allocated in the circuit between an input and an output, with unitary
costs. CPU time (9) provides an idea of the delay to place an route the circuit
on a PC/750Mhz with the Visualworks environment running on Linux. Figures
6 and 7 are views on these decoders as generated by the tools.

(10) is the maximum area occupied by the assembly of elementary modules
without post-assembly optimization, and without the use of the floor planner.
(11) is the maximum number of cells used in this area, and (12) is the number of
cells used to implement logic in the area. (12) is similar to (4). A good measure
of the post-assembly optimization is the respective 46% and 27% logic decreases
in the cases of the decoder and encoder. The use of the floor planner will bring
(10) and (11) closer to (1) and (2).

Table 5. Results from place and route on 2 architectures

Encoder Decoder

LUT 2|LUT4|LUT2|LUT4
Area (1) 90| 56| 121 72
Cells Used (2) 85 53| 119 71
Input cells (3) 32| 32| 40| 40
Internal cells (4) 53 21 79 31
Input average (5) 1.62| 2.04| 1.67| 2.23
Gates Input average (6) 20| 3.62] 20| 3.81
Routing Cost (7) 1095] 640| 1839] 1049
Critical Path (8) 18| 14| 19| 15
CPU Time (9) 43.14| 20.34| 98.70| 34.89
Max struct. area (10) 128 88| 208 176
Cells used (11) 109 85| 181 170
Internal cells (12) 53 29 79 58

5 Conclusion

The section 1 has presented our project in three parts. Reconfigurable architec-
tures modeling tools are operational, with a practical implementation on xc6200
and active work to address the Virtex. Another development is in progress for
a low power FPGA prototype architecture. Using these tools, one can describe
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regular circuits for operators or processing networks by replication and channel
routing.

The compiler described in this paper is a work in progress. With the excep-
tion of optimization for variable dependencies, it is now possible to produce an
optimized hierarchical logic description suitable for technology mapping, then
place and route. This compiler handles optimization mostly at high level, re-
moving a considerable load on logic mapping algorithms. The execution model
can be understood as a specific lookup memory unit linking symbolically input
stimuli to outputs. The strength in optimization comes from the fact that the
knowledge of values being processed allows to simplify computations either at
high level or at logic level.

The most important point is that this method gives the possibility to create
specific logic based on concise behavioral algorithm expression that is reusable
in a variety of situations on different kind of data. Binding nodes to memories
or arithmetic operators is feasible based on the architectural model and types
propagated inside the computation graph.

We find in the object oriented approach very promising results either for
architecture management and high level synthesis which must be considered as
a productivity tool in the context of systems on chips.
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Abstract. Polymorphous computing architectures refer to computing platforms
whose computation and communication structures can be changed over time.
The objective of such platforms is to use the underlying reconfigurable compo-
nents and attributes to adapt to dynamically changing constraints, objectives,
and characteristics in the applications that execute on them. In this paper, we
present a model for executing applications with non-deterministic execution
times and time-varying performance requirements on a polymorphous architec-
ture. We analyze the complexity of various issues related to the model, and iden-
tify some broadly-applicable conditions under which the complexity of these
issues can be reduced. We develop a heuristic framework for guiding the run-
time configuration adaptation process, and show through simulation experiments
that this approach can efficiently handle both dynamics in performance require-
ments and in task execution times.

1. Introduction

There have been many advancements in recent years on architectures for recon-
figurable processing engines (e.g, see [7][12][13]). With the increasing degree of
reconfigurability in processing architectures, it is useful to view embedded multipro-
cessor systems as polymorphous computing architectures (PCAs) in which config-
urable attributes of the architecture and software are adapted in response to
dynamically changing needs. Such attributes may include items such as inter-processor
message routing, caching policies, scheduling policies, processor voltages, resource
allocation to computing units, and synchronization protocols. A PCA can be a particu-
larly useful platform for developing a computing system where applications and per-
formance requirements change at run-time as one can adaptively configure the PCA to
suit the dynamic constraints and objectives.

This paper takes a step towards bridging techniques for scheduling and system
synthesis with reconfigurable processing platforms and the dynamically-changing
application requirements that drive these platforms. We first formulate the problem of
executing application dataflow graphs on a polymorphous computing architecture such
that specified performance requirements are satisfied, where the requirements may
vary over time and the application may have tasks with non-deterministic execution
times (e.g., due to data dependencies or unpredictable events such as cache misses and
interrupts). We analyze key properties of this problem and the complexity of some rel-
evant sub-problems. We then develop a flexible heuristic framework for guiding the



run-time configuration adaptation process, and show through simulation experiments
that this approach can efficiently handle both dynamics in performance requirements
and dynamics in task execution time behavior.

In the application model addressed in this paper, computational tasks (actors),
which are represented by dataflow graph vertices, in the application are allowed to
have stochastic execution times with static distributions or distributions that may vary
slowly over time. The computing unit is a reconfigurable multiprocessor architecture,
and the objective is to find a mapping of the actors in the application onto the proces-
sors in the multiprocessor and the configuration that the architecture should assume
such that performance-related constraints (e.g., constraints on power, resource usage or
throughput) are satisfied and objectives (e.g., maximizing throughput or minimizing
latency) are optimized effectively. Furthermore, the constraints and objectives may
vary over time, and thus, overall solution quality can be viewed in terms of how effi-
ciently reconfiguration of the architecture tracks changes in the application’s require-
ments. Henceforth, we will refer to this problem as the polymorphous computing
architecture mapping (PCA mapping) problem. As can be seen, the PCA mapping
problem is quite general in nature and even very restricted special cases can be proved
to be NP-complete.

The approach suggested in this paper is correspondingly general and can handle
diverse applications and performance requirements. All the reported experiments were
performed on an abstraction of the Raw architecture [12] that incorporates salient fea-
tures of the architecture such as the programmability of interconnects between proces-
sors. For experiments, the self-timed execution of applications on this abstracted Raw
architecture was simulated using the inter-processor communication (IPC) graph
model [12].

The emphasis in this paper is on coordination of the on line configuration man-
agement process for reconfigurable networks of processors, rather than the develop-
ment of specialized configuration optimization techniques (such as fixed-objective
scheduling and allocation), which are already in abundance in the literature (e.g., see
[11] for a survey). Our work is complementary to such existing efforts and also to
work on multiprocessor system synthesis [1][2], which can be used to derive the store
of pre-computed configurations that is input to the techniques developed in this paper.

2. Problem formulation

A set of relevant metrics, such as latency, throughput, average power, peak
power, and number of resources, is denoted by M . If a certain metric appears as a con-
straint with a value to be satisfied when the application executes, then this metric is
referred to as a constraint metric and the value as a constraint value for that particular
metric. A constraint value belongs to the set of real numbers. A pair of constraint met-
ric and constraint value is called a constrain pair. A sequence of constraint pairs in
turn is referred to as a constraint vector, and is denoted by

V= [(mlscl)’ (m2’ Cz)s LR (mK’ CK)]a (1)
where m,, m,, ..., my represent any K metrics in M, and c|, c,, ..., cx represent the

corresponding constraint values, for K € {0, N}, where N is the number of all con-
straint pairs. This (possibly empty) sequence of constraint pairs in a constraint vector
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is prioritized such that (m;, ¢;) is a higher priority constraint pair than a constraint pair
(mj, c].) if i<j, for ije{l,2,..,K} in a constraint vector
V= 1(my,cy), (my, cy), ..., (Mg, cp)]. A metric m that is to be optimized after all
constraints have been satisfied is called a residual objective. A goal g is an ordered
pair (V, mp), where V' is a constraint vector and m , is a residual objective. If there is
no residual objective, then the goal is composed of only a constraint vector and can be
represented by (V, L) . Here, the symbol L represents the absence of a residual objec-
tive. Also, without loss of generality, the metrics are such that the associated optimiza-
tion problems are to minimize the metric (i.e., a lower value of a metric is always better
than a higher value). Metrics for which higher values are more desirable must thus be
transformed into corresponding metrics for which lower values are better. For exam-
ple, in iterative applications, the throughput (average rate of completion of application
iterations) can be re-cast as the average iteration period, which is the reciprocal of the
throughput.

Example 1: Consider a set of relevant metrics M = {L, P, T}, where L is the
latency, P is the average power consumption, and 7 is the iteration period. Consider
the goal g = [(L,50), (P, 100), (L, 40),(P,70),T]. In g, the constraint pair
(L, 50) has higher priority than the constraint pair (P, 100), which in turn has higher
priority than the constraint pair (L, 40) . The metric T is the residual objective.

This definition of reconfiguration goals as prioritized lists with optional residual
objectives leads to a view of dynamic reconfiguration as a sequence of one-dimen-
sional optimization problems. This simplification is useful because run-time adapta-
tion techniques must be of relatively low complexity, and thus, one-dimensional
optimization is a better match. Additionally, it allows us to leverage existing libraries
of single-dimensional synthesis techniques, which are more abundant than multi-
dimensional techniques. Third, it provides an intuitive and unambiguous format for
designers to prioritize multidimensional application requirements. Note, however, that
this formulation applies only to run-time reconfiguration, and multi-dimensional opti-
mization techniques, such as SPEA-based methods [14], can be used off-line in arbi-
trary ways to compute caches of pre-computed configurations. Use of such caches will
be discussed further in Section 3.2-5.

For example, in Example 1, we initially have an unconstrained latency optimiza-
tion problem (since the first constraint involves latency). As we adapt the system con-
figuration with techniques that address this problem, we will in general improve the
latency. Once the latency improves to 50 time units, the current constraint is satisfied,
and we switch to a power-optimization problem subject to a constraint of L = 50.
The optimization process may continue in this manner until the last constraint is satis-
fied (in this case, P = 70), at which point run-time adaptation stops (if there is no
residual objective) or reaches a terminal mode of optimizing the residual objective
subject to all constraints in the constraint vector. This mode then continues until the
system shuts down or the application’s goal changes.

Mapping an application to a multiprocessor architecture includes defining a task-
to-processor mapping along with defining the configuration of the reconfigurable
architecture. In this paper, the scope of the word “configuration” is expanded to
include also the mapping of the application onto the reconfigurable architecture.

3



Therefore, a configuration consists of two components 1) task-to-processor mapping
and 2) configuration of the architecture. Henceforth, the word “configuration” is used
in the above sense, unless stated otherwise. A given application, goal, and resource set
define an instance of the PCA mapping problem. Input to the model is an instance that
may change with time. We define the design space as the set of all feasible combina-
tions of an instance and a configuration. The solution space for a feasible instance is
the set of all feasible configurations for that instance. Latency, throughput, average
power and peak power are some of the commonly encountered metrics. With many
metrics of simultaneous relevance, the goal space is too vast to be fully explored
before run-time, and run-time adaptation of configurations is generally advantageous.

Figure 1 illustrates a general model for solving the PCA mapping algorithm with
a combination of off-line and on-line techniques. The main components of the model
are the off-line component, the configuration store (CS), and the on-line component.
The off-line component, whose objective is to pre-compute a set of efficient candidate
mappings for various run-time scenarios, can be constructed using existing methods
for scheduling, system synthesis, and multi-objective optimization. The focus of this
paper is thus on the on-line refinement component and its interaction with the configu-
ration store.

For a given instance, not every configuration is suitable as some configurations
may violate constraints or may not adequately address residual objectives. As the goal
changes for a given application, the system needs to derive a suitable adaptation of the
run-time configuration. Optimally solving this problem is undecidable in many con-
texts. Also, reconfigurability of the architecture and the stochastic variance of execu-
tion times greatly complicates the solution space consisting of all possible
configurations for the input of a goal and a given application. Since computing a suit-
able configuration is performed during the execution of an application, one can not
apply exhaustive or relatively sophisticated search strategies as those techniques will
take away excessive computational resources away from the application itself. To
address this trade-off (thoroughness of dynamic optimization vs. resources drained
from the application), our model of the PCA mapping problem also accounts for the
time spent in computing efficient adaptations of mappings at run-time on the basis of
feedback obtained from execution and identification of bottlenecks, and hence always
tries to move towards an optimal solution. This is taken care of in the on-line refine-
ment part of the model, which consists of low-complexity algorithms that find and
refine configurations for a given instance. It also consists of feedback units shown by
the “Identify bottlenecks” block in Figure 1 that takes feedback from the execution of
the configurations and modifies the configurations so as to better suit the active goal.
The OnlineStats unit in the on-line refinement part of the model stores short-term sta-
tistics that can be used by on-line algorithms.

A configuration store is used to store high-quality points in the design space that
have been explored so that one can use them later as need be. The off-line refinement
part of Figure 1 consists of high-complexity algorithms that yield better solutions. It is
acceptable for them to be of high-complexity as they are used off-line, and do not com-
pete for resources with the application. In Figure 1, the STATS unit stores statistics
about the application (e.g., distributions of execution times for different actors, fre-



quencies of occurrence of some particular regions of the goal space, etc.). Off-line
algorithms use these statistics to explore the solution space for input instances.

As soon as the goal or application changes, an initial configuration is found using
the on-line configuration management component in conjunction with the configura-
tion store. On-line algorithms keep improving the configuration that is being executed,
using the feedback from the execution. In the meantime, oft-line algorithms may keep
exploring areas of design space and merge the relevant information into the configura-
tion store (for use in the selection of future initial configurations).

Application
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Fig. 1. An overview of the system-level reconfiguration framework studied in this paper.



3. Configuration management model

The overview of our PCA system synthesis model shows that it is very adaptive
in nature and hence is suitable for applications with stochastic execution times and
time-varying goals. This section develops further details of this model.

31 Evaluation of configurations and goals

It is useful to define some measure of how well a given configuration executes
for a particular instance. This evaluation measure should allow unambiguous compari-
son between two configurations based on the current goal.

Suppose we are given a goal g = [V, mp], where

V="1[(m,cy),(my cy), ..., (m,, c,)]. (2)
We define the quality of a system configuration C with respect to goal g, denoted
0_(C) (or simply Q(C) if g is understood) as the ordered pair Q(C) = (&, v),
wﬁere k+1 is the index of first unsatisfied constraint in the constraint vector of g
(i.e., the lowest-index constraint in g that is not satisfied by the configuration), and v
is the value obtained for the metric m; , | . If configuration C satisfies all n con-
straints in the constraint vector of g, then we say that C satisfies g, and in this case,
Q(C) = (n+1,vy), where v, is the value obtained for the residual objective m if
mp#l orvy = -0 if mp= 1.

In summary, the quality of a configuration measures a configuration with respect
to a given goal, and given a goal and two configurations C; and C, with qualities
o(Cy) = (ky,vy) and Q(C,) = (k,,v,) for that instance, respectively, C; has
higher quality than C, if

(k;>k,) or (k; = ky)and (v, <v,)). 3)

3.2 Configuration store

A configuration store serves as a repository of alternative configurations. A con-
figuration store can be divided into several sub-stores (sub-CSs), one for each relevant
application. Each sub-CS has some configurations stored in it, one for a specific com-
bination of goal and resource set. In the later part of this section, we assume that we are
dealing with a fixed application and a fixed resource set, unless stated otherwise. This
does not detract from the generality of the ideas developed later as they can be general-
ized to include various applications and resource sets using the hierarchical model of
configuration store explained above.

Assuming a fixed application and resource set, selecting the goals whose corre-
sponding configurations should be stored in the configuration store depends on various
factors such as the size of the configuration store; the optimality of the stored configu-
ration; computational resources drained from the application during execution by the
on-line refinement algorithms; and the expected or observed frequency of specific
goals.

3.3 Acceptability of configurations

Notions of acceptability and cover emerge naturally from this concept of config-
urations stores, and guide the construction and adaptation of the configuration store in
our model. For example, one can envision the reconfiguration process as selecting an
acceptable configuration, and gradually tightening the notion of acceptability to guide
the on-line refinement process. The following definition makes these notions precise.



Definition 1: Given two goals g, and g,, we say that g, is acceptable for g, ,
denoted g, — g, , if a configuration that satisfies g, is an acceptable implementation
for g, . If g, — g, , we also say that g, covers g, . Given a set I' of goals and a spe-
cific goal g, the space of g over I' (or simply, the space of g, if I is understood) is
{g' eT'|g— g’} . Thus, the space of a goal g is the set of goals that are acceptably
implemented by any configuration that satisfies g. The space of a goal g is repre-
sented by space(g) .

The following result, proved and elaborated on in [9], shows that the acceptabil-
ity of configurations is a particularly well-behaved relation if it is a partial order.

Theorem 1: If we have a finite set I of relevant goals, and the acceptability relation is
a partial order, then there exists a unique, minimal set of goals {g,, g,, ..., g,} such
that

n

U space(g;) =T, 4)
i=1

and this set of goals can be computed in polynomial time in |I'|, the number of rele-
vant goals.

Definition 2: Dominance relation: A point paiRn dominates a point qaiRn if
p;<q; forall i = 1,...,n, where p;, and ¢, denote ith components of p and ¢,
respectively.

One can see that the dominance relation is a partial order [5]. We can have an
acceptability relation between goals based on the dominance relation where a goal g,
is acceptable for a goal g, if the constraint vector of the goal g, dominates the con-
straint vector of the goal g, , and the residual objectives for both goals are same. The
following example illustrates an acceptability relation that is not a partial order.

Example 2: Suppose that we have a single constraint metric, which is the average iter-
ation period T of the system. Thus, the constraint associated with a goal g can be
expressed as the desired average iteration period 7(g). Suppose that in a particular
implementation context, the acceptability relation g,-—>g, is defined by
T(g,)—T(g,) < AT for some positive real number AT . Thus, a configuration for g,
can be worse than what is desired under g, , and still be acceptable for g, , as long as
the deviation does not exceed the threshold AT. Suppose also that the goals g, g,
and g5 have desired average iteration period values of

3AT 3AT
T(gy) =5, T(gy) = 5—=;— and T(g3) = 5-==. 5)

One can then see that g, — g, and g, — g5 but g, is not acceptable for g . There-
fore, this acceptability relation is not transitive, and thus, is not a partial order.

An acceptability relation between goals based on the dominance relation or any
other partial order leads to valuable properties such as that exposed by Theorem 1.



Also, the dominance relation is a natural candidate for an acceptability relation among
goals, as a configuration corresponding to the dominating goal can be used in place of
a configuration corresponding to the dominated goal without violating any constraints.
This motivates our use of the dominance relation in managing configuration stores.
One can observe that our approaches of defining a goal and the quality of a configura-
tion are all consistent with acceptability based on the dominance relation.

4. On-line configuration management

In this section, we define an on-line configuration management framework called
CMF that defines how to choose an initial configuration for a particular instance, and
how the on-line adaptation for that configuration should proceed. We also formulate
problems related to storage of configurations in the configuration store. These prob-
lems and our models to solve them provide fundamental analysis of the complexity of
configuration management and provide feasible, low-complexity solutions to this
problem.

A pseudocode outline of the CMF approach is shown in Figure 2. The objective
is to provide a framework that imposes minimal constraints on how reconfiguration is
actually performed, while providing systematic support for managing the reconfigura-
tion process in terms of configuration stores, performance constraints, and optimiza-
tion objectives. CMF is a meta-algorithm because specific details of the architecture,
the application, and the on-line adaptation algorithms are left unspecified, and can be
customized based on the relevant classes of applications and architectures. This meta-
algorithm maintains a current objective at all times, where the goal is always to
improve the current objective without violating any of the previously satisfied con-
straints. The function onLineAdaptation takes an objective metric, a constraint value,
and a configuration as inputs, and keeps refining the configuration in an effort to con-
tinually improve its quality (as defined in Section 3.1). This function would typically
be called within an enclosing loop that performs any system-dependent re-initializa-
tion and re-invokes the function immediately after the previous invocation of the func-
tion terminates (observe that the function terminates when the current goal is
changed).

Pseudocode for the related functions is given in Figure 3. We have implemented
CMF, and simulation results pertaining to it are discussed in Section 5.

4.1 Issues related to configuration management

Before proceeding with discussion of our experiments with CMF, we first study
some fundamental versions of the problems related to configuration management, dis-
cuss their complexity, and relate aspects of them to well-studied problems. Two related
problems regarding the size of the configuration store are as follows.

P1. Find the minimum size configuration store and the goals that should be
stored in it such that all the relevant goals are covered.

P2. If one has a well-defined measure of “distance” between goals and the
goal-pace is a metric space [4], then for a given fixed size configuration store, find the
goals whose configurations should be stored such that the sum of the distances of those
goals that are not present in the configuration store, from the distance-wise nearest
goal present in the configuration store, is minimum.



function CcMF

/* Global variables accessed: the current goal and the set
of pre-computed configurations, respectively.

*/

gl Obal goal gc = [(mls cl)a (mza 62)9 LR (mKs cK)s mR]
gl obal configurationStore C

stack S = emptyStack ;
goal g, g,;
g~ 8, &

/* The current optimization metric and the current
constraint to satisfy

*/

objective objective, = mp

constraint constraint, = null

6 = {c € C|c satisfies g}

while (o =O) {
(g, constraint,, o@édh@c) = demoteConstraint(g, §)
6 = {c € C|c satisfies g}

/* Select an admissible configuration from ¢ using some
heuristic or specialized, optimal algorithm.
*/

cmyﬁwnnmnc = select (o)

/* Keep trying to refine the current configuration accord-
ing to the current goal until the goal changes (g, may
change at any time under external control).
*/
while (g.=g,) |
while (conﬁnﬁn% is not satisfied by cmﬁ@unnmnc) {
onLineAdaptation(obkmﬁw%, constraint , ,
configuration,, )
}
/* Move to the next unsatisfied constraint or to
the residual objective */
(g, cmmﬂuhnc, o@édh@c) = promoteConstraint (g, S)
}
end function

Fig. 2. The CMF framework for goal-driven reconfiguration.
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P1 and P2 can be viewed, respectively, in terms of the well-known problems of
minimum dominating sets and k-medians. To reduce P1 from the minimum dominat-
ing set problem [5], for every vertex in the dominating set problem, instantiate a goal,
and for every edge, instantiate a condition that the goal corresponding to the source
vertex is acceptable to the goal corresponding to the sink vertex. The problem P1
related to this set of goals and the acceptability relation among goals is equivalent to
the given minimum dominating set problem instance. The vertices in the given mini-
mum dominating set problem instance, corresponding to the goals that should be
stored in the configuration store (found by solving P1) constitute a minimum dominat-
ing set for the given minimum dominating set problem instance. This can be used to
show that the problem P1 is NP-hard (see [9] for more details). However, if the accept-
ability relation is a partial order, then the minimum dominating set can be found in
polynomial-time by picking up all the vertices with no incoming edges in the graph of
the minimum dominating set problem. This is in accordance with Theorem 1, and fur-
ther underscores the advantage of using acceptability relations that are partial orders.

If the associated distance function is defined between any two goals and the goal-
space is a metric space, then problem P2 can be modeled in terms of the k-median

function promoteConstraint

input goal g = [(my,c|),(my,Cy), .., (Mg |, Cpr 1)y M), stack S
out put goal, constraint, objective

goal g’

constraint v = S.pop()

objective m = S.pop()

constraint x = S.pop()

S.push(x)

g = [(my,c)), (my,cy)y ey (Mg, Cp_ 1), (Mg, v), m]
return {g', x, m)

end function

function demoteConstraint

input goal g = [(my,cy),(my,Cy), ..., (Mg, cx), mp], stack S
out put goal, constraint, objective

goal g’

S.push(m )

S.push(cy)

g = [(my,c)), (my,cy)y ey (Mg, Cp_ 1)y mg]

return (g', cg, mg)

end function

Fig. 3. Definition of functions promoteConstraint and demoteConstraint from Figure 2.
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problem [2, 8], as shown in [9]. For the simple case of a two-dimensional goal space, a
polynomial-time approximation algorithm with a 3-approximation factor exists for the
k -median problem [2].

Configuration management problems P1 and P2 can be viewed as extreme cases
in the sense that in one of them we want to cover all feasible goals without considering
how large the minimum size configuration store would be (P1), and in the other case,
we have a fixed size configuration store and we are trying to find out the maximum
number of goals that can be covered using that configuration store even though that
number could be much less than the total number of relevant goals (P2). A more elab-
orate formulation would be one in which we have to pay extra cost for increasing the
size of the configuration store, but we would be gaining some additional service by
that by being able to store more goals in the configuration store. This way we can
explore various trade-offs between the size of the configuration store vs. the number of
goals stored in a well-defined way. For the specific case when a distance function is
defined between any two goals and the goal-space is a metric space, these trade-offs
can be explored by modeling this problem as a facility-location problem [4, 8, 10], as
explained in [9]. A polynomial-time algorithm with an approximation guarantee of
1.74 exists for the facility location problem [4].

5. On-line adaptation

In this section, we focus on the metrics of throughput and power consumption,
and develop low-complexity, on-line strategies based on heuristics for throughput opti-
mization and power optimization as implementations of the function onLineAdapta-
tion in Figure 2. The objective is to demonstrate the efficacy of the CMF model, and
show that it can produce efficient tracking of time-varying application requirements.

The approach of taking feedback from the execution of the application makes
these on-line methods able to handle even applications with stochastic execution times
that have time-varying distributions, in addition to applications with fixed execution
times, and applications with stochastic attributes that have stationary distributions. In
general, this on-line refinement formulation can thus be viewed as an approach to
tracking the dynamics of the goal and the characteristics of the application.

To experiment with CMF, we used a simple heuristic based on load balancing
[15] to optimize throughput during online adaptation. Pseudocode for this heuristic is
represented by function adaptThroughput in Figure 4. In the pseudocode,
moveTask(c, n) is a function that chooses # tasks from a maximally loaded processor
in a configuration ¢, and randomly, moves them to appropriate locations on a mini-
mally loaded processor, and returns the modified configuration. Randomization in
choosing tasks from the maximally loaded processor provides a low-complexity
approach to increase the explored region of the design space and to calibrate the con-
figuration to dynamic application characteristics. The function executeTr(c,!) is a
function that executes the application according to configuration ¢ for a time interval
of length /, and returns the throughput of the application during that interval. The
value of / to use depends on the non-determinacy of the application. We define the
non-determinacy of an application in the following way.

Let the number of possible execution times taken by an actor i be denoted by ;.
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We denote the set of n; possible execution times taken by an actor i as
{t;1>t;5> ---» ;,, }. The probability of occurrence of a possible execution time ¢, for
actor i, is denoted by Pii-forall k = 1, ..., n;. The degree of non-determinacy A is a
measure of the overall amount of non-determinacy in the application, specifically, in
the actor execution times, and is defined as

n.
1

z Z {pik(tik_ti,meun)z}

i k=1

2 = —— : (6)
ti,mean

i

where ¢; .. denotes the mean execution time of actor i, and is defined as

/* This function adapts the given input configuration
while executing the application.

*/

functi on adapt Thr oughput

i nput configuration ¢

gl obal constant time timelimit, time [

time ¢, = executeTr(c, /)
time ¢
configuration ¢, ;= ¢
n=1
whi | e (clock < timelimit) {
¢ = moveTask(c,; , n)
if (exhausted all n-task movements
without improvement) {
n=n+l
¢ = moveTaskTr(c,; 1)
}
t = executeTr(c, 1)
i€ (121,,) |

Cotd ~— €
lotg =1
n=1

}
clock = clock +/

}
end function

Fig. 4. An online adaptation approach for throughput optimization.
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n

i
ti,mean = Z tik /nz" (7)
k=1

Generally, the more non-deterministic the application is, the longer it needs to be
executed to determine an accurate value of average throughput.

The function adaptThroughput returns a configuration that it deems most appro-
priate for throughput maximization. Note that if moving any single task from the max-
imally loaded processor to the minimally loaded processor does not improve
performance then the heuristic chooses a pair of tasks to be moved to another proces-
sor. This approach of progressively increasing the number of tasks to be moved contin-
ues whenever all combinations for a particular number of tasks have been exhausted.
This approach thus attempts to make small low-complexity changes first and if that
does not improve performance, the approach gradually reaches towards higher-com-
plexity changes. The higher complexity changes are larger in number than small, low-
complexity changes, and help the system in escaping from local minima.

In our experiments, inter-processor communication (IPC) per time unit during the
execution is taken as an estimate for relative power consumption. Since IPC consumes
relatively large amounts of power, it is a reasonable approximation for comparing the
power consumption levels of alternative configurations on a homogeneous multipro-
cessor. To find a configuration that reduces the power consumption, we use an
approach (called adaptPower) similar to the adaptThroughput approach used for
throughput optimization, except that the probability of a task on a maximally loaded
processor being transferred to a minimally loaded processor depends upon the IPC
associated with that task. The higher the IPC associated with a task, the higher its
chances are of being transferred to another processor.

6. Experimental results

An on-line adaptation scheme for refining a given goal is specified in Figure 5,
and it is represented as function onlineAdaptation in the CMF pseudocode of Figure 2.
In Figure 5, the appropriate online optimization strategy, such as the adaptThroughput
or adaptPower approaches discussed above, is selected depending on the current opti-
mization objective and system state. Typically, this strategy will be drawn dynamically
from a library of simple, low-complexity techniques.

Table 1 shows the performance of our implementation of CMF using the heuris-
tics developed in Section 5 for throughput optimization and power optimization based
on various goals applied to several DSP benchmarks, including fast Fourier transform,
filter bank, music synthesis, and measurement applications. The starting configuration
that is refined is found by using standard critical path scheduling. The critical path
length is computed in terms of average execution times of actors. The set of relevant
metrics M for our experiments is M = {T, P}, where T denotes the average iteration
period of the execution and P denotes the average power consumption. Experiments
are reported for the following eight goals.

g, = {(P, 0.270), (T, 265), (P, 0.250), (T, 0.255), P}
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g, = {(T, 260), (P, 0.240), T}

g3 = {P, 0.125), (T, 180), P}

g4 = (T, 165), (P, 0.110), (T, 160), P}

g5 = {(T, 360), (P, 0.160), (T, 355), (P, 0.155), (T, 350), P}

g6 = {(T> 345)9 P}

g7 = (T, 215), (P, 0.040),T}

gg = {(P,0.053), (T, 215), (P, 0.050), (T, 210), P}

In Table 1, the column titled “Goal” represents the goal that is applied to the
application. Also, for a non-negative integer k, column v, denotes the value of a met-
ric of the best configuration found by the on-line adaptation scheme, after k£ configura-
tions have been assessed by executing them for some time. For the same experiments
that are reported in Table 1, Table 2 shows the times at which different constraints
associated with the applied goals are satisfied. For a given goal that is applied to an
application, n; denotes the number of configurations that have been executed in order
to assess them before the ith constraint in the applied goal is satisfied. One can see

Ap}())llllcatl A Goal | Metric | vy | vig | Vao | Y30 | Va0 | V50 | Veo
fttl 0 g1 T 278 | 278 | 278 | 278 | 256 | 254 | 254
P 273 | .269 | 269 | .269 | .204 | .226 | .226

fttl 359 g T 309 | 256 | 251 | 251 | 251 | 252 | 259
P 242 | 282 | 278 | 278 | .278 | .257 | .221

qmf 0 g3 T 145 | 242 | 198 | 198 | 186 | 170 | 170
P 1331117 | .098 | .098 | .088 | .096 | .096

qmf 256 g4 T 142 | 164 | 162 | 162 | 153 | 153 | 153
P 136 | 127 | (110 | .110 | .110 | .110 | .110

karp 0 gs T 395 | 353 | 346 | 342 | 342 | 342 | 342
P A31 | 158 | (156 | 148 | .148 | .148 | .148

karp .309 gs T 450 | 352 | 300 | 342 | 342 | 346 | 346
P A15 | 155 | 159 | .151 | .151 | .148 | .148

meas 0 g7 T 220 | 212 | 201 | 184 | 184 | 184 | 184
P .054 | .075 | .059 | .021 | .021 | .021 | .021

meas 405 g3 T 185 | 218 | 212 | 212 | 212 | 210 | 196
P .064 | .018 | .037 | .037 | .037 | .019 | .040

Table 1. Experimental results for CMF.
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function onLineAdaptation

input objective,, constraint, , configuration,
gl obal goal g, g., g,

gl obal constant time timelimit

gl obal stack § /* constraint stack */

time ¢t =0
while (t<timelimit and g, = g, ){
while constraintc is not satisfied {
if (objectiveC = throughput ) {
adaptThroughput (conﬁgurationc )
} else if ( objectivec = power ) {
adaptPower (conﬁgurationc )
} else if ..
.. /* adapt for other objectives */ ..
}
}

(g, constmintc, objectivec) = promoteConstraint (g, S)

}
end function

Fig. 5. On-line adaptation scheme. This is an elaboration of function onLineAdaptation,
which is called in Figure 2. It is effectively a wrapper for specialized reconfiguration opti-
mizations.

App. A Goal n, 1,y ny ny ns
fft1 0 g 1 37 39 42 -
fftl 359 2, 7 56 - - -
qmf 0 23 8 48 - - -
qmf 256 g4 0 13 36 - -
karp 0 gs 4 7 9 28 28
karp .309 gs 16 - - - -
meas 0 g7 8 28 - - -
meas 405 g3 3 17 17 48 -

Table 2. Results for CMF tracking an applied goal.
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that in these experiments, CMF is able to meet the constraints specified in the given
goals within a reasonable number of configurations.

7. Conclusion

In this paper, we have developed a framework called CMF for on-line adaptation
of system-wide configurations of embedded multiprocessors. The objective is to pro-
vide a framework that imposes minimal constraints on how reconfiguration is actually
performed (i.e., the specific optimization algorithms that are used during off-line and
online configuration synthesis), while providing systematic support for managing the
reconfiguration process in terms of configuration stores, performance constraints, and
optimization objectives. The CMF approach is shown to be effective through analysis
and experimental results on several DSP benchmarks, which demonstrate the ability of
CMF to systematically adapt system configurations towards progressively better solu-
tions for a variety of goals, even in the presence of significant uncertainties in task exe-
cution times.
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Abstract. This paper presents a tutorial about the Flexible Instruction
Processor (FIP) methodology which facilitates trade-offs between area,
performance and functionality of instruction processor designs, both at
compile time and at run time. We explore the customisation of FIPs and
discuss the use of FIPs to target the design space between off-the-shelf
instruction processor designs that provide flexible computation, and cus-
tom hardware designs that provide high performance. We demonstrate
how customisation enables FIPs to perform competitively with current
main-stream processors and also with dedicated hardware, in certain ap-
plications such as CaffineMark Benchmarks and AES encryption.

1 Introduction

Software implementations on standard commercial processors often provide good
performance, a wide range of functionality and an effective means of targeting
evolving standards. However, they tend to lose efficiency when dealing with
non-standard operations and non-standard data that are not supported by their
instruction set [21]. Direct hardware implementations tend to provide the best
performance for a given application, but lack the flexibility of an instruction pro-
cessor. When designs are implemented on FPGAs, reconfiguration can be used to
gain functionality, thereby providing flexibility to direct hardware designs. This
is at the expense of performance, since the time required for reconfiguration can
be long and will become longer due to the increasing density of FPGAs.

The resources afforded by large programmable devices makes implement-
ing instruction processors on FPGAs increasingly attractive [6]. Customisa-
tion of processors implemented on configurable logic provides a way to balance
the trade-offs between direct hardware and software implementations. One way
of supporting customisation is to augment an instruction processor with pro-
grammable logic for implementing custom instructions.

This paper presents a tutorial introduction about the Flexible Instruction
Processor (FIP) methodology which facilitates trade-offs between area, perfor-
mance and functionality, both at compile time [19] and at run time [20]. In
particular, we explore the customisation of FIPs and discuss the use of FIPs
to target the design space between off-the-shelf instruction processor designs
that provide flexible computation, and custom hardware designs that provide
high performance. We demonstrate how customisation enables FIPs to perform
competitively with current main-stream processors and also with dedicated hard-
ware, for applications such as CaffineMark Benchmarks and AES encryption.



AES
(encrypt)

AES3

1 t
Generic AES2 (ench )

instruction processor ~

AES
(decrypt)

AES4
(decrypt)

AES1 DES

Increasing » Increasing
flexibility ” performance

Fig. 1. FIP design spectrum. On the left of the spectrum lies the generic instruction
processor, such as one that executes Java bytecodes. AES1 and AES2 are FIPs opti-
mised for AES operation. AES3 and AES4 are further optimised respectively for AES
encryption and decryption. FIPs on this spectrum have similar area constraints.

2 FIP Design Spectrum

Standard general-purpose instruction processors are highly optimised and are
implemented in custom VLSI technology. They are fixed in architecture, and
each represents a point in a spectrum of possible implementations. Our FIP
methodology provides a way of traversing the design spectrum to create cus-
tomised processors that are tuned for specific applications, at compile time and
at run time.

FIPs provide a well-defined control structure that facilitates varying the de-
gree of sharing for system resources. This allows critical resources to be increased
as demanded by the application domain, or eliminated if not used. FIPs also pro-
vide a systematic method for supporting customisation by allowing user-designed
hardware to be accommodated as new instructions. These design-time optimi-
sations provide a means of tailoring an instruction processor to a particular
application or to applications for a specific domain, such as data encryption.

Direct hardware implementations provide fast performance but once they
have been manufactured and deployed, there is little scope for improvement. In-
struction processors, on the other hand, provide a solution that is easily upgrad-
able and flexible. However this flexibility is often provided at the expense of
performance. FIPs provide a way to explore the design space between these two
extremes. For instance, custom instructions can be included into a design to
speed up their operation, at the expense of increasing area and power consump-
tion.

To illustrate our approach, consider designs that we have developed to sup-
port AES (Advanced encryption standard) [13] for data encryption and decryp-
tion. These designs have similar area constrains. AES1 in Figure 1 is a FIP imple-
mentation of the AES algorithm. It has been customised by removing hardware
associated with unused opcodes in the generic instruction processor. However
AES1 does not contain any custom instructions. AES2 has three custom in-
structions that will speedup both encryption and decryption. AES2 shows better



performance for both encryption and decryption when compared to AES1. The
new custom instructions replace the functionality of some opcodes. The opcodes
no longer in use are removed to provide area for the custom instructions. Hence
AES2 is less flexible than AES1, in that some programs executable on AES1 may
no longer be executable on AES2. AES3 is a further specialisation that improves
the performance of AES encryption: a new custom instruction that replaces the
inner loop for encryption has been introduced. This provides a four-fold speedup
over AES2; however, the three custom instructions introduced in AES2 have to
be removed to make space for this new instruction. So while encryption speed is
improved, decryption speed suffers. AES4 specialises the decryption routine to
give a five-fold improvement over AES2 but with the same kind of trade-offs as
AES3.

In contrast to FIPs, each conventional instruction processor occupies one
point in the design spectrum shown in Figure 1. Once deployed, these processors
cannot adapt itself to suit run-time conditions, unlike FIPs.

3 Related Work

The viability of implementing instruction processors on FPGAs has been demon-
strated by Altera [2] and Xilinx [28]. Many techniques and tools for customising
instruction processors have been reported. This section outlines a small subset
and organises them into three categories: fixed processors coupled with config-
urable logic, partially configurable processors, and fully configurable processors.

The PRISC [18], Chimaera [7], ConCISe [9] and DISC [26] architectures are
examples of systems that couple a fixed processor core with field programmable
hardware. PRISC provides customisation in the form of programmable func-
tional units. The goal of PRISC is to augment the performance of the RISC
microprocessor by allowing programmable functional units to be pipelined at
a granularity that is smaller than the existing cycle time. The Chimaera sys-
tem is similar to PRISC. The Chimaera reconfigurable functional unit can be
configured to implement a 4-LUT, two 3-LUTSs or a 3-LUT or a carry chain
computation. However, Chimaera logic cells do not contain latches or flip-flops
and require results to be stored back to the register file.

The ConClISe system features a CPLD-based reconfigurable functional unit
and a system to encode multiple custom instructions in a single reconfigurable
unit. The objective of this technique is to reduce the time for reconfiguration.
Custom instructions implementable in ConCISe are limited to combinational
logic. These three systems, PRISC, Chimaera and ConCISe, provide compilation
tools that attempt to automatically generate mappings for the reconfigurable
logic. Custom instructions tend to be fine-grain and relatively small, due in part
to the difficulty of the matching problem and the size of the programmable fabric
available. Like the systems mentioned above, DISC consists of a main processor
coupled with reconfigurable functional units. The DISC system requires custom
instructions to be identified and programmed manually. The main focus of the
DISC system is in the handling of the loading of custom instructions. DISC



treats the reconfigurable logic as a cache, with a miss in the cache resulting in
an automatic stall and the loading of the required custom instruction. Several
vendors [1,24,27] are also offering a route to implementations featuring fixed
processor cores interfaced to programmable logic.

NIOS [2], MicroBlaze [28] and Xtensa [23] are configurable processors that
implement a fixed instruction set, but allows the implementation of the proces-
sor to be customised to a limited degree. NIOS and MicroBlaze are designed
to be configured and run on an FPGA, while Xtensa is designed to be imple-
mented on ASICs. Design tools for these systems help the processor designer
to customise a processor at design time. The NIOS and Xtensa system support
custom instructions but they require the custom instructions to be hand-crafted.

CRISP [3] and BUILDABONG [16, 22] are projects that explore methods for
prototyping instruction sets and application specific processor designs. CRISP
provides a template for reconfigurable instruction set processors to be described.
The BUILDABONG project divides its goals into four phases: architecture de-
scription and composition, simulation, compiler generation and optimal archi-
tecture and compiler-codesign.

The FIP approach is based on a technique advocated by Page [15] where
instruction processor designs are captured as parallel computer programs. Our
work includes three main themes: (a) techniques for customising the design of
FIP architectures, (b) a tool framework for generating and optimising executable
code for FIPs, and (c) extensions of the above to cover run-time reconfigurable
designs. Although FIPs can target ASICs, our focus is on targeting FPGAs.
Implementing FIPs on FPGAs allow us to explore the possibility of adapting
FIPs to the run-time characteristics of a system over a period of time.

4 Flexible Instruction Processors

FIPs consist of a processor template and a set of parameters [19]. Different pro-
cessor implementations can be produced by varying the template parameters.
FIP templates provide a general structure for creating processors of different
styles: for instance stack-based or register-based processors. The processor tem-
plates can be further enhanced with features found in modern high-performance
processors, such as superscalar and pipelined architectures. Various Java Virtual
Machines [10] and MIPS style processors [12] have been implemented. Our work
is intended to provide a general method for creating processors with different
styles.

When compared with a direct hardware implementation, instruction proces-
sors have the additional overheads of instruction fetch and decode. However,
there are also many advantages.

— FIPs allow customised hardware to be accommodated as new instructions.
This combines the efficient and structured control path associated with an
instruction processor with the benefits of hand-crafted hardware. The pro-
cessor and its associated opcodes provide a means to optimise control paths
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template processor
#include stack
#include top_of_stack_reg
#include program_counter
Fetch Stack resources chan fetchchan;
send Instruction
par{
] receive Done {// -- Fetch module --
4 Instantiate Fetch_from_memory (instr) ;
arameters //send instr to Execute
3 P Fetch fetchchan ! instr;
receive pCc++;
Instruction .
decode() {// -- Execute module --
— //recieve instr from Fetch
switch() fetchchan ? instr;
{ [send Done | switch (decode (instr))
case ! i
. instr 1 #include stack_instrl
} #include stack_instr2
- b
Execute §

Fig. 2. A skeletal processor template. The Fetch module fetches an instruction from
external memory and sends it to the Execute module, which waits until the Execute
module signals that it has completed updating shared resources, such as the program
counter. This diagram also shows the instantiation of a skeletal processor into a stack
processor, and the Handel-C description of the stack processor. The par construct
allows statements to be executed in parallel. The statement c?x assigns the value read
from the channel c to the variable x, while the statement c!e writes the expression e
to the channel c.

through optimising compilers. Non-standard datapath sizes can also be sup-
ported.

— Critical resources can be increased as demanded by the application domain,
and eliminated if not used. Instruction processors provide a structure for
these resources to be shared efficiently, and the degree of sharing can be
determined at run time.

— Our FIP approach enables different implementations of a given instruction
set with different design trade-offs. It is also possible to relate these im-
plementations by transformation techniques [15], which provide a means of
verifying non-obvious but efficient implementations.

— FIPs enable high-level data structures to be easily supported in hardware.
Furthermore, they help preserve current software investments and facilitate
the prototyping of novel architectures, such as abstract machines for exact
real arithmetic and declarative programming [14].

FIPs are assembled from a processor template with modules connected to-
gether by communicating channels. The template can be used to produce differ-
ent styles of processors, such as stack-based or register-based styles. The param-
eters for a template are selected to transform a skeletal processor into a processor
suited for its task (Figure 2). Possible parametrisations include addition of cus-
tom instructions, removal of unnecessary resources, customisation of data and
instruction widths, optimisation of opcode assignments, and varying the degree
of pipelining.



When a FIP is assembled, required instructions are included from a library
that contains implementations of these instructions in various styles. Depending
on which instructions are included, resources such as stacks and different decode
units are instantiated. Channels provide a mechanism for dependencies between
instructions and resources to be mitigated.

The FIPs in our framework are currently implemented in Handel-C, a C
like language for hardware compilation supported by the DK 1 design suite
[4]. Handel-C has been chosen because it keeps the entire design process at a
high level of abstraction, which benefits both the design of the processor and
the inclusion of custom instructions. Handel-C also provides a quick way to
prototype designs. Our focus is to provide FIPs that are customised for specific
applications, particularly light-weight implementations for embedded systems.
Using a high-level language like Handel-C simplifies the design process by having
a single abstract description. A high-level language can also provide a mechanism
for demonstrating the correctness of the FIP [8,15].

5 Customising FIPs

Modern instruction processors contain many features to enhance execution effi-
ciency; examples include superscalar, VLIW and EPIC architectures. The tech-
niques used by VLIW and EPIC architectures to reduce the ratio of instruction
fetches to executions can be incorporated into FIPs. Additionally FIPs provide
a mechanism for more complex performance trade-offs to be made. Execution
efficiency can be traded off with area, power consumption and functionality.

Custom instructions reduce the ratio of the time for instruction fetch and
the time for instruction execution, increasing the performance of the instruction
processor. Additional resource is introduced so area is increased. However due to
the increase in execution efficiency, it may be possible to lower the clock speed
of the processor while maintaining an acceptable level of performance. Examples
of such trade-offs will be given in Section 7.

FIP implementation ‘Area (gates and latches)‘Cycles
(a) Sequential no multiplier 500 81
(b) Sequential with multiplier 606 39
(c) Sequential with custom instruction 687 20
(d) Pipelined with custom instruction 938 14

Table 1. Various FIPs with different area-efficiency trade-offs for the sum of squares
computation. Area results are taken from technology independent estimates provided
by the DK 1 design suite. FIP (a) is an accumulator style processor that implements
multiplication with repeated additions. FIP (b) is the same as (a) except that it has
a multiplier unit. FIP (c) has dedicated resources to calculate the sum of two squares.
FIP (d) is a pipelined version of (c).



Let us consider a simple example. Table 1 shows FIPs with different trade-
offs for calculating the sum of the square of two numbers. FIP (a) is small but
relatively inefficient. FIP (b) is larger since it contains a multiplier unit. Including
custom instructions and pipelining also greatly improves the performance, but
also increase the area. Custom instructions can be hand-crafted or generated
automatically, by directly connecting up the data path of the sequence of opcodes
that make up the sum of squares function. As Table 1 shows, higher performance
can be achieved at the expense of area. If however area is constrained, FIP
functionality will have to be reduced, making the FIP less flexible. This would
thus correspond to a right movement in the FIP design spectrum in Figure 1.
Section 7 contains more such examples.

Different styles of custom instructions can be incorporated into FIPs. Ex-
amples of such custom instructions include look-up table based instructions and
streaming style instructions [20].

6 Compilation Strategy

Our design flow is described in Figure 3. The input to the design environment is
a specification of the application. The application specification can take several
forms; C or Java for instance. At this stage, user design options can be included
to constrain speed, area or resources used.

The FIP library contains templates of different processors, such as JVM or
MIPS for instance. The profiling step collects data such as frequency of certain
combination of opcodes and resources required. The initial set of parameters
derived from the user’s specification is augmented by information gathered by
the FIP profiler. The FIP template generator creates an initial FIP.

At this point, the design flow is split into an analysis step and FIP instantia-
tion step. The analysis step involves analysing sharing possibilities and introduc-
ing custom instructions. The custom specification is profiled and code candidates
for implementation into custom instructions are analysed. Run-time reconfig-
urable possibilities are also explored. The FIP instantiation stage involves archi-
tecture optimisations on congestion, scheduling, speed, area and latency. Custom
instructions selected by the analysis step is also instantiated. Technology-specific
optimisations, such as using vendor-provided macros or technology-specific fea-
tures like block RAMS, can also be applied at this level. The completion of
these two steps results in source code for the application, decision condition in-
formation (to detail when to configure to this FIP) and the FIP configuration
information. FIP instantiation and analysis can be iteratively employed to pro-
duce different variations of FIPs with different characteristics to achieve good
speed-area trade-offs. The decision condition information is used by the run-time
environment to decide if this FIP is required for execution.

The FIP selector stage selects one or more FIP implementation and compiles
the source code into code executable by that FIP. The executable code, decision
condition information and FIP configuration information is then provided to the
FIP management system for execution.
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Fig. 3. FIP design flow. This diagram shows the steps involved in producing a FIP
tuned to a customisation specification.
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Fig. 4. The PGen design tool allows a Java program to be compiled and analysed.
It also allows custom instructions to be created. FIPs and their associated executable
code can also be generated.

Figure 4 shows PGen, an implementation of our design flow. The window
labelled “Application code” shows a Java program as the custom specification.
The Java code can be compiled and inspected with the Java Class View window.
The Java Class View tool analyses the compiled code and provides information
such as the number of JVM opcodes used, the frequency of their use, the opcodes
used by various functions in the class, and the data stored in the JVM’s constant
pool. This step corresponds to the analysis block in Figure 3. This information
is used to instantiate the FIP. The right pop-up box shown next to the project
window, shows PGen suggesting the function nextNum as a candidate for im-
plementation as a custom instruction. Once the user is satisfied with the design,
a FIP and its associated executable code is produced.

The run-time environment is responsible for the execution and management
of the system. It maintains a database of available FIPs, their associated ex-
ecutable code and a decision condition library. If configuration occurs too fre-
quently, the overall performance of the system can suffer. The run-time environ-
ment provides a way to fine tune the frequency of reconfiguration. For instance,
it can decide that a more efficient FIP cannot be introduced if the reconfigura-
tion time is unacceptable. During execution, a FIP can keep track of run-time
statistics, such as the number of times that user-specified functions are called,
or the most frequently used opcodes. These run-time statistics can be used to
adapt the FIP. Further information about the run-time environment for FIP can
be found elsewhere [20].
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Fig. 5. Caffine Mark 3.0 results. Higher scores are better. On the AMD machine, the
benchmark is executed on Sun Microsystem’s Hot Spot JVM version 1.3.1_02.

7 Implementation and Evaluation

This section describes various implementations of FIPs for the Java Virtual Ma-
chine and for implementing the AES algorithm, and compares their performance
against general-purpose processors and custom hardware.

7.1 CaffineMark 3.0 Benchmarks

The embedded CaffineMarks 3.0 [17] Java benchmark is a set of tests used to
benchmark performances of JVMs in embedded devices. We have compiled four
of the six benchmarks in this set. The Sieve Atom implements a classic sieve of
Eratosthenes to find prime numbers. The Loop Atom uses sorting and sequence
generation to measure optimisation of loop instructions. The Logic Atom tests
the speed of decision-making instructions. The String Atom measures the effi-
ciency of string manipulation and finding substring within strings. The other
two tests that have not yet been implemented involve floating-point calculation
and method invocation speed testing.

Figure 5 shows the performance of a FIP-JVM (clocked at 40MHz) com-
pared with a JVM running on an AMD Athlon XP 1600+ (1.4GHz) machine.
The FIP contains custom instructions that help accelerate the execution of the
benchmarks. The FIP implementation, despite running on a slower clock, out
performs the conventional processor on all but one of the test. For that test, the
Loop Atom, the FIP when clocked at 65MHz can achieve the same performance
as the conventional processor.

7.2 AES

We illustrate our approach with another example using the AES (Rijndael) al-
gorithm [13], an iterated block cipher with variable block and key length.



We have two implementations. Our first implementation, FIP (i), is aug-
mented by a single custom instruction that directly connects the data paths for
the individual component transformations. This achieves an encryption of 128
bits of data with a 128-bit key in 99 cycles.

The AES specification suggests that the AES can be accelerated by unrolling
several of the AES functions into look-up tables. Our second implementation,
FIP (ii), utilises this method and achieves an encryption of 128 bits of data with
a 128-bit key in 32 cycles.

Implementations ‘Cycles/Block‘ Hardware resources ‘Mbps/MHz‘Flexible

Software[5] (C/C++) 340 0.4 Yes

FIP (i) 99 1770 Slices 2 BRAMs 1.3 Yes

FIP (ii) 32 1393 Slices 10 BRAMs| 4 Yes
Hardware[25] .

(Spartan T 100-6) 11 460 Slices 10 BRAMs 11.5 No

Hardware[l1] 1 2679 Slices 82 BRAMs|  129.6 No

(Virtex-E 812-8)

Table 2. Various AES implementations. Blocks are 128 bits with 128 bit keys. The
C/C++ implementation is written for the Pentium family of processors. FIP implemen-
tations are written in Java and run on a sequential version of the JVM implemented on
a Spartan II 300E-6. The hardware implementation on the spartan is latency optimised
and performs at 0.52 Gbps (45MHz). The hardware implementation on the Virtex-E
runs at a data rate of 7 Gbps (54MHz).

Table 2 compares different implementations of the AES algorithm. The fastest
reported C/C++ implementation, by Gladman [5], achieves an encryption speed
of about 350Mbps on a 933MHz Pentium 3.

Running at 40MHz, FIP(i) encrypts at 51.7Mbps and FIP(ii) at 160 Mbps.
FIP(ii) performs ten times better than software, in a Mbps per MHz compar-
ison. Hand-placed hardware implementations provide good performance, but
cannot be used for general computations. This flexibility has been compromised
to improve performance. However these hardware implementations can be incor-
porated into FIPs as custom instructions [20].

8 Concluding Remarks

The FIP approach offers a framework for trading off speed, flexibility and area.
It provides the flexibility afforded by instruction processors, and custom in-
structions can be introduced to improve performance. Our proposed design-time
and run-time environments provide a means of customising these processors and
compiling code for them. They also provide a mechanism for these processors to
adapt to run-time conditions, depending on usage patterns.

Current and future work includes improving the efficiency of our FIP im-
plementations, and refining the tools for automating the support for custom
instructions.
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Abstract. The paper describes a software implementation of an MPEG—-compli-
ant Entropy Decoder on a TriMedia/CPU64 processor. We first outline entropy
decoding basics and TriMedia/CPU64 architecture. Then, we describe the refer-
ence implementation of the entropy decoder, which consists mainly of a software
pipelined loop. On each iteration, a set of look-up tables partitioning the Variable-
Length Codes (VLC) table defined by the MPEG standard are accessed in order
to retrieve the run-level pair, or detect an end-of-block or error condition. An
average of 21.0 cycles are needed to decode a DCT coefficient according to this
reference implementation. Then, we focus on software techniques to optimize the
entropy decoding software pipelined loop. In particular, we propose a new way
to partition the VLC table such that by exposing the loop prologue to the com-
piler, testing each of the end-of-block and error conditions within the prologue
becomes superfluous. This is based on the observation that either an end-of-block
or error condition will never occur within the first table look-up. For the proposed
implementation, the simulation results indicate that an average of 16.9 cycles are
needed to decode a DCT coefficient. That is, our entropy decoder is more than
20% faster than its reference counterpart.

1 Introduction

The introduction of digital audio and video was the starting point of multimedia because
it enabled audio and video, as well as text, figures, and tables, to be used in a digital form
in a computer and be held in the same manner. However, digital audio and video require
a tremendous amount of information bandwidth unless compression technology is used,
which in turn calls for a large amount of processing. For example, National Television
Systems Committee (NTSC) resolution MPEG-2 [1] decoding requires more than 400
MOPS, and 30 GOPS are required for encoding.

TriMedia/CPUG64 is a VLIW core targeted for real-time processing of multimedia
streams [2]. Although its processing power allows significant processing of video data,
the VLIW core itself was intended to be integrated on-chip with a set of hardwired
co-processors which can perform other tasks with stringent real-time requirements in
parallel. An example of such co-processor is the Variable-Length Decoder (VLD) [3].



One of the drawbacks of the hardwired solution is the lack of flexibility, since a
different full-custom circuit is needed for each particular task. Software programmabil-
ity ensures that a single device can be applied in a range of different products and can
adapt to quickly evolving standards in the media domain. Therefore, a software solution
which can provide the needed performance is always preferred to the hardware solution.

When the application exhibits data and instruction-level parallelisms,
TriMedia/CPUG64 has proved significant speed-up over previous TriMedia families [4].
However, the speed-up is not so high when parallelism is not available. Entropy de-
coding [5, 6] consists of Variable-Length Decoding (VLD) followed by a Run-Length
Decoding (RLD), both VLD and RLD being sequential tasks. Due to data dependency;,
entropy decoding is an intricate function on TriMedia, since a VLIW architecture must
benefit from instruction level parallelism in order to be efficient.

An entropy decoder implementation on TriMedia/CPU64 which can decode a Dis-
crete Cosine Transform (DCT) coefficient in 21 cycles has been proposed by Pol [7].
The VLD is implemented as a repetitive look-up into the Variable-Length Codes (VLC)
table defined by MPEG standard, where each iteration analyzes a fixed-size chunck of
bits. When a coefficient is completely decoded, a run-level pair is generated, otherwise
an offset into the VLC table is generated. By employing software pipeline optimiza-
tion techniques, run-length decoding for the previous decoded symbol is carried out
simultaneously with the variable-length decoding of the current symbol.

In this paper we demonstrate that significant improvement over the reference solu-
tion is possible if four optimizations are used:

1. partitioning the VLC table in such a way that by exposing the prologue of the
software pipeline loop to the compiler, an end-of-block symbol or error will never
be encountered within the prologue;

2. using an extended barrel-shift TriMedia-specific operation;

3. storing the lookup tables in such way that all the fields (run, level, table offset, etc)
are each located within the boundaries of a byte. This way, the extraction of each
and every such field can be done in a single cycle by TriMedia—specific operations;

4. using variable chunck size, in order to reduce the total size of the tables.

The testing database for our entropy decoder consists of a number of pre-processed
MPEG conformance strings from which all the data not representing DCT coefficients
have been removed. Therefore, such strings include only run-level and end-of-block
symbols. The simulations carried out on a TriMedia/CPU64 cycle accurate simulator
indicate that 16.9 cycles are needed to decode a DCT coefficient with the proposed im-
plementation. That is, our entropy decoder is 20% faster than its reference counterpart.

As an evaluation of the absolute performance of the entropy decoder we propose,
we would like to mention some figures claimed by our competitors: 33 cycles per coef-
ficient which exploits SIMD—-type operations of a Pentium processor with MultiMedia
eXtension (MMX) are claimed by Ishii et al. [8], and 26 cycles per coefficient on an
TMS320C80 media video processor are claimed by Bonomini et al. [9].

The paper is organized as follows. Section 2 gives some background information
concerning MPEG compression standard and TriMedia/CPU64 architecture. Entropy
decoder implementation issues are presented in Section 3. The experimental framework
and results are presented in Section 4. The final section concludes the paper.



2 Background

The MPEG standard [6, 10] uses a large number of compression techniques to decrease
the amount of data. Data compression is the reduction of redundancy in data repre-
sentation, carried out to decrease data storage requirements and data communication
costs.
A typical video codec system is presented """ Encoda™ """ |
in Figure 1 [5, 6]. The lossy source coder per- ~ Video Lossy Losess| ! channe
o

forms filtering, transformation (such as Dis- ~ — 7| ¥uice || Eatropy
crete Cosine Transform (DCT), subband de-
composition, or differential pulse-code mod- N -
ulation), quantization, etc. The output of the video | !
source coder still exhibits various kinds of sta- 2L Srte [ Eniro y <—-— --
tistical dependencies. The (loseless) entropy ! !
coder exploits the statistical properties of data

and removes the remaining redundancy after Fig. 1. A generic video codec.
the lossy coding.

In MPEG, the couple DCT + Quantization is used as a lossy coding technique.
The DCT algorithm processes the video data in blocks of 8 x 8 pixels, decomposing
each block into a weighted sum of amplitudes of 64 spatial frequencies. At the output
of DCT, the data is also organized as 8 x 8 blocks of coefficients, each coefficient
representing the contribution of a spatial frequency for the video block being analyzed.
Since the human eye cannot readily perceive high frequency activity, a quantization
step is then carried out. The goal is to force as many DCT coefficients as possible to
zero within the boundaries of the prescribed video quality. Then, a zig-zag operation
transforms the matrix into a vector of coefficients which contains large series of zeros.
This vector is further compressed by an Entropy Coder which consists of a Run-Length
Coder (RLC) and a Variable-Length Coder (VLC). The RLC represents consecutive
zeros by their run lengths; thus the number of samples is reduced. The RLC output data
are composite words, referred to as symbols, which describe a run-level pair. The run
value indicates the number of zeros by which a (non-zero) DCT coefficient is preceeded.
The level value represents the value of the DCT coefficient. When all the remaining
coefficients in a vector are zero, they are all coded by the special symbol end-of-block.
Variable length coding is a mapping process between run-level/end-of-block symbols
and variable length codewords, which is carried out according to a set of tables defined
by the standard. Not every run-level pair has a variable length codeword to represent it,
only the frequent used ones do. For those rare combinations, an escape code is given.
After an escape code, the run- and level-value are coded using fixed length codes.

In order to achieve maximum compression, the coded data does not contain specific
guard bits separating consecutive codewords. As a result, the decoding procedure must
recognize the code-length as well as the symbol itself. Before decoding the next sym-
bol, the input data string has to be shifted by a number of bits equal to the decoded code
length. These are recursive operations that generate true-dependencies.

Subsequently, we will focus on the entropy decoding, i.e., on the operation inverse
to entropy coding. We will briefly present some theoretical issues connected to variable-
length decoding and run-length decoding.




2.1 Entropy Decoder

In MPEG, the entropy decoder con-
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sists of a Variable-Length Decoder complant string
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with feedback, whose loop contains a
Look-Up Table (LUT) on the feed-for-
ward path and a bit parser on the feed-
back path. The LUT receives the var-
iable-length code itself as the address
[11] and outputs the decoded symbol
(run-level pair or end_of block) as well as the codeword length, code Jength. In order
to determine the starting position of the next codeword, the code Jength is fed back
to an accumulator and added to the previous sum of codeword lengths, accumulated
code_length. The bit parsing operation is completed by the barrel-shifter (or funnel-
shifter) which shifts out the decoded bits.

In connection with the hardware complexity, we would like to note that the longest
codeword excluding Escape has 17 bits. Therefore, the LUT size reaches 2'7 =
= 128 K words for a direct mapping of all possible codewords. Regarding the per-
formance of a variable-length decoder, it is worth mentioning that the throughput of a
VLD is bounded by a value inverse to the latency of the loop [12].
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Fig. 2. Variable-length decoding principle.

Conceptually, for each
(nz_coeff_pos 0= nz_coeff_pos_ inittRO+L=0) run-level pair returned by the
(nz_coeff_pos 1= nz_coeff_pos 0+RI+1=4) VLD, the run-length decoder
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Fig. 3. Run-length decoding principle. in an empty vector with level

values, L, at positions defined

by run values, as depicted in Figure 3: the position of a non-zero coefficient,

nz_coeff _pos, is computed by adding the run value, R, and an *1’ to the position of the

previous non-zero coefficient. This common strategy has been widely used in previous
work [1,7,13] and will be used subsequently, too.

In connection with the software implementation of the entropy decoder we propose,
we would like to mention that both VLD and RLD are sequential tasks. Consequently,
entropy decoding is an intricate function on TriMedia, since a VLIW processor must
benefit from instruction-level parallelism in order to be efficient.

The next subsection will outline some elements of the MPEG-2 standard related to
variable-length decoding.



2.2 MPEG-2-compliant Variable-L ength Decoding

MPEG-2 defines four tables foren-
coding the DCT coefficients: B12, B13, [Lotravic-format] 0 [ 1 |
B14, and B15 [1]. Which table isused | ! |DC coefficient) Y | B12 Bl12
depends on the type of image - intra c| Bi3 B13

(1) or non-intra (NI), luminance (Y) AC coefficient Bl4 B15
or chrominance (C) — and a bit-field NI |1st & subsequent | - B14 Bl4
' coefficient

intra vlc_format, in the macro-
block header, as shown in Table 1. In Table 1. Selection of VL C tables
general, this means that a single stream
uses all tables, and the tables can be switched per macroblock and/or block.
In the decoding process of DCT coefficients, there are a few exceptional cases to be
dealt with:
1. The DC coefficient for intra macroblocks: this coefficient is encoded through the
B12/B13 tables, depending on the block type: luminance or chrominance.
2. Escape: escape code is 6 bits long, followed by 6 bits run and 12 bits signed level.
3. end-of-block: this is a 2 or 4 bit code, depending onthe intra v1c format bit.

Apart from these cases, the decoding follows “normal” coding rules. The maximum
code-length is 16 bits plus a sign bit. A code determines a run and a level value. A
variable-length code is followed by a sign bit that indicates the sign of the level value.

We conclude this section with a review of the TriMedia/CPU64 VVLIW core.

2.3 TriMedia/CPU64 architecture

TriMedia/CPUG4 is a simulated proces- ——
sor designed to be used in the development Global Register File
. 128 registers x 64 bit
process of future 64-bit VLIW cores. Its ar- 15réad ports+ 5 write ports
chitecture features a very rich instruction set Bypass Networ k
optimized for media processing. Specifically, it Wt "

TriMedia/CPU64 is a 64-bit 5 issue-slot

VLIW core, launching a long instruction ev-

ery clock cycle [2]. It has a uniform 64-bit

wordsize through all functional units, reg- A ) A A A
ister file, load/store units, on-chip highway | Instruction Decoder |
and external memory. Each of the five op-
erations in a single VLIW instruction can Fig. 4. TriM edia/CPU64 or ganization.
in principle read two register arguments and

write one register result every clock cycle. In addition, each operation can be option-
ally guarded with the least-significant bit of a fourth register, in order to allow for
conditional execution without branch penalty. The architecture supports subword par-
allelism; for example, operations such as additions/subtractions, shuffle, elementwise
multiplexing, on eight 8-bit unsigned integers (vec64ub), or on four 16-bit signed inte-
gers (vec64sh) are possible. Super-operations, which occupy two adjacent slots in the
VLIW instruction, and map to a double-width functional unit are also supported. The
current organization of the TriMedia/CPU64 core is presented in Figure 4.




3 Entropy decoder implementation

According to the reference implementation [7], the VLD is implemented as a repeated
table-lookup. Each lookup analyzes a fixed size chunk of bits (for example,
LOOKUP_ADDRESS WIDTH = 6 or 8) and determines if a valid code was encountered
or some more bits need to be decoded. In any case, the number of consumed bits rang-
ing from the smallest variable-length code to the chunk size is generated. In case of a
valid decode, i.e., hit, a run-level pair is generated, or an escape or end .of block flag is
set. If a miss is detected, i.e., more bits are needed for a valid decode, an offset into the
VLC table for a second- or third-level lookup, table offset, is generated. This process of
signaling an incomplete decode and generating a new offset may be repeated a number
of times, depending on the largest variable-length code and chunk size.

The following basic stages can be discerned in the reference implementation of the
entropy decoder on TriMedia/CPU64;

1. Initializations.

2. Barrel-shift the VL C string according to the accumulated code-length value.

3. Table look-up (look-up address computation, table look-up proper). The table
look-up returns a 32-bit word containing all the fields mentioned at Stage 4.

4. Field extraction: run, level, code_length, valid decode, end of block, escape,
table_offset.

5. Update (modulo-64) the accumulated code-length:

acc_code_length = acc_code length + code length

If an over flow has been encountered, advancethe VL C string by 64 bits.

Exit the loop if end_of _block has been encountered.

Handle escape if escape has been encountered.

Run-length decoding: de-zig-zag, followed by filling-in an empty 8 x 8 matrix.

Goto Stage 2.

© ®© N

The Stage 8 — run-length decoding - is folded into the loop, such that loop pipelining
is employed [7]. That is, the run-length decoding for the previous decoded symbol is
carried out simultaneously with the variable-length decoding of the current symbol.

Updating the acc_code length value is carried out modulo-64. The main idea is to
match this process with the transfer capabilities of the 64-bit version of TriMedia. That
is, a new chunk of 64 bits of information to be decoded is read on overflow. Also, we
would like to emphasize that the VLC-related information is stored into the lookup
table in a packed format, as 32-bit unsigned integers, as depicted in Table 2. Therefore,
a sequence of masking and shifting operations are needed to extract these fields.

Table 2. Theoriginal VLC table format.

end-of-block (stop)|escape|valid| run | level |table offset|code-length
No. of bits 1 1 1 5 8 12 4
Position 31 30 | 29 |28-24|23-16| 15-4 3-0




To make the presentation self consistent, the reference implementation of the en-

tropy decoding routine is presented in Algorithm 1. All identifiers written with capital
letters are regarded as constants. In the sequel, we will provide some additional infor-
mation regarding this algorithm, highlighting efficiency-related issues.

Al

gorithm 1 Entropy decoder routine — reference implementation

1

NGO RWDN

. set-up the test-bench (store the VLC lookup table, read the VLC_string into memory, etc.)

. for 4 = 1 to NO_OF_MACROBLOCKS do

for 7 = 1to NO_OF_BLOCKS_IN_MACROBLOCK do
table_offset < FIRST_TABLE_OFFSET
nz_coeff_pos.ZZ «+ 0
run < 0
valid_decode «+ 0

loop
barrel-shift the VLC_string with acc_code_length positions
lookup_address « the leading LOOKUP_ADDRESS_WIDTH bits from VLC_string
lookup_address <« lookup_address + table_offset
retrieved_32_bit_word < VLC_table[lookup_address]

nz_coeff_pos_ZZ <+ nz_coeff_pos.ZZ + run
nz_coeff_pos « invZZ_table[nz coeff_pos.ZZ]

8 x 8_matrix[nz_coeff_pos] « level
nz_coeff_pos_ZZ <+ nz_coeff_pos_ZZ + valid_decode

extract code_length, run, level, table_offset, escape, valid_decode, end_of-block from
retrieved_32_bit_word

22:

23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41

acc_code_length < acc_code length + code_length

if acc_code_length < 64 and not(escape) then
continue { > go to loop}
end if
if end_of_block flag is raised then
break { > initiate the next for iteration (block-level)}
end if

if acc_code_length > 64 then
advance the VLC_string by 64 bits
acc_code_length < acc_code_length - 64
end if
if escape flag is raised then
run < next 6 bits from VLC_string
level < next 12 bits from VLC_string
acc_code_length < acc_code_length + 6 + 12
end if
end loop
end for
: end for




The entropy decoder routine consists of a first for loop (lines 3—-41) cycling over all
macroblocks in the MPEG conformance string, a second for loop (lines 4-40) cycling
over all blocks in a macroblock, and an inner (infinite) loop labeled loop (lines 10—
39), cycling over all DCT coefficients in a block. The inner loop is left only when an
end_of_block is encountered (lines 27-29).

The initializations for block-level decoding are performed at lines 5-8. Table look-
up, i.e., variable-length decoding, is carried out at lines 11-13. Lines 15-18 implement
run-length decoding, which, as we already mentioned, is folded into the loop in order
to employ loop pipelining. Field extraction is performed at line 20. The barrel-shifting
(line 11) is done on an 128-bit field, by means of a TriMedia—specific operation:

bitfunshift Rsrc.l Rsrc 2 Rsrc3 — Rdest_1l Rdest_2

where Rsrc_1 and Rsrc_2 are the two 64-bit registers storing the leading 128 bits of
the VLC_string to be shifted, the Rsrc 3 defines the shifting value, and Rdest 1 and
Rdest_2 are the two 64-bit registers storing the 128-bit shifted field. Obviously, only
the value stored into Rdest _1 register will be used for the look-up procedure. It should
be mentioned that since acc_codelength is updated modulo-64 (lines 30-33), at least
47 bits are available in Rdest _1 for the next decoding iteration in the most defavorable
case (this can be easily verified by assuming that acc_code length = 63 at line 34).

A particular optimization technique has been used in order to keep the most likely
iteration (that is when no more incoming bits from the MPEG string are needed, and
none of the escape, end_of block, and error conditions is raised), as short as possible.
According to this technique, the escape flag is also set to "1’ when any of the escape,
end_of_block, or error conditions occurs. In this way, a jump to the beginning of the
inner loop is taken when none of the above mentioned conditions is raised (lines 24—
26). All the exceptional cases are managed after this jump: end of block at lines 27—
29, modulo-64 updating and advancing the VLC string at lines 30-33, and escape at
lines 34-38. It should be mentioned that there is no flag to indicate an error condition.
When an error is encountered, end_of block = 1 and valid decode = 0 simultaneously.
Therefore, the loop will be left because the end_of block flag is set. However, it is the
responsibility of the entropy decoder calling routine to detect if a valid end of block
has been detected or an error has occured. Since this subject is beyond the goal of the
paper, it will not be analyzed in the sequel.

In connection to the efficiency of the reference implementation, we would like to
specify that the major drawback of the software pipeline is that only variable-length
decoding for the first DCT coefficient will be performed during the first iteration, the
code associated with run-length decoding being dummy. That is, the method penalty is
the overhead needed to fire-up the software pipeline. Since the number of non-zero DCT
coefficients in a block is rather small, ranging, for example, between 3.3 and 5.8 for non-
intra macroblocks [7], the number of iterations per block is also small. Consequently,
this overhead can be significantly large.

In the sequel, we will discuss the improvements that we propose with respect to
decoding of non-intra macroblocks. That is, the VLC table will be the B14 table defined
by the MPEG standard if we will not state otherwise.



To improve the performance of the entropy decoder, we propose the following
changes in respect with the reference implementation:

— The prologue of the pipelined loop [14] is exposed to the compiler. Since the
VLC table does not have “holes” in the region of short code-length coefficients
(i.e., each and every entry in the VLC table in that region corresponds either to a
short codeword which can be decoded in a single iteration, or to a long codeword
which will be decoded in two or more iterations), there are no incoming bit com-
binations which do not have a meaning within the prologue. Therefore, an error
condition will never be raised. Moreover, since an end of block symbol is not al-
lowed for the first coefficient in a block, an end_of block condition will never be
encountered, too. Consequently, testing the end .of block flag (lines 27-29 in Algo-
rithm 1) within the prologue becomes superfluous and can be eliminated. For this
reason, a very simple code consisting of a first-level look-up, folowed by an ex-
traction of the code_length, run, level, lookup address width, table offset, escape,
valid_decode (and, notable, no extraction of the end of block flag) can efficiently
fire-up the software pipeline.

— Barre-shiftingiscarried out by meansof an extended bitfunshift TriMe-
dia specific operations.

bitfunshift 3 Rsrc_.l Rsrc 2 Rsrc. 3 Rsrc 4 — Rdest_ 1l Rdest2

The main idea is to gain flexibility over the modulo-64 operation by performing
the barrel-shift operation on 3 x 64 = 192 bits instead of 2 x 64 = 128 bits. In
this way, the modulo-64 operation can be postponed, since additional 64 bits are
available for decoding over the standard implementation.

— Thelookup returns a 64-bit value instead of a 32-bit value. The main idea is to
store each of the code_length, run, level, lookup address width (which defines the
chunk size of the next look-up), table offset, escape, valid decode (signals a hit),
and end_of_block fields within the boundaries of a byte (that is, in an unpacked way
instead of a packed one). Since extracting a byte from a 64-bit value takes only 1 cy-
cle on TriMedia, our solution is two times faster than using a pair of masking and
shifting operations required by the 32-bit approach. The cost of such approach is a
double-size look-up table. It is still an open question which approach is better with
respect to a particular TriMedia cache size, as the cache misses may become a bot-
tleneck when the performance evaluation is made for a complete MPEG decoder.
The new format of the VLC table format is presented in Table 3.

— Thechunk sizeisvariable, which leads to a more compact look-up table. Accord-
ing to our experiments, there are enough empty slots in the TriMedia instruction
format for an entropy decoding task. Consequently, a variable chunk size does not
introduce real dependencies.

In connection with the Table 3, several comments should be provided. The VLC
table is a one-dimensional array of vectors, where each vector contains eight unsigned
bytes. In order to keep the number of instructions as low as possible, we propose to
store the sign bit of each and every codeword into the lookup table.



Table 3. The proposed VL C table format.

code-length| run | level |table offset|lookup address width|escape| valid decode| EOB
No. of bits 8 8 8 8 8 8 8 8
Position 63-56  |55-48|47-40| 39-32 31-24 23-16 15-8 7-0

According to Table B14, the level value ranges between —40 - - - 4+ 40. Thus, 7 bits
(less than 1 byte) are sufficient to represent all the values. However, precautions have to
be taken to convert level to a signed integer after extraction (Algorithm 2).

Algorithm 2 Converting the level from 8-bit unsigned integer to a 16-bit signed integer
#define LEVEL_FIELD 5

int16 level;

retrieved vec64ub = VLC table[ lookup .address];
level = (intl16) ub_get( retrieved vec64ub, LEVEL FIELD);
level = (intl6)((level <« 24) > 24); |« 32-bit processing #

The least significant byte has been allocated for end of block (EOB) flag. Since the
TriMedia C compiler recognizes expressions of the form (E;&1), the least significant
bit of this byte is set to ‘1’ when an end_of_block condition is raised. This way, the
condition for leaving the loop can be written as follows:

Algorithm 3 TriMedia-specific code for testing the end-of-block condition
#define END_OF BLOCK_ FIELD 0

uint8 end_of block;

for () {
retrieved_vec64ub = VLC table[ lookup address];
end_of block = ub_get( retrieved vec64ub, END OF BLOCK FIELD);
if (end_of block & 1)
break;

}

The table_offset field defines the partitioning of the B14 into smaller lookup tables.
The B14 table has been splitted in eight tables (first, second, third, forth, fifth, sixth,
seventh, eighth) which are presented subsequently. We mention that, in order to improve
the readness, we preserved the order of the rows as in the MPEG standard.
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Table 4. First table

[VL code

Run

|Levell

10

End of Block

11s

0

011ls

0100 s

0101 s

0010 1s

0011 1s

0011 Os
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Table 5. Second table

|Lst prefix]VL code|Run[Level]

0010 0|110 s 0 5
001 s | 0 6
101 s | 1 3
100 s 3 2
111 s |10 1
011 s |11 | 1
010 s |12 1
000 s 13| 1

Table 6. Third table

|Lst prefix  [VL code[Run|Levell

0000 001|0 10s 0 7
1l 00s 1 4
0 11s | 2 3
1 11s 4 2
0 O01ls 5 2
1 10s |14 1
1 01s |15 1
0 00s |16 1

Table 7. Forth table

|Lst prefix  [VL code [Run|Levell

0000 0001|1101 s| O 8
1000 9
0011 10
0000 11
1011
0100
1100
0010
1110
0101
0001
1111
1010
1001
0111
0110

(8]

~N[ O B~ W NP OlOlO

17
18
19
20
21

Nhjfhjh|hjlhjhlhlhfhfhhl h| |’

(0]
PR R R R NN N W W

Table 8. Fifth table



|Lst prefix  [2nd prefix[VL code [Run|Level|

0000 0000{001 1 000s| 0 | 32
0 111s| 0 | 33
0 110s| 0 | 34
|Lst prefix  [VL code  [Run|Level] 818;2 g gg
0000 0000{1101 0s | 0 | 12 0 ol1ls| 0 | 37
1100 1s | 0 | 13 0 010s| 0 | 38
1100 0s | 0 | 14 0 001s| 0 | 39
1011 1s | 0 | 15 0 000s| 0 | 40
1011 Os 1 6 1 111s| 1 8
1010 1s | 1 7 1 110s| 1] 9
1010 0s | 2 5 1 101s| 1 | 10
1001 1s | 3 4 1 100s| 1 | 11
1001 0s | 5 3 1 0o11s| 1 | 12
1000 1s | 9 2 1 o10s| 1 | 13
1000 0s [10] 2 1 001ls| 1 | 14
1111 1s [ 22| 1
1111 0s 23] 1 Table 10. Seventh table
1110 1s | 24| 1
1110 0s |25 1
1101 1s [26] 1
0111 11s|{ 0 | 16
0111 10s| 0 | 17
0111 o1s| O | 18
0111 00s| 0 | 19 |Lst prefix  [2nd prefix|VL code[Run[Level|
0110 11s| 0 | 20
o110 1osT 0 [ 21 0000 0000{0001 0011 s| 1 | 15
9110 s1a[ 02 0010 5[ 1| 16
0110 oos| 0 | 23 0000 sl 1T 1 18
0101 11s| 0 | 24 0100 s 6 1 3
0101 10s| 0 | 25 1010 sl 111 2
0101 o1s| 0 | 26 To01 sl 121 2
0101 oos| 0 | 27 T000 s/ 131 2
0100 11s| O | 28 0111 s[4 2
0100 10s| 0 | 29 0110 s/ 151 2
0100 01s| 0 | 30 0101 s/ 161 2
0100 00s| 0 | 31 111 s/ 27 | 1
Table 9. Sixth table R -
S
1100 s[30| 1
1011 s|31] 1

Table 11. Eighth table



All eight tables are stored into memory one after another, i.e., in a concatenated
way. The number of address bits for each table is related to the maximum length of the
variable-length codes. That is, Tables first and second have each 8 address bits, Table
sixth has 7 address bits, Tables third and forth have each 4 address bits, and Tables fifth,
seventh, and eighth have each 5 address bits. Thus, the sizes of the tables are as follows:

Table No. of address lines Size table_offset
(lookup_address_width)|(64-bit words)

first 8 28 = 256 0
second 8 28 = 256| 0x100
third 4 21 = 16| 0x200
forth 4 2% = 16| 0x210
fifth 5 2% = 32| ox220
sixth 7 27 = 128] o0x240
seventh 5 2° = 32| o0x2co
eighth 5 25 = 32| 0x2e0

Table 12. Number of address lines, size, and offset for each VLC table

with a total of 768 64-bit words, which means 6 KB.

The decoding procedure can be exemplified on Figure 5. Let us suppose that the
following string is to be decoded: 10000000000011000110. . .. The table offset
is initialized to 0, that is the first table is being pointed to. Also, lookup _address _width
is initialized to 8, which means that the first 8 bits of the string, i.e., 10000000, will be
regarded as address into the first table. The following values are retrieved: code Jength
=2, run =0, level = 1, table_offset = 0x100, and lookup address width = 8. Which
means that the second table will be accessed during the second iteration.

After shifting out the two bits decoded at the previous iteration, the leading eight
bits, i.e., 00000000, will be regarded as address, this time into the second table. By
looking-up, code_length = 8, table offset = 0x240, and lookup address width = 7.
That is, the sixth table will be accessed. No valid run-level pair has been detected.

At this moment the accumulated_code length is 10. Therefore, the leading 10 bits
have to be shifted out from the input string. Then, the next seven bits, i.e., 0011000, are
regarded as address into the sixth table. Again, no valid run-level pair is detected. The
code_length = 3, table offset = 0x2c0, lookup _address width = 5. That is, the seventh
table will be accessed.

After incrementation, the accumulated-code-length = 13. After shifting out the lead-
ing 13 bits, the next five bits, i.e., 10001 are the address into the seventh table. The
look-up procedure retrieves the following values: code Jength =5, run = 0, level = -
32, lookup_address_width = 8, table_offset = 0x100 bypassing the first table. That is,
all subsequent coefficients of the 8 x 8 block will use only the Tables second - eighth.

Finally, the accumulated-code-length is 18. The next eight bits to be sent as address
to the second table are: 10xxxxxx. An end_of block symbol is detected, and the table-
offset = 0; that is, the first table is to be accessed for decoding of a new block.
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The entropy decoder implementation we propose is presented in Algorithm 4. As it
can be observed, the prologue of the inner (infinite) loop (lines 17-45) has been exposed
to the compiler (lines 4-15). Since an end_of block or error condition will never occur
on the first table lookup (line 7), testing the end .of block condition during the prologue
becomes superfluous and, therefore, has been eliminated.

Special considerations have to be provided with respect to modulo-64 operation.
As me already mentioned, since the extended bit funshift TriMedia-specific oper-
ation is used, more flexibility in postponing the modulo-64 operation is gained. Indeed,
there is no such operation within the prologue. However, from the MPEG syntax point
of view this is not entirely correct. Assuming that acc_code length is 63 at line 36,
it will become 81 at line 45. Considering that an end _of block is encountered, then
acc_code length = 83. If this situation occurs during the decoding of the first block
in a macroblock, and if the subsequent five coded blocks in the same macroblock
include each an escape sequence followed by an end of block, then acc code length
=83+ 5 x 24 + 5 x 2 = 213, that is more than the limit of 192 bits. Fortunately, this
case is not statistically relevant (we did verify it on all MPEG conformance strings
mentioned in the subsequent section). Fortunately, this exceptional situation can be
overcomed without much penalty by augmenting the escape handling code within the
prologue (lines 11-15) with a modulo-64 operation.

The same strategy of exposing the prologue of the loop to the compiler can be
applied for decoding of intra blocks, since an end of block can never occur during the
decoding of an DC coefficient. However, special precautions have to be taken in order
to deal with errors.

Finally, it should be mentioned that standard optimization techniques such as loop
unrolling or grafting [15] cannot be applied, because that would introduce awkward
escape code and/or barrel-shifting processing.

4 Experimental results

The testing database for our entropy decoder consists of a number of pre-processed
MPEG conformance strings, or scenes, from which all the data not representing DCT
coefficients have been removed. Therefore, such strings include only run-level and end-
of-block symbols.

For all experiments described subsequently, the MPEG-compliant bit string is as-
sumed to be entirely resident into the main memory. In this way, side effects associated
with bit string acquisition such as asynchronous interrupts, trashing routines, or other
operating system related tasks, do not have to be counted. Moreover, saving the re-
constructed 8 x 8 matrices into memory, as well as zeroing these matrices in order to
initialize a new entropy decoding task are equally not considered. Since both proce-
dures can be considered parts of adjacent tasks, such as IDCT or motion compensation,
they are subject to further optimizations at the complete MPEG decoder level. Thus, in
our experiments, the run-length decoder will overwrite the same 8 x 8 matrices again
and again. With these assumptions, the only relevant metric is the number of instruction
cycles required to perform strictly entropy decoding. Therefore, the main goal was to
minimize this number.



Algorithm 4 Entropy decoder routine with the prologue exposed to the compiler
1: for + = 1 to NO_OF_MACROBLOCKS do
2:  for j =1 to NO_OF_BLOCKS_IN_MACROBLOCK do
3 nz_coeff_pos_.ZZ + 0
4: barrel-shifting the VLC_string
5: lookup_address < the leading FIRST_LOOKUP_ADDRESS_WIDTH bits from VVLC_string
6.
7
8
9

lookup_address «— lookup_address + (FIRST_TABLE OFFSET < 4)
retrieved_vec64ub < VLC_table[lookup_address]

extract code_length, run, level, table_offset, lookup_address.width, escape,
valid_decode from retrieved_vec64ub {end_of_block field isnot extracted! }

10: acc_code_length < acc_code_length + code_length

11: if escape flag is raised then

12: run < next 6 bits from VLC_string

13: level « next 12 bits from VLC_string

14: acc_code_length «— acc_code_length + 6 + 12

15: end if

16:

17: loop

18: barrel-shift the VLC_string

19: lookup_address « the leading lookup_address_width bits from VLC_string

20: lookup_address < lookup_address + table_offset

21: retrieved_vec64ub < VLC_table[lookup_address]

22:

23: nz_coeff_pos.ZZ <+ nz_coeff_pos.ZZ + Run

24: nz_coeff_pos «— invZZ_table[nz coeff_pos. ZZ]

25: 8 x 8_matrix[nz_coeff_pos] < Level

26: nz_coeff_pos_ZZ <+ nz_coeff_pos_ZZ + valid_decode

27:

28: extract code_length, run, level, table offset, lookup_address width, escape,
valid_decode, end_of_block from retrieved_vec64ub

29: acc_code_length < acc_code length + code_length

30: if acc_code_length < 64 and not(escape) then

3L continue { > go to loop}

32: end if

33: if end_of_block flag is raised then

34: break { > initiate the next for iteration (block-level)}

35: end if

36: if acc_code_length > 64 then

37: advance the VLC_string by 64 bits

38: acc_code_length < acc_code_length - 64

39: end if

40: if escape flag is raised then

41: run < next 6 bits from VLC_string

42: level « next 12 bits from VLC_string

43: acc_code_length «— acc_code_length + 6 + 12

44: end if

45: end loop

46:  end for

47: end for




Table 13. Entropy decoding experimental results.

Scene | Block |Workload| Scene Reference Proposed I mprovement
type profile |implementation implementation

(*.m2v) (coeff.) |(bit/coeff.)| (cycle/coeff.) | (cycles) |(cyc|e/c0eff.)

batman (I (B15)| 172,745 55 21.85 2,843,376 16.5 225%
NI 266,485 4,592,358 17.2

popplen |l (B15)| 47,003 5.3 20.19 777,553 16.5 17.3%
NI 28,069 475,326 16.9

sarnoff2|l (B14)| 80,563| 5.1 21.9 1,387,489 17.2 233 %
NI 36,408 577,388 15.9

tennis |1 (B14)| 12,345 6.1 2177 210,011 17.0 20.7 %

1 (B15)| 120,754 1,937,808 16.0

NI 137,756 2,527,395 18.3

tilcheer || (B15)| 80,818/ 5.1 20.75 1,311,687 16.2 21.9%
NI 51,680 836,082 16.2

The results for entropy decoder are presented in Table 13. The figures indicate the
number of instruction cycles needed to decode the pre-processed MPEG string. The last
column of the table specifies the relative improvement of the proposed entropy decoder
versus its reference counterpart. Unfortunately, only the average number of cycles per
coefficient has been disclosed for the reference implementation [7].

It is also worth mentioning that the absolute performance of the proposed entropy
decoder ranges between 15.9 =+ 18.3 cycles/coeff., with the mean 16.9 cycles/coeff.
This is a very good result with respect to both 33.0 cycles/coeff. needed for variable-
length decoding and Inverse Quantization (1Q) on a Pentium processor with MultiMe-
dia eXtension (MMX) claimed by Ishii et. al [8], and 26.0 cycles/coeff. achieved on an
TMS320C80 media video processor by Bonomini et al. [9]. The additional 1Q function-
ality considered by the referred papers is not a real concern for us, since our preliminary
results indicate that a significant number of operations related to inverse quantization
can be still scheduled in the delay slots of the table lookup.

To make an absolute estimation of the performance we achieved, we mention that
the maximum MPEG-2 compressed bit rate for Main Profile — Main Level (MP@ML)
is 15 Mbit/s. For 16.9 cycle/coefficient, and an average of 5.4 bit/coefficient [7], the
following rate can be processed in real-time by our implementation:

4 b'lt. < 200 - 10° cycle y 1 coefficient ~ 64 Mbit
coefficient sec 16.9 cycle sec

That means that less than one-quarter of the computing power of the processor is used,
or, equivalently, four MP@ML strings can be simultaneously (entropy) decoded.
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Conclusions

We proposed a new entropy decoder implementation on TriMedia/CPU64 processor
VLIW core which has the prologue exposed to the compiler. The VLC tables are or-
ganized in a special way such that an end_of block or error will never be encountered
during the prologue. By running preprocessed MPEG-2 conformance strings including
only run-level and end_of_block symbols, we determined that the proposed entropy de-
coder is approximately 20% faster than its reference counterpart. In future work, we
intend to evaluate the performance improvement for a complete MPEG decoder.
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Abstract. In this paper, a conflict-free parallel access scheme for stride
permutation access on matched interleaved memory systems is proposed.
It is assumed that the number of parallel independent memory modules
and the length of array to be accessed are powers-of-two. The proposed
scheme supports all the power-of-two strides from 1 to N/2 where N is
the array length. Structure of the corresponding address generator is also
discussed.

1 Introduction

Over the years several techniques have been proposed to increase data transfer
rates between memory and computational resources in processor architectures.
One well-established technique for such a purpose is memory interleaving where
data is distributed over multiple independent memory banks or modules. In gen-
eral, the interleaved memory systems exploit either time or space multiplexing.

Time-multiplexed memories are used to match the processor cycle time and
memory access time. Memory accesses will require ¢ cycles to complete and
this delay is hidden by sending ¢ access requests to the memory system over a
single bus at consecutive cycles. Each request is sent into a different memory
bank. If the operands lie in the same memory bank, the second access can be
performed after ¢ cycles. Principal block diagram of a time-multiplexed memory
is illustrated in Fig. 1(a).

Space-multiplexed memories are used in SIMD processing, i.e., several access
requests are sent to the memory over multiple buses, thus the memory latency is
not hidden. The memory system requires an interconnection network for provid-
ing communication path from processing units to different memory banks. Prin-
cipal block diagram of a space-multiplexed memory is shown in Fig. 1(b).

In both the previous systems, the memory bandwidth is increased by allow-
ing several simultaneous memory accesses to be directed to different memory
modules. If Q) accesses can be distributed over  modules in such a way that all
the modules are referenced, @-fold speedup can be achieved.

Unfortunately the operands to be accessed in parallel often lie in the same
memory module thus the parallel access can not be performed. Such a situation
is referred to as a conflict and results in a substantial performance degradation.
Therefore, the principal problem in interleaved memory systems is to find a
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Fig. 1. Interleaved memory systems: (a) time-multiplexed and (b) space-multiplexed.
M;.: Memory module. PE}: Processing element.
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method to distribute data over the memory modules in such a way that conflicts
are avoided. For this research problem several solutions have been proposed,
which assume that parallel accesses are most likely to be made to subsections
of matrices such as rows, columns, or diagonals. The developed methods try to
support as many access patterns as possible or provide conflict-free access to
specific access patterns.

The method distributing data over modules is referred to as an access scheme,
which is a function mapping addresses into storage locations. Since the memory
system contains ¢ memory modules, a storage scheme performs two mappings;
it maps an N = 2"-bit address a = (@n—1,an_2,...,a0)7 into a [log Q1-bit
module address m and into a row address r defining the storage location in the
selected memory module.

The most simple access scheme is to obtain row and module addresses by
extracting fields from the address a, ie., m = amod Q;r = la/Q]. Such a
scheme, low order interleaving, is illustrated in Fig. 2(a). This scheme performs
well in linear access but the performance is degraded when other type of access
patterns are used [1]. Row-rotation (alternatively skewed) scheme was introduced
in [2] to support larger set of access patterns. In principle, the row address r is
generated as earlier but the module address is formed by extracting two log Q-
bit fields from the address a. The two fields are added to obtain the module
address, m = (a mod Q) + (|a/Q] mod Q) as shown in Fig. 2(b). In [3], row-
rotation scheme was generalized as a periodic storage scheme, which supports
irregular and overlapped access patterns. Several improvements for this scheme
has been proposed; in [4], a scheme supporting rows, columns, diagonals, coils,
band diagonals, block diagonals, etc. is proposed.

In [5], the adder used in module address generation in row-skewing schemes
was replaced by bit-wise exclusive-OR (XOR) operation as depicted in Fig. 2(c).
Such a scheme is a linear transformation and sometimes called as a XOR. scheme.
The linear transformations have two advantages over row-rotation schemes: com-
putation of module address is independent on the number of memory modules
and it has flexibility in performing address mappings [1]. The flexibility of the
interleaved memory system is even improved if the number of memory mod-
ules is larger than the number of parallel accesses. Especially prime numbers of
modules are powerful [6].



[ en] ]
O | et
o |
~ |

8 91011
12131415
16 17 18 19
2021 22 23
24 25 26 28
28 29 30 31

~N o|lo
ISP
ot po| N
o w|w

1011 8 9
13141512
16 17 18 19
2320 21 22
26 27 24 25
29 30 31 28

(c) 1514 13 12

16 17 18 19
21 20 23 22
26 27 24 25
31 30 29 28

(31 J ] Nea)
[ NS
=~ M|
o w|w

Fig. 2. Examples of access schemes for a 32-element vector on a 4-module system: (a)
low-order interleaving, (b) row-rotation, and (c) linear transformation.

One specific, often used access pattern is stride access where the consecutive
accesses differ by a constant amount k, i.e., every kth element is accessed. In
[7], a linear transformation for matched systems, i.e., the number of parallel
accesses is the same as the number of modules, is proposed, which supports
several power-of-two strides but the implementation is complex, especially if
several array lengths need to be supported.

A linear transformation scheme supporting a single stride but several array
lengths is proposed in [8]. Conflict-free access of strides can be performed for
any array length and any initial address. The implementation is extremely simple
requiring only bit-wise XOR operations and a shifter for address field extraction.
Support for several strides is considered in [1] but the number of memory modules



needs to be greater than the number of parallel accesses. However, the scheme
supports strides of form a2°. In [9], linear transformations has been discussed
both in matched and unmatched systems.

While the memory interleaving has been studied in supercomputer area, it
has received a little consideration in embedded systems. In [10], a memory syn-
thesis method supporting interleaved memories is proposed. The address gen-
eration is based on look-up tables containing the access vectors present in the
given application. In [11], a method is proposed for reducing the number of con-
flicts in given application and reordering the accesses such that the number of
memory modules is minimized. An alternative approach is taken in [12], where
the objective is to reschedule the order of accesses such that the data can be
distributed over several memories.

In this paper, a linear transformation scheme for a specific access pattern,
stride permutation access, is proposed. The scheme provides conflict-free ac-
cess to all the strides of powers-of-two for an array of a power-of-two length.
The address computation consists of bit-wise XOR operations and results in
less complex implementation than the previously reported schemes supporting
several strides.

The organization of the paper is the following. In Section 2, stride permuta-
tion is defined and some of its properties are given. Motivation for developing
an access scheme for this access pattern is provided by describing some applic-
ations exploiting stride permutations. In Section 3, constraints for stride access
schemes are given. The proposed access scheme is described in detail and its
implementation is discussed. Conclusions are provided in Section 4.

2 Stride Permutation

Stride permutations can be described with the aid of matrix transpose; stride-
by-S permutation of an N-element vector can be performed by dividing the
vector into S-element sub vectors, organizing them into S x (IN/S) matrix form,
transposing the obtained matrix, and rearranging the result back to the vector
representation [13]. This interpretation implies that the stride S has to be a
factor of vector length, i.e., N rem S = 0 where rem denotes remainder after
division. Another interpretation is to use indexing functions as used in the fol-
lowing formal definition.

Definition 1 (Stride Permutation). Let us assume a vector X = (zg, x1, . . .,
TN-_1). Stride-by-S permutation reorders X as Y = (B sty B Pl - =
mfN,s(N—l))T where the index function fi s(2) is given as

fns(i) = (iSmod N)+ |iS/N| | Nrem S=0, i =0,1,...,N-1 (1)
where |-| is the floor function.

The stride permutation can also be expressed in matrix form as Y = Py s X
where Py s is stride-by-S permutation matrix of order N defined as

1, iff n = (mS mod N) + |mS/N|

[PN,s) = {O, otherwise ,myn=0,1,....N—-1 (2)



For example, the permutation matrix Pg 2 associated to stride-by-2 permutation
of an 8-element vector is the following (blank entries represent zeroes):

In this paper, we limit ourselves to practical cases where the stride and
array lengths are powers of two, N = 2", S = 2°. Some properties of stride
permutations in such cases are provided in the following.

Theorem 1 (Factorization of stride permutations). Let ab < N, then
Pnob=PnoPnp=PnpPne (3)
The proof for the previous theorem can be found, e.g., from [14].

Corollary 1 (Periodicity). Stride permutations are periodic with the following
properties.

1) Period of Pan os s lem(n, s)/s where lcm(a, b) denotes the least common
multiple of n and s. In other words,

lem(n,s)/s

Im= ] Pee. (4)
1

2) Consecutive stride permutations always result in a stride permutation:

Pgn‘guP2nv2b = Pyn 2(a+b) mod n. (5)

Proof. 2) If a+b > n, the product in (5) can be written as Pon gkn+(a+b) mod n =
Pyn gkn Pon g(atb) mea n Where k > 1 is an integer. By substituting 2" for S in
(1), we find that Pn gn = Ppn 1 = Ipn. Therefore, Pyn okn = Iz and the result
follows.

1) Let us assume that period of Pan 9. is k, thus ks modn =0, i.e,, ks is a
multiple of n. This implies that k is a multiple of n/s, i.e., k = mn/s. k has to
be integer, thus s has to be a factor of mn. The smallest number fulfilling the
requirement is lem(n, s) and, therefore, k = lem(n, s)/s.

Stride permutations have several practical applications. For example, the
previously discussed matrix transpose interpretation of stride permutation im-
plies that an N x N matrix in a vector form can be transposed by reordering
the N2-element vector according to stride-by-NN permutation. Therefore, N x N
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Fig. 3. Signal flow graphs of FFT algorithms: (a) radix-2 and (b) radix-4 algorithm.
Fy: k-point FFT.

matrix stored into a memory array can be transposed by accessing its elements
in stride-by-IV order.

The well known perfect shuffle permutation is a special case of stride per-
mutation, namely stride-by-/N/2 permutation of an N-point sequence, Py nya-
Perfect shuffle has close relation to several practical algorithms; e.g., Cooley-
Tukey radix-2 fast Fourier transform (FFT) algorithm can be scheduled into a
form where the interconnections between the processing columns of the signal
flow graph are perfect shuffles. Radix-2 algorithms can also be derived into a
form where the topology is according to stride-by-2 permutation as illustrated
in Fig. 3(a). In radix-4 FFT algorithms, the interconnections can be stride-by-4
permutations as depicted in Fig. 3(b). Fast algorithms for other discrete trigo-
nometric transforms with corresponding topology exist, e.g., for discrete sine,
cosine, and Hartley transforms [15, 16].

Stride permutations can be found also in trellis coding and especially in Vi-
terbi algorithm used for decoding of convolutional codes. Convolutional encoders
are often described with the aid of a shift register model illustrated in Fig. 4.
The state of the encoder X; at a given time instant ¢ is defined by the contents
of the shift register. In 1/n-rate codes, a single bit is fed into the shift register
at a time, thus there are two possible state transitions. This results in a trel-
lis diagram where the transitions form perfect shuffle as depicted in Fig. 4(a).
In 2/n-rate codes, two bits enter the shift register at a time, thus four state
transitions are possible, which results in a stride-by-4 permutation in the inter-
connection as shown in Fig. 4(b).

The previous examples show that stride permutations have practical and
important applications in digital signal processing and telecommunications. Ap-
plications in these areas are often hard real-time constrained and realized in
systems with relatively low clock frequencies, e.g., for extending battery life.
Therefore, parallel implementations are preferred, which implies also need to
access several operands simultaneously to increase the memory bandwidth.

Typical realizations for all the previous applications are recursive, i.e., small
kernels operate over an data array and the results of an iteration are used as op-
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Fig. 4. Single shift register convolutional encoders and allowed state transitions: (a)
1/n-rate code and (b) 2/n-rate code. z;: input at time instant . X;: state at time
instant t. y¢: output at time instant t. D: bit register.

erands in the next iteration. In addition, the read is performed in different order
than write; e.g., in Viterbi decoding of code illustrated in Fig. 4(a), operands
are read in perfect shuffle order (Pigg) and the results are stored in linear order
(Pi6,1)- If a single memory array is used, the results should be stored into the
same memory locations where the operands were obtained but now the results
will be in perfect shuffle order Py n/2, not in linear order, Py,1, as intended
originally. Therefore, the next Py, n/2 accesses should be performed in Py n/2
order. According to Corollary 1, the next read access should be performed in
Py ny2 order to compensate the previous additional reordering. Respectively,
the next read should be according to Py, n/s. Eventually we find that log N
different strides are needed, i.e., all the strides from 1 to N/2.

The need to develop an access mode for stride permutations can be illus-
trated with an example by referring to Fig. 2. In this example, a 32-element
array (0,1,...,31) is distributed over four memory modules. The possible stride
permutation accesses in this case are Ps3 1, Ps22, P32,4, P32 8, and P32 16. The low
order interleaving in Fig. 2(a) allows only conflict-free access for linear access,
Psy.1. All the others introduce conflicts. The row-rotation and linear transform-
ation schemes in Fig. 2(b) and (c), respectively, provide conflict-free access for
P3y1, Py, and Psg 4. By noting that the elements 0, 8, and 16 are stored
into the same module, we find that accesses Py g and Psp 16 introduce conflicts.
Especially the perfect shuffle access Psg 16 is difficult: the accesses should be per-
formed in the following order: ([0,16,1,17], (2,18, 3, 19], [4, 20, 5, 21}, [6, 22,7, 23],
8,24,9,25], [10,26,11,27], [12,28,13,29], [14,30,15,31]). In the previously re-



ported access schemes, stride access has been defined to access every kth element
while in perfect shuffle access Py, n/2 elements with distances of 1 and N/2 need
to be accessed. This example illustrates the principal difference of the stride
access and stride permutation access.

3 Conflict-Free Parallel Memory Access for Stride
Permutation

The previous discussion shows that there is need to perform several memory
accesses in parallel. In addition, it was found that when an N-element data array
is accessed according to a stride permutation, there will be need to support all
the strides from 1 to N/2. The solution proposed in this paper will be based on
linear transformations discussed in the following.

3.1 Linear Address Transformations

Linear transformations are based on modulo-2 arithmetic, thus the transforma-
tion can be expressed with binary matrices as

r=In_g(@n-1,8n-2,,an-q); (6)
m=Ta= (Ty|TL)a (7)
where a = (an—1,@n-2, ... ,aO)T is the index address referencing the element to

be accessed, T is a module transformation matrix, Ty, is the rightmost ¢ x ¢
square matrix in T' and Ty is the remaining g X n — ¢ matrix in T'. It should be
noted that in this representation the least significant bit of a is in the bottom
of the vector. As an example, the matrix T used in Fig. 2(c) is

01010
Tz(00101)' (8)

In [17], the basic requirement for the data distribution has been derived as
follows.

Theorem 2. An interleaved memory system has a unique storage location for
each addressed element iff the matriz Ay has full rank.

In [8], it is even suggested that T should have full rank and, in particular, the
main diagonal of T should consists of 1’s. Missing 1’s in the main diagonal may
result in poor performance for linear access, Py ;. In addition, off-diagonal 1’s
complicate the construction of address generators.

In [1], stride accesses have been investigated with the aid of transformation
periodicity referring to the minimum period of the sequence of module num-
bers generated when consecutive addresses are used as the input sequence. This
results in the following requirement.



Theorem 3. In matched memory system, S = 2° stride access over Q = 29
memories is conflict-free iff the linear transformation matriz T is

a) periodic SQ and

b) (a+1S)T mod Q = (a+ 55)T mod Q only if i mod Q = j mod Q .

The condition a) guarantees that the access is conflict-free regardless of the
array length and initial address of the array. The condition b) defines that each
memory bank is referenced only once in @) parallel accesses. It can be shown that
under the previous constraints a conflict-free access scheme supporting several
strides cannot be designed [8].

3.2 Access Scheme for Stride Permutation

The previous discussion provides some hints to develop an access scheme for
stride permutations. Although Theorem 3 suggests that a scheme cannot be
designed, we may, however, relax the requirements by assuming that the array
length is a constant and power-of-two, N = 2™, This implies that constraints on
the initial address need to be set; an array with length of 2" should be stored in n-
word boundaries. Such an constraint has already been used in several commercial
DSP processors for performing circular addressing [18]. We also assume that
the number of memory modules is a power-of-two @ = 29, which is actually a
practical assumption in digital systems. In addition, we assume that also the
strides in stride permutation access are powers-of-two, S = 2°. This results in
that the address mapping should produce a ¢-bit memory module address and
a (n — q)-bit row address. Here the row address is formed as earlier in (6); row
address 7 = (Tp—q—1,7n—q—2,---,70)" is obtained by extracting the n — ¢ most
significant bits from the address:

r,-=a,-+q,i=0,l,...,n—q—1. (9)

The previous assumptions define that the transformation matrices will be
specific for each array length IV and number of modules Q. However, the stride is
not anymore a parameter for the matrix. Therefore, we introduce a new notation
for the linear transformation matrix: T o, which defines clearly the array length
and the number of modules.

The discussion in Section 2 related to the example in Fig. 2 implies that the
periodicity of the linear transformation scheme used in the example is not large
enough. This can be clearly seen by comparing the order of elements in each
row; the ordering repeats after the fourth column, i.e., the period is 16. This is
already reflected by the fact that the module address is generated by using four
bits from the address.

The periodicity can be increased by adding the number of bits affecting the
module address. This is already suggested in [9] for unmatched memory systems
but the additional bit fields are only copied, not included into the bit-wise XOR,
operations. A special case of perfect shuffle access is discussed in [19], where two
elements are accessed from a two-memory system, @ = 2. In such a case, the
module address is defined by the parity of the address, thus the transformation
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Fig. 5. Access scheme for 64-element array on 4-memory system corresponding to
transformation matrix in (10): (a) module address generation and (b) contents of
memory modules.

matrix Thn o is a vector of n elements of 1’s. This implies that the additional
bits should be included into the bit-wise XOR operations, i.e., each row in Ty ¢
should contain multiple 1’s.

The use of diagonals have been suggested in [8] thus the obvious solution
would be to add diagonals to T'. Let us illustrate this approach with an example
where 64-element array is distributed over four memory banks. In such a case,
the transformation matrix Tg4 4 would be the following:

101010
T64’4:(o10101)' (10)

This will result in the storage depicted in Fig. 5 and it is easy to see that
all the stride permutation accesses with power-of-two strides from 1 to 32 are
conflict-free. Performed computer simulations verified that the transformation
matrix can be designed by filling the matrix with ¢ x g diagonals in cases where
n rem q = 0; transformation matrices Tkoq 2¢ can be obtained by concatenating
k identity matrices I,.

The next question is how the matrix is formed when n rem ¢ # 0. For this
purpose, additional 1’s need to be included into Ty g. In [8], such 1’s where
added as diagonals or antidiagonals off from the main diagonals. In [17], the
main diagonals may contain 0’s thus the additional 1’s are spread over the matrix
for fulfilling the full rank requirement. This results in the fact that rows may
contain large number of ones, thus the number of bits needed in XOR-operations
is increased. The effect is even worse in approach used in [7] where the rows may
contain different number of 1’s; one row is full of 1’s, another contains only a



single 1. This is extremely uncomfortable from the implementation point of view
when several array lengths need to be supported since the transformation matrix
will be different for different array length. In such a case, number of bits XOR’ed
together varies from 1 to n.

The previous discussion implies that the additional bits should be concen-
trated to the right part of Ty g, i.e., to Ay in the original matrix T in (7). Such
an arrangement eases the configuration of the address generation when the array
length changes. If the 1's are in matrix Ay, the address bits a;, which need to
be included into XOR operations may change requiring multiplexing. Now, if
all the configurations are performed for the least significant bits of a, these are
always in the same position independent on the array length.

Therefore, in cases where n rem ¢ 5 0, we fill the transformation matrix with
diagonals starting from the right lower corner and, if there is not enough space
available in the left of the matrix, a partial diagonal is placed. The remaining
partial diagonal wraps back to the right and filling is started from the rightmost
column of Ty g in a row, which is above the row where 1 in the leftmost column
was placed. If the diagonal will hit the top row, it will be continued from the
bottom row in the preceding column. All in all (n + ¢ — ged(g,n mod q)) ones
will be used in Ton 20 where ged(-) is the greatest common divisor. The entire
access scheme can be formalized as follows

Inq(3)
m; = @ a(jq+i)modn, ’i=0,1,...,q—1 y
k=0
In,g(i) = |(n+ q — ged(g,n mod q) —i — 1) /q] (11)

where @ denotes bit-wise XOR operation. The row address is obtained according
to (9).
This approach provides a solution to the example shown in Fig. 2 and T334

is the following
01011
T32-4=(10101>' (1)

The contents of the memory modules stored according to T334 is illustrated in
Fig. 6. Once again it can be seen that the stride permutation access is supported
for all the strides of powers-of-two from 1 to 16.

The proposed access scheme has been verified with computer simulations by
generating storage organizations and verifying that each access is conflict-free.
For a given array length N = 27, the number of memory modules Q was varied

to cover all the possible numbers of powers-of-two, i.e., Q@ = 2°,2!,...,271, For
each parameter pair (N, @), all the stride permutation accesses were performed
with strides covering all the possible powers-of-two: S = 20,21, ..., 2"~1 and each

parallel access was verified to be conflict-free. The power-of-two array lengths of
were iterated from 2! to 220, The extensive simulation did not find any conflicts
and, therefore, we can state that the proposed access scheme provides conflict-
free parallel stride permutation access in practical cases, i.e., array lengths up
to 220, for all the possible power-of-two strides on matched interleaved memory
systems where the number of memory modules is a power-of-two.
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Fig. 6. Contents of memory modules when a 64-element array is stored into a 4-memory
system corresponding to transformation matrix in (12).

3.3 Address Generation

Before going into implementations, we may investigate the structure Ty, when
N is varied. In practical systems, @ is constant; the number of memory modules
is only a design time parameter. As an example transformation matrices for 64-
module systems are illustrated in Fig. 7 and few observations can be made from
the structure of the matrices.

First, the matrices contain two principal diagonal structures: concatenated
diagonals from the bottom-right corner to left and additional off-diagonals. The
concatenated diagonals imply that the address a should be divided into g¢-bit
fields and bit-wise XOR is performed between these fields. Since the concatenated
diagonals in matrix for a shorter array is included in matrix for longer arrays,
several array lengths can be supported easily; shorter arrays can be supported
by feeding 0’s to the most significant address bits.

The second observation is that the off-diagonals affect at most the ¢ — 1
least significant bits of the address a. In fact, (11) dictates that the number
of 1’s in off-diagonals is ¢ — ged(g, n mod ¢). In addition, the structure of off-
diagonals depends on the relation between n and g but, since, in practice, ¢
is constant, the structure depends on array length. However, there are only ¢
different structures; the off-diagonal structure has periodic behavior when the
array length is increasing. In Fig. 7, one complete period is shown and Tg192 64
would have the same off-diagonal structure as Ti2g 64-

The structure of off-diagonals implies that several array lengths can be sup-
ported if a predetermined control word configures additional hardware to per-
form the functionality of the off-diagonals. Such a configuration is actually simple
by noting that the form of off-diagonals in different array lengths indicates ro-
tation of least significant bits in a. The number of bits rotated is dependent on
the relation between n and gq.

According to the previous observations, the computation of the module ad-
dress m can be interpreted as follows. First, the address a is divided into g-bit
fields F* starting from the least significant bit of a, i.e., F* = (Gigtq—1, Gigtq—2,
ce aiq+1,aiq)T. If e = n mod g > 0, the e most significant bits of a exceeding
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Fig. 7. Transformation matrices for module address generation for 64-memory systems.

the g-bit block border are extracted as a bit vector L = (le—1,le—3,...,l)7,
which is
L= (@n_1,8n—2,..,8n_c)". (13)

Next, a ¢-bit field X = (z4-1,Z4-2,...,20) is formed by extracting the (¢ —
ged(g, e)) least significant bits of the address a and placing zeros to the most
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Fig. 8. Principal block diagram of module address generation. Retrl: rotation control.
FSctrl: field selection control.

significant bits;

T
X = (O, cee ,O, aq—gcd(q,e)—l» ..,01, ao) . (14)
The bit vector X is rotated g = (n — g mod q) bits to the left to obtain a bit
vector O = (0q_1,. .. ,oo)T, ie.,
0= IOt (n—q) mod q (X) (15)

where roty(-) denotes g-bit left rotation (circular shift) of the given bit vector,
ie.,

rOtg ((ak—la (27 PRI aa‘O)T) =
T
(Qk—g-1,8k—g-2,- 100, @k—1, ..., Bkegi1,Bkg) - (16)

Finally the module address m is obtained by performing bit-wise XOR op-
eration between the vectors F;, X, and L:

0; ® (@JLZ/(,qJ_I ajq+i) ) i>e
L ®o® (@}?__/Oq‘l-l ajq+,-> yi<e '

m; =

(17)

A principal block diagram of the module address generation according to the
previous interpretation is illustrated in Fig. 8. This block diagram contains a
rotation unit shown in Fig. 9, which computes the vector O. This unit obtains
g—1 least significant bits of a as an input and the ged(q, e)—1 most significant bits
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Fig. 9. Principal block diagram of rotation unit in module address generation.

of input are zeroed, thus the g—ged(q, €) least significant bits are passed through,
to form a g¢-bit vector X = (0,...,0, aq_gcd(q,e)_l,aq_gcd(qle)_g,...,al,ao)T.
These bits can be selected with the aid of a bit vector f = (fo=2,- .-+ f1, fo))T,
where the ¢ — ged(q, €) least significant bits are 1’s and the ged(g,e) — 1 most
significant bits are 0’s. When performing a bit-wise AND operation with the
input vector and the obtained vector X is then rotated g bits to the left, the
g-bit vector O is obtained.

The main advantage of the proposed scheme can be seen from the block
diagram in Fig. 8. In the address generation, each individual XOR is performed
on at most [n/q] + 2 bit lines while in other schemes, e.g., in [7], some XORs
require all the n address bits, which complicates implementations when several
array lengths need to be supported. The support for different array lengths
in the proposed implementation requires only a single predetermined control
word defining bit selection and rotation. However, this control word needs to be
modified only when the length of the array to be accessed is changed.

4 Conclusions

In this paper, a conflict-free stride permutation access scheme for matched
memory systems was proposed. It was assumed that 2" data elements are dis-
tributed over 27 independent memory modules. In this case, all the possible
power-of-two stride permutation accesses are conflict-free, which was verified
with computer simulations. The module address generation is simple requiring
only bit-wise XOR. operations.

The used assumptions dictate that the array length is constant and the initial
address is zero. It was shown that several array lengths can be supported by
including a g-bit left shifter into the module address generator. In this case all
the additional operations are performed on the g — 1 least significant bits of
the address independent on the array length. The proposed scheme can support



different initial addresses but arrays need to stored into m-word boundaries.
However, this is not a strict requirement and such a restriction is already present
in some addressing modes in commercial DSP Processors.

Stride permutations are found in severa] DSP applications where small ker-
nels are iterated thus a special addressing scheme supporting the access pattern
provides advantage especially when long arrays are used, e.g., in FFT. The access
scheme can also be used in application-specific array processors where operands
need to be reordered according to stride permutation. In such cases, multi-ported
memories can be avoided when an interleaved memory system is used. Further-
more, the proposed scheme can provide memory-efficiency since double buffering
is avoided.
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Abstract. Scalable parallel-pipelined architectures for discrete wavelet
transforms (DWTSs) are proposed based on their flowgraph representa-
tion. Architectures may be implemented with varying level of parallelism
thus allowing of trading off between the cost (chip area and /or power con-
sumption) and the performance (throughput or delay). At every level of
parallelism (given hardware amount) the proposed architectures perform
with approximately 100% of hardware utilization and demonstrate ex-
cellent area-time characteristics compared to the existing DWT designs.
Architectures are regular and easy controlled, they do not contain feed-
back, long (depending on the length of the input) connection or switches
and can be implemented as semisystolic arrays.

1 Introduction

The Discrete Wavelet Transform (DWT) [1]-[4] is an efficient technique for sig-
nal/image decomposition that has been studied and successfully applied to a
wide range of applications: numerical analysis [5]-[6], biomedicine [7], different
branches of image and video processing [1], [8]-[9], signal processing techniques
[10], speech compression/decompression [11], etc. DWT based compression meth-
ods have become the basis of international standards such as JPEG 2000.
Since many applications need real-time computation of DWT, a number of
ASIC architectures have already been proposed [12]-[25] for hardware implemen-
tation of DWTs. Among them are the low hardware complexity devices which
require at least 2IV clock cycles (cc’s) to compute a DWT of a sequence having N
samples (e.g., the devices proposed in [12]-[14], the architecture A2 in [15], eic.).
Also a large number of devices, having a period of approximately N cc’s, have
been designed (e.g., the three architectures in [14] when they are provided with
a doubled hardware, the architecture Al in [15], the architectures in [16]-[18],
the parallel filter in [19], etc.). Most of these architectures exploit the Recursive
Pyramid Algorithm (RPA) [26] based on the tree-structured filter bank represen-
tation of DWTs (see Fig. 1). In this representation the input signal is processed
by several (J) levels of decomposition (octaves) where the length of the processed
signal is twice reduced from a level to level. Even though, pipelining has been
employed to implement these structures, however, classical pipelined architec-
tures use the same number of processing elements for every pipeline stage [12],
[23]-(25]). Balancing of the pipeline stages is achieved by making the clocking



Fig. 1. Tree-structured flowgraph representation of a 1-D DWT

frequency twice smaller from a stage to stage (see, e.g., [23]-[25]). As a conse-
quence of under-utilization of processing elements (PEs), the typical efficiency
(i.e. hardware utilization) for these architectures strongly decreases with the
number of decomposition levels. Approximately 100% of efficiency is achieved
only in conventional architectures based on lifting scheme (see [4]) which, how-
ever, are either non-pipelined or employ only a restricted (two stage) pipelining
[17], [18] and, in addition suffer from extensive either memory (chip area) or
control requirements. The highest throughput achieved in known architectures
is N clock cycles per N-point DWT. Twice faster performance is achieved in
highly (about 100%) efficient architectures developed in [27]-[28] by including
approximately twice lower number of PEs from a stage to stage.

In [29]-[30], flowgraph representation of DWTs (see examples on Figs. 2 and
3) has been suggested as a useful tool in designing parallel/pipelined DWT ar-
chitectures. In particular, this representation fully reveals parallelism inherent to
every octave as well as it clearly demonstrates data transfers within and between
octaves. This allows to combine pipelining and parallelism to achieve a higher
cost-efficient performance. This means implementing octaves in a pipelined mode
where pipeline stages are parallelized at varying from stage to stage level. Incor-
porating varying level parallelism within pipeline stages allows to design parallel-
pipelined devices with perfectly balanced pipeline stages.

In this work, general architectures of several DWT architectures operating at
approximately 100% hardware utilization are proposed based on the flowgraph
representation of DWTs shortly described in Section 2. The proposed structures
may be implemented in different ways. In particular, they are scalable meaning
that they can be implemented with varying level of parallelism giving oppor-
tunity to trade-off between the hardware complexity and performance. Several
possible realizations of the proposed general structures are discussed in Section
3. The resulting architectures demonstrate excellent time and moderate area per-
formance as compared to the conventional DWT architectures as follows from
the discussion in Section 4. Throughputs of the architectures may vary between
NL/2”7 time units (at the minimum level of parallelism) up to even one time
unit (at the theoretical maximum level of parallelism) per an N-point DWT
with J octaves and filters of the length L. The proposed architectures are regu-
lar and modular, easy controlled, and free of a feedback or a switch. They can
be implemented as semisystolic arrays.



2 Flowgraph Representation and Parallel Algorithms for
DWTs

There are several alternative definitions/representations of DWTs such as tree-
structured filter bank, lattice structure, lifting scheme or matrix definitions [1]-
[L1]. In this section we use the matrix definition of the DWTs to arrive to their
flowgraph representation which has been shown to be very efficient in designing
efficient parallel/pipelined DWT architectures in [29]-[30]. The basic algorithm
upon which the proposed structures are based is also described in this section.

Using the matrix definition, a discrete wavelet transform is a linear transform
y = H - z, where = = [z, ‘..,Z'N_1]T and ¥y = [yo, ...,yN_l]T are the input and
the output vectors of length N = 2™, respectively, and H is the DWT matrix
of order N x N which is formed as the product of sparse matrices:

H=HY.. . HY 1<j<m HO-(Di0 i=1..,J
) — - ) 0 Izm__2m—j+l ) 1oy
(1)

where I is the identity (k x k) matrix (k = 2™ —2m~J+1) and D; is the analysis
(2m~9+1 % 2m=9+1) matrix at stage j having the following structure:

(Ll .l 00 .0 bily ...l 00 ..
00 6L ..l ..0 (hl hy ... hy 0 O ..

: 001 I .0 ..

0 0 hy hy ... hy, ...

i e i e [

I3 ..l 00 .. 1L I
hihy ..h, 0 0 ... 0
0 0 hyhg..hy..0

(2)

., l3 lL 00 .. ll lg
h3 hL 00 .. hl h2 h.3 h'L 00 .. hl hz}

where LP = [Iy,...,Ir] and HP = [hy, ..., hy] are the vectors of coefficients of the
low-pass and high-pass filters, respectively, L is the length of the filters'), and
F; is the matrix of the perfect unshuffie operator of the size (2m~9+1 x 2m—i+1),

Adopting the representation (1)-(2), the DWT is computed in J stages
(also called decomposition levels or octaves), where the jth stage, j = 1, ..., J,
constitutes of multiplication of a sparse matrix H) by a current vector of
scratch variables the first such vector being the input vector z. The corre-

sponding algorithm can be written as the following pseudocode where zg}, ==
. ) ) T . . . ) T

[2£2(0), 2@t = )], and off), = [ah(0), .. ap(em - 1)] ", -

1,...,J, are (Zm_j X 1) vectors of scratch variables, and concatenation of column

: T T
vectors 1, ..., zx is denoted as [(:1:1) s (Zh) ]

! For clarity we assume both filters to have the same length which is an even number.
The results are easily expanded to the general case of arbitrary filter lengths.



Algorithm 1.
T
1. Set a:([?}), = {zﬁl}),(O),...,:L‘([?},(T" - 1)] =
2a. For j =1, ...,J compute
6) _ [9) o 6) 9m—i _1)]" and
zrp = |2p(0), -, zpp( )| an

) . . ) T
:r:(f})P = [zg)P(O), ...,z%},(?m“f - 1)] , Where
\T A A\T]1T .
—1
[CARE AN TR~ ©
or, equivalently,

2b. For 1 =0, ...,2m 7 — 1,
Form the vector //* a subvector of length L of the vector m%}; *//

. ) . | i
T = [m(LJEI)(Zi),zg};I)(% +1), ...,q:%}jl)((zi +L—1) mod 2m—3+1)) ;

Compute
oG =LP -3 29.6)=HP.5
T
3. Form the output vector y = [z%‘lg, m(f}]}),,m(ngl), ...,zg?,zg?] ‘

Computation of the Algorithm 1 with the matrices D; of (2) can be clearly
demonstrated using a flowgraph representation. An example for the case N =
22 = 8,L = 4,J = 3 is shown in Fig. 2. The flowgraph consists of J stages,
the j-th stage, j = 1,..,,J, having 27 nodes (depicted as boxes on Fig. 2).
Each node represents a basic DWT operation (see Fig. 2(b)). The ith node,
i=0,..,2™ 77 —1, of the stage j = 1, ..., J has incoming edges from L circularly
consecutive nodes 2i,2i +1, (2i + 2) mod 2™+ (2i + L — 1) mod 2™~ 3+1 of
the preceding stage or (for the nodes of the first stage) from inputs. Every node
has two outgoing edges. An upper (lower) outgoing edge represents the value of
the inner product of the vector of low-pass (high-pass) filter coefficients with the
vector of the values of incoming edges. Outgoing values of a stage are permuted
according to the perfect unshuffle operator so that all the low-pass components
are collected in the first half and the high-pass components are collected at the
second half of the permuted vector. Low pass components are then forming the
input to the following stage or (for the nodes of the last stage) represent output
values. High-pass components represent output values at a given resolution.

Essentially, the flowgraph representation gives an alternative, rather demon-
strative and easy-to-understand definition of discrete wavelet transforms. It has
several advantages, at least from implementation point of view, as compared to
the conventional DWT representations such as tree-structured filter bank, lifting
scheme or lattice structure representation [30].
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Fig. 2. Flowgraph representation of a 1-D DWT (N=16, L=4, J=3).

However, the flowgraph representation of DW'Ts as it has yet been presented
has an inconvenience of being very large for bigger values of V. This inconve-
nience can be overcome based on the following observation. Assuming J < logy N
(in the most of applications J << log, N) one can see that the DWT flowgraph
consists of N/2/similar patterns (see the two hatching regions on Fig. 2). Ev-
ery pattern can be considered as a 27-point DWT with a specific strategy of
forming the input signals to its every octave. Merging the 2™~ patterns in one,
we can now obtain compact (or core) flowgraph representation of DWT. An ex-
ample of a DWT compact flowgraph representation for the case J = 3,L = 4
is shown on Fig. 3. The compact DWT flowgraph has 277 nodes at its j-th,
stage, j = 1,...,J, where now a set of 2™~ temporarily distributed values are
assigned to every node. Also, every outgoing edge corresponding to a high-pass
filtering result of a node or low-pass filtering result of the node of the last stage
represents a set of 2™ 7 output values. Note that the structure of the compact
DWT flowgraph does not depend on the length of the DWT but only on the
number of decomposition levels and filter length. The DWT length is reflected
only in the number of values represented by every node.

To illustrate computational process corresponding to the compact flowgraph
let us adopt following notations. Let D; be a matrix consisting of the first 27 9 +1
rows and the first 27791 4 I, — 2 columns of D;. For example, if J —j+1=2
and L = 6, then D; is of the form:



Fig. 3. Compact flowgraph representation of a 1-D DWT (L =4, J = 3).

hilplslyls lg 00
5o |00 bibalslets s
7= | hiha ks hyhs hs 0 O
0 0 hy hy hs hy hs he

Let us also conventionally divide the vector :cg; D of (3) into subvectors

zl-18) — zggl)(s 2770 (54 1) -2 ), s =0,..,2m T — 1, where
here and throughout the text the notation z(a : b) stands for the subvector of
@ consisting of the a-th to b-th components of z. Then the input of the j-th,
J =1,..,J, octave within the s-th compact DWT flowgraph is the subvector
£U=12) (0: 27-9+1 4 I, — 3) of the vector

T T
) j—1,s mod 2™~ j— .(a+Q~A1) mod 2m—J
i‘(-7~178) == [(.’L‘SP )) 3 oy <$£‘,’Pl ! )) } (4)

being the concatenation of the vector a:(L’; 1) with the circularly next Q; — 1
vectors where Q; = [(L — 2)/27=9+1].

With these notations, the computational process represented by the compact
flowgraph can be described with the following pseudocode.

Algorithm 2.

1. For s=0,...,2™ 7/ —1 set :1:([?}’,8) =z(s-27: (s +1)-27 —1);

2.Forj=1,..,J

For s=0,..,2" 7 —1

2.1. Set £U~1%) according to (4)

GNT (6N _ b, a0 j
2.2. Compute (zL;,) ,(a:H’P) = D;-0-19) (0:27-3+1 { [ _3),

70\7 (22m7-1)\"
3. Form the output vector y = (:cu’, R (:L‘LF’, ,

T T
JoNT Jam=J -1 Lo\ T 1,2m 71
(&) (5 0) s (o) (o M .



Implementing the cycle for s in parallel one can easily arrive to a parallel
DWT realization. By exchanging the nesting order of cycles for j and s and im-
plementing the (nested) cycle for j in parallel it is possible to arrive to a pipelined
DWT realization. Both poorly parallel and poorly pipelined realizations would
be inefficient since the number of operations is halved from an octave to the next
one. However, combining the two methods we arrive to very efficient parallel-
pipelined or partially parallel-pipelined realizations. The following pseudocode
presents such parallel-pipelined DWT realization where we denote

s () =3 @Qn (5)

Algorithm 3.

1. For §=0,...,2™ 7 —1 set :vg);f) =z(s-2: (s +1)-27 —1);

2. For s = sx(12),..,2™ 7/ + 5% (J) - 1, For j = Ji, ..., J, do in parallel
2.1. Set 3U~1s=5*()) according to (4)

2.2, Compute

) LT ‘ AT _ . .
[(mg;‘"(m) (a8 } = D, $ULems) (0 2791 4 [ _3).
3. Form the output vector (See Step 3 of Algorithm 2.)

Note that computation of Algorithm 3 take place during the steps s = s *
(G)y 2™ + 5% (§) — 1. At steps s = s * (1),...,8 * (2) — 1 computations
of only the first octave are implemented, at steps s = s * (2),...,5 % (3) — 1
only operations of first two octaves are implemented, etc. In general, at the
step s = s (1),..,2™ 7 + s % (J) — 1 operations of the octaves j = Ji, ..., Ja
are implemented where J; = min {j such that s () > s < s * (§) + 2m=J} and
Ji = max {j such that s (§) < s < 5% (j) +2™7}.

3 The Proposed DWT Architectures

In this section we present general structures of two types of DWT architectures,
referred to as Type I and Type 2 core DWT architectures, as well as two other
DWT architectures being constructed based on either core DWT architecture
and referred to as multi-core DWT architecture and variable resolution DWT
architecture, respectively. Both types of the core DWT architectures implement
arbitrary discrete wavelet transform with J octaves with low-pass and high-pass
filters having a length L not exceeding a given number Ly ax.

The general structure representing both types of core DWT architectures is
presented on Fig. 4 where dashed lines depict connections, which are present
in Type 2 architectures but are absent in Type 1 architectures. In both cases
the architecture consists of a data input block and J pipeline stages each stage
containing a data routing block and a block of processor elements (PEs) wherein
the data input block implements the Step 1 of the Algorithm 3, data routing
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Fig. 4. The general structure of Type 1 and Type 2 core DWT architectures

blocks are responsible for Steps 2.1, and blocks of PEs are for computations of
the Steps 2.2. The two types mainly differ by the possibility of data exchange
between PEs of the same pipeline stage which are possible in Type 2 but not in
Type 1 architectures.

The data input block of the core DWT architectures of both types may be
realized as word-serial as well as word-parallel. In the former case the data input
block consists of a single (word-serial) input port which is connected to a length-
27 shift register (dashed lined box on Fig. 4) having a word-parallel output from
its every cell. In the latter case the data input block simply consists of 27 parallel
input ports. In both cases the data input block has 27 parallel outputs connected
to the 27 inputs of the data routing block of the first pipeline stage.

3.1 Type 1 Core DWT Architecture

The basic operation of the Algorithm 3 (Step 2.2) is equivalent to 277 pairs of
vector-vector inner products:

z(j,sﬁa*(j))(z-) =LP. :;;(.7'—1-(8—3*(1))+)(2i :2i + L —1),



m(j,s~s=«(j))(i + 2J—j) = HP- i.(j'l,(s~.s*(.’i))+)(2i :2i+L—1),i=0, ”_’2J—j -1

All the inner products may be implemented in parallel. On the other hand,
every vector-vector inner product of length L can be obviously decomposed into
a sequence of L, = [L/p] inner products of length p (p < L) with accumulation
of the results. With this, Algorithm 3 may be modified as follows.

Algorithm 3.1.

1. For s=0,..,2 7 — 1 set 2\%) —x(s-27 : (s + 1) - 27 — 1);

2. For s =5%(1),..,2m 7 + 5% (J) — 1, For j = J;, ..., J» do in parallel

2.1. Set 3U~1s=2*()) according to (4)

2.2, For i=0,...,2’ 77 — 1 do in parallel

Set Spp(i) =0, Sgp(i) =0;

For n =0,..,L, — 1 do sequentially

p—1
Stp(@) = Sep() + ) lnpyadl 1= )(2) 4 np + k); (6)
k=0

p=d
Sup(i) = Syp(i) + Z Pp k&9~ (2% 4 np + k); (7)
k=0

Set oy~ (@) = SLp(i); 25" ) = Swp(i)
3. Form the output vector (see Step 3 of Algorithm 2)

The general structure of the Type 1 core DWT architecture is presented by
Fig. 4 where there are no connections depicted with dashed lines, that is there are
no connections between PEs of a single stage. The architecture consists of a data
input block (already described above) and J pipeline stages. In general, the jth
pipeline stage, j = 1, ..., J, of the Type 1 core DWT architecture consists of a data
routing block having 27~9% inputs Ips(;)(0), .. ., Ipg(j)(27~911 —1) forming the
input to the stage, and 2771 4p—2 outputs Oprp()(0),...,0prp; (27791 +
p — 3) connected to the inputs of 2/~7 PEs. Every PE has p inputs and two
outputs where p < L.y is a parameter of the realisation describing the level
of parallelism of every PE. Consecutive p outputs OpRrB(j)(2i), Opre()(2i +
1), .., Oprp(5)(2i+p — 1) of the data routing block of the jth, j =1, ..., J, stage
are connected to the p inputs of the ith, i = 0,...,27~7 — 1, PE (PE;;) of the
same stage. First outputs of 2’7 PEs of the jth pipeline stage,j = 1,.,J-1,
form the outputs Opg(;(0), . ..,0ps(j)(27 79 —1) of that stage and are connected
to the 2777 inputs Ips(;41)(0), .. ., Ips(j+1)(2779 — 1) of the data routing block
of the next, (j + 1)st, stage. The first output of the (one) PE of the last, Jth,
stage is the Oth output out(0) of the architecture. Second outputs of 2/~7 PEs of
the jth pipeline stage,j = 1,...,J, form the (2779)th to (279! — 1)st outputs
out (2777 , ..., out (2779+171) of the architecture.

Let us now describe functionality of the blocks of the Type 1 core DWT
architecture. For convenience, let us define a time unit as the period for PEs to



complete their one operation (which is equal to the period between successive
groups of p data to enter to the PE) and let us consider an operation step of the
architecture to comsist of L, time units.

The data input block serially or in parallel accepts and in parallel outputs
a group of components of the input vector at the rate of 2/ components per
operation step. Thus, the vector zg?}’,s) is formed on the outputs of the data
input block at the step s =0, ...,2m~7 — 1.

The data routing block of the stage j = 1, ..., J, is a circuitry which at the
first time unit n = 0 of its every operation step accepts in parallel a vector
of 2779*1 components, and then at every time unit n = 0, vy Lp — 1 of that
operation step it outputs in parallel a vector of 279! 4+ p — 2 components
np,np+1,..., (n+1)p+ 27791 —3 of a vector being the concatenation (in the
chronological order) of the vectors accepted at previous Qj — 1 steps, where

Qj = [(Lmax —2) /277941 j=1,..,J. (8)

The functionality of the PEs used in the Type 1 core DWT architecture is to
compute two inner products (6) and (7) of the vector on its p inputs with two
vectors of predetermined coefficients during every time unit and to accumulate
the results of both inner products computed during one operation step. At the
end of every operation step, the two accumulated results pass to the two outputs
of the PE and new accumulation starts. Possible structures of PEs for the Type
1 core DWT architectures are presented on Fig. 5 for the case of arbitrary p
0= 1,p=2, and p = Lyay, (Fig. 5, (a), (b), (c), and (d), respectively). These
structures are for the ”generic’ DWT implementation independent of the filter
coefficients. They can be easily optimized for specific filter coefficients.

It is easy to show that the architecture implements computations according
to Algorithm 3.1 though with extra delay when L < L... The extra delay is
the consequence of the flexibility of the architecture for being able of implement-
ing DWTs with arbitrary filter length L < L., while Algorithm 3.1 presents
computation of a DWT with a fixed filter length L. In fact, the architecture
is designed for the filter length Ly but also implements DWTs with shorter
filters with a slightly increased time delay but without loosing in time period.

Denote

R aps j oA :
50)=0, 3(G)=) Qn, j=1,.,J. (9)
The delay between input and corresponding output vectors is equal to

T4(C1) = (2™ + 5(J)) [L/p] (10)

time units. The throughput or the time period (measured as the the intervals
between time units when successive input vectors enter to the architecture) is
equal to T,(C1) time units, where

T,(C1) = 2™ [L/p] (11)
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From (10) and (11) we obtain that approximately 100% of efficiency (hard-
ware utilization)? is achieved for the architecture both with respect to time delay
or, moreover, time period complexities. A close efficiency is reached only in a few
pipelined DWT designs (see [17], [27], [28]) whereas most of the known pipelined
DWT architectures reach much less than 100% average efficiency. It should also
be noted that a time period of at least O(N) time units is required by known
DWT architectures. The proposed architecture may be realized with varying
level of parallelism depending on the parameter p. As follows from (11) the time
period complexity of the implementation varies between T1,(C1) = 2™ 7 and
Ti(C1) = L2™7. Thus the throughput of the architecture is 27 /L to 27 times
faster than that of the fastest known architectures. The possibility of realization
of the architecture with varying level of parallelism also gives an opportunity
to trade-off the time and hardware complexities. It also should be noted that
the architecture is very regular and needs an easy control (which is, essentially,
a clock only) unlike, e.g. the architecture of [17]. It does not contain a feed-
back, a switch, or long connections depending on the size of the input but only

? The efficiency or hardware utilization is E = (7(1) - 100%) / (K - T(K)) where T(1)
and T(K) are the time complexities with one PE and with K PEs, respectively.



connections of the maximum of O(L) length. Thus, it can be implemented as a
semisystolic array.

3.2 Type 2 Core DWT Architecture

When implementing the basic operations (6) and (7) of Algorithm 3.1, mul-
tiplicands needed for the time unit n = 1, «yLp — 1 within the branch i =
0,..,2779 — p/2 — 1 can be obtained from the results obtained at stepn —1
within the branch 7 + p/2. With this observation, the following modification of
the basic algorithm may be derived. Denote

r {t,c for k=o,...,p—1 . p = {hk for k=o0,...,p~1
k Ix/lk—p, fOF k=p,....L-1> "'k hi/lx—p, fOT k=p,...,.L—1

Algorithm 8.2.

1. For s =0,...,2" 7 — 1 set zio}’f) =z(s-27 : (s+1)-27 - 1);

2. For s =5%(1),..,2™ Y + 5% (J) = 1, For j = J;, .., Jz do in parallel
2.1. Set £U~1s=5*() according to (4)

2.2. For i =0,...,2777 — 1 do in parallel

For k=0,..,p—-1

{ set z(3,0,k) = g0~ 1o+ (24 4 k);

p—1 p—1
Compute Spp(i) = kE zrp(4,0,k); Spp(i) = k): zrp(i,0,k); }
=0 =0

For n=1,..,L, — 1 do sequentially
For k=0,..,p—-1

i _ J thprrzitp/2,n—1.k) if <2’ _p/2 )
{ set z1p(i,n, k) = {znw@(j—1.,_,.@-))(21.“) if i>29-1_pya}
by oy 2(i+p/2,n—1,k) if i<27-3 —p/2

set ZHP(zy n, k) = {h"p+k:i:(j_1"“"(j))(2'i+k) if i>20-i—p/2 }

p—1 p=1
Compute SLP(‘i) = SLP(‘Z:)-I-kZ ZLP(i, 7, k); SHp(i) = SHp(i)-f-kZ sz(i, n, k);
=0 =0

Set 5~ (i) = S.p(3); 235D (5) = Sy (i)
3. Form the output vector (see Step 3 of Algorithm 2)

The general structure of the Type 2 core DWT architecture is presented
on Fig. 4 where now the dashed lines showing connections between PEs of one
stage are valid. Except for p inputs and two outputs (later on called main inputs
and main outputs) every PE has now additional p inputs and p outputs (later on
called intermediate inputs and outputs). The p intermediate outputs of PE; ; /2
are connected to the p intermediate inputs of PEyy, 1 =0,..,27F — p/2 — 1.
Other connections within the Type 2 core DWT architecture are similar to those
within the Type 1 core DWT architecture.

Functionalities of the blocks of the Type 2 core DWT architecture are also
similar to those of the Type 1 core DWT architecture. The difference is only
in the functionality of PEs which at every time unit n = 0,..,L, — 1 of every
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operation step is to compute two inner products of a vector, say, z, on Iis p either
main or intermediate inputs with two vectors of predeterrmnec coefficients, sa;
LP'" and HP' of length p as well as to compute a point- by-point :.‘:‘:'_:? of T
with LP’. At the time unit n = 0 the vector z is the one forrncc or ain p
mputs of the PE and at time units n = 1,. L — 1 it is the one @

one operation step are accumulated and are passed to the two main outpuis
of the PE while the results of the point-by-point products are passed o =
intermediate outputs of the PE. A possible structure of PEs for the T 2 ¢
DWT architecture for the case of p = 2 is presented on Fig. 6. St
arbitrary p and for p =1, p = 2, and p = Lpay, can be easily design
to those on Fig.5.

Similar to as in the case of the Type 1 core DWT architecture one can see tha:
the Type 2 core DWT architecture implements Algorithm 3.2 with time delz;
and time period characteristics given by (10) and (11). The other charact
of these two architectures are also similar. In particular, it is very fast, it m
implemented as a semisystolic architecture and with varying level of parall
giving opportunity of trade-off between time and hardware Comple_h‘-e: fi
difference between these two architectures is that the shift registers of dat
routing blocks of the Type 1 core DWT architecture are replaced with additional
connections between PEs within the Type 2 core DWT architecture.

m

3.3 Multi-core DWT Architectures

The two types of core DWT architectures described above may be implemented
with varying level of parallelism depending on the parameter p. Further flexibil-

ity in the level of parallelism is achieved within multi-core DWT architectures bs

introducing a new parameter r = 1, ...,2™ 7, The multi-core DWT architecture
is, in fact obtained from correspondlng (single-)core DWT architecture by ex-
panding it r times. Thus one can again consider Fig. 4 for the general structure
of multicore architectures but the numbers of PEs at every pipeline stage should
be multiplied by r.
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Fig.7. The variable resolution DWT architecture: (a) based on a single core DWT
architecture; (b) based on a multi-core DWT architecture.

The both types of multi-core DWT architectures are r times faster than the
(single-)core DWT architectures, that is a linear speed-up with respect to the
parameter 7 is achieved. The delay between input and corresponding output
vectors is equal to

Ta(C1) = (27 +3(0)) [L/p] /7 (12)
time units and the throughput or the time period is equal to
T,(C1) =27 [L/p] /r (13)

time units. Thus further speed-up and flexibility for trade-off between time and
hardware complexities is achieved within multi-core DWT architectures. Ar-
chitectures are modular and regular and may be implemented as semisystolic
arrays. As a possible realisation of the multi-core DWT architecture for the case
of p= L = L and 7 = 2™~ one can consider the DWT flowgraph itself (see
Fig. 2) where nodes (rectangles) should be considered as PEs and small circles
as latches. This example of realization has been reported in [29]-[30] where it
was referred to as fully-parallel pipelined (FPP) architecture.

3.4 Variable Resolution DWT Architectures

The above-described architectures implement DWTs with the number of octaves
not exceeding a given number J. They may implement DWTs with smaller than



J number of octaves though with some loss in hardware utilisation. The variable
resolution DWT architecture implements DWTs with arbitrary number J’ of
octaves whereas the efficiency of the architecture remains approximately 100%
whenever J’ is larger than or equal to a given number Jy;,.

The general structure of the variable resolution DWT architecture is shown
on Fig. 7,(a). It consists of a core DWT architecture corresponding to Jomin
decomposition levels and an arbitrary serial DWT architecture, for, instance,
an RPA-based one ([14]-[17], [19]-[20], [22]). The core DWT architecture imple-
ments the first Jui, octaves of the J’-octave DWT. The low-pass results from the
out(0) of the core DWT architecture are passed to the serial DWT architecture.
Then the serial DWT architecture implements the last J’ — J;, octaves of the
J'-octave DWT. Since the core DWT architecture may be implemented with
varying level of parallelism it can be balanced with the serial DWT architec-
ture in such a way that approximately 100% of hardware utilisation is achieved
whenever J' > Jpin.

To achieve the balancing between the two parts the core DWT architec-
ture must implement a Jmin-octave N-point DWT with the same throughput or
faster as the serial architecture implements (J/ — Juig)-octave M-point DWT
(M = (N/2/m=)). Serial architectures found in the literature implement a M-
point DWT either in 2M time units ([14], [15}) or in M time units ([14]-[19]) cor-
respondingly employing either L or 2L basic units (BUs, multiplier-adder pairs).
They can be scaled down to contain arbitrary number K < 2L BUs so that an
M-point DWT would be implemented in M [2L/K] time units. Since the (Type
1 or Type 2) core DWT architecture implements a Jy;,-octave N-point DWT
in N [L/p] /2’== time units the balancing condition becomes [L /p] £ [2L/K]
which will be satisfied if p = [K/2]. With this condition the variable resolution
DWT architecture will consist of totally

_ Jmin __ __ [K27min, if K is even
fi=2p (2 " 1) HH = {(K+1)2-’mu= -1, if Kk is odd

BUs and will implement a J’-octave N-point DWT in T time units, where
Ty = N[2L/K] j27m=

A variable resolution DWT architecture based on a multi-core DWT archi-
tecture may also be constructed (see Fig. 7,(b)) where now a data routing block
is inserted between the multi-core and serial DWT architectures. The function-
ality of the data routing block is to parallelly accept and serially output digits
at the rate of r samples per operation step. The balancing condition in this case
is rp = [K/2], and the area time characteristics are

K2'mi | if K is even

— Jmin - =
A=2pr (27 —1)+K = {(K+1)2"mln -1,if Kk is odd ’

Ty = N[2L/K] /2=

3.5 Conclusions and a Summary of the Performance

Table 1 presents a comparative performance of the proposed architectures with some
conventional architectures. In this table, as it is commonly accepted in the literature,



Table 1. Comparative performance of some DWT architectures

Architecture Area, A Period, Ty AT;

(number of BUs)
Architectures L 2N 4AN?L
in [14], [15]
Architectures 2L N 2N*L
in [14]-[19]
Architectures JL N JN?L
in [12],[24]
Architectures 4Lor N/2 =~ N*L
of [27],[28] S, [L/277
FPP DWT [29]-{30] [2NL(1-1/27) |1 2NL(1-1/27)
(pipelined) (per vector)

2 J 2J-T1

LPP DWT [29-f30] |2L (2’ —1)  |ny2’ S )2
Single-core  DWT/|2p (27 - 1) N[L/p1 /2" |~ N%p[L/p]? /27T
(Type 1 or 2)
Single-core  DWT,[2 (27 - 1) NL/27 ~ N?LFj27
p=1
Single-core  DWT|2Lnax (27— 1) |N/27 N N?Lax /271

P—_—Lmuz (L < Lmﬁx)
Multi-core DWT  [2pr (27 — 1) (N[L/p]) / (r27 )
(V?plL/p") / (r2’ 1)

Multi-core  DWT,[8 (27 - 1) NL/27F2 ~ N2L? /2741

r=4, p=1

Multi-core DWT | 2r Lmax (27 = 1) [N/ (r2”) ~ (N?Lmax) / (r2”T)
r=4, p=Lp..(L <

Lmax)

Variable  resolution|2p (2= — 1) [N [2L/K] /27wl 2
single-core DWT K =~ K9/min g

p 2 [K/2] (K < 2NL/(K2/min)

2L)

the area of the architectures was counted as the number of used multiplier-adder pairs
which are the basic units (BUs) in DWT architectures. The time unit is counted as time
period of one multiplication since this is the critical pipeline stage. Characteristics of the
DWT architectures proposed in this paper (the last seven rows in Table 1) are given
as for arbitrary realisation parameters Lmax, p, and 7 as well as for some examples
of parameter choices. It should be mentioned that the numbers of BUs used in the
proposed architectures are given assuming the PE examples of Figs 5 and 6. (where
PE with p inputs contains 2p BUs). However, PEs could be further optimized to involve
less number of BUs.

As follows from Table 1, the proposed architectures, compared to the conventional
ones, demonstrate excellent time characteristics at moderate area requirements. Ad-
vantages of the proposed architectures are best seen when considering the performances
with respect to AT,? criterion, which is commonly used to estimate performances of
high-speed oriented architectures. Architectures presented in the first two rows of Ta-



ble 1 are either non-pipelined or restricted (only two stage) pipelined ones and they
operate at approximately 100% hardware utilisation as is the case for our proposed
architectures. So their performance is ” proportional” to the performance of our archi-
tectures which however are much more flexible in the level of parallelism resulting in
a wide range of time and area complexities. The third row of Table 1 presents J stage
pipelined architectures with a poor hardware utilization and consequently a poor per-
formance. The fourth to sixth rows of Table 1 present architectures from our previous
publications which are J stage pipelined and achieve 100% hardware utilization and
good performance but do not allow a flexible range of area and time complexities as
the architectures proposed in this paper do. :
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Abstract. This paper describes a Java-based tool that automatically
generates structural level VHDL models of FIR Filters. Automatic gen-
eration of VHDL models allows the designer to rapidly explore the design
space and test the impact of parameters on the design. The tool is based
on a general purpose computer arithmetic component package developed
at Lehigh University and can easily be extended to enable rapid proto-
typing of other hardware accelerators used in embedded systems. In this
paper, we describe the effects of truncated multipliers in FIR filters. We
show that a 22.5% reduction in area can be achieved for a 24-tap filter
with 16-bit coefficients, and that the reduction error SNR is only 2.4 dB
less than the roundoff error SNR of the same filter with no truncation.
Using the techniques presented in this paper, the average reduction error
of the filter is several orders of magnitude less than the average reduction
error of the individual multipliers.

1 Introduction

The design of hardware accelerators for embedded systems presents many design
tradeoffs that are difficult to quantify without bit-accurate simulation and area
and delay estimates of competing alternatives. Structural level VHDL models
can be used to evaluate and compare designs, but require significant effort to
generate.

This paper presents a tool that was developed to evaluate the tradeoffs in-
volved in using truncated multipliers in FIR filters. The tool is based on a package
of Java classes that models the building blocks of computational systems, such
as adders and multipliers. These classes generate VHDL descriptions, and are
used by other classes in hierarchical fashion to generate VHDL descriptions of
more complex systems. This paper describes the generation of truncated FIR
filters as an example.

Previous techniques for modeling and designing digital signal processing sys-
tems with VHDL are presented in [1-5]. The tool described in this paper differs
from those techniques by leveraging the benefits of object oriented programming
(OOP). By subclassing existing objects, such as multipliers, the tool is easily ex-
tended to generate VHDL models that incorporate the latest optimizations and
techniques.



Sections 1.1 and 1.2 provide background necessary for understanding the
two’s complement truncated multipliers used in the FIR filter architecture, which
is described in Section 2. Section 3 describes the tool for automatically generating
VHDL models of those filters. Synthesis results of specific filter implementations
are presented in Section 4, with concluding remarks given in Section 5.

1.1 Two’s Complement Multipliers

Parallel tree multipliers form a matrix of partial product bits, which are then
added to produce a product. Consider an m-bit multiplicand, A, and an n-bit
multiplier, B. If A and B are integers in two’s complement form, then

m—2 n—2
A==y 12"+ > a2 and  B=-b, 12"+ 52 . (1)
i=0 j=0

Multiplying A and B together yields the following expression:
m—2n—2

AB = anibna2" 724 3 Y aib2
i—=0 j—=0

m—2 n—2
— E bn_laﬂ””*l— E am_lbﬂjﬂn*l .
=0 7=0

The first two terms in (2) are positive. The third term is either zero (if b,,_1 =
0) or negative with a magnitude of 37" % ;2" (if b,_, = 1). Similarly, the
fourth term is either zero or a negative number. To produce the product of
A x B, the first two terms are added “as is”. Since the third and fourth terms
are negative (or zero), they are added by complementing each bit, adding ‘1’ to
the LSB column, and sign extending with a leading ‘1’. With these substitutions,
the product is computed without any subtractions as:

(2)

m—2n—2 m—2
P = am—1bn—12ml+ni2 + Z Z aiijiJrj + Z m2i+n71
i=0 j=0 =0
n—2 (3)
+ Ym0 27T gl gLy gmel
7=0

Figure 1 shows the multiplication of two 8-bit integers in two’s complement
form. The partial product bit matrix is described by (3), and is implemented
using an array of AND and NAND gates. The matrix is then reduced using tech-
niques such as Wallace [6], Dadda [7], or Reduced Area reduction [8].

1.2 Truncated Multipliers

Truncated m x n multipliers, which produce results less than m 4+ n bits long,
are described in [9]. Benefits of truncated multipliers include reduced area, de-
lay, and power consumption [10]. An overview of truncated multipliers, which
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Fig. 1. 8x8 partial product bit matrix (two’s complement)

discusses several methods for correcting the error introduced due to unformed
partial product bits, is given in [11]. The method used in this paper is constant

correction, as described in [9].

Figure 2 shows an 8 x 8 truncated parallel multiplier with a correction con-
stant added. The final result is [-bits long. We define k as the number of truncated
columns that are formed, and r as the number of columns that are not formed.
In this example, the five least significant columns of partial product bits are not

formed (I =8, k=3, r=25).
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Fig. 2. 8x8 truncated multiplier with correction constant

Truncation saves an AND gate for each bit not formed and eliminates the full
adders and half adders that would otherwise be required to reduce them to two
rows. The delay due to reducing the partial product matrix is not improved be-
cause the height of the matrix is unchanged. However, a shorter carry propagate
adder is required, which may improve the overall delay of the multiplier.



The correction constant, C,, and the ‘1’ added for rounding are normally
included in the reduction matrix. In Figure 2 they are explicitly shown to make
the concept more clear.

A consequence of truncation is that a reduction error is introduced due to
the discarded bits. For simplicity, the operands are assumed to be integers, but
the technique can also be applied to fractional or mixed number systems. With
r unformed columns, the reduction error is

r—=1 1
ET = — Zzal‘,ijQi . (4)

i=0 j=0
If A and B are random with a uniform probability density, then the average

value of each partial product bit is i, so the average reduction error is

Er,avg:_ii(Q‘Fl)Qq:—i((r_l)'2r+1) . (5)

q=0

The correction constant, Cy, is chosen to offset K, _4.4. After rounding,
Cy = —round(27"E; _gyg) - 2" = round ((r —1)-27% 4 2_(”'2)) 22" (6)

where round(z) indicates x is rounded to the nearest integer.

2 FIR Filter Architecture

This section describes the architecture used to study the effect of truncated
multipliers in FIR filters. Little work has been published in this area, and this
architecture incorporates the novel approach of combining all constants for two’s
complement multiplication and correction of reduction error into a single con-
stant added just prior to computing the final filter output. This technique reduces
the average reduction error of the filter by several orders of magnitude, when
compared to the approach of including the constants directly in the multipliers.
Section 2.1 presents an overview of the architecture, and Section 2.2 describes
components within the architecture.

2.1 Architecture Overview

An FIR filter with T taps computes the following difference equation [12],
T—1
yln] = > bk - xln — K] (7)
k=0

where z[] is the input data stream, b[k] is the k** tap coefficient, and y[] is
the output data stream of the filter. Since the tap coefficients and the impulse
respouse, h[n], are related by

_fbnl,n=0,1,..., T -1
hin] = {O, otherwise, (8)



Equation (7) can be recognized as the discrete convolution of the input stream
with the impulse response [12].

Figure 3 shows the block diagram of the FIR filter architecture used in this
paper. This architecture has two data inputs, x_in and coeff, and one data out-
put, y_out. There are two control inputs which are not shown, clk and loadtap.

x[n] x[n-1] x[n-T+1]

‘OpAReg‘ ‘OpBReg‘

Multiplier 1 Multiplier 'M*
o l L
‘ Accumulator ‘ ‘ Sum Op 1 Reg ‘ ‘ ‘ ‘Sum Op'M Reg‘
Multi-Operand Adder ‘
‘ CPA Operand Register ‘ ‘ Correction Constant

Specialized CSA

Output Register

y_out

Fig. 3. Proposed FIR filter architecture with 7" taps and M multipliers

The input data stream enters at the x_in port. When the filter is ready to
process a new sample, the data at x_in is clocked into the register labeled xz[n)
in the block diagram. The z[n] register is one of T' shift registers, where T is
the number of taps in the filter. When x_in is clocked into the z[n] register, the
values in the other registers are shifted right in the diagram, with the oldest
value, z[n — T + 1] being discarded.

The tap coefficients are stored in another set of shift registers, labeled b[0]
through b[T —1] in Figure 3. Coefficients are loaded into the registers by applying
the coefficient values to the coeff port in sequence and cycling the loadtap
signal to load each one.

The filter is pipelined with four stages: operand selection, multiplication,
summation, and final addition.

Operand Selection: The number of multipliers in the architecture is config-
urable. For a filter with T' taps and M multipliers, each multiplier performs



[T/M] multiplications per input sample. The operands for each multiplier
are selected each clock cycle by an operand bus and clocked into registers.

Multiplication: Each multiplier has two input operand registers, loaded by an
operand bus in the previous stage. Each pair of operands is multiplied, and
the final two rows of the reduction tree (the product in carry-save form) are
clocked into a register where they become inputs to the multi-operand adder
in the next stage. Keeping the result in carry-save form, rather than using
a carry propagate adder (CPA), reduces the overall delay.

Summation: The multi-operand adder has carry-save inputs from each mul-
tiplier, as well as a carry-save input from the accumulator. After each of
the [T/M] multiplications have been performed, the output of the multi-
operand adder (in carry-save form) is clocked into the CPA operand register
where it is added in the next pipeline stage.

Final Addition: In the final stage, the carry-save vectors from the multi-
operand adder and a correction constant are added by a specialized carry
save adder and a carry propagate adder to produce a single result vector.
The result is then clocked into an output register, which is connected to the
y-out output port of the filter.

The clk signal clocks the system. The clock period is set so that the mul-
tipliers and the multi-operand adder can complete their operation within one
clock cycle. Therefore, [T/M7] clock cycles are required to process each input
sample. The final addition stage only needs to operate once per input sample,
so it has [T/M] clock cycles to complete its calculation and is generally not on
the critical path.

2.2 Architecture Components

This section discusses the components of the FIR filter architecture.

Multipliers. In this paper, two’s complement parallel tree multipliers are used
to multiply the input data by the filter coefficients. When performing truncated
multiplication, the constant correction method [9] is used. The output of each
multiplier is the final two rows remaining after reduction of the partial product
bits, which is the product in carry-save form [13]. Rounding does not occur at
the multipliers, each product is (I + k)-bits long. Including the extra k bits in
the summation avoids an accumulation of roundoff errors. Rounding is done in
the final addition stage.

As described in Section 1.1, the last three terms in (3) are constants. In
this architecture, these constants are not included in the partial product matrix.
Likewise, if using truncated multipliers, the correction constant is not included
either. Instead, the constants for each multiplication are added in a single op-
eration in the final addition stage of the filter. This is described later in more
detail.



Multi-operand Adder and Accumulator. Asshown in (7), the output of an
FIR filter is a sum of products. In this architecture, M products are computed
per clock cycle. In each clock cycle, the carry-save outputs of each multiplier
are added and stored in the accumulator register, also in carry-save form. The
accumulator is included in the sum, except with the first group of products for
a new input sample. This is accomplished by clearing the accumulator when the
first group of products arrives at the input to the multi-operand adder.

The multi-operand adder is simply a counter reduction tree, similar to a
counter reduction tree for a multiplier, except that it begins with operand bits
from each input instead of a partial product bit matrix. The output of the multi-
operand adder is the final two rows of bits remaining after reduction, which is
the sum in carry-save form. This output is clocked into the accumulator register
every clock cycle, and clocked into the CPA Operand Register every [T/M]
cycles.

Correction Constant Adder. As stated previously, the constants required
for two’s complement multipliers and the correction constant for unformed bits
in truncated multipliers are not included in the reduction tree but are added
during the final addition stage. A ‘1’ for rounding the filter output is also added
in this stage. All of these constants for each multiplier are precomputed and
added as a single constant, Crorar.

All multipliers used in this paper operate on two’s complement operands.
From (3), the constant which must be added for an m x n multiplier is 2"+7~1 +
2n=1 4 2m=1 With T taps, there are T multiply operations (assuming 7T is evenly
divisible by M), so a value of

CM — T(2m+n71 + 27171 4 2m71) (9)

must be added in the final addition stage.

The multipliers may be truncated with unformed columns of partial product
bits. If there are unformed bits, the total average reduction error of the filter is
T - Ey_qvg. The correction for this is

Cr=round (T (r—1)- 272 4 72702 o7, (10)
To round the filter output to [ bits, the rounding constant that must be used is
Cryp = 2"TF71 . (11)

Combining these constants, the total correction constant for the filter is
Crorar = Cp +Cr+ CrND - (12)
Adding Crorar to the multi-operand adder output is done using a special-

ized carry-save adder (SCSA) which is simply a carry-save adder optimized for
adding a constant bit vector. A carry-save adder uses full adders to reduce three



bit vectors to two. SCSA’s differ in that half adders are used in columns where
the constant is a ‘0’ and specialized half adders are used in columns where the
constant is a ‘1’. A specialized half adder computes the sum and carry-out of
two bits plus a ‘1’, the logic equations being

S; = m and Cit+1 = a; + b; . (13)

The output of the SCSA is then input to the final carry propagate adder.

Final Carry Propagate Adder. The output of the specialized carry-save
adder is the filter output in carry-save form. A final carry propagate adder (CPA)
is required to compute the final result. The final addition stage has [T/M] clock
cycles to complete, so for many applications a simple ripple-carry adder will be
fast enough. If additional performance is required, a carry-lookahead adder may
be used. Using a faster CPA does not increase throughput, but does improve
latency.

Control. A filter with T taps and M multipliers requires [T/M] clock cycles
to process each input sample. The control circuit is a state machine with [T'/M]
states, implemented using a modulo-[T/M] counter. The present state is the
output of the counter and is used to control which operands are selected by each
operand bus. In addition to the present state, the control circuit generates four
other signals: 1) shiftData, which shifts the input samples, 2) clearAccum,
which clears the accumulator, 3) loadCpaReg, which loads the multi-operand
adder output into the CPA operand register, and 4) loadOutput, which loads
the final sum into the output register.

3 Filter Generation Software
(FGS)

The architecture described in Section 2 provides a great deal of flexibility in terms
of operand size, the number of taps, and the type of multipliers used. This implies
that the design space is quite large. In order to facilitate the development of a
large number of specific implementations, a tool was designed that automatically
generates synthesizable structural VHDL models given a set of parameters. The
tool, which is named FGS, also generates test benches and files of test vectors
to verify the filter models.

FGS is written in Java and consists of two main packages. The arithmetic
package, discussed in Section 3.1, is suitable for general use and is the foundation
of FGS. The fgs package, discussed in Section 3.2, is specifically for generating
the filters described previously. It uses the arithmetic package to generate the
necessary components.



3.1 The arithmetic Package

The arithmetic package includes classes for modeling and simulating digital com-
ponents. The simplest components include D flip-flops, half adders, and full
adders. Larger components such as ripple-carry adders and parallel multipliers
use the smaller components as building blocks. These components in turn are
used to model complex systems such as FIR filters.

Common Classes and Interfaces. Figure 4 shows the classes and interfaces
which are used by arithmetic subpackages. The most significant of these are
VHDLGenerator, Parameterized, and Simulator.

. java.lang

| Object l—

7/ VHDLGenerator

—~

<<Parameterized>>

<<Simulator>>

HDLFile

StdLogicVector

| Class | / Abstract Class / (<<Interface>> )

extends -———- implements

Fig. 4. The arithmetic package

VHDLGenerator is an abstract class. Any class that represents a digital compo-
nent and can generate a VHDL model of itself is derived from this class. It
defines three abstract methods which must be implemented by all subclasses.
genCompleteVHDL() generates a complete VHDL file describing the compo-
nent. This file includes synthesizable entity-architecture descriptions of all
subcomponents used. genComponentDeclaration() generates the component
declaration which must be included in the entity-architecture descriptions of
other components which use this component. genEntityArchitecture() gener-
ates the entity-architecture description of this component.

Parameterized is an interface implemented by classes whose instances can be
defined by a set of parameters. The interface includes get and set methods
to access those parameters. Specific instances of Parameterized components
can be easily modified by changing these parameters.



Simulator is an interface implemented by classes that can simulate their opera-
tion. The interface has only one method, simulate, which accepts a vector of
inputs and returns a vector of outputs. These inputs and outputs are vectors
of IEEE VHDL std_logic_vectors [14].

The arithmetic.smallcomponents Package. The arithmetic.smallcomponents
package provides fundamental components including D flip-flops and full adders
which are used as building blocks for larger components such as registers, adders,
and multipliers. Each class in this package is derived from VHDLGenerator, en-
abling each to generate VHDL for use in larger components.

The arithmetic.adders Package. The classes in this package model various
types of adders including carry propagate adders, specialized carry-save adders,
and multi-operand adders. All components in these classes handle operands of
arbitrary length and weight. This flexibility makes automatic VHDL generation
more complex than it would be if operands were constrained to be the same
length and weight. However, this flexibility is often required when an adder is
used with another component such as a multiplier.

Figure 5 shows the arithmetic.adders package, which is typical of many of
the arithmetic subpackages. CarryPropagateAdder is an abstract class from which
carry propagate adders such as ripple-carry adders and carry-lookahead adders
are derived. CarryPropagateAdder is a subclass of VHDLGenerator and implements
the Simulator and Parameterized interfaces. Using interfaces and an inheritance
hierarchy such as this help make FGS both straightforward to use and easy to
extend. For example, a new type of carry propagate adder could be incorporated
into existing complex models by subclassing CarryPropagateAdder.

Jjavalang  arithmetic

| Object

| Class | / Abstract Class / (<<Interface>> )

extends -———- implements

Fig. 5. The arithmetic.adders package



The arithmetic.matrixreduction Package. This package provides classes that
perform matrix reduction, typically used by multi-operand adders and parallel
multipliers. These classes perform Wallace, Dadda, and Reduced Area reduction
[6-8]. Each of these classes are derived from the abstract class ReductionTree.

The arithmetic.multipliers Package. A ParallelMultiplier class was implemented
for this paper and is representative of how FGS functions.

Parameters can be set to configure the multiplier for unsigned, two’s comple-
ment, or combined operation. The number of unformed columns, if any, and the
type of reduction, Wallace, Dadda, or Reduced Area, may also be specified. A
BitMatrix object, which models the partial product matrix, is then instantiated
and passed to a ReductionTree object for reduction. Through polymorphism (dy-
namic binding), the appropriate subclass of ReductionTree reduces the BitMatrix
to two rows. These two rows can then be passed to a CarryPropagateAdder object
for final addition, or in the case of the FIR filter architecture described in this
paper, to a multi-operand adder.

The architecture of FGS makes it easy to change the bit matrix, reduction
scheme, and final addition method. New techniques can be added seamlessly by
subclassing appropriate abstract classes.

The arithmetic.misccomponents Package. This package includes classes that
provide essential functionality but don’t logically belong in other packages. This
includes Bus, which models the operand busses of the FIR filter, and Register
which models various types of data registers. Implementation of registers is done
by changing the type of flip-flop objects which comprise the register.

The arithmetic.firfilters Package. This package includes classes for model-
ing ideal FIR filters as well as FIR filters based on the truncated architecture
described in Section 2.

The “ideal” filters are ideal in the sense that the data and tap coefficients
are double precision floating point. This is a reasonable approximation of infinite
precision for most practical applications. The purpose of an ideal FIR filter
object is to provide a baseline for comparison with practical FIR filters and
allow measurement of calculation errors.

The FIRFilter class models FIR filters based on the architecture shown in
Figure 3. All operands in FIRFilter objects are considered to be two’s comple-
ment integers, and the multipliers and the multi-operand adder use Reduced
Area reduction. There are many parameters that can be set including the tap
coefficient and data lengths, the number of taps, the number of mulipliers, and
the number of unformed columns in the multipliers.

The arithmetic.testing Package. This package provides classes for testing com-
ponents generated by other classes, including parallel multipliers and FIR filters.
The FIR filter test class generates a test bench and an input file of test vectors.
It also generates a .vec file for simulation using Altera Max+Plus II.



The arithmetic.gui Package. This package provides graphical user interface
(GUI) components for setting parameters and generating VHDL models for all of
the larger components such as FIRFilter, ParallelMultiplier, etc. The GUI for each
component is a Java Swing JPanel, which can be used in any Swing application.
These panels make setting component parameters and generating VHDL files
simple and convenient.

3.2 The fgs Package

Whereas the arithmetic package is suitable for general use, the fgs package is
specific to the FIR filter architecture described in Section 2. fgs includes classes
for automating much of the work done to analyze the use of truncated multipliers
in FIR filters. For example, this package includes a driver class that automatically
generates a large number of different FIR filter configurations for synthesis and
testing. Complete VHDL models are then generated, as well as Tcl scripts to
drive the synthesis tool. The Tcl script commands the synthesis program to write
area and delay reports to disk files, which are are parsed by another class in the
fgs package that summarizes the data and writes it to a CSV file for analysis by
a spreadsheet application.

4 Results

Table 1 presents some representative synthesis results that were obtained from
the Leonardo synthesis tool and the LCA300K 0.6 micron CMOS standard cell
library. Additional data can be found in [15], which also also provides a more
detailed analysis of the FIR filter architecture presented in this paper, including
reduction and roundoff error. The main findings are:

1. Using truncated multipliers in FIR filters results in significant improvements
in area. For example, the area of a 16-bit filter with 4 multipliers and 24
taps improves by 22.5% with 12 unformed columns and by 36.4 % with 16
unformed columns. We estimate substantial power savings would be realized
as well. Truncation has little impact on the overall delay of the filter.

2. The computational error introduced by truncation is tolerable for many ap-
plications. For example, the reduction error SNR for a 16-bit filter with 24
taps is 86.7dB with 12 unformed columns and 61.2dB with 16 unformed
columns. In comparison, the roundoff error for an equivalent filter without
truncation is 89.1dB [15].

3. The average reduction error of a filter is independent of r (for T > 4),
and much less than that of a single truncated multiplier. For a 16-bit filter
with 24 taps and r = 12, the average reduction error is only 9.18 x 107°
ulps, where an ulp is a unit of least precision in the 16-bit product. In
comparison, the average reduction error of a single 16-bit multiplier with
r = 12 is 1.56 x 1072 ulps, and the average roundoff error of the same
multiplier without truncation is 7.63 x 106 ulps.



Filter | Synthesis Results Improvement Reduction Error

Total A-D
Area Delay Product Total A-D |SNRr or Favce
T M r|(gates) (ns) (gatesns)| Area Delay Product| (dB) (ulps) (ulps)
12 2 0| 16241 40.80 662633 — — — 00 0 0

12 2 12| 12437 40.68  505937|23.4% 0.3% 23.6%| 89.70 0.268 -4.57E-5
12 2 16| 10211 40.08  409257|37.1% 1.8% 38.2%| 64.22 5.040 -4.57E-5
16 2 0| 17369 54.40  944874| — — — 00 0 0
16 2 12| 13529 54.24  733813|22.1% 0.3% 22.3%| 88.45 0.310 -6.10E-5
16 2 16| 11303 53.44  604032|34.9% 1.8% 36.1%| 62.97 5.820 -6.10E-5
20 2 0] 19278 68.00 1310904| — — — 00 0 0
20 2 12| 15475 67.80 1049205/19.7% 0.3% 20.0%| 87.48 0.346 -7.60E-5
20 216| 13249 66.80  885033|31.3% 1.8% 32.5%| 62.00 6.508 -7.60E-5
24 2 0] 20828 81.60 1699565 — — — 00 0 0
24 212| 17007 81.36 1383690(18.3% 0.3% 18.6%| 86.69 0.379 -9.18E-5
24 216| 14781 80.16 1184845/29.0% 1.8% 30.3%| 61.21 7.143 -9.18E-5

12 4 0| 25355 20.40 517242 — — — 0 0 0
12 412| 18671 20.34  379768|26.4% 0.3% 26.6%| 89.70 0.268 -4.57E-5
12 4 16| 14521 20.04 291001|42.7% 1.8% 43.7%| 64.22 5.040 -4.57E-5
16 4 0| 26133 27.20 710818 — — — 0 0 0
16 4 12| 19413 27.12  526481|25.7% 0.3% 25.9%| 88.45 0.310 -6.10E-5
16 4 16| 15264 26.72  407854|41.6% 1.8% 42.6%| 62.97 5.820 -6.10E-5
20 4 0| 28468 34.00 967912 — — — 0 0 0
20 412| 21786 33.90  738545|23.5% 0.3%  23.7%| 87.48 0.346 -7.60E-5
20 416| 17636 33.40  589042|38.0% 1.8% 39.1%| 62.00 6.508 -7.60E-5
24 4 0] 29802 40.80 1215922 — — — 0 0 0
24 412| 23101 40.68  939749|22.5% 0.3% 22.7%| 86.69 0.379 -9.18E-5
24 416| 18950 40.08  759516|36.4% 1.8% 37.5%| 61.21 7.143 -9.18E-5
Table 1. Synthesis results for 16-bit operands, output rounded to 16-bits (optimized
for area)
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Conclusions

This paper presents a tool used to rapidly prototype parameterized FIR filters.
The tool is used to study the effects of using truncated multipliers in those fil-
ters. It is based on a package of arithmetic classes that are used as components
in hierarchical designs, and are capable of generating structural level VHDL
models of themselves. Using these classes as building blocks, FirFilter objects
generate complete VHDL models of specific FIR filters. The arithmetic package
is extendable and suitable for use in other applications, enabling rapid proto-
typing of other computational systems. As a part of ongoing research at Lehigh
University, the tool is being expanded to study other DSP applications, and will
be made available to the public in the near future.
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