
HIERARCHICAL INTELLIGENT MIXED SIMULATION

Tudor Niculiu Sorin Cotofana
Bucharest University of Technology Delft University of Technology

Splaiul Independentei 313 Mekelweg 4
77206 Bucuresti, Romania 2600 GA Delft, The Netherlands
tudor@messnet.pub.ro S.D.Cotofana@dutepp0.et.tudelft.nl

KEYWORDS
Simulated Intelligence, Cosimulation, Hierarchy Types.

ABSTRACT

Intelligence is complementary to faith - common name for
(intuition, inspiration, imagination) - and supposes, at least,
{conscience, adaptability, intention). Conscience simulation
demands transcending the present limits of computability, by
an intensive effort on extensive research to integrate essential
mathematical and physical knowledge guided by philosophical
goals. A way to begin is hierarchical intelligent mixed
simulation. Applying "Divide et Impera et Intellige" to hierarchy
types reveals their comprehensive constructive importance
based on structural approach, symbolic meaning, object-
oriented representation. Formalizing hierarchical descriptions,
we create a theoretical kernel that can be used for self-
organizing systems.

INTRODUCTION

An algorithm is an entity that can be computer simulated, so it
represents computability, bottom-up (construction, design,
plan) or top-down (understanding, verification, learning). The
algorithmic approach is equivalent to the formal one: If a
sentence of a formal system is true, then an algorithm can
confirm it. For a verification algorithm of the mathematical
sentences a formal system can be defined, that holds for true
the sentences in the set closure of the algorithm's results
towards the operations of the considered logic. Formal systems,
partial recursive functions, Turing machines, λ-calculus,
Markov-algorithms, are only the best-known formalisms for
computation, that is, also for algorithm and computability.
Knowledge and construction hierarchies can cooperate to
integrate design and verification into simulation; object-
oriented concepts can be symbolized to handle data and
operations formally; structural representation of behavior
manages its realization. Hierarchy types open a way to simulate
intelligence as an adaptable conscience.

HIERARCHY TYPES

Coexistent interdependent hierarchies structure the universe of
models for complex systems. Abstraction and hierarchy are
semantics and syntax of a fundamental concept, the most
powerful tool in systematic knowledge: hierarchy results
formalizing abstraction (Niculiu and Cotofana 2001). Hierarchy
types reflect abstraction kinds. The abstraction goal is shown↑:

• Class hierarchy (↑concepts) ↔ virtual framework to
represent any kind of hierarchy, based on form-contents
dichotomy, modularity, inheritance, polymorphism.

• Symbolization hierarchy (↑mathematics) ↔ stepwise
formalism for all kind of types, e.g., for hierarchy types.

• Structure hierarchy (↑managing) ↔ stepwise managing of
all (hierarchy) types on different levels by recursive
autonomous block decomposition, following the principle
"Divide et Impera et Intellige".

• Construction hierarchy (↑simulation) ↔ simulation
framework for design/ verification of autonomous levels
corresponding to different abstraction grades of
description.

• Knowledge hierarchy (↑theories) ↔ reflexive abstraction
("in a deeper sense"), aiming that each level has knowledge
of its inferior levels, including itself.

Understanding and construction have correspondent hierarchy
types: their syntax relies on classes, the meaning on symbols,
and their use on modules. The different hierarchy types can be
formalized in the theory of categories. Constructive type theory
permits formal specification and formal verification by
generating an object satisfying the specification.

Knowledge-based architecture separates representation from
reasoning. An intelligent system should be capable of reflexive
abstraction. It reasons controlled by the problem specification
and by solving strategies. These are derived from a higher level
of knowledge, representing principles of approach, which are
structured by an even higher level, containing hierarchy types.

.
HIERARCHICAL COSIMULATION

Simulation should remain correct, with increasing complexity,
optimization and multi-domain requirements for the object-
system. The hierarchical principle, applied to knowledge and
simulation, (locally) bounds the complexity, by problem
decomposition, and assures (almost) correct-by-construction
design and efficient (design-adapted) verification.

Hardware - Software Cosimulation

The hardware-software cosimulation of complex systems is
imposed by the incompatibility/ suboptimality associated with
the initial hardware/ software partition of a design and by the
inefficiency of the design-verification cycle in the context of a
fixed partition.

To unify simulation methodologies, we started from the
results of different research directions: object-oriented
hardware/ software description, formal verification of software/

hardware, automated synthesis of hardware systems. A unified
representation for hardware and software allows techniques
from one domain to be applied to the other domain. Therefore, a
representation based on abstraction and object-orientation,
used primarily for software, is employed for the hardware
domain as well. Also, existing software techniques, such as
those used for verification of abstract data type
implementations, can be used for hardware.

Knowing the features (mandatory: abstraction, hierarchy,
encapsulation, modularity, message passing + optionally:
typing, concurrence, persistence) that characterize an object-
oriented language, they also make sense from the perspective
of hardware modeling and simulation. Object-oriented
specification of models can be based on general systems
theory, what makes this approach applicable in all domains.
The designed framework permits self-organizing. It offers at any
abstraction level of the simulation hierarchy: system description
in a commonly used language extended for parallelism by
synchronization items; automatic learning-based hardware/
software partition of the description; consistent communication
between heterogeneous parts and with the exterior; simulation
of the whole system during any design phase.

Data abstraction can be used to represent hardware. A class
corresponds to a set of elements with common static and
dynamic characteristics. Thus, a hardware component can be
treated as class containing state along with a collection of
associated operations that can manipulate this state. For
example, a register can be viewed as a class with the operations
read and write. The contents of the register correspond to its
state, which can be accessed and manipulated using the
operations read and write, respectively.

Software engineering utilizes data decomposition to refine
(derive implementations for) abstract data types. When
modeled as data abstractions, hardware elements can also be
refined using this decomposition technique. Generic types (a
form of polymorphism) result from the ability to parameterize
with types a software element, such as procedure or data type.
This makes programs more general. The template concept, that
realizes it in C++, can be applied to hardware components that
act as containers, e.g., registers, register files.

Digital-Analog Cosimulation

The essential difference between analog and digital simulation
paradigm is induced by that between the mathematical
structures their models are based on algebraic for digital,
analytical for analog. In view of intelligent simulation the whole
intelligence has to be simulated, i.e., conscience along with
adaptability. The discrete parts of simulation, e.g., a sequence
of decisions/ stimuli for design/ verification, do not easily
match the continuity of analog properties (Blum et al. 1998).

Usually, the difficulty of analog simulation is avoided by
defining an auxiliary representation domain, intermediate
between the behavioral and the structural, where the problem is
decomposed into topology selection and dimension
computation. The first process is discrete and the second one is
continuous over a restricted problem space. Object-oriented
representation lends itself for this form-content
complementarity instance. But, topology selection would be
more systematic if continuous modifications of the form were

possible, and dimension computing is more efficient if symbolic
algebraic methods are used.

We searched the compromise between simulation algebra and
analog analysis in three directions: 1) defining upper levels of
abstraction for the analog domain, governed by algebraic laws;
2) modeling analog simulation in algebraic-analytical structures
(of functional analysis); 3) association of analytical syntax to
the analog simulation process. All these approaches can be
aided by an object-oriented Analog Hardware Description
Language (AHDL).

Thermal-Analog Simulation

The development of CAD procedures for micro-systems
imposes the simulation of thermal phenomena as secondary
effects to the main, analog (electronic, mechanical, optical,
chemical), ones. As the micro-system components are modeled
in AHDL the models can be enhanced with temperature
dependence and power generation estimation. Moreover
models for environment and packaging conditions can be
added as well. AHDL models permit direct simulation of the
microscopic thermal transfer, and qualitative simulation-
oriented representation of second order effects. Consequently,
different physical domains, described by isomorphic analog
laws, can be simulated in a unique representation.

Dynamics, circuit theory, hydrodynamics, thermodynamics,
electrodynamics can be expressed with through-across
concepts governed by dual topological laws for continuity and
compatibility. AHDL enables a direct physical simulation of
heat conduction, alternative to discrete heat equation: only the
first order relation representing Fourier’s hypothesis is
expressed in an AHDL model; its integration and discretization
are realized by topological constraints that characterize AHDL
structures. This suggests the idea that we follow towards
formal verification: Simulation is computer-oriented theory.

Behavioral Adaptable Design for Testability

Design-for-testability (DFT) must suit the behavioral
specification of today’s complex system design Referring to
high-level synthesis, DFT can operate before, while or after it.
The first choice permits the intervention of an intelligent agent
for adapting the DFT technique, model or method to the
particular design. We call it behavioral adaptable design-for-
testability: it improves the testability, measured with adequate
methods, direct on the behavioral specification or aided by
special representations, that have to permit returning to the
behavioral description after improving the testability of the
system to be designed. The results are general enough to be
valid for systems, either hard, soft or hard/soft.

Memory elements - registers (arrayed flip-flops)/ flip-flops/
latches (unclocked flip-flops) - are represented in behavioral
hardware descriptions by variables or signals. Variables are
description objects local to processes/ subprograms, used to
store intermediate values between sequential statements,
characterized by free assignment. Signals are permanent
description objects to link concurrent elements: components/
processes/ concurrent assignments, demanding synchronized
assignment, declared locally - within architecture, block or other
declarative region, or globally - in extended package. In the

context of a process synchronized by a clock signal, in a
behavioral description, signals implicated in simple/ multiple
signal assignment generate memory during synthesis. An
analog rule can be formulated for variables: Inside a process, a
variable that must hold values between iterations of the process
implies memory elements. A variable that is set but not used
between synchronization statements infers memory; a variable
that is read before being assigned also infers memory. The
context is not restrictive, as all concurrent statements are
equivalent to processes (excepting direct instantiation). For
called subprograms the rules of memory inference can be
deduced directly: pure functions (no side effects) do not - while
procedures (side effects) do infer memory elements.

The most used DFT techniques are Scanning, Built-In Self-
Test and Test Point Insertion. They can be applied at the
different levels of the design hierarchy (behavior, RTL, logic)
and can be combined. We began with Partial Scan applied to
the autonomous blocks of the behavioral HDL specification,
but the other techniques can contribute to improve the
testability of the behavioral specification or the way to this
goal. All types of hierarchies are implied in this approach:
design abstraction levels, block structure, class/ object
framework, symbolization and knowledge hierarchies. The
Partial Scan problem is the selection of the scan registers
following a strategy to find an optimum testability - complexity
compromise. We combined Partial Scan methods to optimize the
order to add memory elements to the scan chain, at behavioral
level. An adaptable interface assures the translation, in both
senses, from behavioral hard/ soft description to a structural
representation of the required behavior. The partial-scan
selection uses a knowledge base to generate the weighted
directed graph (flip-flops, combinational paths) and to return to
text the differences caused by transformation for testability
improvement. The rules of correspondence between description
object (signal/ variable) assignments and registers, and those to
translate the data flow in the behavioral specification to
weighted arcs in the graph counterpart and to combine different
testability measures in node weights, guide the first step. The
second step is solved by incrementing rules for the hard/ soft
description. Partial-scan needs for the return translation a
pointing scheme for the scanned objects among signals/
variables of the behavioral specification. This is managed by an
adequate data structure in HDL. In principle, flip-flops are
selected for scan, but when a register is used parallely, it is
candidate entirely for scan. The variables/ signals inferring
memory are testability-related sorted to select incrementally the
scan elements that will be eventually mapped to the scan
register.

INTELLIGENT SIMULATION

Faith and intelligence are yin-yang of our life (Way, Truth, Life).
• Faith = (Inspiration, Intuition, Imagination) is associated to

the right human brain hemisphere. Intuition is the main part
of the dark yin, inspiration the dynamical shaped interface
to intelligence, the white point link stands for imagination.

• Intelligence = (Conscience, Adaptability, Intention) is linked
to the left human brain hemisphere. Adaptability is the main
part of the light yang, conscience the variable interface to
faith, the dark point, sent by faith, signifies intention.

Conscience is self-awareness of individual faith and
intelligence, as well as of the relation to the local context
(society) and to the global one (universe). To appear it needs
self-knowledge, what could result from community conscience
featured by an eternal human structure, e.g., from the past,
shepherds, farmers, sailors, Africans, American Indians,
Asians, Australians, ... Each individual recognized himself in his
cohabitants, besides being adaptable and having a lot of
intuition. The alternative eternity/ evolution can be explained
by the kind conscience sees the others intelligent agents: as
similar, respectively, as different to itself. The evolution of the
common measure is conditioned by the conscient construction
of communicating individual intelligence to manage the lower
stages, as industry enabled the mechanization of agriculture
followed by the concentration on economics.

Evolution implied a multiple "Divide et Impera et Intellige" for
conscience, associated to generating the components lacking of
the mind at start, then assisted by them:
• individual-social-universal conscience→inspiration

(subjective-contextual-objective) ↓
• space-time (structure-behavior) → imagination ↓
• discrete-continuous (natural-real) → intention
• beauty-truth-good (art-science-technology)↓.
The convergence process of evolution demands struggle
against time, with structure as ally. Conscience needs perhaps,
more than discrete recurrence, continuous feedback. Social and
individual conscience are mostly divergent nowadays, i.e., we
only performed "Divide et Impera", neglecting "et Intellige". It's
high time to correct this.

SEARCHING FOR CONSCIENCE

The anterior relations are oversimplified in order to move
towards intelligent simulation. Although we claim they are
intuitive and hope they are inspired, to begin, we neglect the
essential but too primitive to understand intuition and
inspiration, so formalizing reflexive abstraction by the
knowledge hierarchy type and simplifying abstraction mainly
by the simulation hierarchy type, it follows that:

Conscience = knowledge(simulation(Conscience)) (1)

 i.e., a fixed-point relation suggesting that we could model
conscience associating to any hierarchical level of the
construction process a knowledge level. The fixed-point
problem needs a metric space where knowledge ° construction
is a contraction, i.e., elements implied in the construction
should get closer to one another in the formal understanding of
the formal construct. If, even in the sketch, we consider general
functional relations between the essential parts of the faith-
assisted intelligence:

Conscience = knowledge (intention (Inspiration, (2)
simulation (imagination (

Intuition,
Conscience)

)
)

)

RESEARCHING FOR CONSCIENCE

Alternative ways to extend the computability concept can be
compared to universal approaches known from German novels:
1. Faust (Johann Wolfgang von Goethe): heuristics - risking

competence for performance, basing on imagination,
confined to the mental world.

2. Das Glasperlenspiel (Hermann Hesse): unlimited natural
parallelism - remaining at countable physical suggestions,
so in the Nature.

3. Der Zauberberg (Thomas Mann): hierarchical self-
referential knowledge - needing to conciliate the discrete
structure of hierarchy with the continuous reaction, hoping
to open the way to Reality.

They concentrate respectively on the mental world of the good
managed by technology, the physical world of the truth
researched by science and Plato's world of the beautiful
abstractions discovered by art (Amoroso et al. 2000).

 Recurrence is confined to discrete worlds, while abstraction is
not. This difference suggests searching for understanding
based on mathematical structures that order algebra into
topology (Rozenberg and Salomaa 1993). We follow the
(mathematical) paradigm of intelligent simulation, by
functionally modeling the self-aware adaptable behavior for
intelligence simulation. The integration between discrete and
analog is again needed, for a soft adaptability and for
conscience simulation as continuous reaction (Traub 1999).

REFLEXIVE KNOWLEDGE

Mathematics contains structures suggesting to be used for
self-referent models. The richest domain for this is functional
analysis, which integrates algebra, topology and order:
contractions and fixed points in metric spaces, reflexive normed
vector spaces, inductive limits of locally convex spaces, self-
adjoint operators of Hilbert spaces, inversable operators in
Banach algebra. A hierarchical formal system can be defined:

1. (U, {Hi∈Sh), card(U) >ℵ0 // hierarchical universe
2. Σ = F ∪ L ∪ A ∪ K // functional objects

F = {f | f : U*→ U} // global functions
L = {f | f : Levelj*→ Levelj} // level structures (3)
A = {f | f : Levelj*→ Levelj+1}// abstractions (- K)
K = {f | f : Levelj*× Levelj+1→ Levelj+1}// knowledge

3. I = Σ*∩ R // initial functions
4. R = {r | r : Σ*× R*→ Σ × R } // transformation rules.

U is a category, e.g., containing Hilbert spaces with almost
everywhere-continuous functions as morphisms, enabling
different ways to simulate self-awareness (Ageron 2000). For
example, considering self-adjoint operators as higher-level
objects of the knowledge hierarchy, these levels can approach
self-knowledge like knowledge about the inferior levels and of
the current one, having also some qualitative knowing about
the superior levels. The correspondence problem, to associate
the knowledge hierarchy to the simulation hierarchy, is
managed by natural transformations over the various functors
of the different hierarchies regarding the simulated system.

To complete the simulation of the intelligence's components,
intention is first determined by human-system dialogue
(Keutzer et al 2000). Further than modeling conscience to
simulate intelligence there will be searching to comprehend
inspiration, may be using Lebesgue measure on differentiable
manifolds or non-separable Hilbert spaces. To approach
intuition even mathematics has to be more philosophy-oriented.

CONCLUSIONS

Simulation is algorithmic theory. Cosimulation needs consistent
combination of mathematical domains, as well as an intelligent
compromise between consistence and completeness.
Intelligence simulation implies a hierarchical approach of
different types. Knowledge hierarchies demand for extension of
the algorithm concept. Searching for different computer
architectures, various combinations of hierarchies, i.e., of
abstractions of various kinds, several mathematical ways to
extend the computability domain are to be followed.

Simulability is computability using the power of continuum.
Positive signs to confirm this come from analog electronics,
control systems, mechatronics. Real progress towards this new
way of computation needs unrestricted mathematics, integrated
physics and metaphorical thinking. Evolution needs separation
of faith and intelligence, understanding and using consciously
more of faith's domain, integrating them to human wisdom, to be
divided further to get more human. Metaphorically said, the
current problem is: God's ways are uncountable.

REFERENCES

Ageron, P. 2001. "Limites inductives dans les categories accessibles".
In Theory and Applications of Categories, 8, No.11, 313-323.

Amoroso, R., R.Antunes, C.Coelho, M.Farias, A.Leite and P.Soareset
(Eds.). 2000. Science & the Primacy of Consciousness, Noetic Press.

Blum, L., F.Cucker, M.Shub and S.Smale. 1998. Complexity and Real
Computation, Springer Verlag.

Keutzer. K., S.Malik, A.R.Newton, J.M.Rabaey and A.Sangiovanni-
Vincentelli. 2000. "System-Level Design: Orthogonalization of
Concerns & Platform-based Design". In IEEE Transactions on CAD
of Integrated Circuits and Systems, 19, No.12, 1523-1543.

Niculiu, T. and S. Cotofana. 2001. "Hierarchical Intelligent
Simulation". In Proceedings of the European Simulation
Multiconference (Prague, June 6-9). A Publication of the Society for
Computer Simulation International, 243-246.

Rozenberg, G. and A.Salomaa (Eds.). 1994. Developments in
Language Theory, World Scientific.

Traub, J.F. 1999. "A Continuous Model of Computation". In
PhysicsToday, May, 39-43.

AUTHOR BIOGRAPHY

Tudor NICULIU: Assoc.Prof. EE Dept., "Politehnica" University of
Bucharest. He is looking for hierarchical integration of different
domains, as hard & soft, discrete & continuous, electrical &
unelectrical in order to simulate intelligence for intelligent simulation.
Sorin COTOFANA: Assoc.Prof. EE Dept., Delft University of
Technology. His research interests include computer arithmetic,
custom computing machines, embedded systems, logic design, parallel
architectures, neural networks, computational geometry, and CAD.

