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Abstract— In this paper we propose a high-speed hybrid Threshold-
Boolean logic style suitable for Boolean symmetric functions implementa-
tion. First, we present a depth-2 hybrid implementation scheme for arbi-
trary symmetric Boolean functions, based on differential Threshold logic
gates as circuit style. Finally, we present the hybrid logic design of a�����

counter. The simulation results, suggest that the hybrid
�����

counter
designed in ��� ��	�
�� CMOS technology, achieves between ��	� and 	 � 
higher speed when compared with traditional Threshold logic and Boolean
logic counterparts, at expense of between 	��� and � �  transistors.
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I. INTRODUCTION

The increasing demand for high-speed computer arithmetic
in hardwired processors have shifted the research efforts to-
ward highly customized alternative circuit techniques and spe-
cific arithmetic algorithms. Among them, Threshold logic (TL)
has received increasing attention in recent years.

Threshold logic (TL) originally emerged in the early 60’s as
a generalized theory of logic gates, which includes conventional
Boolean logic (BL) as its subset [5]. More formally, a Threshold
Logic Gate (TLG) is defined as an � -input processing element
such that its output performs the following Boolean function1:

������������� ���� �!����"#�%$'&�(*),+  �!���.- 0/ (*),+  �!���.0 0
(1)

 �������2143657 8:9<;>= 8@?�AB8<CED
(2)

where
�F� � AHG ( A@I (KJ�J�JK( A 143

I "
, L � � = G ( = I (KJ�J�JK( = 143

I "
and

D
are the set of Boolean input variables, the set of fixed

signed integer weights associated with data inputs, and the fixed
signed integer threshold, respectively [5].

TL is fundamentally more powerful that Boolean logic since
the TL gate can perform more complex and wider functions
than the usual Boolean CMOS gates (e.g., Nand, Nor, Invert)
can. Several recent theoretical investigations [7], [8] have indi-
cated that computer arithmetic building blocks (e.g., adders and
multipliers) can be implemented in TL with smaller number of
logic gates and fewer logic stages when compared with tradi-
tional Boolean logic counterparts.

In this paper a novel high-speed Hybrid Threshold-Boolean
Logic (HTBL), suitable for fast Boolean symmetric functions
implementation, is presented. High-speed design is addressed in
both electrical and logical directions. Electrical improvements
are achieved by resorting to a fast differential latch-based TL
gate [6] design style. Logical improvements are achieved via theM

All the operators are algebraic.

introduction of a novel depth-2 hybrid Threshold-Boolean logic
implementation for arbitrary symmetric Boolean functions. In
order to evaluate the potential performance of the hybrid scheme
the design of a HTBL N�OQP parallel counter is presented. The
simulation results, suggest that the hybrid N�OQP counter designed
in
/ JSRUTWV@X CMOS technology, achieves between RUT�Y and T P Y

higher speed when compared with traditional Threshold logic
and Boolean logic counterparts, at expense of between T�R�Y andZ N Y transistors.

The paper is organized as follows: Section 2 briefly reviews
the differential TL gate employed by the hybrid scheme; Sec-
tion 3 introduces the hybrid depth-2 implementation scheme for
arbitrary symmetric Boolean functions. Section 4 presents the
complete design of a HTBL NUOWP parallel counter. Moreover, in
this Section there are presented the simulation results and com-
parisons in terms of delay and estimated area of this parallelN�OQP counter implemented in traditional Boolean, Threshold, and
HTBL. Section 5 presents some concluding remarks.

II. DIFFERENTIAL TL GATE DESCRIPTION

The differential TL gate schematic [6] and its basic sym-
bols utilized further in the paper are depicted in Figure 1. The
gate is in principle a clocked differential cascode voltage switch
(DCVS) circuit, operated with a single phase clock. It com-
prises a fast latched comparator and two parallel-connected sets
of unit nMOS transistors, referenced herein as input data bank
and threshold mapping bank (as its transistors have usually the
gates hardwired to ground or power supply). The gate presented
in Figure 1 has

= 8 � & for every input while the same holds true
for every threshold mapping input (

D 8
). The total conductances

of the transistor banks are compared each other by the latched
comparator and therefore the output [ is logic one if the current
generated by the data bank is greater than the current gener-
ated by the threshold mapping bank and logic zero otherwise.
Please note that, by design, the data bank is prevented to have
similar conductance with the threshold mapping bank, when the
threshold is reached, since an nMOS transistor with weight

/ JST
is always on. This prevents the latch comparator entering in a
metastable state.

As described in [6], the TL gate from Figure 1 has several
potential advantages over other CMOS TL gates, e.g., [3], which
makes it suitable for high-speed symmetric functions designs, as
follows:\ the gate achieves high-speed of operation since the latched
comparator is very fast;\ the gate is suited for dual-rail implementations since it pro-
vides both [ and [ simultaneously;



Fig. 1.
�
-input differential latch-based TL gate schematic and its symbols
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During the next section we use the following notations: � is
the total number of primary inputs;
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, the total
number of true inputs; �

D���� 9
, �
D�� 39 ,

D � / ( � , (as TL symbols
from Figure 1 suggest for � � N ) denote
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and��� � � D C � 1 " respectively; �	�
� and �
?
� operators are the alge-

braic sum and product while �	��� and ���� denote a logical �������
and ��������� operation, respectively.

III. HIGH-SPEED HYBRID LOGIC

In this Section we present a depth-2 hybrid implementation
scheme for arbitrary symmetric Boolean functions, based on dif-
ferential Threshold logic gates as circuit style. We introduce first
the definition of Boolean symmetric functions.

Definition 1 A Boolean function of � variables,
� � A6I (KJ�JKJ A 1 � ,is called symmetric iff (if and only if) it is invariant to any

permutation � of � &U(�R (KJ�J�J�( ��� of its inputs
� � A I (�J�JKJ A 1 � ���� A � � I ! (�JKJ�J A � � 1 !#" .Because any input vector

�
with exactly ) ones is a permuta-

tion of any other vector with exactly ) ones, it can be said that�
is symmetric iff

� �!���
depends only on the number of ones

in the input vector
�

,
� 1 . Consequently, instead of using a truth

table with R 1 entries, a symmetric function can be described by
stating the ranges of

� 1 for which the function is true [5], [1].
Any symmetric function can be specified either as a reunion of
intervals for which

� � & , called symmetric function on-set,
or as a reunion of intervals for which

� � /
, called symmet-

ric function off-set. Therefore, a symmetric Boolean function
with $ intervals in which

� � & , has the on-set
� I � � 1 � �%'&8 9 I � ( 8 (*) 8 � . Similarly, its off-set is the reunion of complemen-

tary intervals
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with )
G � /

and ( & �
I � � .

We denote by interval description, both the on-set and off-set
of the symmetric function. The interval description of an ar-
bitrary symmetric function is depicted in Figure 2.a, where by
the dot sign, + , we mean a closed interval. The following theo-
rem introduces the hybrid Threshold-Boolean symmetric func-
tion implementation scheme.

Fig. 2. a) Arbitrary symmetric function - interval description; b) synthesis rule
example for Boolean stage
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Theorem 1 Given any arbitrary symmetric Boolean function

of � variables,
� � � 1 � , having $ intervals in its on-set, it can

be implemented with R $ fan-in � TL gates and one AND-OR
Boolean gate, in two stages as follows:

Stage 1: the first stage comprises a total of R $ fan-in � dif-
ferential TL gates, as those presented in Figure 1, comput-
ing in parallel � (

8	�	�9
, � )

8	�	�9
, ) � &U( $ , and their complements

( (
8 (,) 8�- � / ( � � ).

Stage 2: the second Boolean stage receives the dual-rail out-
puts of the first stage and computes the function on-set using the
following Boolean Equation:� I � � 1 ��� � (

I*�	�9
 � )

I,���9
�
?�?K?
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Proof: Assume
� 1

-
� (
8 (,) 8 � , for a specific ) � &U( $ . In this case� (0/

� �9 � /
for 1 � &U( ) C & , � (0/ � �9 � & for 1 � )�( $ , � ) /

� �9 � & for1 � &U( ) , � ) / � �9 � /
, for 1 � ) � &U( $ . Therefore � (

8 � �9
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, 143� ) and it follows that only one
AND term in the Boolean Equation (3) is one, which implies� I � � 1 ��� & , as it should.

Assume now that there is no ) , ) � &U( $ such that
� 1

-
� (
8 (*) 8 � .

In this case there are three possibilities:
a)
� 1

-
� )
8 ( ( 8 � I � then � ( /

� �9 � /
for 1 � &U( ) , � ( / � �9 � & for1 � ) � &�( $ , � ) /

� �9 � & for 1 � &U( ) , � ) / � �9 � /
, for 1 � ) � &�( $ .

Therefore
� I � � 1 ��� /

.

b)
� 1

-
� / ( ( I � then � (0/

�	�9 � /
for 1 � &U( $ , � ) /

�	�9 � & for1 � &�( $ . Consequently
� I � � 1 ��� /

.

c)
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-
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� �9 � & for 1 � &U( $ , � ) /
� �9 � /

for1 � &�( $ . Therefore
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.
On the first stage, we compute each “rising transition”, � (

8 � �9
and “falling transition”, � )

8	�	�9
, ) � &�( $ , i.e., we use R $ TL

gates2. On the second stage we compute according to Equa-
tion (3) the symmetric function on-set, using a single AND-OR
gate. 56

Please note that TL gates computing 7 �*8:9; and 7 <=8>9; are not needed in the
first stage for the computation of off-set intervals 7 �@?BA MDC and 7 E#FG?H<=8 as there are
no “transitions” in IDJ�K � and IDJ
KL< , with respect to the interval description
depicted in Figure 2. However, there are symmetric Boolean functions having
such kind of transitions (e.g., parity).



Speaking from the circuit point of view, the design of the
Boolean stage is a key point for achieving high-speed symmetric
function implementations. Such an AND-OR Boolean gate has
in CMOS a pull-up network (PUN) and a pull-down network
(PDN). In HTBL designs PUN is responsible with the imple-
mentation of the symmetric function on-set while PDN imple-
ments its off-set.

Theorem (1) suggests an implementation method for both
PUN and PDN from this Boolean gate. Each and every on-
set/off-set interval is implemented by R serial connected MOS
transistors, as depicted in Figure 2.b, for the particular case of
the intervals � (

8 (,) 8 � and � )
8 ( ( 8 � I � . Please note, the outer inter-

vals � / ( ( I � and � ) & ( � � are implemented each with only one tran-
sistor in PDN as the gates � / � �9 and � � � �9 are not needed. Since
generally, the interval descriptions are basically reunions of in-
tervals and since each interval is implemented as in Figure 2.b,
PUN and PDN can be extended easily by connecting in parallel
such sets of no more than two series transistors.

Referring to Figure 2.b, the PUN and PDN work as follows:

assuming that
� 1

-
� (
8 (,) 8 � , it follows that � (

8 ���9 � /
and� )

8	� �9 � /
, therefore both pMOS transistors presented in Fig-

ure 2 are on and
� � � 1 � � & � � I � � 1 � , as it should. Simi-

larly, assuming that
� 1

-
� )
8 ( ( 8 � I � , it follows that � )

8 � �9 � & ,� (
8 � I ���9 � & , both PDN nMOS transistors are on and conse-

quently
� � � 1 � � / � � G � � 1 � , as it should. Please note that

no electrical conflict between PUN and PDN may exist as only
one set of serial connected transistors is active at a time even in
PUN or in PDN.

IV. PERFORMANCE EVALUATION

To provide more inside in the method and to evaluate its po-
tential performance and cost for computer arithmetic building
blocks we choose a N�OQP counter for our simulation compar-
isons. Since counters are well known examples of multiple-
output symmetric functions, N�OQP counters can be implemented
in two stages using hybrid approach from Theorem (1).

In this Section a N�OQP parallel counter design using HTBL is
explained first. Then, in order to evaluate the counter perfor-
mance when compared with traditional Boolean and Threshold
Logic counters, the simulation results and comparisons are pre-
sented.

Generally, a NUOWP counter can be described by the interval de-
scription depicted in Figure 3.a and equivalently by the follow-
ing on-set [7] expressed as Boolean equations:[ � � � �

� �9 ( [ I � � R � �9  � �
� �9

�.� Z � �9[ G � � & � �9  � R � �9 � � P � �9  � �
� �9

� � T � �9  � Z � �9 � �SN � �9 J (4)

Figure 3.a and, equivalently, Equation (4) suggests that, for
example, the [ G output has to be logic one in

�
intervals (

��� �&U( P (�T ( N ) and logic zero in
�

intervals (
� � � / ( R ( � ( Z ). Con-

sequently the Boolean gate implementing the [ G output, has
�

sets of pMOS and
�

sets of nMOS transistors in PUN and PDN
respectively. More formally, the PUN can be synthesized assum-
ing [ G equation, with negated terms and  / � operators meaning
serial/parallel connection of pMOS transistors, as in the synthe-
sis theory of static CMOS gates. Similarly, PDN can be syn-

Fig. 3. Interval descriptions: a)
�����

counter, b) interval implementation exam-
ple
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thesized taking into account the off-set descriptions. Figure 4
presents the Boolean stage implementation of the N�OQP HTBL
counter. Using the same way of reasoning, higher order hybrid
counters e.g., & T O � , P & O T , can be designed.

We designed and compared the HTBL N�OQP counter, with tradi-
tional full-adder based NUOQP counter from [2] (pp. 129-130), and
with TL NUOQP counter proposed in [4], respectively. We choose
the full-adder based scheme for our comparison since it has been
proved in literature to be the nearly optimal Boolean approach in
terms of logic depth (and therefore speed) for the specific com-
pression ratio of NUOWP counter ( N��UP � R J PUP ). A N -input TL gate,
as in Figure 1, was designed and optimized in

/ JSRUTWV@X feature
size CMOS technology. It has RUT /�� � worst case delay. Given
that a full-adder has a worst case delay of 	�
��� P /U/�� � , the TL
gate is with more than & N Y faster in this particular technology.

The circuits were simulated with HSpice. Correct operation
of TL and HTBL counters was verified by extensive simulations
under the process corners. Every simulated counter was loaded
with similar counters in order to have a more clear image of the
delay improvement in a real partial product reduction matrix en-
vironment. We would like to stress out that the delay penalty
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TABLE I�����
COUNTERS DATA ( ��� ��	�
U� CMOS, TYPICAL CORNER)

Type Delay Norm. Delay # of
[ps] delay � 	 
 �

�
Tran.

BL 726 1.00 2.42 136
TL 460 0.63 1.53 155

HTBL 345 0.47 1.15 237

caused by capacitive loading in the succeeding stages is mini-
mized with our TL gate since the capacitive load per input is
only half the value of a minimum inverter (see Figure 1). The
output waveforms for HTBL design are presented in Figure 5.

Table I present the NUOWP counters characteristics, in terms of
absolute delay (@ R N °C,

����� � R JST � ), normalized delay, and
total number of transistors. For TL and HTBL counters “delay”
signifies “latency” (data-output delay) as a clock is needed for
their operation.

Table I suggests that N�OQP HTBL counter, when compared with
Boolean, is with T P Y faster at the expense of

Z N Y more tran-
sistors. When compared with TL NUOWP counter [4], HTBL isRUT Y faster at the expense of TUR�Y more transistors. HTBL coun-
ters compare favorably in terms of speed with either full-adder
based Boolean and Threshold logic counterparts since they take
the advantages of both Threshold logic (fast parallel processing
of large number of inputs in the first stage) and Boolean logic
(high-speed implementation of And-Or like Boolean functions
in the second stage).

V. CONCLUSIONS

In this paper we proposed a high-speed hybrid Threshold-
Boolean logic style suitable for Boolean symmetric functions
implementation. First, we presented a depth-2 hybrid imple-
mentation scheme for arbitrary symmetric Boolean functions,
based on differential Threshold logic gates as circuit style. Fi-
nally, we presented hybrid logic design of a N�OQP counter. The
simulation results, suggest that the hybrid NUOWP counter designed

in
/ JSRUTWV@X CMOS technology, achieves between RUT�Y and T P Y

higher speed when compared with traditional Threshold logic
and Boolean logic counterparts, at expense of between T�R�Y andZ N Y transistors.
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