
ALU Augmentation for MPEG-4 Repetitive Padding

Georgi Kuzmanov Stamatis Vassiliadis
Computer Engineering Lab, Electrical Engineering Department,

Faculty of Information Technology and Systems, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

E-mail:�G.Kuzmanov, S.Vassiliadis�@ET.TUDelft.NL

Abstract
In this paper we augment a general purpose ALU with an

extra functionality - a repetitive padding operation. The
proposed solution enables the processor to perform the time
exhaustive MPEG-4 padding algorithm in real time. At
trivial hardware costs of a few hundred 2x2 AND-OR (or
equivalent) logical gates, we achieve an order of magnitude
speed-up when compared to software running on a general
purpose processor. Our approach allows the MPEG-4 soft-
ware padding algorithm to run in real time for its most de-
manding profiles. As an example, a 64-bit pipelined im-
plementation is discussed in details. The approach is gen-
eral and fits into different architectural concepts and ALU
operand widths. More specifically it is shown that 344 ex-
tra gates are necessary for a 64-bit implementation and at
these expenses a processing speed of more than 7 million
macroblocks per second (MB/s) can be achieved. This is
an order of magnitude higher than the requirements of the
most-demanding MPEG-4 profile levels. Speed and hard-
ware estimations are also reported for 32 and 128-bit ALUs.

1. Introduction

Assuming MPEG standards, MPEG-4 [5, 6] is the first to
deal with content-based coding of audio-visual scenes. To
allow the efficient implementation of the standard, MPEG-4
defines several profiles. These profiles group the large set of
required tools, according to the targeted classes of applica-
tions. Within each profile, a number of levels constrain the
computational complexity and the required data bandwidth
of the application.

In literature [8, 9], complexity analysis results indicate
that the computational requirements of the highest profiles
and levels of MPEG-4 are measured in billions of RISC-like
instructions per second. These numbers will significantly
exceed the capabilities of the general purpose processors,
despite the near future technology achievements. The work

presented in this paper is a part of a research activity, in
which we focus on speeding MPEG-4 applications up. Our
basic approach is to augment general-purpose Arithmetic-
Logical-Units (ALU) with application specific functionali-
ties. The specific functions are used to redefine the architec-
ture and are implemented in hardware. Due to the different
requirements of the MPEG-4 profiles and the large number
of functionalities involved in it, the requirements for cost-
effective implementations are essential. One important new
feature in MPEG-4 is the padding technique, defined at all
Levels in the Core and Main Profiles of the standard. Soft-
ware profiling results, reported in [2, 3, 8, 14, 15], indicate
that padding is a computationally demanding and time con-
suming process, which restricts the real time operation of
the MPEG-4 codecs.

In this paper we propose an ALU augmentation circuitry,
which enables a general purpose processor to perform the
padding algorithm in real time. Thus we utilize the available
resources of the ALU, and by exploiting the sub-word paral-
lelism and dedicated instructions, we dramatically increase
the computational power of the architecture. The proposed
solution proved the following advantages:

� Real time processing for all MPEG-4 profiles and lev-
els, utilizing the padding algorithm can be achieved

� Scalable implementation, tunable to different operand
sizes

� General implementation for different architectural
concepts

The implementation is estimated analytically and its influ-
ence on the performance and the hardware cost of aug-
mented ALUs with different operand widths is discussed.
Our results indicate high processing speed, achieved at triv-
ial implementation costs. The achieved worst-case benefits
for a 64-bit ALU example are:

� Approximately 30 times faster processing than the
highest MPEG-4 requirements.

45 ISBN: 0-9669530-0-245 ISBN: 0-9669530-0-2

� Over 1000 times less MIPS (Millions of RISC-like In-
structions per Second) than the software implementa-
tion on general purpose processors.

� Only 344 AND-OR gates extra hardware penalty.

Our results strongly suggest that software running on a
processor incorporating our proposal will always meet the
highest standard requirements.

The remainder of the discussion in this paper is orga-
nized as follows. Section 2 gives some background infor-
mation and the motivation for the presented research, in-
cluding a description of the repetitive padding algorithm. In
Section 3, we describe the proposed implementation in de-
tails. Section 4 gives a quantitative evaluation of the design.
Finally, the conclusions are presented in Section 5.

2. Background and Motivation

For content-based coding, MPEG-4 uses the concept of a
Video Object Plane (VOP). A VOP is an arbitrarily shaped
region of a frame, which usually corresponds to a semantic
object in the visual scene. A sequence of VOPs in the time
domain is referred to as a Video Object (VO). Each VOP is
described by its shape and texture.
Shape is mainly represented in binary format. This format
represents the shape as a bitmap, referred to as binary alpha
plane. Each pixel in this plane takes one of two possible val-
ues, which indicate whether the pixel belongs to the object
or not. The binary alpha plane is divided into 16x16-pixel
blocks called Binary Alpha Blocks (BAB).
The texture of a VOP represents its color by macroblocks.
Each macroblock consists of one 16x16 array of lumi-
nance (grayscale) pixels and two 8x8 arrays of chrominance
(color) pixels, which represent the full-color of the corre-
sponding 16x16 area of a VOP.

As its preceding visual data compression standards,
MPEG-4 adopts motion compensation techniques to exploit
temporal redundancies in the encoded video sequences.In
MPEG-4, this process includes a search algorithm for best
matching between the macroblock to be encoded and an
area of previously encoded frame.

The Repetitive Padding Algorithm. The purpose of
padding in MPEG-4 is to ensure more accurate block
matching in motion compensation algorithms for arbitrary
shaped visual objects. The padding process defines the full-
color values (luminance + chrominance) for pixels outside
the shape of a VOP. In padding, two types of macroblocks
are of interest. Macroblocks, which lie on the boundary of
the VOP are referred to as boundary blocks. They are pro-
cessed by the so called repetitive padding. Exterior mac-
roblocks (completely outside the VOP) are padded using
the extended padding method. Since repetitive padding is
the most demanding padding algorithm, in this paper we

will consider the padding of boundary macroblocks. The
repetitive padding algorithm is described in [5, 13], but in
literature some modifications can be met. In [4, 7, 11] new
algorithms or algorithm modifications are proposed to rede-
fine or even substitute the original repetitive padding. All of
them, however, suggest software improvements of the cod-
ing efficiency and visual quality and do not focus on the real
time performance. A hardware acceleration of the padding
is discussed in [1]. In the same paper, the padding algorithm
is modified to support specific instruction set extensions as
the horizontal and vertical padding processes are divided
into two phases each. These two phases consequently scan
the lines/columns into two opposite directions and perform
the padding operations. The proposed hardware solution
there is a hardwired dedicated padding unit. In the present
paper we use the standard repetitive padding algorithm (dif-
ferentiates from [4, 7, 11]) on a general ALU (differentiates
from [1, 4, 7, 11]), where a boundary block is separately
processed horizontally, per scan-line basis and vertically -
per columns. We still scan each line and column of a mac-
roblock bidirectionally, but we do it in parallel (differenti-
ates from [1]), thus saving a number of processing cycles.
The standard repetitive padding algorithm, as defined in [5],
is equivalent to the following steps:

1. Define any pixel outside the object boundary as a zero
pixel. Make a duplicate binary alpha map.

2. Scan each horizontal line of a block. Each scan line is
possibly composed of zero and nonzero line segments
(according to the shape bits in the binary alpha map).

(a) In zero segments, between an end point of the
scan line and the end point of a nonzero segment,
all zero pixels are replaced by the pixel value of
the end pixel of nonzero segment.

(b) In zero segments, between the end points of two
different nonzero segments, all zero pixels take
the average value of these two end points.

Nonzero segments are not processed. All shape bits,
corresponding to padded pixels are set in the duplicate
binary alpha map.

3. Scan each vertical line of the block and perform the
identical procedure as described for the horizontal line.
The updated shape information from the duplicate bi-
nary alpha map is used.

Unlike its predecessors, MPEG-4 is much more demand-
ing in terms of computational complexity with even more
data intensive algorithms, which is illustrated in Table 1.
While the computational complexity of the future general
purpose processors may meet the demands of the lowest

46 ISBN: 0-9669530-0-246 ISBN: 0-9669530-0-2

Simple Profile Levels, the challenge is still to meet the re-
quirements of the most-demanding Core and Main Visual
Profile of MPEG-4.

Table 1. Visual Profiles@Levels Definitions
and Processing Speed in MacroBlocks per
second [MB/s]

Profile Le- Session # Max. Bounda-
vel Size VO MB/s ry MB/s

Main L4 1920x1088 32 489600 244800
L3 CCIR 601 32 97200 48600
L2 CIF 16 23760 11880
L1 N.A. N.A. N.A. N.A.

Core L2 CIF 16 23760 11880
L1 QCIF 4 5940 2970

Simple L2 CIF 4 23760 N.A.
Scalable L1 CIF 4 7425 N.A.
Simple L3 CIF 4 11880 N.A.

L2 CIF 4 5940 N.A.
L1 QCIF 4 1485 N.A.

Motivation. A summary of the computational complex-
ity of the QCIF, Core Profile Level 1 of MPEG-4 is re-
ported in [8]. Since this is the lowest profile level, utiliz-
ing the padding algorithm, we shall consider its real-time
requirements as the minimum for a hardware implementa-
tion. At this level, the computational power, reported for
the software encoding of a single object is in the order of
4500 Million RISC-like Instructions Per Second (MIPS).
Assuming a software performance optimization by a fac-
tor of up to 10, the total computational complexity is just
within the computational capabilities of the contemporary
general purpose processors(500-1000 MIPS). In the case of
4 video objects (see Table 1), however, the real-time soft-
ware feasibility becomes problematic. Therefore, the need
of a hardware acceleration of MPEG-4 is evident, even at
this relatively low profile level. Further analysis of the re-
quirements for the software implementation indicates that
the padding algorithm occupies some 175 MIPS for a single
video object, or around 700 MIPS for the maximum 4 video
objects, stated at Level 1 of the Core profile (Table 1). A
general purpose processor with such computational power
is still very expensive to be dedicated just for the repetitive
padding calculations. If we consider Table 1, we can esti-
mate that the required speed of 5940 MB/s for the Core Pro-
file Level 1 is approximately 82 times lower than the speed
requirements of the highest - Main@Level4 Profile (489600
MB/s). A simple arithmetic estimation indicates that for
the highest MPEG-4 profile level, the non-optimized soft-
ware padding would require approximately 57 000 MIPS
and when extremely optimized (10 times speed-up) - in the
order of 6000 MIPS. Even for the significantly less com-

plex decoder part of MPEG-4, the padding algorithm will
require some 24 000 MIPS for non-optimized software im-
plementation down to 2500 MIPS in dramatically optimized
programming. These numbers, huge even for the expected
technology levels of the near future, motivated our research
to focus on a cost-effective hardware solution of the MPEG-
4 algorithms and the repetitive padding in particular.

The large number of alternatively used algorithms in
MPEG-4, however, makes the implementation of dedicated
hardware units inefficient, since a lot of them may remain
unutilized. A good example is the padding algorithm, which
is not included in the Simple Profile Levels of MPEG-4.
Thus, a multi-profile codec would not utilize a hardwired
padding accelerator, when running at any of the Simple
Profile levels. A promising solution of this problem is
the reconfigurable implementation of hardware accelerators
[10, 16].

Another possible approach to increase the efficiency of a
general purpose architecture is adopted in this paper. We
augment the ALU with additional circuitry that enriches
its functionality with one more operation - the repetitive
padding. Thus we utilize the available resources of the
ALU, and by exploiting a sub-word parallelism and dedi-
cated instructions, we dramatically increase the computa-
tional power of the architecture.

3. The Augmented ALU

Since padding is performed over horizontal and vertical
pixel lines in identical manner and the width of the pixel
data is relatively small (8 or 12 bits in MPEG-4), a wider
general purpose ALU can not compute it efficiently. To im-
prove the computational efficiency of such ALUs, we can
exploit a sub-word data parallelism. In this section we aug-
ment a general purpose ALU, to make it capable to per-
form a padding operation. Since 8-bit integer chrominance
and luminance data representations are the most frequently
used, in this paper we assume the same data formats.

Pixel Processing. A single byte processing structure,
which is dedicated to process each pixel of a block, is de-
picted in Figure 1. The same structure is used both for
luminance and chrominance blocks padding. We pipeline
the processing flow by dividing it into two stages. The first
stage contains a Propagation Node (PN) and two multiplex-
ers. The multiplexers are required to preserve the original
functionality of the ALU. A byte adder and an output mul-
tiplexer build the second pipeline stage. The byte adder is a
part of the original multi-byte ALU adder, with controllable
carries between the bytes. The padding output multiplexer
can be merged with the existing ALU output multiplexer
and that is depicted in Figure 1 by the dash-lined arrow,
from the logical part of the ALU (LU).

The function of the PN is to propagate the appropriate

47 ISBN: 0-9669530-0-247 ISBN: 0-9669530-0-2

NLI

C =0
IN

NRI

SI

LI
LO

RO
RI

S’A BI

3

PN

OP1
OP2

S’

LI RI

ROLO

I(OP1) S(OP2)

Control

Control

C
OUT

OS’

Byte Adder

S

St
ag

e
1

St
ag

e
2

I From LU

A B

I

- Register

"PN" - Propagation Node

- Multiplexer

Figure 1. An ALU augmentation for a single
pixel padding

values to its neighboring padding PNs and to supply data
and control signals to the byte adder and the output multi-
plexer. Table 2 represents the control signals of the output
multiplexer (SR(���� ,ADD) means Shift Right with 1-bit
the ADDer output together with its carry). Signal ”Control”
determines whether the ALU will perform padding, or its
original operation(s).

Table 2. Truth Table for the Control Signals of
the Output Multiplexer

Control S ��� ��� O
0 X X X ADD
1 0 0 0 I
1 0 0 1 ADD
1 0 1 0 ADD
1 0 1 1 SR(���� ,ADD)
1 1 X X I

The following equations describe the functionality of the
PN:

�� � � � ��� � � � � � ����� � � � ��� � � � � � ��� (1)

�� � � � ��� � ���� (2)

����� are left and right 9 bit input vectors;
����� are left and right 9 bit output vectors;
� is the data input 8 bit vector;
� is the shape (input) bit before processing;
�

�

is a mask output bit after processing;
��� � � denotes the concatenation of bit S and vector I;
and ��� represents the � �� bit of vector �� .

The operation of the PN is as follows.

� If the input shape bit � is set (the pixel belongs to the
object), then:

1. The output � takes the value of the input � , i.e.
the pixel keeps its color.

2. The value of the input (pixel) � is propagated to
the left and to the right (via outputs �� and ��)
for further processing. The shape input bit � is
propagated by the same multiplexers and occu-
pies the most-significant bits of �� and ��.

3. The output bit �
�

is set, meaning the pixel has
been processed.

� If the input shape bit � is zero (the pixel does not be-
long to the object and has to be padded), then:

1. The outputs A and B propagate to the byte adder
the least significant 8-bits of RI and LI respec-
tively. The propagated neighboring shape bit val-
ues (���, ���) and bit S, are issued as control
signals to the output multiplexer. The multiplexer
redirects to O either the output of the adder or
its right shifted value (see Table 2) i.e. the pixel
takes the padded value.

2. The �� value is propagated via �� and the �� -
via �� including color and shape information.

3. The output bit �
�

is set, meaning the pixel has
been processed.

Line / Column Padding. To process a line or a column
from a block by an n-byte ALU, we have to implement a
chain of n PN (i.e. n-pixel parallel padding). A section of
such processing circuitry for two neighboring pixels is de-
picted in Figure 2. This structure is scalable and can contain
an arbitrary number of propagation nodes, depending on the
ALU width (i.e. n elements for an n-byte ALU). It has the
following features:

1. Operands are bypassing the first pipeline stage for a
conventional ALU operation, thus preserving the orig-
inal timing.

2. Operands are passed through the Propagation Nodes
only when a padding operation is performed

3. The critical path of the operands through the PNs for
an n-byte adder is equal to the delay of n multiplexers.

4. The critical path penalty for a read ALU operand is
only one 2-1 multiplexer.

5. The ALU critical path penalty is a single 2-way AND
element.

48 ISBN: 0-9669530-0-248 ISBN: 0-9669530-0-2

C
IN

C
IN

OUT
C

PN PN
RO

RI

LO

LI LI

LO

SISI

+ +

S’ IIS’

ResultShape’

+I From Logical Unit

Op A Op B

St
ag

e
1

St
ag

e
2

Figure 2. A Scan Line / Column Padding Aug-
mentation of an ALU

The last two penalties may be avoided if special designs
are employed (see [12]).

Putting Everything Together. Since a macroblock con-
sist of one 16x16 luminance and two 8x8 chrominance
blocks, it is efficient to implement structures processing 8 or
16 pixels simultaneously. This means that with 64 or 128-
bit ALUs we will be able to pad an entire line or column
of chrominance and/or luminance blocks in pipeline man-
ner for two ALU cycles. However, the proposed structure
is capable to perform padding even when it is implemented
on smaller ALUs.

Here, we will explain in more details the padding process
flow, performed by a 64-bit ALU. In the next section we will
give generalized estimations for n-byte ALUs. First, for the
proper circuit operation, the left-most and right-most inputs
of the structure should be initialized. Figure 3(a) depicts a
general view of the 64-bit initialization for luminance line
/ column padding. The BA and BB buffers are 8-bits wide
and contain the initialization values, required by the unit to
start the operation. In Figure 3(b), the cycle partitioning of
the luminance line padding is illustrated. Since a luminance
line (16x8-bit) can not be processed in one pass by a 64 bit
(8x8-bit) ALU, we assume that the left-most half of the line
is processed first. Depending on the right-most shape bit of
this first half of the line, the full-line padding would require
one or two more cycles.

If the right-most shape bit of the first half of the lumi-
nance line is ”0”, it means that data from the other half of
the line is required to pad the first half. Thus the data, prop-
agated to the right is stored into BA register. In the next
cycle this data is used to fully pad the second half of the
line, and the byte, which has to be propagated to the left is

BA

BABB

BB

Op BOp A

PN Chain

A BShape’

St
ag

e
1

St
ag

e
2

64

64

64-bit Adder

(a) General View of the Pipeline Stages

BN - Buffer N; X-Don’t care; 0-zero.

BA

BA2.1

2.2

BB

BB

0 0

0

0

X

X

X X

1. PN Chain

PN Chain

PN Chain

(b) Data Buffering by Cycles

Figure 3. Data Initialization and Buffering for
Luminance Line / Column Processing by a 64-
bit ALU.

stored in buffer BB. Now, a third cycle is executed on the
first half of the luminance line, with the proper right-to-left
propagation value stored in the BB buffer.

If the right-most shape bit of the first half of the lumi-
nance line is ”1”, the pixel value to be propagated right is
stored into buffer BA, and the first half of the luminance
line is completely padded. Just one more cycle is required
to pad the second half of the luminance line, provided the
right propagation value is driven to the left input of the cir-
cuit from BA.

Since the right-most shape bit of the first half of the lu-
minance line is available before the next operands (the other
half of the padded line) are issued, we have branch de-
termination (a perfect branch prediction) for the pipeline.
Therefore, we can conclude that a complete luminance line
padding by a 64-bit padding augmented and pipelined ALU
would take on average 2.5 cycles to perform. The padding

49 ISBN: 0-9669530-0-249 ISBN: 0-9669530-0-2

of a chrominance line by the same ALU would take approx-
imately one cycle for a long data sequence.

The processing flow is similar for a 32-bit ALU, but the
required average cycle number is 5.5 (at least 4 at most 7 cy-
cles), and the analysis is made on the right-most shape bits
of each byte (4x8-bits) to be processed. Given the shape
information of the whole line is available a priory we can
still make a perfect branch prediction, i.e. we can predict
the operands issue sequence perfectly. Note on Figure 3(b)
that the left and right-most inputs of the whole luminance
line are initialized with ”0”, including the propagation of
the shape bit. This is also valid for the chrominance line
processing and for all up or down scaling ALU implemen-
tations (say 32 or 128 bit ALUs). The next section gives
more accurate estimation of the processing speed of several
different implementations.

4. Evaluation

Speed estimation. We can easily evaluate the process-
ing speed of the structure, given its operating speed 1. Let’s
assume an � � �-bit padding augmented ALU like the one,
depicted in Figure 2, operating at frequency 	� [Hz]. The
values of n with practical significance are 4, 8, 16 (32, 64
or even 128-bit ALU). We state two more parameters of the
particular implementation:
�
��
� and����

� respectively denote the numbers of cycles,
necessary to process an 8-pixel (chrominance) and a 16-
pixel (luminance) line from a long data sequence. Some
potential values of these parameters are shown in Table 3.
Because of the data structures, imposed by MPEG-4, � ��

�

Table 3. Values of ���
� and ����

�

ALU Average Worst Case
bits ���

�
����
�

���
�

����
�

32-bit 2.5 5.5 3 7
64-bit 1 2.5 1 3

128-bit 0.5 1 0.5 1

is a variable for �
 �, and approximately constant for
� � � (64-bit ALU). ����

� is a variable for �
 ��, and
a constant for � � �� (128-bit ALU). Thus the processing

of 16 pixels by any � � � ALU will take �
���

�

��
[seconds]

and for a 256-pixel luminance block- ����
���

�

��
[s]. Identi-

cally, the processing of two 8x8-pixel chrominance blocks

will take ����
��

�

��
[s] in the same ALU configuration. Since

a macroblock consists of 256 luminance and 128 (2 x 64)
chrominance pixels, padded vertically and horizontally, a

1In this paper we distinguish (data) processing speed, measured in
[macroblocks/sec] (or [MB/s]) from the device operating speed (fre-
quency), measured in [Hz].

whole macroblock will be padded for ��

��
� ����

�
�����

�
�

[s]. We can formulate the Processing speed of the ALU as
follows:

��
������� ����� �
	�

�	 � ����
� �����

� �

����� (3)

Assuming a realistic value of 	� � ���� and using
the data from Table 3 into Equation 3, we calculated the
processing speed results, given in Table 4.

Table 4. Processing Speed at 	� � ����
ALU n Speed [MB/s]
bits Average Worst Case

32-bit 4 3 906 250 3 125 000
64-bit 8 8 928 600 7 812 500

128-bit 16 20 833 300 20 833 300

200 000

2 000 000

20 000 000

32 64 128

[M
ac

ro
B

lo
ck

s
/ s

ec
on

d]

Number of ALU bits

Our scheme

200 000

2 000 000

20 000 000

32 64 128

[M
ac

ro
B

lo
ck

s
/ s

ec
on

d]

Number of ALU bits

Our scheme
MPEG-4 Requirements

Figure 4. Processing Speed for Different ALU
Operand Sizes and 	� � ���� (note the log-
arithmic scale)

The most demanding profile level, level 4 of the Main
MPEG-4 profile, requires 244 800 Boundary MB/s (maxi-
mum 489600 MB/s) for a high resolution session type (1920
x 1088) and 32 objects (Table 1). These rates are an order of
magnitude lower than the reported speed results for the fea-
sible padding augmented ALU implementations (see Figure
4). The potentials of the structure indicate capabilities to
meet even more-demanding future profiles of the visual data
compression standards. Furthermore, a software implemen-
tation of the padding algorithm on a padding-augmented
ALU would cost a neglectable number of MIPS (Millions of
RISC-like Instructions per Second), compared to the MIPS
numbers, discussed in the Section 2. Table 5 contains the es-
timated computational load of different padding augmented
ALU sizes for Level4 of the Main MPEG-4 profile.

50 ISBN: 0-9669530-0-250 ISBN: 0-9669530-0-2

Table 5. Computational load for Main Profile -
Level 4 at 	� � ����

ALU n [MIPS]
bits Average Worst Case

32-bit 4 63 78
64-bit 8 27 31

128-bit 16 12 11

Hardware estimations. We choose the 2x2 AND-OR
logic block as a basis for the hardware estimations. A one-
bit 2 to 1 multiplexor is a 2x2 AND-OR gate. The hardware
penalty for a single byte padding structure is: 2 x 9-bit mul-
tiplexers, 2 x 8-bit multiplexers and 1 OR gate. That makes
2x9+2x8+1=35 2x2 AND-OR gates. An n-byte implemen-
tation will cost � � �� AND-OR gates plus additional cost
for the ALU multiplexer of � � � gates, i.e. � �
� 2x2 AND-
OR gates. Table 6 contains the exact values of the hardware
penalties for different ALU sizes.

Table 6. Hardware estimation
ALU n Number of
bits extra gates

32-bit 4 172
64-bit 8 344

128-bit 16 688

5. Conclusions

In this paper we introduced a scheme for general pur-
pose ALU augmentation, which accelerates the MPEG-4
padding algorithm with orders of magnitude. We proposed
a pipelined implementation of the idea, thus preserving the
original functionality and timing scheme of the target ALU.
At a trivial hardware cost of only a few hundred elemen-
tary 2x2 AND-OR logical gates, we could easily achieve a
real-time performance at the most-demanding profile levels
of MPEG-4. We proved that the proposed design is scalable
by applying it on ALUs with different operand widths. The
approach is general and can fit into different architectural
concepts.

6. Acknowledgements

This research is supported by PROGRESS, the embed-
ded systems research program of the Dutch organization
for Scientific Research NWO, the Dutch Ministry of Eco-
nomic Affairs, the Technology Foundation STW (project
AES.5021) and PHILIPS Research Laboratories, Eind-
hoven, The Netherlands.

References

[1] M. Berekovic, H.-J. Stolberg, M. B. Kulaczewski, P. Pirsh,
H. Moler, H. Runge, J. Kneip, and B. Stabernack. Instruc-
tion set extensions for mpeg-4 video. Journal of VLSI Signal
Processing, 23(1):27–49, October 1999.

[2] H.-C. Chang, L.-G. Chen, M.-Y. Hsu, and Y.-C. Chang. Per-
formance analysis and architecture evaluation of MPEG-4
video codec system. In IEEE International Symposium on
Circuits and Systems, volume II, pages 449–452, Geneva,
Switzerland, 28-31 May 2000.

[3] H.-C. Chang, Y.-C. Wang, M.-Y. Hsu, and L.-G. Chen. Effi-
cient algorithms and architectures for MPEG-4 object-based
video coding. In IEEE Workshop on Signal Processing Sys-
tems, pages 13–22, 11-13 Oct 2000.

[4] E. A. Edirisinghe, J. Jiang, and C. Grecos. Shape adap-
tive padding for MPEG-4. IEEE Transactions on Consumer
Electronics, 46(3):514–520, August 2000.

[5] ISO/IEC JTC11/SC29/WG11, N3312. MPEG-4 video veri-
fication model version 16.0.

[6] ISO/IEC JTC11/SC29/WG11 N4030. MPEG-4 overview,
March 2001.

[7] A. Kaup. Object-based texture coding of moving video in
MPEG-4. IEEE Transactions on Circuits and Systems for
Video Technology, 9(1):5–15, February 1999.

[8] J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and
M. Reissmann. The MPEG-4 video coding standard - a
VLSI point of view. In IEEE Workshop on Signal Processing
Systems,(SIPS98), pages 43–52, 8-10 Oct. 1998.

[9] P. Kuhn and W. Stechele. Complexity analysis of the emerg-
ing MPEG-4 standard as a basis for VLSI implementa-
tion. In SPIE Visual Comunications and Image Processing
(VCIP), volume 3309, pages 498–509, San Jose, Jan. 1998.

[10] G. Kuzmanov, S. Vassiliadis, and J. van Eijndhoven. A
Padding Processor for MPEG-4. In 12th Annual Work-
shop on Circuits, Systems, and Signal Processing (ProR-
ISC2001), Veldhoven, The Netherlands, 29-30 October
2001.

[11] J.-H. Moon, J.-H. Kweon, and H.-K. Kim. Boundary block-
merging (BBM) technique for efficient texture coding of ar-
bitrarily shaped object. IEEE Transactions on Circuits and
Systems for Video Technology, 9(1):35–43, February 1999.

[12] M. Putrino, S. Vassiliadis, and E. Schwarz. Parallel binary
byte adder / subtracter. International Journal of Electronics,
65(2):139–153, February 1988.

[13] Y. Q. Shi and H. Sun. Image and Video Compression for
Multimedia Engineering. Boca Raton CRC Press, 2000.

[14] H.-J. Stolberg, M. Berekovic, P. Pirsch, H. Runge,
H. Moller, and J. Kneip. The M-PIRE MPEG-4 codec DSP
and its macroblock engine. In IEEE International Sympo-
sium on Circuits and Systems, volume II, pages 192–195,
Geneva, Switzerland, 28-31 May 2000.

[15] S. Vassiliadis, G. Kuzmanov, and S. Wong. MPEG-4 and the
New Multimedia Architectural Challenges. In 15th Interna-
tional Conference SAER’2001, St.Konstantin, Bulgaria, 21-
23 Sept. 2001.

[16] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN
rm-coded processor. In 11th International Conference on
Field Programmable Logic and Applications (FPL), Belfast,
Northern Ireland, UK, August 2001.

51 ISBN: 0-9669530-0-251 ISBN: 0-9669530-0-2

