
Building Blocks for MPEG Stream Processing
Stephan Wong, Jack Kester, Michiel Konstapel, Ricardo Serra, and Otto Visser

Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology,
Stephan@Dutepp0.ET.TUDelft.NL

Abstract— In the MPEG-1 multimedia standard, no en-
coding scheme is defined, but a generally accepted scheme
includes the following building blocks: discrete cosine
transform, quantization, zig-zag scanning, run-level coding,
variable-length encoding, and motion estimation. In this
paper, we describe the investigation into how such build-
ing blocks can be implemented in reconfigurable hardware,
more specifically field-programmable gate arrays (FPGAs).
The investigation focuses on the area requirements and the
expected speed of such building blocks. Since our inves-
tigation will be applied to increase the performance of a
programmable processor (running an MPEG-1 software ap-
plication) augmented with an FPGA structure, we have se-
lected four known to be time-consuming operations for im-
plementation in FPGA: forward discrete cosine transform,
the quantization, the Huffman encoding, and the sum of ab-
solute differences. All designs were implemented by writ-
ing high-level VHDL code and target two FPGA families
from Altera Corp.: FLEX10K and APEX20K. The synthe-
sis results show that the implementations can be clocked
between36 and 162 MHz and that the area utilization is
small compared to the largest available FPGA chip within
the APEX20K family.

Keywords— field-programmable gate array, forward dis-
crete cosine transform, quantization, Huffman encoding,
sum of absolute differences

I. I NTRODUCTION

In digital video coding, a multitude of compression
techniques are employed in order to reduce the size of
the digital representation of the video data. These tech-
niques exploit redundancies found within the digital repre-
sentation by removing the information that can be recon-
structed (up to a certain degree) from the remaining in-
formation or that cannot be observed by the human eye.
In order to avoid competing (proprietary) industry stan-
dards, several multimedia standards for audiovisual con-
tent (e.g., MPEG-1, MPEG-2, and MPEG-4) were de-
fined that specify the utilization of specific compression
techniques. These techniques are tailored towards the in-
tended application, e.g., television broadcast over satel-
lites or video streaming over the Internet. In this paper,
we discuss several compression techniques specified in the
MPEG-1 standard and then focus on specific operations

that are required to perform these techniques. The mul-
timedia operations we focus on are: forward discrete co-
sine transform, the quantization, the Huffman encoding,
and the sum of absolute differences. These operations
can be implemented in hardware or software or both. In
this paper, we additionally focus on the implementation
of these operations in reconfigurable hardware, like field-
programmable gate arrays (FPGAs). The reasons to utilize
FPGAs are discussed in the following.

Traditionally, the design of embedded multimedia pro-
cessors were very much similar to the design of micro-
controllers. This meant that for each targeted set of mul-
timedia applications, an embedded multimedia proces-
sor needed to be designed in specialized hardware (com-
monly referred to as Application Specific Integrated Cir-
cuits (ASICs)). In the early nineties, we were witness-
ing a shift in the embedded processor design approach fu-
elled by the need for faster time-to-market times. In em-
bedded processor design, this resulted in the utilization
of programmable processor cores augmented with special-
ized hardware units implemented in ASICs. Consequently,
time-critical tasks were implemented in specialized hard-
ware units while other tasks were implemented in software
to be run on the programmable processor core [8]. This
approach allowed a programmable processor core to be re-
used for different sets of applications and only the aug-
mented units need to be (re-)designed for specific applica-
tion areas.

Currently, we are witnessing a new trend in embedded
processor design that is again quickly reshaping the em-
bedded processor design. Instead of implementing the
time-critical tasks in ASICs, these tasks are to be imple-
mented in field-programmable gate arrays (FPGA) struc-
tures or comparative technologies [4], [9], [11], [5]. The
reasons for and the benefits of such an approach include
the following:

• Increased flexibility: The functionality of the embed-
ded processor can be quickly changed without requiring
another roll-out of the embedded processor itself and de-
sign faults can be quickly rectified. It also allows for quick
adaptation of new (possibly unforeseen) developments.

• Sufficient performance: The performance of FPGAs
has increased tremendously and is quickly approaching
that of ASICs [2]. This seems to be mainly due to the faster
adaptation of new technological advancements by FPGAs
than by ASICs.
• Faster design times:Faster design times are achieved
by re-using intellectual property (IP) cores or by slightly
modifying them. More importantly, high-level design lan-
guages (such as VHDL) can be used in the design process
and thereby speeding it up significantly.

The mentioned advantages and enabling FPGA have
even resulted in that programmable processor cores are im-
plemented on the same FPGA structure, e.g., Nios from
Altera [1] and MicroBlaze from Xilinx [3].

In this paper, we investigate the area requirements and
expected speed of implementing four distinct multimedia
operations as four distinct implementations in FPGA hard-
ware, namely forward discrete cosine transform, quanti-
zation, Huffman encoding, and sum of absolute differ-
ences. The utilization of four distinct implementations in-
stead of an integrated solution is derived from the fact that
we intend to augment a single (most likely small) FPGA
structure to a programmable processor core. The imple-
mentations are intended to increase the performance of
an MPEG-1 software application running on the proces-
sor core. Therefore, we opted to perform the hardware
design separately for each multimedia operation. In this
way, each design can be perceived as a single accelerator
that can be used improve the performance of the proces-
sor core. Furthermore, the designs described in this paper
are such that allow them to be synthesized in order to ob-
tain area and performance estimates with little attention
paid to their compatibility. In addition, we have to note
that only small design changes are needed to connect the
four implementations when a complete MPEG-1 solution
is sought after. Finally, we target two FPGA families from
Altera Corp.: FLEX10K and APEX20K.

This paper is organized as follows. In Section II, we de-
scribe in more detail a generally accepted video encoding
scheme of MPEG-1 and introduce the four targeted mul-
timedia operations. In Section III, we discuss the imple-
mentation details of the four multimedia operations. In
Section IV, we present the synthesis results regarding area
and clock speed. In Section V, we conclude this paper with
some concluding remarks.

II. V IDEO ENCODING

The MPEG-1 multimedia standard does not specify a
strict encoding scheme since it would limit its implemen-
tation possibilities. This less stringent requirement al-
lows the industry and the academic world to investigate

a wide variety of encoding schemes with different design
parameters, e.g., performance, speed, cost-effectiveness,
etc.. However, from these investigations it is possible to
deduce a general encoding scheme on which many imple-
mentations are based. The general MPEG-1 video encod-
ing scheme is depicted in Figure 1.

Forward Discrete

Cosine Transform

Quantization

De-quantization

Zig-zag scanning

&

Run-level coding

Variable

Length

Encoding

Inverse Discrete

Cosine Transform

Motion

Estimation

VIDEO IN

BITSTREAM OUT

1

2

Fig. 1. MPEG-1 encoding scheme.

In this scheme, two distinct encoding paths can be ob-
served. The first path runs straight from ‘VIDEO IN’
to ‘BITSTREAM OUT’ and is mainly concerned with
the coding of the video frames as if they were single
pictures. More specifically, only redundant information
found within one single video frame is utilized in order to
achieve compression. Theforward discrete cosine trans-
form (FDCT) utilizes space-to-frequency transformations
to achieve compression, i.e., pel1 values (in the space do-
main and arranged in a2-dimensional (2D) regular array)
denoted byf(x, y) are transformed intoF (µ, ν) in the fre-
quency domain given by the following equation:

F (µ, ν) =
C(µ)

2
× C(ν)

2
×

7∑

y=0

7∑

x=0

f(x, y) · cos[(2x + 1)µπ/16] · cos[(2y + 1)νπ/16]

(1)

whereµ andν are the horizontal and vertical frequency in-
dices, respectively, and the constants,C(µ) andC(ν), are
given by:

C(µ) = 1√
2

if µ = 0
C(µ) = 1 if µ > 0

Without delving into the theoretical background of the
FDCT, we can state that the FDCT transforms the in-
put values (exhibiting redundancy) into a few uncorrelated
transform coefficients (also arranged in a 2D array). The
main characteristic of this transform is that the informa-
tion represented by the (redundant) input values is being

1Pel stands for picture element and represents the smallest color data
unit of a picture or video frame.

mainly compacted into the low-frequency transform coef-
ficients. More specifically, the low-frequency transform
coefficients have high values while high-frequency ones
have low values or are mostly zero. Therefore, by cod-
ing only a smaller number of transform coefficients in-
stead of the whole array of the input values, compression is
achieved. In addition, the remaining transform coefficients
do not need to be represented using full accuracy and thus
enabling the next stage to achieve higher compression. The
quantizationis utilized to reduce the accuracy of the trans-
form coefficient’s representation through division of the
transform coefficients by pre-determined quantization fac-
tors. In most cases, this results in that most of the remain-
ing non-zero transform coefficients become zeroes. The
zig-zag scanningconverts (in a pre-determined manner)
the 2D array of quantized transform coefficients into a 1D
array. The main purpose is to serialize the quantized trans-
form coefficients such that (preferably long) sequences of
zeroes can be identified. Therun-level codingscans the
1D array from beginning till end and produces run-level
pairs in the following manner. First, it is determined how
many zeroes precede a non-zero value and this is called
the run (a zero run is possible). Then, the level which is
the non-zero value terminating the sequence of zeroes (if
any) is noted. When put together, a run-level pair is gener-
ated. In the case, that no non-zero value is present till the
end of the 1D array, a special symbol called end-of-block
(EOB) is generated. In thevariable length encoding, pre-
determined Huffman tables are utilized to assign variable
bit sequences to such run-level pairs (or the EOB) in order
to generate the final bitstream. In these tables, shorted bit
sequences are assigned to frequently occurring run-level
pairs and thereby reducing the average size of the result-
ing bitstream.

The second path in Figure 1 exploits additional infor-
mation from reference frames in order to exploit similar-
ities between these frames and the current to be encoded
frame. The reference frames can be either preceding or
following the current frame. Due to the fact that two tem-
porally close frames exhibit a considerable amount of sim-
ilarities, the encoding of their differences requires signifi-
cantly less storage and thereby achieving compression. As
reference frames, the decoded versions of previously en-
coded frames are used due to the utilization of lossy com-
pression techniques such as quantization. As a result, the
encoded differences are more closely matched with the
decoded frames in the decoder. To this end, theinverse
discrete cosine transformand thede-quantizationare be-
ing utilized. However, a well-known issue that prohibits
a straightforward implementation relates to motion found
in video scenes, i.e., the similarities found between frames

are not always located at the same position. This has led
to the introduction ofmotion estimationwhich attempts to
capture the ’movement’ of a macroblock (a16×16 array of
pels) in the reference frame in relation to the to be encoded
macroblock in the current frame. This is done by search-
ing an area in the reference frame for the ’best’ match ac-
cording to a specific metric. Two widely used metrics are
the mean square error (MSE) and the mean absolute dif-
ference (MAD) of which the latter one is more commonly
used since it is computationally less intensive to calculate.
The MAD is given below:

MAD(x, y, r, s) =

1
256

15∑

i=0

15∑

j=0

|(A(x+i,y+j) −B((x+r)+i,(y+s)+j))| (2)

with 0 ≤ x,y < framesize
with (r, s) being the motion vector
with A(x,y) being a current frame pel at(x, y)
with B(x,y) being a reference frame pel at(x, y)

Since the division by256 can be performed by a sim-
ple shift operation in computer arithmetic, we focus on the
sum of absolute differences(SAD). The relation between
the SAD and the MAD is given below:

MAD(x, y, r, s) =
SAD(x, y, r, s)

256
(3)

III. F OUR MULTIMEDIA OPERATIONSDESIGN

In the previous section, we have highlighted a gener-
ally accepted video encoding scheme for the MPEG-1
multimedia standard. Within this scheme, we can iden-
tify four multimedia operations that are compute-intensive
and therefore are prime targets to be implemented in spe-
cialized hardware. More specifically, we target field-
programmable gate arrays (FPGAs). The four operations
are: forward discrete cosine transform, quantization, sum
of absolute differences, and Huffman encoding. In this
section, we briefly discuss the four multimedia operations
and some specifics of the designs. We have to note that
the designs are distinct and can not be connected to each
other without small design changes. The reason for this
apparent incompatibility is due to the fact that we do not
envision large-scale FGPA structures to be augmented to
programmable processor cores in embedded systems de-
sign. Therefore, we opted to perceive the four designs
as separate accelerators intended to improve the perfor-
mance of an MPEG-1 software application running on a
programmable processor core.

Forward discrete cosine transform (FDCT):The8× 8 2D
FDCT given in Equation 1 can be split into16 1D FDCTs
by first applying the 1D FDCTs over the8 rows and then
over the resulting8 columns (or the other way around).
In order to save area, we have opted to implement the 1D
FDCT described in [6] which utilizes11 multiplications
and29 additions. The input of the FDCT is9 bits and the
output is12 bits. Furthermore, our synchronized design is
completely pipelined and it takes5 clock cycles to generate
the first result.
Quantization:The quantization step in our design has been
combined with the zig-zag scanning. The resulting quan-
tization unit is depicted in Figure 2.

Input

Matrix

Zig-zag

Matrix

Quantization

Matrix

Selector
 Divider

clear

dividend

divisor

divider_ready

output
output_ready

..........

64 input bytes

Fig. 2. Quantization combined with zig-zag scanning.

Figure 2 depicts the internal organization of the quanti-
zation unit. The input matrix stores the input values that
are generated after the FDCT. We have opted to utilize8
bits per input value2 in order to diminish the pin require-
ments by64 · 4 = 256 pins. The zig-zag matrix stores the
order in which the zig-zag scanning must be performed.
The quantization matrix stores the quantization factors that
are utilizes as divisors. The selector unit selects the correct
quantization factor for each input value depending on the
zig-zag scanning order. Subsequently, both the input value
(dividend) and quantization factor (divisor) are forwarded
to the actual divider unit. The output of the quantization
unit is again an 8-bit value. Finally, it takes 12 cycles to
produce a quantized DCT coefficient.
Huffman coding:The Huffman coding design translates
each run-level pair or end-of-block (EOB) symbol to a bit
sequence according to a Huffman table[7] (pre-defined in
the MPEG-1 standard). When an undefined run-level pair
has been encountered, a special escape code must be gen-
erated. The input is6-bit value specifying the run and an
8-bit value specifying the level. The output bit length is

2This is different from the12 bits output generated from the FDCT
design, but as already mentioned all designs are distinct from each
other.

variable, but never exceeds20 bits. Therefore, the out-
put of the Huffman encoding is placed in an20-bits output
buffer accompanied with a masking buffer that specifies
which bit position in the output buffer contains a valid out-
put bit. Finally, the design is pipelined and produces a
result2 clock cycles after the input has been asserted.
Sum of absolute differences (SAD):In our investigation,
we have opted to implemented the SAD design based on
the one described in [10]. As indicated by Equations 2
and 3, the SAD operation is performed on macroblock A
(16×16 array of pels) in the current frame and macroblock
B in the reference frame. First, the absolute difference
must be calculated and then these are all added together
to produce the final result. The innovation described in
[10] lies in the fact that the calculation of the absolute dif-
ference is translated into an addition that can be merged
into the adder tree. The internal organization of the imple-
mented SAD design is depicted in Figure 3.

Invert

A or B

Invert

A or B

Invert

A or B

Adder Tree

Cumulative Adder

.................

A0 B0 A1 B1 B15A15

output
output_ready

Fig. 3. The sum of absolute differences unit.

In Figure 3, a SAD unit is depicted that calculates the
16× 16 SAD operation by iteratively processing the rows.
First, the ‘Invert A or B’-block determines whether to in-
vert input A or input B. Afterwards, the inverted value and
non-inverted value are passed on to the adder tree. Then,
the adder tree calculates the intermediate sum of each row
which. Finally, all the intermediate sums are added by
the cumulative adder one by one as they become available.
The input of the SAD unit consists of32 8-bit values and
the output consists of a16-bit result and the ‘outputready’
bit signalling a valid result. It takes 27 cycles to complete
the first result and since the16 row calculations are per-
formed serially, the subsequent results is produced every
16 cycles.

IV. SYNTHESIS RESULTS

The four designs discussed in the previous section have
been implemented by writing high-level VHDL code.
Then, the functionality of the VHDL code is verified

DCT Quantization Huffman SAD
FLEX10K
max. clock speed 58 MHz 44 Mhz 36 MHz 49 MHz

area 954 LCs 471 LCs 540 LCs 2772 LCs

APEX20K
max. clock speed 106 MHz 135 MHz 52 MHz 162 MHz

area 1000 LCs 470 LCs 485 LCs 2126 LCs

TABLE I
SYNTHESIS RESULTS.

by utilizing the MAX+plus II (Baseline v 10.1) software
package from Altera Corp. Finally, the VHDL code
is synthesized by utilizing the LeonardoSpectrum soft-
ware package from Exemplar Logic Inc. and targets the
FLEX10K and APEX20K FPGA families from Altera
Corp. The synthesis results are presented in Table I. In
this table, we can observe that the APEX20K family2-3
times faster than the FLEX10K family for the same im-
plementation. Furthermore, the results show that the area
utilization (expressed in logic cells (LCs)) are similar in
both families. When a complete and stand-alone MPEG-
1 solution is sought after, i.e., not in conjunction with a
programmable processor core, the four mentioned designs
can be easily connected to each other with minimal design
changes. For example, the bit length of the inputs to the
quantization need to be extended from8 bits to 12 bits.
Considering that the largest chip to date of the ACEX20K
family contains> 51.000 logic cells, several design could
be parallelized in order to increase the performance by ex-
ploiting the additional area.

V. CONCLUSION

In this paper, we described our investigation in imple-
menting specific multimedia operations (found in video
coding) on field-programmable gate arrays (FPGAs). The
investigation focused on the area requirements and ex-
pected speed of such building blocks. Since our investi-
gation is placed in the framework of programmable pro-
cessor cores augmented with FPGA hardware (units), we
have selected four known to be time-consuming multime-
dia operations to be implemented: forward discrete cosine
transform, quantization, Huffman encoding, and sum of
absolute differences. The resulting designs are such that
they are intended to be utilized separately from each other
as they are intended to improve only a specific part of the
software MPEG-1 application. All the designs were im-
plemented by writing high-level VHDL code and synthe-
sized afterwards by targeting two FPGA families from Al-

tera Corp.: FLEX10K and APEX20K. The synthesis re-
sults show that the implementations can be clocked be-
tween36 and162 MHz and that the area utilization is small
compared to the largest available FPGA chip within the
APEX20K family. The results presented in this paper can
be utilized in a cycle-accurate simulator in order to gain
insight into the potential performance increase when com-
pared to a software-only implementation of the MPEG-1
encoding scheme.

REFERENCES

[1] Nios Embedded Processor. http://www.altera.com/products/
devices/excalibur/exc-niosindex.html.

[2] Virtex-II 1.5V FPGA Family: Detailed Functional Description .
http://www.xilinx.com/partinfo/databook.htm.

[3] Xilinx MicroBlaze. http://www.xilinx.com/xlnx/
xil prodcatproduct.jsp?title=microblaze.

[4] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebel-
ing. Architecture Design of Reconfigurable Pipelined Datapaths.
In Proceedings of the 20th Anniversary Conference on Advanced
Research in VLSI, pages 23–40, March 1999.

[5] J. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Re-
configurable Coprocessor. InProceedings of the IEEE Symposium
of Field-Programmable Custom Computing Machines, pages 24–
33, April 1997.

[6] C. Loeffler, A. Ligtenberg, and G. Moschytz. Practical Fast 1-
D DCT Algorithms With 11 Multiplications. InProceedings of
the International Conference on Acoustics, Speech, and Signal
Processing, pages 988–991, 1989.

[7] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall.
MPEG Video Compression Standard. Digital Multimedia Stan-
dard Series. Chapman and Hall, 1996.

[8] S. Rathnam and G. Slavenburg. An Architectural Overview of
the Programmable Multimedia Processor, TM-1. InProceedings
of the COMPCON ’96, pages 319–326, 1996.

[9] R. Razdan and M. Smith. A High-Performance Microarchitecture
with hardware-programmable Functional Units. InProceedings
of the 27th Annual International Symposium on Microarchitec-
ture, pages 172–180, November 1994.

[10] S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek. The
Sum-Absolute-Difference Motion Estimation Accelerator. In
Proceedings of the 24th Euromicro Conference, 2000.

[11] R. Wittig and P. Chow. OneChip: An FPGA Processor with Re-
configurable Logic. InProc. of the IEEE Symposium on FPGAs
for Custom Computing Machines, pages 126–135, April 1996.

