
Global Variable Promotion: Using Registers to

Reduce Cache Power Dissipation

Andrea G. M. Cilio1 and Henk Corporaal2

1 Delft University of Technology, Computer Engineering Dept.
Mekelweg 4, 2628CD Delft, The Netherlands

A.Cilio@et.tudelft.nl
2 IMEC, DESICS division

Leuven, Belgium
H.Corporaal@et.tudelft.nl

Abstract. Global variable promotion, i.e. allocating unaliased globals
to registers, can significantly reduce the number of memory operations.
This results in reduced cache activity and less power consumption. The
purpose of this paper is to evaluate global variable promotion in the con-
text of ILP scheduling and estimate its potential as a software technique
for reducing cache power consumption. We measured the frequency and
distribution of accesses to global variables and found that few registers
are sufficient to replace the most frequently referenced variables and cap-
ture most of the benefits. In our tests, up to 22% of memory operations
are removed. Four registers, for example, are sufficient to reduce the
energy-delay product by 7 to 26%. Our results suggest that global vari-
able promotion should be included as a standard optimization technique
in power-conscious compilers.

1 Introduction

Certain code optimizations, like register allocation, offer increased potential for
code improvement when applied to whole programs. Several research works,
some of which resulting in a production compiler [15], have explored the poten-
tial of inter-module register allocation and global variable promotion. The latter
technique allocates global variables in registers for a part of the lifetime cross-
ing procedure and module boundaries (possibly for the entire lifetime). These
works have always considered execution time the primary metric of evaluation.
However, as we show in this paper, in the context of instruction scheduling for
ILP processors performance is not so sensitive to inter-module register alloca-
tion; in this context, earlier results do not apply anymore.. With the increasing
importance of low-power designs, due to the rapidly growing portable electronics
market, we believe that metrics like energy and energy-delay product should be
used to evaluate these and other software techniques.

From the point of view of execution cycle count, reserving a register to a
global variable throughout the program lifetime is advantageous when the target
architecture offers enough registers with respect to the number of interfering live

R. N. Horspool (Ed.): CC 2002, LNCS 2304, pp. 247–261, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

248 Andrea G. M. Cilio and Henk Corporaal

ranges, which may be limited by, e.g., the lack of instruction-level parallelism. In
these situations, a number of registers may be left underutilized. Modern mul-
timedia, general-purpose and DSP processors, like Trimedia TM1000 [7], Intel’s
IA-64 and Analog Devices’ ADSP-TS001M, offer large register files. Although
this large number of registers is necessary to sustain high levels of ILP, the
compiler ILP-enhancing techniques may not always succeed in utilizing them
all effectively. By assigning underutilized registers to global scalar variables, the
compiler can eliminate all the load and store operations that access those vari-
ables, thereby reducing the dynamic operation count and the cache-processor
traffic. From the point of view of power consumption, this is advantageous, be-
cause a large fraction of the overall power consumption in modern processors is
due to cache activity [12].

The purpose of this paper is to evaluate global variable promotion in the con-
text of instruction-level parallel (ILP) scheduling and to estimate its potential as
a software technique for reducing cache power consumption. Also, we investigate
possible trade-offs points between execution time and energy consumption for
different caches and CPU configurations with varying degrees of ILP.

The rest of this paper is organized as follows. Section 2 analyses the po-
tential of global variable promotion and inter-module register allocation and
presents the algorithm used to promote global scalar variables. Using the power
dissipation model presented in section 3, section 4 evaluates the effect of global
variable promotion on performance and two energy-related metrics. Section 5
reviews related work. Finally, section 6 summarizes the results obtained.

2 Global Register Allocation

A number of code generation systems extend the program analyses and op-
timizations to the inter-module (or whole-program) scope. Among these opti-
mizations, inter-module register allocation and global variable promotion have
received some attention [18] [17] [2] [15]. In this section we first evaluate the po-
tential of these two optimizations techniques on our compiler. After concluding
that only global variable promotion seems promising, we present an algorithm
for global variable promotion.

2.1 Potential of Inter-module Register Allocation and Global
Variable Promotion

Inter-module Register Allocation (and its restricted inter-procedural variant)
aims at reducing the execution overhead due to save and restore code around
function calls. While this can be effective when compiling for languages with
frequent function calls, like LISP [17], the potential measured in other works,
even though using more sophisticated approaches, seems low for languages like
C and Pascal; the speedup ranges from 1 to 3% [2] [15].

To verify that the potential of inter-module register allocation is scarce in
our C compiler (based on gcc), we performed a number of tests with and without

Global Variable Promotion 249

Table 1. Effect of function inlining on a set of benchmarks

% call operations % size % cycles
benchmark original inline increase reduction

compress 0.368 0.005 18.143 1.557
cjpeg 1.263 0.063 6.682 11.306
djpeg 0.209 0.018 3.089 2.119
mpeg2dec 1.395 0.132 24.472 30.802

average 0.809 0.055 13.097 11.446

Table 2. Potential speedup of inter-module allocation of local variables:
upper bounds

% reduction
cycles mops

benchmark original inline original inline

compress 2.305 0.010 6.499 0.044
cjpeg 1.124 0.748 8.919 3.906
djpeg 0.334 0.198 2.844 0.721
mpeg2dec 15.731 1.809 36.441 4.571

average 4.873 0.691 13.676 2.311

function inlining (see table 1). Details about the target machine can be found
in section 4.3, while the benchmarks are presented in section 4.2. Columns 4
and 5 of Table 1 show, respectively, the code size increase and the speedup
of the inlined program with respect to the original program. Function inlining
drastically reduces the number of function calls at the cost of a modest code
size increase. The very low fraction of call operations after inlining (column 3)
suggests that save and restore code does not constitute a large overhead.

A good upper bound to the speedup that could be achieved by means of
inter-module register allocation is obtained by totally disabling the generation
of save and restore code around calls. The performance is correctly measured
by our cycle-accurate simulator, which takes care of saving and restoring the
used registers “on behalf” of the program. Columns 2 and 3 of table 2 show the
speedup obtained when the original and the inlined versions of the programs are
compiled without generating save/restore code, while the last two columns show
the reduction in memory operations. From these data we can conclude that the
potential of inter-module register allocation is negligible after function inlining
has been applied. Also, notice that this upper bound is not always achievable:
recursive functions, for example, still require some save and restore code. In
addition to the low fraction of function calls, another reason contributes to these
very low upper bounds: the caller- and callee-saved register conventions [2] are
effectively used in our compiler [8] to minimize the unnecessary save and restore
code for registers that are not live around a function call.

250 Andrea G. M. Cilio and Henk Corporaal

Table 3. Memory operations and accesses to global scalar variables as fractions
of all operations and of memory operations executed, respectively

% globals
benchmark mops % unscheduled scheduled

compress 31.4 33.0 25.9
cjpeg 24.8 26.5 16.0
djpeg 22.8 18.5 8.6
mpeg2dec 31.3 20.4 12.7

average 25.58 24.6 15.8

Promoting global scalar variables appears to be more promising than inter-
module register allocation. Previous works reported speedups ranging from 7%
[15] to 10–20%, for a set of small benchmarks [18] and found that global variable
promotion is of greater benefit than inter-procedural register allocation. These
works have also shown that scalar variable accesses represent a substantial frac-
tion of the total number of memory operations that access global (static) data.
Our measurements, however, do not fully confirm this fact, as shown in table 3.
Columns 3 and 4 contain the total accesses to global scalar variables as a fraction
of the total memory operations. These values have been measured in unscheduled
(and only partially optimized) and scheduled code, respectively. The measured
difference can be ascribed to function inlining (which is not applied to unsched-
uled code) and the additional optimizations performed during scheduling. The
difference with previously reported results can be partially explained by the fact
that, while we only count variables residing in memory, the baseline register allo-
cator used by Wall [18] considers also constants and link-time constant addresses
‘globals’, and stores them in memory. These amount to a substantial portion of
the overall memory references. In fact, Wall reports that the most important
globals are few, frequently used numeric constants, and that keeping them in
global registers captures much of the link-time allocation advantage. Since our
compiler encodes all constant values (including link-time constant addresses) in
immediate fields, it is not surprising that we find fewer globals.

2.2 Algorithm for Global Variable Promotion

The scarce potential shown by inter-module optimization, discussed in previ-
ous section, lead us to focus on variable promotion. The results reported by
Santhanam [15], suggest that a simple algorithm for global variable promotion
performs almost as well as the most sophisticated. For this reason, we chose
blanket promotion, a simple algorithm which replaces a set of selected global
variables with registers throughout the program.

To obtain alias information on global-scope scalar variables, we added a post-
linkage analysis pass. This pass determines which variables have their address
taken in at least one of the modules and are thus not eligible for promotion. All

Global Variable Promotion 251

unaliased global variables are candidates for assignment to registers. The deci-
sion of which global variable to select, given a budget of registers for promoted
variables, is taken based on the number of load and store operations that would
be eliminated. The frequencies are obtained with profiling. Variable promotion is
applied after all modules and library functions have been linked together, before
instruction scheduling [3].

3 Cache Power Consumption

The power dissipation due to on-chip caches is a significant portion of the overall
power dissipated by a modern microprocessor. For example, the on-chip D-cache
of a low-power microprocessor, the StrongARM 110, consumes 16% of its total
power [12]. The current trend towards larger on-chip L1 caches emphasizes the
importance of reducing their power dissipation for two reasons: first, larger caches
require larger capacitances to be driven; second, larger L1 caches have higher
hit rate and therefore reduce the relative power spent in L2 caches or in off-chip
memory communication.

3.1 Cache Power Model

To evaluate the reduction of cache power dissipation we used the analytical
model for cache timing and power consumption found in CACTI 2.0 [14], which
is based on the cache model proposed by Wilton and Jouppi [19]. The source
of power dissipation considered in this model is the charging and discharging
of capacitative loads caused by signal transitions. The energy dissipated for a
voltage transition 0 → V or V → 0 is approximated with:

E =
1
2
CV 2 (1)

where C is the capacitance driven. An analytical model of the cache power con-
sumption includes the equivalent capacitance of the relevant cache components.
The power consumption is estimated by combining (1) and the transition count
at the inputs and outputs of each modeled component. The cache components
fully modeled are: address decoder, wordline, bitline, sense amplifiers, data out-
put driver. In addition, the address lines going off-chip and the data lines (both
going off-chip and going to the CPU, are taken into account. Our model does
not consider the power dissipated by comparators, data steering logic, and cache
control logic.

This model is quite accurate; Kamble and Ghose [10] have shown that their
model, which is very similar to this one, if coupled with exact transition counts,
predicts the power dissipation of conventional caches (i.e., caches whose organiza-
tion does not use power-reducing techniques like sub-banking and block buffering)
with an error within 2%. In our estimations we use accurate counts for cache
accesses and address bit transitions to and from memory. The average width of
a piece of data written to memory is estimated assuming equal distribution of

252 Andrea G. M. Cilio and Henk Corporaal

bytes, half-words and (32-bit) words, like in [12]. Also, we estimate that the tran-
sition counts of address and data bits are evenly distributed between accesses
that hit and miss the cache.

3.2 Energy-Related Metrics

To evaluate the efficiency of global variable promotion we measure the energy-
delay (E-D) product. This metric was proposed by Gonzales and Horowitz [5],
who argue it is superior to the commonly used power or energy metrics because
it combines energy dissipation and performance.

To compute the delay D we assumed a clock frequency compatible with the
access times estimated by CACTI. The E-D product is given by:

ED = E · D = P · D2 = P · (Ncycles · Tclock)2. (2)

Although the E-D metric presents important advantages, like the reduced
dependence from technology, clock speed and implementations, the energy con-
sumption is an important metric for battery-operated processors in portable
devices, because it determines their battery duration [1]. In our experiments,
the energy reduction closely follows the reduction of energy-delay. Nevertheless,
we do show these results.

4 Experimental Results

We present the results of our simulations in this section. First, we briefly intro-
duce our code generation infrastructure, our benchmarks and the target machines
used for the simulations. The results are presented in three parts: the frequency
distribution of global variables, the performance results and the energy efficiency
of the data cache.

4.1 Code Generation Infrastructure

Figure 1 shows our code generation path. It generates code for a templated ar-
chitecture especially suited for Application Specific Instruction-Set Processors,
called Move. This architecture offers explicitly programmed instruction-level par-
allelism, in a fashion similar to that of VLIW architectures [4]. For the purpose
of this paper, the details of the architecture used for the evaluation are unimpor-
tant. Its inherently low-power characteristics, however, make the contribution of
caches to the overall chip power consumption even larger than in a conventional
architecture.

The code generation is coarsely split in two phases: (1) compilation to a
generic-machine instruction set and (2) target-specific instruction scheduler,
which integrates also register allocation [9]. Simulation of the generic, unsched-
uled code is used to generate profiling data. The intermediate representation
used in the first phase of code generation is SUIF, the Stanford University In-
termediate Format [6].

Global Variable Promotion 253

back-end

front-end

linker

executable

scheduler

C, Fortran source

SUIF IR

MachSUIF IR

other modules

optimizations
machine-dep.

optimizations
machine-indep.

MachSUIF IR

Fig. 1. The adapted code generation trajectory

Table 4. Benchmarks used for evaluation

benchmark instr. cycles description

compress 4855 2.0M Unix utility for file compression.
djpeg 16421 19.7M JPEG image decompression.
cjpeg 16526 29.8M JPEG image compression.
mpeg2decode 12935 30.3M Standard MPEG-2 format decoder.

Instead of generating the traditional assembly textual output, the compiler
generates and maintains a structured representation of the machine code in
MachSUIF [16], a format derived from SUIF. MachSUIF maintains all source-
level information, as well as any other piece of information gathered during
analysis passes. This format allows to perform sophisticated code analysis on
whole programs and makes the related code transformation much easier to apply
than on a binary format [3].

4.2 Benchmark Characteristics

Four benchmarks have been used for our experimental evaluations. Their static
code size and dynamic operation count (test set) are summarized in table 4. All
benchmarks have been profiled with a training input data set and tested with
a different data set. We selected multi-module programs of a sufficient level of
complexity, such that the use of global (scalar) variables is almost unavoidable.
Small benchmarks, on the other hand, are often coded without using global scalar
variables. Compress, with its relatively small size, is an exception, in that it is a
single-source, simple program with frequent accesses to global scalar variables.

254 Andrea G. M. Cilio and Henk Corporaal

Table 5. Machine configurations used for the evaluation

quantity quantity
resource M1 M2 unit latency M1 M2

transport busses 3 8 LSU 2 1 2
long immediates 1 2 IALU 1 2 4
integer regs. varies varies multiply 3 1 1
FP regs. 16 48 divide 8 1 1
boolean regs. 2 4 FPU 3 1 1
cache size 16KB 32KB

4.3 Target Machines

We performed our evaluation on two Move target machines with different cost
and capabilities. The two machine configurations were selected in order to eval-
uate how ILP affects the results of global variable promotion. Our Move archi-
tecture is kind of VLIW machine with streamlined reduced instruction set. The
smaller machine, M1, is slightly more powerful than a simple single-issue RISC
processor.1 The average IPC measured for our benchmarks ranges between 1.2
and 1.3. We selected this configuration in order to estimate the effect of global
promotion on a single-issue machine. The larger machine, M2, is capable to per-
form about 4 operations per cycle, two of which can be data memory accesses.
In this case, the average IPC measured for our benchmarks is 1.7–2.3.

Table 5 summarizes the characteristics of the machine configurations. The
busses are explicitly programmed to transport data between execution units
and register files. The boolean registers allow to guard operations and predicate
their execution. We assumed that the CPU is attached to a 2-way set-associative,
write-through, on-chip data cache with LRU replacement policy. The cache line
size is 32 bytes. Although the results shown in the following sections were ob-
tained with 16KB and 32KB caches, other cache sizes have been tried. For all
configurations the relative energy reduction is very similar.

4.4 Distribution of Global Variable Uses

The number of accesses to the memory segment dedicated to global data varies
widely from benchmark to benchmark [13]. The relative frequency of memory
operations that access global scalar variables poses a clear upper bound on the
improvement of energy efficiency achievable via global variable promotion. For-
tunately, the accesses to global scalar variables have a desirable characteristic.
As shown in figure 2(a), only a few variables are sufficient to cover most memory
operations due to accesses to global scalar variables. The values on the Y axis are
1 Due to limitations in the current implementation, the integrated instruction sched-
uler/register allocator cannot generate code for a machine configuration with only
one integer ALU.

Global Variable Promotion 255

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

Global Variables Promoted

Memory Operations (fraction of total)

djpeg
cjpeg

mpeg2dec
compress

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

Global Variables Promoted

Memory Operations (fraction of total)

djpeg
cjpeg

mpeg2dec
compress

Fig. 2. Dynamic memory operation count covered by global scalar variables (a)
on scheduled and optimized code, (b) on unscheduled code

the number of memory operations (as a fraction of the total memory operation
count) due to the N most used global scalar variables, where N is reported on
the X axis. This indicates that it is sufficient to dedicate only few registers to
global variables to capture most of the benefit of global variable promotion.

The results shown in figure 2(a) refer to scheduled and highly optimized
code on M1, for which most of intra-procedural unaliased accesses to global
variables have been optimized away. Code optimizations considerably reduce
the relative frequency of accesses to global variables, as confirmed by figure 2(b),
which depicts the same frequency distribution obtained from unscheduled code.
Part of this reduction is accounted for by function inlining, which opens new
opportunities for intra-procedural optimizations.

4.5 Performance

We compiled 9 different versions of each benchmark, with a budget dedicated to
global variables ranging from 0 to 8 registers. For a given register budget n, the n
most frequent global variables were promoted, resulting in the same number of
registers not being available for general register allocation.

The first series of tests measures the effect of global variable promotion on
performance. Figure 3 shows the cycle count of the four benchmarks for differ-
ent sizes of the integer register file. The modest speedup can be explained by
the fact that load operations associated with global variables have a constant
address and do not have flow dependencies with preceding operations, there-
fore can be scheduled with considerable freedom. Thanks to this freedom, our
instruction scheduler is capable of hiding the latency of most load operations
associated with global variables. The results in figure 3 confirm that the effect of
scheduling freedom prevails, thus making the performance improvement modest
to negligible depending on the benchmark.

Figure 4 shows the dynamic count of load and store operations for the same
series of tests. The reduction in memory operations executed is in good accor-
dance with the usage distributions in figure 2, except when the most register-

256 Andrea G. M. Cilio and Henk Corporaal

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 1 2 3 4 5 6 7 8

compress Global Variables Promoted

Total Cycles (relative to baseline)

024 regs
032 regs
064 regs
128 regs

0.98

1

1.02

1.04

1.06

1.08

1.1

0 1 2 3 4 5 6 7 8

djpeg Global Variables Promoted

Total Cycles (relative to baseline)

024 regs
032 regs
064 regs
128 regs

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 1 2 3 4 5 6 7 8

mpeg2decode Global Variables Promoted

Total Cycles (relative to baseline)

024 regs
032 regs
064 regs
128 regs

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 1 2 3 4 5 6 7 8

cjpeg Global Variables Promoted

Total Cycles (relative to baseline)

024 regs
032 regs
064 regs
128 regs

Fig. 3. Performance results: dynamic cycle counts on ‘M1’

hungry benchmarks are run on machine configurations with a small integer regis-
ter file. In such cases, the reduced number of registers available to general register
allocation quickly offsets the gains of variable promotion. This is due to the in-
troduction of false dependencies, which pose a tighter constraint on scheduling
freedom. A further increase in register pressure results in a large number of spill
operations.

We also measured the miss rate of the data cache and found that it increases
as more global variables are promoted. Obviously, this is only a relative increase,
due to the fact that the number of memory accesses decreases more than the
number of cache misses. This result confirms that global variables show high
temporal locality [13]. We can therefore conclude that global promotion reduces
cache activity but does not significantly affect the CPU-memory traffic.

4.6 Energy and Energy-Delay Product

A reduction of energy and energy-delay product, consistent with the reduction
of memory operations, has been measured for configurations of M1 and M2 with
varying number of registers. Figure 5 shows the results for M1 with 64 registers
relative to the original program without variable promotion. Very similar reduc-
tions are found for the M2 configuration with 64 registers, as can be seen from
figure 6. In this case a 32KB cache was measured.

Global Variable Promotion 257

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 1 2 3 4 5 6 7 8

compress Global Variables Promoted

Memory Operations (relative to baseline)

024 regs
032 regs
064 regs
128 regs

0.85

0.9

0.95

1

1.05

1.1

0 1 2 3 4 5 6 7 8

djpeg Global Variables Promoted

Memory Operations (relative to baseline)

024 regs
032 regs
064 regs
128 regs

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 1 2 3 4 5 6 7 8

mpeg2decode Global Variables Promoted

Memory Operations (relative to baseline)

024 regs
032 regs
064 regs
128 regs

0.8

0.85

0.9

0.95

1

1.05

1.1

0 1 2 3 4 5 6 7 8

cjpeg Global Variables Promoted

Memory Operations (relative to baseline)

024 regs
032 regs
064 regs
128 regs

Fig. 4. Performance results: dynamic memory operation counts on ‘M1’

While the level of ILP seems not to have a significant impact on the effect
of global variable promotion, the number of available registers is critical. Fig-
ure 7 shows the energy-delay product on M1 and M2 when only 32 registers are
available. Only compress shows consistent improvement, owing to its low register
pressure; in all other benchmarks, the register pressure results in more spill code
and cache activity when promoting too many globals.

The reduction in energy consumption is paired with reduced execution times,
as can be seen by comparing figure 3 with figures 5, 6, and 7, therefore we can-
not speak of a clear trade-off between performance and energy consumption for
this software technique. This is easy to explain, since the primary source of per-
formance degradation caused by global variable promotion is register pressure,
which often results in register spilling and therefore additional memory operation
and increased cache activity.

5 Related Work

In this section we review previous work on architectural/software techniques
for reducing data cache power consumption. Work on whole-program register
allocation has been briefly discussed in section 2.

It has recently been demonstrated that memory traffic due to references to
the global section of a program (which includes scalar global variables) shows

258 Andrea G. M. Cilio and Henk Corporaal

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Global Variables Promoted

Energy Consumption (relative to baseline)

djpeg
cjpeg

compress
mpeg2dec

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Global Variables Promoted

Energy-Delay (relative to baseline)

djpeg
cjpeg

compress
mpeg2dec

Fig. 5. Relative energy consumption (right) and energy-delay product (left) for
a configuration of ‘M1’ with 64 integer registers

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Global Variables Promoted

Energy Consumption (relative to baseline)

djpeg
cjpeg

compress
mpeg2dec

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Global Variables Promoted

Energy-Delay (relative to baseline)

djpeg
cjpeg

compress
mpeg2dec

Fig. 6. Relative energy consumption (right) and energy-delay product (left) for
a configuration of ‘M2’ with 64 integer registers

very high temporal locality, with an average life span of cache lines up to almost
one order of magnitude higher than that of accesses to heap region [13]. For
this reason, most traffic due to accesses to global variables can be captured by
a small dedicated cache. Since stack accesses show even better cacheability, the
authors subdivide the data cache into three region caches which cover global
data, stack and heap. This three-component on-chip cache system is much more
power-efficient than the conventional single data cache: 37% to 56% less power
is dissipated, depending on the cache configuration.

Another recent work on architectural-level low-power cache design is pre-
sented by Kin and others [12], who propose to insert an unusually small cache
before what normally is the L1 on-chip cache. This small cache, called filter
cache, reduces the access cost by roughly a factor 6 at the cost of increased
cache miss rate and increased miss latency. This allows to trade-off power ef-
ficiency with performance. The authors show that a clear optimal point exists
between no filter cache at all and a filter cache of the same size of the conven-
tional L1 cache. With an optimal filter cache size (512 bytes) the energy-delay
product is reduced by 50% at the expense of a 21% increase in cycle count.

Global Variable Promotion 259

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Global Variables Promoted

Energy-Delay (relative to baseline)

djpeg
cjpeg

compress
mpeg2dec

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

0 1 2 3 4 5 6 7 8

Global Variables Promoted

Energy-Delay (relative to baseline)

djpeg
cjpeg

compress
mpeg2dec

Fig. 7. Relative energy-delay product for a configuration of ‘M1’ (right) and
‘M2’ (left) with 32 integer registers

The use of global variable promotion to reduce power consumption proposed
in this paper exploits the same principles used in the Filter Cache [12] and
the Region-Based Cache [13]. While the former exploits the locality principle to
decrease power consumption by introducing a new level in the memory hierarchy,
our approach achieves a similar result by using the register file. The registers
allocated to frequently accessed global scalar variables can be also compared to
the Region-Based cache partition dedicated to global data references. In this
case, the use is further limited to a selected subset of scalar global variables.

Many other architectural techniques for improving the energy efficiency of
caches have been proposed. Kamble and Ghose, for example, evaluate the effec-
tiveness of two such techniques: block buffering and sub-banking. The interested
reader is referred to their paper [11] and to the section on previous work in [13]
for further references about this important research area.

6 Conclusions

Power and energy consumption have become a critical issue in high-performance
and portable/embedded processors, respectively. As a consequence, new microar-
chitectural and code generation techniques for power reduction are researched
with increasing interest. At the same time, traditional software techniques, like
loop unrolling take on a new light when energy-related metrics are considered [1].
Global variable promotion is in our opinion one of those software techniques that
deserves new attention in the context of power reduction.

In this paper we evaluated the effect of global variable promotion on perfor-
mance and cache energy consumption, and found that significant savings, up to
26%, are achieved by promoting a few (4–8) critical global variables. In sum-
mary, the results suggest that on ILP architectures the effect of global variable
promotion on performance is rather limited. However, this techniques can sig-
nificantly reduce data cache power consumption, and should be included as a
standard optimization technique in power-conscious compilers.

260 Andrea G. M. Cilio and Henk Corporaal

References

1. David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings of the 27th An-
nual International Symposium on Computer Architecture, pages 83–94, Vancouver,
British Columbia, June 12–14, 2000. 252, 259

2. Fred C. Chow. Minimizing register usage penalty at procedure calls. In SIGPLAN
’88 Conference on Programming Language Design and Implementation, pages 85–
94, 1988. 248, 249

3. Andrea G. M. Cilio and Henk Corporaal. A linker for effective whole-program
optimizations. In Proceedings of HPCN, Amsterdam, The Netherlands, April 1999.
251, 253

4. Henk Corporaal. Microprocessor Architectures; from VLIW to TTA. John Wiley,
1997. ISBN 0-471-97157-X. 252

5. R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microproces-
sors. IEEE Journal of Solid-State Circuits, 31(9):1258–66, September 1996. 252

6. Stanford Compiler Group. The SUIF Library. Stanford University, 1994. 252
7. Jan Hoogerbrugge. Instruction scheduling for trimedia. Journal of Instruction-

Level Parallelism, 1(1–2), 1999. 248
8. J. Janssen. Compilation Strategies for Transport Triggered Architectures. PhD
thesis, Delft University of Technology, 2001. 249

9. Johan Janssen and Henk Corporaal. Registers on demand: an integrated region
scheduler and register allocator. In Conference on Compiler Construction, April
1998. 252

10. M. B. Kamble and K. Ghose. Analytical energy dissipation models for low-power
caches. In Proceedings of the 1996 international symposium on Low power elec-
tronics and design, Monterey, CA USA, August 12–14, 1997. ACM. 251

11. M. B. Kamble and K. Ghose. Energy-efficiency of vlsi caches: a comparative
study. In Proceedings Tenth International Conference on VLSI Design, pages
261–7. IEEE, January 1997. 259

12. Johnson Kin, Munish Gupta, and William H. Mangione-Smith. Filtering memory
references to increase energy efficiency. IEEE Transactions on Computers, 49(1),
January 2000. 248, 251, 252, 258, 259

13. Hsien-Hsien S. Lee and Gary S. Tyson. Region-based caching: An efficient memory
architecture for embedded processors. In CASES, San Jose, CA, November 2000.
254, 256, 258, 259

14. G. Reinman and N. P. Jouppi. An integrated cache timing and power model.
Technical report, COMPAQ Western Research Lab, Palo Alto, California, 1999.
251

15. Vatsa Santhanam and Daryl Odnert. Register allocation across procedure and
module boundaries. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 28–39, 1990. 247, 248, 250

16. Michael D. Smith. Extending SUIF for Machine-dependent Optimizations. In
Proceedings of the First SUIF Workshop, January 1996. 253

17. Peter A. Steenkiste and John L. Hennessy. A simple interprocedural register allo-
cation algorithm and its effectiveness for lisp. TOPLAS, 11(1), 1989. 248

18. David W. Wall. Register windows vs. register allocation. Technical Report 7,
Western Research Laboratory, Digital Equipment Corporation, December 1987.
248, 250

Global Variable Promotion 261

19. S. J. E. Wilton and N. P. Jouppi. An enhanced access and cycle time model.
Technical Report 5, Digital Western Research laboratory, Palo Alto, California,
July 1994. 251

	Global Variable Promotion: Using Registers to Reduce Cache Power Dissipation
	Introduction
	Global Register Allocation
	Potential of Inter-module Register Allocation and Global Variable Promotion
	Algorithm for Global Variable Promotion

	Cache Power Consumption
	Cache Power Model
	Energy-Related Metrics

	Experimental Results
	Code Generation Infrastructure
	Benchmark Characteristics
	Target Machines
	Distribution of Global Variable Uses
	Performance
	Energy and Energy-Delay Product

	Related Work
	Conclusions

