Minimal Test for Coupling Faults in Word-Oriented Memories

Ad J. van de Goor!

Magdy S. Abadir?

Alan Carlin?

'Delft University of Technology, Department of Information Technology and Systems,
Section Computer Engineering; Mekelweg 4, 2628 CD Delft, The Netherlands
2Motorola, Test and Logic Verification; 6200 Bridgepoint Parkway, Bldg 4, Austin, TX 78730, U.S.A.
E-mail: A.J.vandeGoor@ITS.TUDelft.nl; abadir@ibmoto.com; alan.carlin@motorola.com

Abstract: Most industrial memories have an external
word-width of more than one bit. However, most pub-
lished memory test algorithms assume 1-bit memories;
they will not detect coupling faults between the cells of
a word. This paper improves upon the state of the art
in testing word-oriented memories by presenting a new
method for detecting state coupling faults between cells
of the same word, based on the use of m-out-of-n codes.
The result is a reduction in test time, which varies be-
tween 20 and 38%.

Key words: State coupling faults, word-oriented
memories, tests, data backgrounds, m-out-of-n codes.

1 Introduction

The problem with testing memories is in the amount
of test time required to obtain a given fault coverage.
Therefore there has been a trend away from the order
0(n?), O(n * logyn) and O(n?/?) algorithms to linear
(i.e., O(n)) algorithms; whereby n represents the
number of bits in the memory. The current trend is to
reduce the test time even further, from &y xn to ks xn;
whereby ks < k;. Most memory test algorithms have
been designed to detect faults in memories which have
a word width of a single bit [1]; i.e., B = 1. These
memories are referred to as Bit-Oriented Memories
(BOMs). Naturally, most industrial memories allow
for writing and reading several bits simultaneously;
e.g., 8, 16, or even 256 bits can be read and/or
written at a time. These memories are referred to
as Word-Oriented Memories (WOMs); they have the
property that B > 2. The problem now is how to
use the vast amount of existing BOM tests to cover
faults in WOMs, at a minimal test cost? This problem
only exists for coupling faults (CFs) [1, 2, 3], which
have the property that the state of, or an operation
applied to, the aggressor cell (a-cell) forces the state,
or changes the state of the wvictim cell (v-cell). Figure
1 shows the following classes of CF's in a memory with
four 5-bit (i.e., B=5) words:

1. Inter-word CFs (Left case in figure)

The a-cell and the v-cell belong to different words.

—L
Y

S v

W

Figure 1: Inter and intra-word CFs

Classical BOM tests are designed to detect single-cell
faults (e.g., stuck-at faults (SAFs), transition faults
(TFs)) and inter-word CFs. Examples of BOM test
are: MATS+ [6], which detects address decoder
faults and SAFs, and March C- [1], which detects
address decoder faults, SAFs, TFs, and most types of
inter-word CFs.

2. Intra-word CFs (Right case)

The a-cell and the v-cell belong to the same word.
Special WOM tests are required to detect this class of
faults [1, 2, 3, 4, 5].

Dekker [4] has designed a systematic way to solve the
problem of detecting intra-word CFs, assuming that
the faults between the cells of a given word are State
Coupling Faults (CFsts); the proof is given in Section 2.
The B-bit data patterns used to write to and read from
the WOM are referred to as Data Backgrounds (DBs).
Section 3 describes more recent work [2, 3], showing
that a considerable reduction in test time can be ob-
tained by separating the problems of detecting inter-
word and intra-word CFs; it essentially reduces the
test time from the product to the sum of the BOM and
the WOM test times. In addition, extensions to more
complex coupling fault models are presented. Section
4 shows that the methods of Sections 2 and 3 are based
on the assumption that complemetary pairs of DBs had
to be used, which is not required any more, given the
separation of the tests for inter- and intra-word cou-
pling faults. It thereafter proposes a new method for

deriving DBs for CFsts, based on the use of m-out-of-n
codes [7], which allows for a significant further reduc-
tion of the WOM test time. Last, Section 5 ends with
conclusions.

2 Traditional WOM tests

Dekker [4] published a method to derive a set of DBs
and how to apply this set to cover CFsts in WOMs.
The used intra-word coupling fault model is that of
the state coupling fault (CFst), defined as follows: a
v-cell, v, is forced to a given state, y, only if the a-cell,
a, is in a given state, . A formal syntax for describ-
ing this type of fault is [1]: < S;F >. Whereby S
describes the state of the a-cell and F' describes the re-
sulting faulty state of the v-cell. Four different CFsts
can be distinguished: < 0;0 >, < 0;1 >, < 1;0 > and
< 1;1 >. The CFst < 1;0 > means that if the a-cell is
in state 1 it will force the 0 state in the v-cell. In order
to detect all CFsts, it has to be verified that all four
states are possible between any two bits in a word; i.e.,
(bi,b;) € {(0,0),(0,1),(1,0), (1, 1)}, for any b; and any
b;. Dekker’s solution is based on the observation that
most (if not all) march tests contain read and write
operations with some data value as well as the com-
plementary data value. For example, a classical march
test is the MATS+ test [6], which requires a test time
of 5% n: {§ (w0); 1 (r0,wl); Y (rl,w0)}. It consists of
three march elements, separated by the ’;> symbol. The
march element '} (r0,w1)’ means that if cell 3 is oper-
ated upon, a read operation (with expected value 0) is
applied to cell 3, followed by the application of a write
'1’ operation; thereafter the same two operations will
be applied to cell 4, etc. From MATS+ it can be seen
that it applies the complementary data values Qand 1.
The objective for covering all CFsts is to design a
minimal set of D DBs. Initially, only the states (0,0)
and (0,1) have to be verified; because the other two
states will be verified when the algorithm is executed
with complementary data. The set of D DBs can
be represented by a matrix M, with D rows and B
columns. A column of M, denoted as Vector V¢, rep-
resents the DB values for cell ¢ in a word, because that
column represents the values successively written and
read from cell ¢. For a minimal set of DBs the following
requirements should be satisfied [4]:
1. No two vectors Vi and Vj may be equal. If they
are equal, then the corresponding bits b; and b; will
only be checked for the states (0,0) and (1,1). This re-
sults in a maximum number of different D-bit vectors,
determined by the word length, as follows: 2” = B.
2. No two vectors Vi and Vj may be each others in-
verse. If they are each others inverse, then the bits

b; and b; will only be checked for the states (0,1) and
(1,0). This halves the maximum number of vectors;
ie, 2Pt =B or D =log, B + 1.

boyg bO,l b[),Bfl
b1,0 b1y ... biB
M = . .
bp—10 bp-1,1 bp_1,B-1

The number of DBs, D, required for checking the
states (0,0) and (0,1) therefore is: D = [log, B] + 1; if
B is a power of 2, then this equation will become: D =
log, B + 1. The number of DBs required for detecting
all four CFsts is: D = 2 x ([log, B] + 1).

For a memory with a word-width of B bits, the set
of DBs can now be constructed:

1. A DB with all 0’s (and its inverse: all 1’s)
2. A DB with alternating 0’s and 1’s

(i.e., 0101.0101. ... , and its inverse: 1010.1010. ...)
3. A DB with alternating pairs of 0’s and 1’s

(i.e., 0011.0011. ... , and its inverse: 1100.1100. ...)
4. A DB with alternating quadruplets of 0’s and 1’s
(i-e., 0000.1111.0000.1111. ... , and its inverse)

5. Etc., until [log, B] + 1 steps have been performed

For a memory with B = 16, D = 2x(log, 16+1) = 10
DBs are required, as shown in Table 1. The reader can
verify that all 4 states occur for any pair of cells.

In case B is not a power of 2 (ie., B = 27 —
r; and r > 0), the set of DBs for the next higher power
of 2 has to be generated, after which r columns of the
matrix have to be eliminated. For example, if B = 13,
the set of DBs for B = 16 has to be generated, from
which 16 — 13 = 3 columns have to be deleted; these
may be any 3 columns of the set of 16 columns.

The proposed way the set of DBs is applied is as
follows: (1) The BOM test (e.g., MATS+) is made
word-wide, by replacing the value 0 in the algorithm
with any B-bit DB, and by replacing the 1 value with
its inverse; and (2) The word-wide BOM test is applied
D/2 times, every time using a different complementary
pair of DBs.

The result is that the application time of the WOM
test becomes the product of the number of DBs/2 and
the BOM test time. Many publications are based on
this method for testing WOMs [1, 4, 5].

Table 1: Data backgrounds for CFsts and B = 16
Normal

0000 0000 0000 0000

0101 0101 0101 0101

0011 0011 0011 0011

0000 1111 0000 1111

0000 0000 1111 1111

Inverse
1111 1111 1111 1111
1010 1010 1010 1010
1100 1100 1100 1100
1111 0000 1111 0000
1111 1111 0000 0000

|| =N O
O | Oy Ww| =

As an example, the following MATS+ based set of
tests covers intra-word CFsts in a memory with B = 4
(D = 6), with a test time of 5xn/B* D/2 =15xn/4.
1. {¢ (w0000);+ (r0000,w1111);{ (r1111,w0000)};
Used DB pair ’0000’ and '1111°
2. {§ (w0101); 1+ (r0101,w1010);{ (r1010,w0101)};
Used DB pair '0101’ and ’1010’°
3. {§ (w0011);f (r0011,w1100);{ (r1100,w0011)};
Used DB pair ’0000’and ’1111°

3 Improved WOM tests

In [2, 3] it has been shown that the problem of testing
for intra-word coupling faults can be divided into two
parts, which can be handled independently:
1. Test for single-cell and inter-word coupling faults
This should be done with a word-wide BOM test such
as MATS+, March C-, etc. For example, below, 4 out
of 16 possible word-wide versions of MATS+, for B =
4, are shown.
1. {{ (w0000); 1+ (0000, w1111);} (r1111,w0000)}
2. {g (w0001); 1 (r0001,w1110); | (r1110,w0001)}
3. {{ (w0010); 1 (r0010,w1101); | (r1101,w0010)}
4. {§ (w0011); 1 (r0011,w1100); Y (r1100,w0011)}
From a ground-bounce point of view, industrial
results indicate that the 0000’ and ’1111’ complemen-
tary pair of DBs is to be preferred; in addition, this
pair is also required for detecting intra-word CFsts.
2. Test for intra-word coupling faults
This has to be done with a separate test, by writing
and reading each of the DBs of Section 2 as follows:
$ (wpB2,rDB2, WDB3,TDB3, --- ,WDBD-1,TDBD-1);
i.e., each of the DBs is written to and read from each
word. Note that the all 0s (DB #0 of Table 1) and
all 1s (DB #1) DBs have already been applied by the
word-wide BOM test, therefore they can be deleted
from the test for intra-word CFsts. In addition, the
single march element may be broken up into a number
of march elements, and the address order of each march
element may be chosen freely [2, 3]. Compared with
Dekker’s method the overall test time is reduced from
the product to the sum of the BOM and WOM test
times. For example, for a 4-bit memory (D = 6), using
the MATS+ BOM test, Dekker’s method requires a
test time a test time of 5xn/B x D/2 = 15 xn/4, as
compared with 5%n/B+ (D —2)+*n/B*2=13xn/4,
for the improved method. Using the 10 x n BOM test
March C- [1] for a 64-bit memory (D = 14), Dekker’s
method requires 10xn/64 %7 = 70*n/64, as compared
with 10 xn/B + 12 % n/B x 2 = 34 x n/64, for the
improved method; a reduction by over 51%!

)

In [2, 3] additionally DBs for intra-word indempotent

CFs (CFids) and disturb CFs (CFdss) have been
established. A CFid is defined, using the < S/F >
notation, as: <1;0 >, <1 >,<};0 >, <|;1 >.
For example, the CFid <1;0 > means that an ’{’
transition (i.e., a 0 — 1 transition) in the a-cell,
forces a 0 in the v-cell. A CFds is defined as [9]:
< r0;0 >,<r0;1 >, <rl;0 >,<rl;1 >, < wo;0 >
, < w0;1 > < wl;0 >, < wl;1 >; read as well as
write operations can sensitize CFs, while only the
data value 0 or 1 of the r and the w operations are
relevant (rather than transitions). In addition to the
fault types CFst, CFid and CFds, [2, 3] also introduce
the following four classes of intra-word CFs:

1. Unrestricted intra-word CFs (uCFs)

The v-cell is only influenced by a single a-cell; the
a- cell may be any of the B-1 non-v-cells. This fault
model does not require knowledge about the layout of
the cells in a word. It is used by Dekker [4].

2. Restricted intra-word CFs (rCFs)

The v-cell is only influenced by a single a-cell, which
is the physical neighbor of the v-cell. This requires
precise knowledge of the layout of the memory words
and the routing of the I/O data lines.

3. Concurrent-restricted intra-word CFs (crCFs)

The v-cell is only influenced by the concurrent action
or state of two a-cells, which are the physical neighbors
of the v-cell.

4. Concurrent intra-word CFs (cCFs)

The v-cell is influenced by the concurrent action or
state of the B-1 non-v-cells in the word; all a-cells
perform the same sensitizing operation (Motivation:
Ground and Vce bounce).

For example, if the rCF fault model is used for CF-
sts, then only 4 DBs are required, independent of B,
because it only has to be verified that all four states
between two neighboring cells ¢; and c; 41 are possible
(0 <i < B—2). For an 8-bit memory these DBs are:
0000.0000, 1111.1111, 0101.0101 and 1010.1010.

Table 2 [2, 3] shows the number of DBs, D, and
the test time, ¢, as a function of the three CF types
(CFst, CFid and CFds) and the four classes of intra-
word CFs (uCF, rCF, crCF and c¢CF). The values for
D and t assume that the word-wide BOM test already
applied the all Os and all 1s DBs. The 2"? and the
374 columns show the equations for D and ¢, while the
last two columns show the value pair 'D;t’ for a mem-
ory with B = 4 and with B = 32, respectively. Note:
The values of ¢ in the 3%, the 4t and the 5'* column
have to be multiplied by n/B. From this table one can
conclude that the test time increases with the com-
plexity of the CF type (from CFst to CFid to CFds)
and with the CF class (from rCF to uCF to crCF to
cCF). Most industrial tests, however, only test for un-

Table 2: Number of DBs D and test time ¢

Table 3: Test time as a function of B

CF type # of DBs: D Test time: ¢ D;t All 0s and 1s not in code All 0s or all 1s in code
uCFst 2 % [log, B]+2 | 4 =[log, B]+2 6;10 12;22 B ” cn | t B || cn | t
rCFst 4 6 4;6 4;6
crCFst 8 14 814 | 814 3 Ct=3 6 3 Ccy =3 8
cCFst 3+«B+2 T+«B 2 10;18 | 66;130 4-6 Ci=6 8 4 Ci= 10
uCFid 3 *[log, B]+3 | 6 *[log, B]+1 9;13 18;31 7-10 C3 =10 10 5-10 C> =10 12
r%l;i% 162 13 162;1109 162;1109 11-20 c{=20 |12 11-15 ci=15 [14
crCFi ; ; T— T—
cCFid 3% B =2 5xB+t3 14;23 | 98;163 21-35 C% =35 |1 16-35 Cg =35 |16
WOFds || 3#[log, B]+3 | 7 *[log, B]+6 || 9;20 | I8l 36-70 C; =10 | 16 36-56 C3=5 | 18
CFds 6 13 6;13 6:13 71-126 C] =126 | 18 57-126 Cj =126 | 20
crCFds 12 27 12,27 | 12;27 127-252 || €19 =252 | 20 127-210 || CI° =210 | 22
cCFds 3xB+t2 6B +9 14;33 | 98;201

restricted CFsts (uCFsts), because of potential bridges
between cells within a word and between the I/O data
lines. In addition, the uCFst model does not require
any knowledge about the layout of the memory and the
routing of the data lines to/from the I/O pads. Note
additionally, that in case of repair, using spare rows
and/or columns, the normal topology of the memory
is altered, which makes it safe to use the uCFst model
instead of the more time efficient rCFst model.

4 Optimal WOMs tests

As shown before, the traditional and improved meth-
ods established the minimum number of DBs based on
the assumption that complementary pairs of DBs had
to be used. This does not have to appply to the im-
proved method of Section 3, such that a new opportu-
nity for test time reduction presents itself! The prob-
lem to be solved now is: What is the minimal number
of DBs such that every pair of bits is tested for uCFsts
(i.e., unrestricted CFsts), assuming that the word-wide
BOM test applies the all 0s and all 1s DBs. The use of
m-out-of-n codes, which are also called constant weight
codes with weight m, solves this problem [7]. In an m-
out-of-n code, each n-bit code word contains exactly m
1s. Note that the symbol n has already been defined in
Section 1 to mean the number of bits in the memory;
the context should make this unambiguous, however!
The number of code words in an m-out-of-n code is:
Cr = nl/(n —m)! xm! A 2-out-of-5 code consists of
Cr = C3 = 5!/(2!'% 3!) = 10 code words; see matrix
M, with D =n = 5 rows and C3 = 10 columns. This
code can be used for detecting intra-word uCFsts for a
memory with B < 10.

1111000000
1000111000
M;=|0 100100 110
0010010101
0001001011

A matrix of code words, constructed in the above
way, detects all CFsts because all bit pairs (b;,b;) are

exhaustively tested for the two states (0,1) and (1,0)
by applying the D = n patterns.

Proof: The patterns applied to any two bits, b; and
b;, come from the serialization of the two vectors (code
words) Vi and Vj of an m-out-of-n code. Because
of the fact that Vi and Vj are different code words,
there must be a row in M for which (Vi,Vj) =
(0,1) or (1,0). Consider that (0,1) occurs, then also
(1,0) has to uccur because Vi and Vj contain an equal
number of 1s. Q.E.D.

In order to allow for the maximum number of code
words for a given n, m has to be: m = [n/2] or |n/2|
[8]; from here on the |n/2] alternative will be assumed
(note that either choice is optimal). This results in the
following codes: C},C3,C3,C8,CY C8,CF,Ci0, etc;
see Table 3, left part. The algorithm for establishing
D for a particular B is based on the selection of C!,
such that the following ralationship holds, assuming
m = |n/2]: Cﬁ;il)/% < B < ([}, 5~ The left part of
Table 3 shows the ranges for B; for example, consider
B =8, which falls in the range 7 < B < 10. This range
is derived from the column C7! , from which D is derived
as folows: D = n = 5. The third column shows the
test time: ¢ = 2x D(xn/B) = 2% 10(xn/8) = 20(xn/8),
whereby the factor n/B is not included in the table.
A different set of code words has to be established
for the case that the word-wide BOM test does not
include the all Os and/or the all 1s DB. By inspection,
it can be verified that m-out-of-n codes are not able to
generate a matrix M which contains all four data value
pairs (0,0),(0,1),(1,0) and (1,1) for any pair of bits;
however, they can be designed such that they do cover
the (0,0) or the (1,1) case. If the word-wide BOM
test does not cover the (0,0) and the (1,1) case, then
either a row of all Os has to be added to the matrix
M and the m-out-of-n code has to generate the (1,1)
case, or a row with all 1s has to be added and the (0,0)
case has to be generated; we will assume the latter
alternative from now on. This means that the (0,0)
case has to be generated by using m-out-of-n codes
with m = [n/2] — 1. They have the property that the
number of 1s in a code word is one larger than the

Table 4: Test time comparison

B Dekker Impr. Optim. %
4 2 % n/4«xBOM 10 % n/4 8xn/n | 20
8 3% n/8xBOM 14%n/8 10+xn/8 | 28
16 || 4+n/16+sBOM | 18%n/16 | 12+n/16 | 33
32 [5+n/32+BOM | 22+n/32 | 14d+n/32 | 36
64 |[6+n/64xBOM | 26+ n/64 | 16 +n/64 | 38

number of 0s. A matrix of code words, constructed in
the above way, detects all uCFsts because all pairs of
bits (b;,b;) are exhaustively tested for the four states:
(0,0), (0,1) and (1,0) by the CI code words, and (1,1)
by the added all 1s row, such that D =n + 1.

Proof : The patterns applied to any two bits, b; and b;,
come from the serialization of the two vectors (code
words) Vi and Vj of an m-out-of-n code, followed
by the all Os pattern. V¢ and Vj contain m 1s, but
since m = [n/2] — 1, there must be a k (1 < k < n)
such that Vi(k) = Vj(k) = 0. Also, since Vi and Vj
are different code words, the positions of the 1s in Vi
must differ from those in V7 in at least one position.
Hence, there must be a p (1 < p < n) such that
Vi(p) = 0 and Vj(p) = 1. Similarly, there must be a
¢ (1 < g < n) such that Vi(p) = 1 and Vj(p) = 0.
Hence, all patterns 00, 01, 10 and 11 are applied to b;
and b;. Q.E.D. The right part of Table 3 shows the
ranges for B and the corresponding values for C7}}, and
t, whereby D =n + 1 and ¢t = 2 x D(xn/B).

Table 4 shows a test time comparison between
Dekker’s method, the Improved method (Impr.), and
the Optimal method (Optim.) (for the case that the
word-wide BOM test covers the (0,0) and the (1,1)
cases), for some values of B. Th % column shows
the test time improvement of the optimal over the
improved method. In Section 3 it has already been
shown that Dekker’s method is inferior as compared
with the Improved method, especially because it
heavily depends on the used BOM algorithm. Table
3 shows that an improvement of 20 to 38% has been
obtained over the latest published methods.

5 Conclusions

Most memories are word-wide; i.e., B > 1. Mem-
ory test algorithms are traditionally designed for bit-
oriented memories (BOMSs), for which B = 1. These
algorithms will not detect coupling faults between cells
of the same word, called intra-word CFs. Many types
of intra-word CF's exist, however, due to the likelihood
of bridging defects, state CFs (CFsts) are considered
to be the most important fault type. The detection
of CFsts requires that all four states of any two cells
within a word be verified to be possible. This is done

using a set of data backgrounds (DBs). A new method,
based on m-out-of-n codes, has been presented to de-
rive an optimal set of DBs. In addition, it has been
shown that the problem of detecting inter-word CFs
and intra-word CFs should be separated, to allow for
minimal test time. The new method allows for a re-
duction of 20 to about 40 % in test time for intra-word
CFsts.

The question still remains as to when this test should
be applied, as it depends on the topological organiza-
tion of the memory [2, 3]. In case of an adjacent mem-
ory organization, the cells of a word are physically ad-
jacent; this typically will be the case for small SRAMs
(e.g., 64 words of 32 bits). Then the introduced test
fully applies. In case of an interleaved, or also called
folded, memory organization (e.g., this will be the case
for an SRAM of 1024 words * 4-bits), the B bits of a
word are physically separated by bits of other words,
the introduced test only partially applies: It has to be
performed on a single word of each fold to insure the
absence of CFsts in the paths to/from the I/O data
lines. In case of a sub-array organization (e.g., a 1M*4
DRAM may counsist of 4 independent 1M*1 sub-arrays)
the introduced test only has to be applied to one word
of each sub-array to insure the absence of CFsts in the
paths to/from the I/O data lines.

References

[1] A.J. van de Goor, ”Testing Semiconductor Memories: Theory
and Practice”, ComTex Publishing, Gouda, The Netherlands,
1998. http://ce.et.tudelf.nl/~vdgoor/

[2] A.J. van de Goor and I.B.S. Tlili, ”March Tests for Word- Ori-
ented Memories”, In Proc. Design Automation and Test in Eu-
rope (DATe98), Paris, pp. 501-508, 1998

[3] A.J. van de Goor et al., ”Converting March Tests for Bit-
Oriented Memories into Tests for Word-Oriented Memories”. In
Records of the IEEE Int. Workshop on Memory Technology, De-
sign and Testing, San Jose, CA, pp. 46-52, 1998

[4] R. Dekker et al., ”Fault Modeling and Test Algorithm Develop-
ment for Static Random Access Memories”, In Proc. of the IEEE
Int. Test Conf., pp. 343-352, 1988

[5] R.P. Treuer and V.K. Agrawal, ”Fault Location Algorithms for
Repairable Embedded RAMs”, In Proc. of the IEEE Int. Test
Conf., pp. 825-834, 1993

[6] M.S. Abadir and J.K. Reghbati, ”Functional Testing of Semi-
conductor Random Access Memories”, ACM Computing Surveys,
15(3), pp. 175-198, 1983

[7] T.R.N. Rao and E. Fujiwara, ”Error-Control Coding for Com-
puter Systems”, Prentice-Hall International Editions, Engle-
wood Cliffs, NJ, 1989

[8] D.A. Anderson, ”Design of Self-Checking Digital Networks Using
Coding Techniques”, Coordinated Sci. Lab. Report R527. Cham-
paign: University of Illinois Press, 1971

[9] A.J.van de Goor and G. Gajdadjiev, ”March LR: A memory test
for realistic linked faults”, In Proc. of the 14'* IEEE VLSI Test
Symposium (VTS’96), pp. 272-280, 1996

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

