
Alternatives in FPGA-based SAD Implementations
Stephan Wong, Bastiaan Stougie, and Sorin Cotofana

Computer Engineering Laboratory,
Delft University of Technology,

Stephan@Dutepp0.ET.TUDelft.NL

Abstract—In multimedia processing, it is well-known that the sum-
of-absolute-differences (SAD) operation is the most time-consuming
operation when implemented in software running on programmable
processor cores. This is mainly due to the sequential characteristic
of such an implementation. In this paper, we investigate several hard-
ware implementations of the SAD operation and map the most promis-
ing one in FPGA. Our investigation shows that an adder tree based ap-
proach yields the best results in terms of speed and area requirements
and has been implemented as such by writing high-level VHDL code.
The design was functionally verified by utilizing the MAX+plus II 10.1
Baseline software package from Altera Corp. and then synthesized
by utilizing the LeonardoSpectrum software package from Exemplar
Logic Inc. Preliminary results show that the design can be clocked at
380 Mhz. This result translates into a faster than real-time full search
in motion estimation for the main profile/main level of the MPEG-2
standard.

Keywords—sum of absolute difference, field-programmable gate ar-
ray, hardware synthesis.

I. I NTRODUCTION

In video coding,motion estimationwas introduced in
an attempt to accurately capture such movements. In the
MPEG-1/2 multimedia standards, it is performed for every
macroblock, i.e., an array of16 × 16 pels, in the to be en-
coded frame by finding its ‘best’ match in a reference frame.
The most commonly used metric to evaluate the match is
the “sum of absolute differences” (SAD), which adds up the
absolute differences between corresponding elements in the
macroblocks. In this paper, we focus on the implementation
of the SAD operation in FPGA hardware due to the reasons
presented in the following paragraph. Implementations of
other multimedia operations can be found in [3], [4], [7].

In the past, the design of embedded multimedia proces-
sors was very much similar to microcontroller design by
utilizing Application Specific Integrated Circuits (ASICs).
In the early nineties, we were witnessing a shift in the em-
bedded processor design approach fuelled by the need for
faster time-to-market times. This resulted in the utiliza-
tion of programmable processor cores augmented with spe-
cialized hardware units. Consequently, time-critical tasks
were implemented in specialized hardware units while other
tasks were implemented in software to be run on the pro-
grammable processor core [5]. This approach allowed a
programmable processor core to be re-used for different
sets of applications and only the augmented units need to

be designed (again) or for specific application areas. Cur-
rently, we are witnessing a new trend in embedded proces-
sor design that implemented the time-critical tasks in field-
programmable gate arrays (FPGA) structures or compara-
tive technologies [2], [10], [9], [6]. The reasons for and the
benefits of such an approach include the following:
• Increased flexibility: The functionality of the embedded
processor can be quickly changed and design faults can be
quickly rectified.
• Sufficient performance: The performance of FPGAs has
increased tremendously and is quickly approaching that of
ASICs [1].
• Faster design times:Faster design times are achieved by
re-using intellectual property (IP) cores and utilization of
high-level hardware description languages (e.g., VHDL).

In this paper, we investigate several hardware imple-
mentation alternatives for the sum-of-absolute-differences
(SAD) operation in terms of expected speed and area. The
three alternatives are based on a sequential adder, a sys-
tolic array of adders, and a pipelined adder tree. The se-
quential adder based implementation yields the lowest area
requirements, but it requires the highest number of cycles
to complete. The systolic array based implementation re-
quires slightly less cycles to complete, but much more area
is needed. The pipelined adder tree based implementation is
the best approach since it requires less area than the systolic
array based implementation and since it requires the low-
est number of cycles to complete. This approach has been
chosen to be implemented in FPGA hardware.

This paper is organized as follows. Section II dis-
cusses the implementation alternatives in detail and selects
the most promising one. Section III describes the chosen
multi-chiplet design and presents the generic design for all
chiplets. Furthermore, the synthesis results of this design
are presented. Finally, Section IV concludes this paper with
some concluding remarks.

II. SAD IMPLEMENTATION ALTERNATIVES

In this section, we investigate several design alternatives
in implementing the ”sum of absolute differences” (SAD).

SAD(x, y, r, s) =

15∑

i=0

15∑

j=0

|(A(x+i,y+j) −B((x+r)+i,(y+s)+j))|

with 0 ≤ x, y < framesize
with (r, s) being the motion vector
with A(x,y) being a current frame pel at(x, y)
with B(x,y) being a reference frame pel at(x, y)

We can observe that the SAD operation can be divided
into two stages. In theabsolutestage, all the|Ak − Bk|’s
are calculated (possibly in parallel) before these results are
summed up in thesumstage.
The absolutestage: All values Ak and Bk are consid-
ered to be unsigned 8-bit numbers. In a straightforward ap-
proach, the valuesAk andBk are converted to a number
representation that accommodates negative values allowing
the values to be subtracted from each other. In the case that
the result of the subtraction is negative, the result must be
changed to a positive value. The discussed implementation
approach has two main disadvantages. First, arithmetic en-
compassing negative numbers requires more bits to repre-
sent the same range of positive values. Furthermore, addi-
tional logic is needed to perform boundary checks. Second,
there is an occasional delay incurred by the last step (neg-
ative→ positive) leading to an extension of all data-paths
since the delay can not be pre-determined.

Exor Exor

Invert

Carry_generator

Carry Carry

B

A_out B_out

A

Fig. 1. Utilizing a carry generator in theabsolutestage.

Before we discuss the next approach, we have to note that
the subtraction of two unsigned numbers (e.g.,Ak − Bk)
is performed by addingAk with a bit invertedBk (Bk =
2n−1−Bk) and adding a ‘hot’ one:Ak+(2n−1−Bk)+1 =
2n +Ak−Bk. Assuming thatBk ≤ Ak, the resulting carry
(2n) of the addition can be ignored. In the case that no carry
was generated,Bk was greater thanAk and the addition
yields an incorrect addition. Utilizing the discussed sub-
traction of two unsigned numbers, it is possible to maintain
the bit length of the valuesAk andBk. Instead of perform-
ing the addition, we propose to implement a carry gener-
ator to calculate the carry based on the well-known carry-
propagate algorithm. Based on the result of the carry gener-
ator, the correct value (Ak or Bk) is bit inverted and added
to the remaining value (Bk or Ak) together with a ’hot’ one.

This approach is faster than the previous approach (since
only ‘addition’ is needed) and the performance of the over-
all SAD operation can be further improved by delaying the
summation to be included in thesumstage. This approach
is depicted in Figure 1. We have to note that in thesum
stage all the ’hot’ ones must taken care of. This can be done
by counting all the needed ’hot’ ones and adding this count
(256) as an additional summation term in thesumstage.
The sumstage: In this stage, all theK summation terms
(Xk) outputted by theabsolutestage must be summed up.
To this end, we propose three different methods which we
have termed: sequential addition, systolic array of adders,
and pipelined adder tree.

Carry Propagate Adder

Sum Register

Xk

Sk

Sk-1

Fig. 2. Sequential addition with carry propagate adder.

A possible implementation of sequential addition is de-
picted in Figure 2. In this figure, the values from theab-
solutestage are summed utilizing a carry propagate adder
(CPA), e.g., a carry look-ahead adder or a ripple carry adder,
and a sum register. The precision of the sum register can
be pre-determined, because the bit-length of input values
and the number of addition terms are known beforehand.
However, this also dictates the length of the carry propagate
adder which is much slower due to the longer bit length of
its inputs. The amount of cycles to calculates the result is:
K× length of CPA (in bits).

Carry Save Adder

Xk

Ck

Sk-1

Carry Propagate Adder

Sk

SC

Ck-1

Fig. 3. Sequential addition with carry save adder.

Another implementation of sequential addition is de-
picted in Figure 3. In this figure, a carry save adder is
used to calculate the intermediate sum value (block S) and
carry value (block C). Since such a carry save adder per-
forms a 3-to-2 reduction, a new addition term can be added
in each cycle. After entering the last term (XK), the final

sum and carry values are added in the carry propagate adder.
This implementation produces the result after “K+ length
of CPA” cycles. Both implementation possibilities of a se-
quential addition require only a small area, but vary in speed
in terms of cycles.

C
arry Save A

d
d

er Bu
ffer

Bu
ffer

P

C

P

C

C
arry Save A

d
d

er Bu
ffer

Bu
ffer

P

C

P

C

C
arry Pro

p
ag

ate A
d

d
er

P

C

C
arry Save A

d
d

er Bu
ffer

Bu
ffer

P

C

P

C

X0..2

X3 XK

...

...

'1' Buffer 'K-2' Buffers

Fig. 4. Addition utilizing a systolic array.

A possible implementation of addition utilizing a systolic
array is depicted in Figure 4. In this systolic array, the inter-
mediate result flows through that array. In addition, at each
stage a newXk is being added to the intermediate result.
As a result, all theXk values must be bufferedk − 2 cycles
and thereby requiring considerable amounts of area. On the
other hand, an advantage of this approach is that the imple-
mentation is pipeline-able. This allows input values to be
put into the array at each cycle and will produce a result in
each cycle (after a certain startup time).

Fig. 5. An example adder tree in dot notation.

The third approach is based on a scheme proposed in [8]
and utilizes a pipelined adder tree. By iteratively applying
full adders, all the summation termsXk can be reduced to
two intermediate summation terms. These two intermediate
summation terms are then added by utilizing a carry prop-
agate adder. An example adder tree which starts with six
summation terms is shown in Figure 5. In this figure, each
bit is represented with a black dot and the full adder is repre-
sented by a gray box. This method has several advantages.
First, it allows optimizations within the adder tree since the
adder tree is fixed. Second, it is pipeline-able. Third, it re-
quires considerably less area since no buffering of the input

is required. Fourth, it has a considerably smaller latency
than the other two implementation methods to produce the
first result. Finally, it allows the additional summation terms
from theabsolutestage when utilizing the method depicted
in Figure 1 to be easily included in the adder tree.

In conclusion, based on our preliminary estimations on
number of cycles and area, it is best to combine the carry
generator based implementation (for theabsolutestage) and
the adder tree based implementation (for thesumstage).

III. VHDL IMPLEMENTATION AND SYNTHESIS

RESULTS

In the previous section, we have selected to implement
the SAD operation based on the carry generator method (de-
picted in Figure 1) for theabsolutestage and the adder tree
for the sumstage. In this section, we discuss two possi-
ble multi-chiplet designs, because currently available chips
only have± 1000 I/O pins which is not enough to encom-
pass a fully parallel design of the SAD operation. Such
chiplets can be mapped to multiple FPGA chips or a single
FPGA chip in the future. A completely parallel design has
the following I/O pin requirements: (512 inputs× 8 bits)+
16 output bits+ 1 clock signal= 4113 pins. At the time
of this investigation, the Altera STRATIX EP1S80 was the
largest commercially available FPGA chip in terms of I/O
pins (= 1234) and served as the basis for our investigation
into multi-chiplet designs.

Fig. 6. A 4-chiplet design.

A 4-chiplet design is depicted in Figure 6. By distributing
the input pins over four chiplets, the I/O pin requirements
can be significantly reduced. Furthermore, we have opted
to implement one generic design (depicted in Figure 6) for
all chiplets which significantly reduced the design time. The
generic design is such that two modes are supported. The
first mode performs the operations needed in theabsolute
stage, i.e., utilizing the carry generator (CG), till the point
just after ”Adder Tree 1”. This mode is used by chiplets 2
through 4. The second mode (employed by chiplet 1) also
starts calculating thesumstage, but continues with ”Adder
Tree 2” by utilizing the results from the other three chiplets.
The I/O pin requirements are as follows: (64 carry genera-
tors (CGs)× 2 inputs× 8 bits)+ (1 output to other chiplet
× 22 bits)+ 3 input from other chiplets× 22 bits+ 16-bit
SAD output+ 1 clock= 1129 pins.

The number of cycles to calculate the SAD result is29
clock cycles. The functionality of the design has been ver-

CG CG CG

Adder Tree 1

Adder Tree 2

Final Adder

..................

......

outputs from
other chips

output to
other chip

SAD result

A B A BA B
8 8 8 8 8 8

22

22
22
22

16

Fig. 7. The generic chiplet’s internal organization.

ified by utilizing the MAX+plus II 10.1 Baseline software
package from Altera Corp. The synthesis results after run-
ning LeonardoSpectrum are presented in Table I.

Device utilization for EP1S80F1508C

Resource Used Avail Utilization
IOs 1129 1213 93.08%
LCs 7765 79040 9.82%
Memory Bits 0 7427520 0.00%
DSP block 9-bit elems 0 176 0.00%

Clock Frequency Report
Clock : Frequency
CLK : 380.7 Mhz

TABLE I

SYNTHESIS RESULTS OF THE GENERIC CHIPLET IMPLEMENTATION.

We can observe in the table that our implementation uti-
lizes93% of the available I/O pins. Furthermore, since our
design only requires9% of the chip area, we envision that
more functionality (like DCT, IDCT) be included on the
same chip by multiplexing the I/O pins. Finally, the chip can
be clocked at a frequency of380 Mhz. We can note that this
implementation on the STRATIX FPGA is I/O bound since
the frequency corresponds to the data arrival time of2.63
ns. Assuming that the memory is fast enough to provide
the needed data, our design is able to support full search
for the main profile/main level (720×576 resolution) in the
MPEG-2 standard. The full search algorithm requires30
frames/second× 1620 macroblocks/frame× 1620 SAD op-
erations/macroblock= 78782000 SAD operations/second.
This translates into that every12.70 ns one SAD operation
must be performed which is much larger than2.63 ns which

is the (cycle) time needed to produce a SAD result in our
pipelined design.

IV. CONCLUSIONS

In this paper, we considered for implementation the sum-
of-absolute-differences (SAD) operation which is com-
monly used in video encoding schemes in order to deter-
mine the ’closeness’ of two macroblocks (a16 × 16 array
of pels). We have established that the SAD operation can
be divided into two stages, namelyabsoluteandsum. For
each stage, several implementation alternatives can be iden-
tified. Based on expected speed and area estimates we have
selected to implement the SAD operation utilizing a carry
generator in theabsolutestage and an adder tree in thesum
stage. Furthermore, in order to implement a fully parallel
design the I/O pin requirements exceed what is provided by
current commercially available field-programmable gate ar-
ray (FPGA) structures. Therefore, we have chosen to imple-
ment the SAD by utilizing4 chiplets. We have to note that
only a single generic design was utilized for all4 chiplets.
The synthesis results show that1129 I/O pins are required
and7765 LCs are utilized which translates into an area uti-
lization of about9%. Finally, the presented pipelined imple-
mentation is able to perform faster than real-time full search
in motion estimation for the main profile/main level of the
MPEG-2 standard.

REFERENCES

[1] Virtex-II 1.5V FPGA Family: Detailed Functional Description .
http://www.xilinx.com/partinfo/databook.htm.

[2] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling.
Architecture Design of Reconfigurable Pipelined Datapaths. InPro-
ceedings of the 20th Anniversary Conference on Advanced Research
in VLSI, pages 23–40, March 1999.

[3] G. Kuzmanov and S. Vassiliadis. Reconfigurable Repetitive Padding
Unit. Proceedings of the 12th Great Lakes Symposium on VLSI, pages
98–103, April 2002.

[4] J. Nikara, S. Vassiliadis, J. Takala, M. Sima, and P. Liuha. Parallel
Multiple-Symbol Variable-Length Decoding. InProceedings of the
IEEE International Conference on Computer Design (ICCD2002),
pages 126–131, Freiburg, Germany, September 2002.

[5] S. Rathnam and G. Slavenburg. An Architectural Overview of the
Programmable Multimedia Processor, TM-1. InProceedings of the
COMPCON ’96, pages 319–326, 1996.

[6] S. Seng, W. Luk, and P. Cheung. Run-time Adaptive Flexible
Instruction Processors.Proceedings of the Conference on Field
Programmable Logic 2002 (FPL2002), pages 545–555, September
2002.

[7] M. Sima, S. Cotofana, S. Vassiliadis, J. T. van Eijndhoven, and
K. Vissers. MPEG Macroblock Parsing and Pel Reconstruction on an
FPGA-augmented TriMedia Processor. InIEEE International Con-
ference on Computer Design (ICCD2001), pages 425–430, Septem-
ber 2001.

[8] S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek. The Sum-
Absolute-Difference Motion Estimation Accelerator. InProceedings
of the 24th Euromicro Conference, 2000.

[9] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLENρµ-coded
Processor. InProceedings of the Conference on Field Programmable
Logic 2001 (FPL2001), pages 275–285, 2001.

[10] R. Wittig and P. Chow. OneChip: An FPGA Processor with Re-
configurable Logic. InProc. of the IEEE Symposium on FPGAs for
Custom Computing Machines, pages 126–135, April 1996.

