
Developing a Retargetable Compiler: Some Preliminary
Results

Elena Panainte, Koen Bertels, and Stamatis Vassiliadis
Computer Engineering Laboratory, Electrical Engineering Department, Delft University of Technology

P.O. Box 5031, 2600 GA Delft, The Netherlands
Phone: +31 (0)15 27 83644, Fax: +31 (0)15 27 84898

E-mail: elena@ce.et.tudelft.nl

Abstract—The current paper reports on the first results
of building a retargetable compiler for reconfigurable com-
puting. The discussed research is part of a larger project
whose main objective is to develop a semi-automatic tool
platform for reconfigurable computing supporting a fully in-
tegrated design environment. It constitutes the first attempt
to provide a workbench that will cover the entire design tra-
jectory of general-purpose augmented processors with re-
configurable computing parts. The scope of the proposed
platform regards processors that intend to speed-up single
program execution using reconfigurable hardware. Conse-
quently, the Delft Workbench platform targets architectures
with single program counters (uni-processors) incorporat-
ing reconfigurable co-processing. Based on a particular ar-
chitectural paradigm we use a SET / EXECUTE function
scheduling platform and we provide appropriate modifica-
tions to the compiler back-end so that the SET / EXECUTE
can be incorporated.

Keywords—retargetable compiler, reconfigurable system,
IR extension.

I. INTRODUCTION

Computing devices become increasingly present in dif-
ferent areas of the human world, having as an immediate
consequence that a wide array of functional behavior has
to be supported by such devices. Designers are further-
more confronted with the need to make their device not
only small but also more powerful as the requirements in-
crease. During the design process, they have to identify
what application or part of an existing application can be
hardwired in order to obtain maximal performance. There
is no fundamental trade-off between hardware and soft-
ware but only a choice to determine what functions are
implemented at what level.

Reconfigurable computing workbenches comparable to
the workbenches for well-established technologies are
rather primitive and they support specific parts of the de-
sign process. While the vendors provide workbenches and
software tools to perform some intermediate phases of the
mapping process, there is a lack of tools supporting other
important stages of the design process as well as the inte-

gration of all the phases into a single workbench tool.
The current paper reports on the first results of build-

ing a retargetable compiler for reconfigurable computing.
The discussed research is part of a larger project - Delft
WorkBench - whose main objective is to develop a semi-
automatic tool platform for reconfigurable computing sup-
porting a fully integrated design environment. It consti-
tutes the first attempt to provide a workbench that will
cover the entire design trajectory of general-purpose pro-
cessors augmented with reconfigurable computing parts.
The scope of the proposed platform regards processors
that intend to speed-up single program execution using
reconfigurable hardware. Consequently, the Delft Work-
bench platform targets architectures with single program
counters (uni-processors) incorporating reconfigurable co-
processing. Based on a particular architectural paradigm
we use a SET / EXECUTE function scheduling platform
and we provide appropriate modifications to the compiler
so that the SET / EXECUTE can be incorporated.

The paper is organized as follows. In Section II we ex-
plain the issues concerning appropriate code scheduling
that accommodates reconfigurable functions to co-exist
with general-purpose code. Specific attention is given to
the architectural changes and the machine description in-
formation that are required for an efficient use of recon-
figurable components. We then discuss the underlying in-
frastructure of our retargetable compiler that is based on
the SUIF (Stanford University Intermediate Format) com-
piler and the Machine SUIF framework. This combination
allows us to easily add new passes and transformations and
also to extend the intermediate representation of the com-
piler. For the purpose of integrating SET/ EXECUTION
functionality, we first extend the compiler front-end with a
pass that recognizes the context for such instructions. The
next step is to extend the intermediate representation with
these functions. To this purpose, we modify the pass of
lowering the high-level SUIF representation to a medium-
level representation for a virtual machine. We also deter-
mine the back-end modifications in order to support the
new functionality. We illustrate in detail a number of typ-

392

ical situations such as function calls and multiple parame-
ters passing and show how they are currently addressed.
We conclude by offering an overview of the remaining
problems and by presenting the next steps in extending the
complexity of the compiler back-end.

II. RECONFIGURABLE COMPUTING AND THE MOLEN
ARCHITECTURE

The Delft WorkBench Project addresses one of the
new technologies gaining increasingly wider acceptance in
both the academic and industrial world, namely reconfig-
urable processing. It is considered to be a viable alterna-
tive to pure hardwired systems. Reconfigurable hardware
co-existing with a core processor has been proposed as a
good candidate for speeding up processor performance,
see for example [4], [5]. Such an approach can be very
promising; however, as indicated in [4], the organization of
such a hybrid processor can be viewed mostly as an open
topic. In most cases the hybrid organization assumes the
general-purpose paradigm. In such organization, it is as-
sumed that the processor operates in ”ordinary processor
environments” and is extended by reconfigurable unit(s)
that speed-up the processing when possible. The execu-
tion and the reconfiguration are under the control of the
”core” processor. Furthermore, due to the potential re-
programmability of the reconfigurable processor, a high
flexibility is assumed in terms of programming resulting
in tuning the reconfiguration for specific algorithms [6] or
for the general-purpose paradigm [4]. An ”intermediate”
approach is proposed by considering specialized multime-
dia processing and by assuming that complex and expen-
sive functions are implemented in hardware that have com-
mon computational blocks. This potentially allows fast,
coarse and flexible reconfiguration for specialized multi-
media processing.

In our project we assume the machine organization as
proposed in the MOLEN project[1], where the configura-
tion of the hardware and the execution on the reconfig-
ured hardware is performed by � -code, an extension of the
classical microcode for reconfiguration and execution of
the resident and not-resident microcode. This organization
is illustrated in Fig. 1, where the arbiter decides which
instructions are for core processing (CP) unit and which
for reconfigurable unit. The reconfigurable unit contains a
��� -code unit and a custom computing unit (CCU) which
may be implemented on a Field-Programmable Gate Ar-
ray (FPGA). The instructions for the reconfigurable unit
are of two types: SET and EXECUTE. Loading a new
configuration into a reconfigurable unit is performed un-
der the command of a SET instruction, while EXECUTE
instructions launch the operations performed by the com-

I_BUFFER

ARBITERCP

ρµ− code CCU
General
purpose
registers

Exchange
registers

DATA

MEMORY

reconfigurable unit

Fig. 1. The MOLEN machine organization

puting resources configured on the raw hardware. In this
way, the execution of a reconfigurable unit-mapped op-
eration requires two basic stages: SET and EXECUTE.
In the MOLEN approach, the SET instructions are di-
vided in p-SET(partial SET for common functions) and
c-SET(complete SET for less common functions). For the
moment, in our project we consider a SET instruction as
a c-SET instruction, for which the whole configuration is
performed at the program execution time. The instruction
format for SET and EXECUTE contains an opcode and
one bit that indicates if the location of the microcode is
resident/pageable, while the last field is reserved for the
address of the first instruction of the microcode. An im-
portant element in this approach is the use of the exchange
registers. It is evident that data will pass between the CP
and the FPGA. In order to deal with the issues of parameter
passing, the exchange registers are used as communication
gates. Therefore, the FPGA does nor directly store data in
the main memory or other store locations.

As an example of the MOLEN approach, we consider
paper [2] describing a mixed hardware and reconfigurable
TriMedia processor. TriMedia is a 5 issue-slot VLIW pro-
cessor optimized with respect to media processing. The
TriMedia processor will be augmented with a Reconfig-
urable Functional Unit (RFU) that consists mainly of an
FPGA core. In order to use the RFU, the new instruc-
tions are provided: SET and EXECUTE. With these new
instructions, the programmer is given the freedom to de-
fine and use any computing facility subject to the FPGA
size and TriMedia organizations. The potential of the
FPGA-augmented TriMedia has to be evaluated within the
multimedia-processing domain. Several functions related
to MPEG decoding task have been considered so far and
the improvements of the FPGA-augmented TriMedia ver-
sus standard TriMedia ranges from 25 to 43%.

393

Fig. 2. The overall workflow of the Delft WorkBench

III. THE RETARGETABLE COMPILER

The development of architectural improvements or in-
novations is a very complex process as it deals with a
large number of highly interconnected factors. An im-
provement in one component does not necessarily result
in an improved system performance. This complexity in-
creases considerably as heterogeneous architectures (e.g.
ASIC, FPGA’s) are included. Such an approach is becom-
ing increasingly popular as it allows developers to better
partition and manage their projects. Facing such complex-
ity, designers need tools to make the challenges manage-
able. Currently no such tools, known as workbenches, ex-
ist. There are only workbenches for fragments of the com-
plete design trajectory and certain parts of the design pro-
cess completely lack support.

On the basis of existing workbenches, it is clear that
the overall time and development cost can be substantially
decreased as testing and simulating a ”system in a work-
bench” is much cheaper and faster than testing a ”system
on a chip”. The ideal workbench supports the complete
design cycle comprising, among other things, the follow-
ing : it should assist the developer to identify functions the
target architecture will support. There are always multi-
ple candidates for hardwired implementation and a choice
has to be made. Consequently, candidate functions need to
be evaluated in a detailed way. This can be done through
simulation where, in a first phase, the function will be con-
sidered separately. After this, especially in the case of het-
erogeneous architectures, a more complete simulation can
be performed. Such a large scale simulation requires the
execution of benchmarked programs.

In Fig. 2, we present the Delft WorkBench workflow
and the main design phases it aims to support. The goal
of the first stage (Part I) is to assess to what extent hard-
wired functions would increase the overall performance
and what the cost is to build them. One way to support

Fig. 3. Delft WorkBench software tools scheme

this process is to offer C2C functionality where execution
traces of the program can be collected and analyzed. This
gives the designer a handle to make a more than educated
guess in identifying pieces of code. Factors such as num-
ber of times a function is called, total execution time etc.
are taken into consideration. The end result of this phase
is an overview of different pieces of code, which can be
implemented at the hardware level; the tool that performs
this task is called the profiler.

Once the choice has been made and a function f(.) is
identified, the code containing the f(.) logic needs to be
eliminated from the original source code and replaced by
an appropriate FPGA call (Part II). The instruction set
needs to be extended with the appropriate instructions for
setting up the FPGA and for starting its computation. To
this purpose an interface needs to be developed between
the software program and the FPGA implementation of
f(.). This boils down to modifying the compiler as to in-
clude the appropriate function calls that set up the FPGA,
transfer the required parameters, and receive the result(s)
of the execution. The retargeted compiler can then gener-
ate the appropriate machine code of the original program
containing the f(.) function call. The main issue in this
stage is the automatic rather than the time consuming and
difficult manual modification of the target compiler that
takes into account the new system properties. The current
paper is focused on these issues.

The obtained machine code can then run on a simula-
tor such as the SimpleScalar tool (Part III). The simulation
will provide detailed statistical information on the over-
all performance of the proposed architecture. This evalua-
tion will have to take into account all factors determining
the performance such as the set-up time of the FPGA and
make for instance recommendations on where to place the
set-up functions.

394

The tools involved in the Delft WorkBench are pre-
sented in Fig. 3. The compiler system relies on the Stan-
ford SUIF 2 Compiler Infrastructure for the front-end com-
ponent, while the back-end component and the machine-
dependent optimization passes are built over the frame-
work offered by the Harvard Machine SUIF Compiler In-
frastructure.

The SUIF system is a compiler infrastructure designed
to support collaborative research and development of com-
pilation techniques, based upon a program representation
also called SUIF (Stanford University Intermediate For-
mat) [7]. This system provides the necessary framework
for developing new compiler passes, also allowing flexible
interaction between the already existing modules. Another
important feature is the extensible program representation
that allows the users to capture and implement new pro-
gram construct semantics. The extensions are specified in
a high-level language that insulates the users from the im-
plementation details.

Machine SUIF is a flexible and easy to extend infras-
tructure for developing compiler back-ends [8]. This sys-
tem works in conjunction with the SUIF2 compiler infras-
tructure and follows the same modular design, allowing
the users to integrate and combine existing and new opti-
mization and analysis passes. The current Machine SUIF
distribution includes a working compiler that is capable of
producing code for machines based on the Alpha architec-
ture, x86 and IA64.

Machine SUIF is designed for a wide range of users,
including those interested in adding support for a new or
augmented target architecture, developing new optimiza-
tions that are parameterizable with respect to the compila-
tion target or developing a new intermediate representation
while preserving all the existing optimization passes.

Both SUIF and Machine SUIF are used in numerous re-
search projects (see [7]). They are well documented, reli-
able and continuously improving.

IV. COMPILER EXTENSIONS FOR SET/EXEC
FUNCTIONALITIES

In this section we describe the interface between the pro-
filer, which selects the C code sections that are candidates
for mapping in hardware and the extended compiler sup-
porting these new functionalities. We also discuss the spe-
cial cases we encounter and present the manner we treat
them.

A. Profiler-Compiler Interface

After the profiler identifies the C code segments to be
mapped in hardware, the compiler has to produce special

#pragma call_fpga abs_int
int f(int a, int b)
{

int c;
c=a-b;
if(c>0) return c;
else return -c;

}

Fig. 4. Pragma annotation

machine code that includes the target SET/EXECUTE in-
structions; the generated code is passed to the simulator
which measures the actual improvement gained by this
mapping. To this purpose, the profiler has to delimit and
stamp the selected C code with information revealing the
FPGA configuration associated to the current functional-
ity; the required information will be discussed later in this
section. There are several different methods to introduce
these stamps into the C language. One of them is to extend
the C language with new keywords or to overload the exist-
ing syntax in C. Another possibility is to provide dedicated
libraries, which are not portable and have to be manually
extended for any new configuration.

We use the ”pragma” directives to inform the compiler
about the C code that has to be mapped in hardware. This
approach has the advantage that the program remains in
standard C and it may be tested with standard C compil-
ers. The compilers that don’t recognize the pragmas will
simply ignore them and generate machine code for the as-
sociated standard C code, while our compiler will ignore
the C code and generate SET/EXECUTE instructions for
the associated FPGA configuration.

The C code that is mapped in hardware can be a whole
function or a part of a function (e.g. loops). We currently
restrict ourselves to the functions; the other case is similar
to this one and its implementation is straightforward, due
to the powerful mechanism provided by the SUIF annota-
tions.

For example, if the profiler designates a function f that
computes the absolute difference of two integers to be
mapped on the FPGA with the associated context name
abs int, then it introduces the pragma as presented in
Fig. 4. The call fpga pragma parameter informs the com-
piler that the current function has to be mapped in hard-
ware and the last parameter represents the name for the
FPGA configuration that implements the current function;
the body of the function remains untouched.

For the case where only a piece of code has to be
mapped in hardware, it has to meet the intuitive and natural
condition that it can be included in a new scope statement.
For example, for the piece of code presented in Fig. 5 the

395

a=b+c;
for(int i=0;i<10;i++){

a=a+i;
b=b*i;
c=c-i;

}

Fig. 5. Piece of code

first tree lines - which are a piece of code - cannot be an-
notated with pragma since the rest of the code is detached
from the inner scope statement contained in the for loop.
Instead, all lines or just the inner lines of the for loop can
be annotated. The chosen code is separated into a new
scope statement and the pragma annotation is added in
front of it. The annotations are similar to the annotations
for functions, with some additional parameters - these are
beyond the scope of this paper.

We assume that a function with an FPGA annotation has
an associated representation in the FPGA description file,
where at least the following characteristics are specified:

� the name of the FPGA context: this has to match the
pragma’s second parameter.

� the FPGA input and output registers.
� the address of the microcode for SET.
� the address of the microcode for EXECUTE.

Returning to the example presented in Fig. 4, the FPGA
context description may look as in the following lines:
abs int: XR2 � XR3, XR7
SET: xxx. . . xxx
EXECUTE: xxx. . . xxx

We assume as well that the function and the associ-
ated FPGA context have the same number of input and
output parameters and the order of the parameters is the
same. These assumptions do not limit the generality of the
functions mapped in hardware, as the process of manually
mapping on reconfigurable architectural components starts
from the C code of the functions identified by the profiler.
For other projects based on our compiler, where the FPGA
context is predefined, a manual intervention on the C code
is required. Its complexity is determined by the similarity
between the new C code and the FPGA functionality.

B. Compiler Extension

After the profiler introduces the above presented pragma
directives into the original C code, the modified C code
is passed to the compiler. In SUIF, the pragma direc-
tives are expressed as annotations to the associated scope
statements. It is important to interpret the annotations as
soon as possible in the compiler flow, in order to pre-
vent modifications in the annotated piece of code or in
the code that interacts with it. Therefore, we introduce

void main()
{

int x,z;
x=5;
z=f(x,7);

}

Fig. 6. Call of the f function, presented in Fig. 4

a special pass in the SUIF front-end that detects the func-
tions that have call fpga pragmas and introduces annota-
tions with the pragma parameters into the code that calls
these functions. For pragmas associated to pieces of code,
this pass should remove the code and add annotations with
the pragma parameters to the associated scope statements.
Special attention should be given for preserving the pro-
gram data dependencies; a method to solve a similar prob-
lem is presented later in this section (see Fig. 8).

The pass name is call fpga pass and it is applied imme-
diately after the program transformation in the SUIF repre-
sentation. The rest of machine independent optimizations
and transformations are applied after its execution.

As explained above, we extend the instruction set with
two instructions SET/EXEC. We also assume that the
FPGA is associated with a set of registers that are also
under the control of the processor. These ”exchange reg-
isters” are the only registers the FPGA has access to and
the processor uses them only for communicating with the
FPGA. Such registers facilitate the process of replacing
one FPGA with another one and they also facilitate the in-
struction scheduling algorithms. Therefore, we introduce
two additional instructions for inter-register communica-
tion, namely:

� MOVEGP reg private, reg gen - moves the value of a
general register into a FPGA register

� MOVEPG reg gen, reg private - for the opposite direc-
tion.

After the transformation pass call fpga pass, where the
functions with FPGA annotations have been identified and
their calls have been marked, we have to introduce the
SET/ EXECUTE instructions. The goal is to allow the
compiler to apply specific optimizations for them, as they
are expensive instructions that consume from hundreds to
thousands of machine cycles. We choose to introduce them
as soon as possible, namely in the medium intermediate
representation (MIR), as these instructions work with reg-
isters. The high intermediate representation (HIR) does
not at that stage take into account the registers of the tar-
get machine. Also, the SET/EXECUTE instructions are
machine-independent and the low intermediate represen-
tation (LIR) is already too close to the target machine.
In the Delft WorkBench compiler, the MIR is SUIFvm

396

main:
// x=5
mrk 2, 21
ldc $vr1.s32 <- 5
mov main.x <- $vr1.s32
// f(x,7)
mrk 2, 22
lda $vr2.p32 <- f
ldc $vr4.s32 <- 7
cal $vr3.s32 <- main.x, $vr4.s32,

($vr2.p32)
//z=f(x,7)
mov main.z <- $vr3.s32
// return 0 - implicit
mrk 2, 23
ldc $vr5.s32 <- 0
ret $vr5.s32
.text_end main

Fig. 7. Original SUIFvm code generated for the C code from
Fig. 6

(SUIF for a virtual machine) and it is generated by the
pass from Machine SUIF do s2m. Due to the power of
the SUIF system that allows passes with similar function-
ality to coexist in the compiler structure and to choose the
best one for a specific architecture in the compiler flow, we
do not modify the do s2m pass. Rather we create a similar
pass do s2m fpga that is identical to the previous one, with
modifications only for the FPGA instructions generation.

The modifications we made are related to the calls of the
functions that have to be mapped in hardware. Another al-
ternative is to operate directly on the body of the function,
namely to remove it and introduce only SET/EXECUTE
and their associated instructions for parameter passing.
However, this alternative has the disadvantage that it insu-
lates the SET/EXECUTE instructions in the function and
it limits some important optimizations, such as moving
these instructions outside the function in order to gain a
better scheduling. As our approach replaces the function
call with the FPGA call instructions, it also has the ad-
vantage that it eliminates the instructions for invoking a
function, such as passing parameters, returning results or
saving registers.

The mechanism to ask the FPGA to execute a specific
task contains the next steps:

� transfer parameters, with two sub-phases:
– move parameters in general-purpose (GP) virtual reg-

isters (if they are not already there), since the only com-
munication between the general processor and the FPGA
is through registers.
– move GP virtual registers to FPGA virtual registers that

will be mapped on the FPGA hard registers.
� SET the FPGA: the associated microcode address has to

main:
// x=5
mrk 2, 21
ldc $vr1.s32 <- 5
mov main.x <- $vr1.s32
// begin FPGA call
// abs_int : XR2 <- XR3, XR7
// z = f(x, 7)
mrk 2, 22
// XR3 <- x
mov $vr2.s32 <- main.x
movgp $vr3.s32($fpgaXR3) <- $vr2.s32
// XR7 <- 7
ldc $vr4.s32 <- 7
movgp $vr5.s32($fpgaXR7) <- $vr4.s32
set (abs_int) xxx...xxx
exec (abs_int) xxx...xxx

$vr6.s32($fpgaXR2) <-
$vr3.s32($fpgaXR3),
$vr5.s32($fpgaXR7)

movpg $vr7.s32 <- $vr6.s32($fpgaXR2)
//end FPGA call
mov main.z <- $vr7.s32
// return 0 - implicit
mrk 2, 23
ldc $vr5.s32 <- 0
ret $vr5.s32
.text_end main

Fig. 8. SUIFvm code extended with SET/EXECUTE instruc-
tions for the C code from Fig. 6

be determined from the FPGA description file.
� EXECUTE the FPGA context: the microcode address is
again obtained from the FPGA description file.

� return the result: if the function type is not void, then the
FPGA register that contains the result has to be sent to the
CP and is therefore stored in a general register.

For the function presented in Fig. 4, and the call pre-
sented in Fig. 6, we present in Fig. 7 the original SUIFvm
code for the main procedure - without taking into account
the pragma call fpga, in order to emphasize the modifica-
tion we made. The generated code for the proper integra-
tion of reconfigurable components is presented in Fig. 8.

A SUIFvm virtual register is marked with the number,
the type and the length, such as $vr7.s32, and one with an
associated specification, for example $vr6.s32($fpgaXR2)
contains an annotation to inform the register allocator to
map it on the corresponding FPGA register (its number is
included in an annotation and it is obtained from the FPGA
description file).

An illustration of the above presented flow is presented
in Fig. 9, where x is a variable stored in memory. In or-
der to send its value to the FPGA, it is first moved in a

397

Memory
Purpose

FPGA

General

Registers Registers
"Exchange"

Ri

Xj

x

parameters flow

results flow

Fig. 9. Data flow to the FPGA

general purpose register (Ri), then it is sent into an ”ex-
change register” Xj that is accessed by the FPGA. In the
reverse direction, one result computed by the FPGA is first
moved into one of the exchange registers and sent to the
core processor via the general purpose register. The de-
scribed mechanism defines a clear interface between CP
and FPGA, which allows easily replacing each of them and
maintaining unmodified the other component. It also pro-
vides the compiler with the possibility of a good control
for both of them.

In order to preserve the program data dependencies for
the following compiler passes, we also introduce sources
and destinations in the EXECUTE instructions. For a gen-
eral approach, we consider all the function parameters as
its sources and if the function type is not void we consider
that the EXECUTE instruction also has one destination. A
more detailed presentation of possible cases is presented
in the next subsection.

C. Particular Cases

Multiple Results
In an usual function call, the function is required to re-

turn more than only one value. As the code that has to
be mapped in hardware, must first be expressed in the C
language, where parameters are sent by values and the
function syntax admits only one return value, we adopt
a solution similar to the one available in the C language.
As passing a pointer to a function allows that function to
modify the outside object, we send as function parameters
pointers to variables that will contain after the function ex-
ecution the return values. Thus, the EXECUTE instruc-
tions have to incorporate these dependencies as well and
mark the pointer parameters used to modify their associ-
ated memory locations. For this purpose, the EXECUTE
instruction wraps these pointer parameters into its destina-
tions. This is possible as SUIF and Machine SUIF support
instructions with multiple destinations. The best approach
- which we will adopt further, is to explicitly specify the
pointer parameters that are used to return the desired val-
ues in the FPGA description file, as those that implement
the FPGA know the correct significations of each parame-
ter. We also assume that if a function uses this modality to
return many results, than its type is void.

#pragma call_fpga add_dif
void f(int a, int b, int *c, int *d){

*c=a+b;
*d=a-b;

}

int main()
{

int z,m,n;
z=5;
f(z, 21, &m, &n);

}

Fig. 10. Function that computes two values

main:
// z=5
mrk 2, 10
ldc $vr1.s32 <- 5
mov main.z <- $vr1.s32
mrk 2, 11
// begin FPGA call
// add_dif: XR2, XR5 <- XR3, XR7, XR2, XR5
// f(z, 21, &m, $n)
mov $vr2.s32 <- main.z
movgp $vr3.s32($fpgaXR3) <- $vr2.s32
ldc $vr4.s32 <- 21
movgp $vr5.s32($fpgaXR7) <- $vr4.s32
lda $vr6.p32 <- main.m
movgp $vr7.s32($fpgaXR2) <- $vr6.s32
lda $vr8.p32 <- main.n
movgp $vr9.s32($fpgaXR5) <- $vr8.s32
set (add_dif) xxx...xxx
// mark the modifications for m and n
exec (add_dif) xxx...xxx

$vr7.s32($fpgaXR2),$vr9.s32($fpgaXR5) <-
$vr3.s32($fpgaXR3), $vr5.s32($fpgaXR7),
$vr7.s32($fpgaXR2),$vr9.s32($fpgaXR5)

//end FPGA call
mrk 2, 12
ldc $vr6.s32 <- 0
ret $vr6.s32
.text_end main

Fig. 11. SUIFvm extended with SET/EXECUTE for the C code
presented in Fig. 10

For an illustration of this case, consider the C program
annotated by the profiler, from Fig. 10. The generated MIR
should be as in Fig. 11.

Pointer Invoked Functions
Another problem we encounter is the situation where

a function is invoked through a pointer to it. We con-
sider that for this case, the SET/EXECUTION instruc-
tions should not replace the classical mechanism for func-
tion call, as a pointer analysis is required and there are
cases when only at the execution time, it is determined if a

398

int (*p)(...);
if(C)

p=f
else

p=g;
(*p)(...)

Fig. 12. Pointer to functions with or without FPGA annotations

pointer is related to a normal function or to a function that
has to be mapped in hardware. Such a case is presented in
Fig. 12, where f is a function that is implemented on the
FPGA, g is a function executed on the CP and having the
same prototype as f, and C is a condition whose value is
determined at the execution time. We cannot determine at
the compilation time if the call of p is directed to f - which
should be replaced by SET/EXECUTE instructions, or to
g - which is a normal call. In consequence, the call of p is
treated in the classical way.

Special attention has to be paid for the situation in which
a function parameter is the result of a function that is also
mapped on the FPGA, as the result may reside in one
FPGA register and the parameter is expected in another
FPGA register. Consider the function presented in Fig. 4
and the call f(f(a,b),c), with the FPGA context description
previously assumed. The first parameter of f has to be in
the FPGA register XR3, while the result of f is put in the
FPGA register XR2. In order to solve the problem, the re-
sult of the inner call of f is moved to a general register and
then moved again to the proper FPGA register.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper we presented the tools and components in-
volved in Delft WorkBench project that aims to support
the design space exploration for reconfigurable computing.
We focused on compiler extensions and we first defined an
interface between the profiler and the compiler. We then
described the compiler modifications based on pragma an-
notations and detailed the IR extension with two instruc-
tions - SET/EXECUTE , that control the reconfigurable
unit. We also proposed and implemented the communica-
tion mechanism between CP and RC unit.

One of the open issues is to allow the mapped C code
to be just a segment of code and not a whole function. To
this purpose, the FPGA description file has to be extended
with information revealing the use of each expected pa-
rameter. Furthermore, the pragma annotation has to in-
clude the mapping between the actual parameters and the
generic parameters, and finally, the mechanism to call the
FPGA also has to be extended in order to save each modi-
fied value at the end.

Finally, additional research is required to complete the
compiler back-end focusing on register allocation and code

optimization issues.

REFERENCES

[1] Vassiliadis, S., Wong, S., Cotofana, S., “The MOLEN ��� -coded
Processor,” Tech. Rep. 1-68340-44(2001)-01, Computer Engineer-
ing Laboratory, TUDelft, Netherlands, 2001.

[2] Sima, M., Cotofana, s., Vassiliadis, s., Eijndhoven, Jos T.J., Vis-
sers, Kees A., “MPEG Macroblock Parsing and Pel Reconstruc-
tion on an FPGA-augmented TriMedia Processor,” Proceedings of
the International Conference on Computer Design (ICCD 2001),
Austin, Texas, September 2001.

[3] Muchnick, S., “ Advanced Compiler Design and Implementation,“
Morgan Kaufmann Publishers, 1997.

[4] Hauser, J.R., Wawrzynek, J., “Garp: a MIPS Processor with Re-
configurable Coprocessor,“ IEEE Symposium on FPGAs for Cus-
tom Computing Machines, NAPA Valley, California, pp.92-100.
1997.

[5] Razdan, R., Smith, M. D., “A High Performance Microarchitecture
with Hardware-Programmable Functional Units,“ 27th Annual In-
ternational Symposium on Microarchitecture, San Jose, California,
pp.172-180, 1994.

[6] Bitter, R.A., Athanas, P.M., “Wormhole Run-time Reconfigura-
tion,“ Proc. 5th International Symposium on Field Programmable
Gate Array, Monterey, California, pp.79-85, 1998.

[7] http://suif.stanford.edu/
[8] http://www.eecs.harvard.edu/hube/research/machsuif.html

399

