
Synthetic Benchmark Generator for the MOLEN
Processor

Stephan Wong, Guanzhou Luo, and Sorin Cotofana
Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology,
{Stephan,Guanzhou,Sorin}@Dutepp0.ET.TUDelft.NL

Abstract— Most of current embedded processor designs
utilize programmable processor cores augmented with spe-
cialized hardwired units. Recently, we are witnessing a
shift in this design methodology towards the utilization of
reconfigurable hardware (e.g., field-programmable gate ar-
rays (FPGAs)) instead of fixed hardware. In this light, the
MOLEN processor has been proposed that employs recon-
figurable microcode (ρµ-code) to control both the reconfigu-
ration and execution processes of the reconfigurable hard-
ware. The ρµ-code is an extension to the traditional mi-
crocode which includes support for reconfigurable hard-
ware. In this paper, we propose an extension to the gen-
erally accepted hardware/software co-design methodology
that accomplishes the intended augmentation of reconfig-
urable hardware to programmable processors. Additionally,
the utilization of ρµ-code requires on-chip storage for which
the storage size, the organization, and other design parame-
ters must be investigated. To this end, we propose to gener-
ate syntheticρµ-code that only exhibit those characteristics
that are relevant in the mentioned investigation.

Keywords— field-programmable gate array, synthetic
benchmarks, reconfigurable computing, reconfigurable mi-
crocode.

I. I NTRODUCTION

In embedded processor design, we are clearly witness-
ing a shift in design methodology that is increasingly fa-
voring the utilization of programmable processor cores
over application-specific integrated circuits (ASICs). Such
programmable processor cores can be either a general-
purpose processor (GPP) or a programmable digital signal
processor (DSP). This shift has been fuelled by the indus-
try’s need to shorten the lengthy design cycles of embed-
ded processors and to reduce the associated high design
costs. In particular, design cycles of18 months or longer
are rather the rule than exception. Programmable proces-
sor cores have been introduced, because their programma-
bility allows them be utilized in subsequent design cycles
and thereby reducing design time and costs. However, the
general consensus is that such processor cores are unable
to achieve the performance requirements of many (real-

time) applications. In this light, such cores usually have
been complemented with specialized hardware (units) that
increase the performance of the overall system to an ac-
ceptable level. Summarizing, in subsequent design cycles
the processor core can be re-used and only a small number
of specialized units need to be (re-)designed. We have to
note that the effort of the described design methodology
is considerably less than in designing a full-fledged ASIC-
based embedded processor.

Recently, we are witnessing a trend that is imple-
menting the mentioned specialized units in reconfigurable
hardware, e.g., field-programmable gate arrays (FPGAs),
rather than fixed hardware. This approach increases the
embedded processor design flexibility by allowing fast
prototyping. Furthermore, continued technological ad-
vances in FPGA technology will certainly allow reconfig-
urable hardware structures to be utilized for increasingly
more applications. With the purpose of tightly integrating
a reconfigurable hardware structure with a programmable
processor, the MOLEN processor [4] was proposed which
has several advantages over other similar approaches[1],
[3], [6], [2]. To this end, reconfigurable microcode (ρµ-
code) has been introduced that extends the capabilities of
traditional microcode[5] to include support for reconfigu-
ration of FPGA structures.

In this paper, first we introduce the new hard-
ware/software co-design methodology that forms the ba-
sis of the MOLEN approach. In this methodology,ρµ-
code is utilized that controls the reconfiguration and execu-
tion processes of the reconfigurable hardware (unit). The
MOLEN approach can support an infinite number of im-
plementations on the FPGA structure as long as they fit on
the FPGA structure. Consequently, it is illogical to store
all the resultingρµ-codes on-chip. Therefore, it is pro-
posed to include a storage unit (calledρµ-code unit) on-
chip that permanently stores frequently usedρµcodes and
temporarily stores less frequently usedρµ-codes in order
to diminish their loading times. To allow the MOLEN ap-
proach to be taken up by the industry, it is important to de-



termine several design parameters of thisρµ-code unit: its
storage size and organization, and its ’caching’ algorithms.
To this end,ρµ-code is needed that serves as input for a
ρµ-code unit simulation model. The neededρµ-code can
be obtained in two different ways. First, perform numer-
ous hardware designs and derive their correspondingρµ-
code. The realρµ-code generated in this way will result
in a more precise determination of theρµ-code unit’s de-
sign parameters. The main disadvantage of the described
method is that the process is quite lengthy. In addition, we
will show that no actual (functional)ρµ-code is needed to
determine the design parameters. Second, generate syn-
theticρµ-code that exhibits only those characteristics that
are needed in mentionedρµ-code unit’s design parame-
ters investigation. The main advantage is that the char-
acteristics of the syntheticρµ-code can be easily changed
and therefore allowing a much faster design space explo-
ration. Consequently, when actualρµ-code has been gen-
erated and its characteristics has been determined, a much
narrower design space need to be explored in order to de-
termine the required design parameters as the design space
exploration which utilized the syntheticρµ-code can be
used as a starting point.

Subsequently, in this paper we propose a method
to (semi-)automatically generate synthetic (non-real) mi-
crocode with the main purpose of determining the design
parameters of theρµ-unit. First, we establish theρµ-code
characteristics that are needed and then implement a soft-
ware tool that generates theρµ-code accordingly. This
paper is organized as follows. In Section II, we briefly
discuss the organization of the MOLEN processor. In Sec-
tion III, we present the new hardware/software co-design
methodology of the MOLEN approach that utilizes mi-
crocode in the augmentation of reconfigurable hardware
to a general-purpose processor core. In Section IV, we
discuss the requirements that are needed in order to per-
form the ρµ-code unit’s design parameters investigation
and how these are translated into synthetic microcode re-
quirements. In Section V, we present the software imple-
mentation of the microcode generation tool. We conclude
this paper by presenting some concluding remarks in Sec-
tion VI.

II. T HE MOLEN PROCESSOR

In its more general form, the proposed machine organi-
zation, which is augmented with a reconfigurable unit, is
depicted in Figure 1. In this organization, instructions are
fetched from the main memory and are temporarily stored
in the ‘Instruction Fetch’ unit. Subsequently, these instruc-
tions are fetched by the ‘Arbiter’ which partially decodes
them before issuing them to their corresponding execution

units. Instructions that have been implemented in fixed
hardware are issued to the ‘Core Processing Units’, i.e.,
the regular functional units such as ALUs, multipliers, and
dividers. The instructions related to the reconfigurable unit
are issued to it accordingly. More specifically in our case,
they are issued to the reconfigurable microcode unit or
‘ρµ-code unit’. The precise functionality of this unit is ex-
plained in Section III. At this moment, it is only important
to recognize that it provides fixed/permanent and pageable
storage for reconfiguration and execution microcode that
control the reconfiguration and execution processes on the
‘Custom Configured Unit’1 (CCU), respectively. In the
remainder of this paper, we refer to both reconfiguration
and execution microcode asρµ-code (explained in Sec-
tion III). The loading of microcode to the ‘ρµ-code unit’ is
performed via the ‘Arbiter’ which accesses the main mem-
ory through the ‘Data Fetch’ unit.

Fig. 1. General organization of the MOLEN processor.

Similar to other load/store architectures, the proposed
machine organization executes on data that is stored in
the register file and prohibits direct memory data accesses
by instructions other than theload andstore instructions.
However, there is one exception to this rule, the CCU
is also allowed direct memory data access via the ‘Data
Fetch’ unit (represented a dashed two-ended arrow). This
enables the CCU to perform much better when streaming
data accesses are required, e.g., in multimedia processing.
Finally, exchange registers (XREGS) are included in or-
der to provide the input and output interface that is needed
to communicate arguments and results between the imple-
mented function and the remainder of the application code
(see stage4 in Figure 2). When only a small amount of

1Such a unit could be for example implemented by a Field-
Programmable Gate Array (FPGA).



Fig. 2. Extending the hardware/software co-design with microcode concepts.

data needs to be communicated, the register file suffices.
However, by architecturally including the exchange reg-
isters, a more general communication framework2 can be
provided in order to communicate an arbitrary number of
arguments and results.

III. A N EW CO-DESIGN METHODOLOGY

In the past, the augmentation of reconfigurable hardware
with general-purpose processor cores has been done in an
ad-hoc manner. In this section, we propose a more generic
methodology (depicted in Figure 2) that extends the cur-
rently accepted hardware/software co-design methodology
by re-introducing the microcode concept. In this method-
ology, we start by writing the application code intended to
be executed solely on the general-purpose processor core
(stage 1). Using this as a starting point, we continue by
identifying ‘bottleneck’ functions that when are sped up
will most likely result in an overall performance increase
of the whole application. Such functions are then imple-
mented in reconfigurable hardware by first writing high-
level VHDL code and afterwards performing a synthesis
targeting the utilized FPGA structure. We differ from the
more traditional approach in that we generate reconfigu-
ration and execution microcode that control both the re-
configuration (or setting) process and execution process of
the reconfigurable hardware, respectively (stage 2). The
generatedρµ-code is then stored in either the main mem-
ory or on-chip for fast accessing (stage 3). Finally, the
original application code is modified by first introducing
two new instructions, namelyset andexecute. By exe-

2The precise organization and communication mechanisms of the ex-
change registers is subject for future research. Therefore, no details are
provided in this section.

cuting theset instruction, the setting of the FPGA to per-
form the required function is performed. By executing the
execute instruction, the actual execution of the function
on the FPGA is performed. We have to note that both in-
structions do not specify the function(s) to be performed,
instead the function(s) are performed by executing theρµ-
code (untilend op) which is pointed to by theset and
execute instructions. Additionally, an input/output inter-
face is required in order to communicate the argument(s)
and result(s) between the implemented function and the
remaining software modules (stage 4). The innovation of
the MOLEN approach lies in the fact that only two new
instructionsset andexecute are required to support any
implementation of current and future functions. In other
words, no new instructions need to be introduced every
time a new function must be supported. Furthermore, this
approach allows the emulation of any function, either be-
ing a single instruction or a piece of code, to be supported.

As already mentioned, the MOLEN approach utilizes
ρµ-code to control the setting of the CCU (see Figure 1)
to perform a specific function and the execution of that
function on the CCU. The neededρµ-code can be stored
in either the main memory or on-chip close to the CCU in
theρµ-code unit. A simplified view of the internal organi-
zation of theρµ-code unit is depicted in Figure 3. In this
figure, the storage of theρµ-code associated with theset
andexecute instructions are stored separately in the SET
and EXECUTE storage facilities, respectively. A more de-
tailed organization of either storage facilities within theρ-
Control Store is given in Figure 4. The storage is further
divided into a fixed part and a pageable part. The fixed part
contains theρµ-code that is commonly used throughout
the supported range of functions and therefore will benefit



Determine next

module Sequencer

ρCSAR

SET

EXECUTE

fixed

pageable

fixed

pageable

ρ-Control Store

M

I

R

ρCS-α

ρCS-α

from CCU

to CCU

Fig. 3. Internal organization of theρµ-code unit.

mostly when they are permanently stored on-chip. The
pageable part contains theρµ-code that is occasionally
used and therefore only need to be temporarily available
on-chip. Finally, it is important to note that the microin-
structions are loaded into blocks which is similar to the
fact that multiple words are loaded into a line in regular
caches.

Fig. 4. Internal organization of the SET and EXECUTE storage.

The ρµ-code execution is performed as follows. First,
using theρ-Control Store address (ρCS-α), it is deter-
mined which block of microcode must be executed. Then,
microinstructions within such a block are forwarded to
the microinstruction register (MIR). Depending on the mi-
croinstruction executed or results from the CCU, the next
microinstruction to be executed is determined by the se-
quencer. This process ends when anend op microinstruc-
tion is encountered.

In this framework, it is important to investigate several

design parameters of theρµ-code unit, like its organization
and storage size, and its loading and caching mechanisms.
To allow a faster investigation, a simulation model of the
ρµ-code unit is utilized andρµ-code is needed to serve as
input. The most accurate determination will be obtained
when realρµ-code is being utilized in the investigation,
but performing numerous hardware designs in order to ob-
tain the neededρµ-code is a lengthy process. Therefore,
we opted to generate syntheticρµ-code that exhibit the re-
quired characteristics in order to perform the mentioned in-
vestigation. An additional advantage is that when realρµ-
code has been generated and its characteristics determined,
an even faster design space exploration can be performed
since we can limit the design space. The requirements to
perform this investigation are discussed in the next section.

IV. SYNTHETIC MICROCODE GENERATION

In this section, we derive the input parameters of the
synthetic microcode generation tool as follows. First, we
establish what design parameters of theρµ-code unit must
be determined. Then, we derive the characteristics of the
generated synthetic microcode which in turn can be eas-
ily translated into input parameters of the envisioned mi-
crocode generation tool. The design parameters of theρµ-
code unit that must be determined are the following:
• Storage size and organization: It must be determined
what the storage size is of on-chip storage for frequently
used and non-frequently usedρµ-code. More specifically,
we must determine the sizes of the fixed and pageable stor-
ages. Furthermore, we must determine the internal organi-
zation of the on-chip storage for which a possible organi-
zation (utilizing blocks) was suggested in Figure 4.
• Caching mechanisms: Having determined the storage
size and organization of theρµ-code unit, we must de-
termine how this is utilized to permanently or temporar-
ily store theρµ-code. More specifically, we must deter-
mine the loading mechanisms and replacements strategies
of ρµ-code in theρµ-code unit.

Before we continue our discussion, we have to note that
ρµ-code and microcode in general are composed of mod-
ules which in turn contain the microinstructions. Such
modules can be perceived as small (micro-)programs that
can call each other during execution. In the following, we
describe two main characteristics of theρµ-code that will
certainly have an influence on the mentioned design pa-
rameters:
• Mix of modules: This characteristic mostly influences
the storage size and organization of theρµ-code unit.
ρµ-code that contains many frequently used modules are
likely to require a large fixed storage, because storing them
in the pageable storage will most likely result in many re-



START


Generate

module?


STOP


Generate

instruction?


Generate

jump or regular?


Generate

regular


microinstruction


Generate

jump forward or


backward?


Determine

jump step size


Determine

jump step size


Generate

jump


microinstruction


Generate

jump


microinstruction


Generated modules ++


Generated

microinstructions ++


Yes


No


Yes


No


Jump
Regular


Forward
 Backward


Determine

module size


Fig. 5. The microcode generator flowchart.

placements3. Similarly, ρµ-code that contains many non-
frequently used modules require a large pageable storage
since a small pageable storage will again result in many
replacements.
• Frequency and type of module calls: This character-
istic mostly influences the caching scheme of theρµ-code
unit. When the execution of theρµ-code contains a lot of
calls from one module to another, it requires a more intel-
ligent scheme for the loading and replacement ofρµ-code.
Furthermore, it important to determine whether the calls
are to already loaded modules or to new modules.

Having said this, we can determine several input param-
eters of the synthetic microcode generation tool. Regard-
ing the first characteristic, we have to specify: thenum-
ber of modules, therange of module sizes. Depending on
how frequent the modules are called, we can determine
their utilization frequency during execution. Another pa-
rameter that can be specified and that can have an influ-
ence on the storage size of theρµ-code unit is themicroin-
struction width. Regarding the second characteristic, we
have to introduce a distinction between regular microin-
structions and call microinstructions (called jumps). This
is done by specifying thepercentage of regular microin-

3Having many replacements is detrimental to the overall performance
since the loading ofρµ-code into theρµ-code unit takes a considerable
amount of time.

structionsand thepercentage of jump microinstructions.
Furthermore, we specify therange of jump steps, because
small jumps are likely to be within one module and thus
not requiring the execution of another module. This in
turn diminishes the need for loading another module. Fi-
nally, we specify theratio between forward and backward
jumps. Since backward jumps are more likely to call al-
ready loaded modules, this ratio influences the likelihood
that new modules must be loaded (thus replacing already
loaded ones).

V. SOFTWARE IMPLEMENTATION

In this section, we describe the principle behind the soft-
ware implementation of the microcode generation tool. We
have to re-iterate that the tool’s purpose is not to generate
functionalρµ-code since its functional behavior does not
affect the investigation into the design parameters of the
ρµ-code unit. The input/output characteristic of the tools
is depicted in Figure 6.

Input file
 Output file

Synthetic


Microcode

Generator


Parameters
Synthetic


Microcode

Fig. 6. Input/output characteristic of the benchmark generator.



The parameters determined in the previous section serve
as the input to the microcode generator. Based on the given
parameters (presented to the generator as a text-file), syn-
thetic microcode is generated and stored in a text-file for
further processing by, e.g., theρµ-code unit simulator. The
flowchart used to generate theρµ-code is depicted in Fig-
ure 5. In this flowchart, a number of modules is generated
until number of modulesis reached. A module is created
by generating a number of microinstructions that is equal
to the module’s size which is randomly determined based
on therange of module sizes. Depending onpercentage of
regular/jump microinstructions, a similar ratio of regular
and jump microinstructions are generated. For the jump in-
structions, the jump direction and step size are determined
by ratio between forward and backward jumpsandrange
of jump steps, respectively.

After the generation of the syntheticρµ-code, the statis-
tics of the generatedρµ-code is being gathered in order to
reflect its actual characteristics. This is done due to the fact
that a random number generator is used to determine the
variables utilized in the blocks ”Determine module size”,
”Determine jump step size”, ”Generate jump or regular?”,
and ”Generate jump forward and backward”. However,
results have shown that the deviation from the input pa-
rameters is rather small.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we highlighted that in the embedded pro-
cessor design, the utilization of programmable processors
is becoming more commonplace due to the possibility of
re-using the processor core in subsequent design cycles.
Such processor cores are augmented with specialized hard-
ware (units) in order to increase the overall performance.
In the past, such specialized units have been implemented
in fixed hardware, e.g., application-specific integrated cir-
cuits, but we are witnessing a shift towards an implementa-
tion in reconfigurable hardware, e.g., field-programmable
gate arrays (FPGAs). In this light, the MOLEN proces-
sor was introduced which tightly integrated support for
such reconfigurable hardware by utilizing reconfigurable
microcode (ρµ-code). In this paper, we have discussed the
extended hardware/software co-design methodology that
employs theρµ-code. Consequently, the utilization of
ρµ-code requires on-chip storage in order to improve the
loading times ofρµ-code. For this purpose, theρµ-code
unit was introduced that incorporates fixed/permanent and
pageable storage for frequently used and non-frequently
ρµ-code, respectively. In order for the MOLEN processor
to be taken up by the industry, several design parameters
of theρµ-code unit must be determined: organization and
size of the fixed and pageable storages of theρµ-code unit

and caching schemes for the pageable storage. Due to the
fact that realρµ-code is hard to obtain, we opted to gener-
ate syntheticρµ-code that exhibits the required character-
istics in order to investigate the mentioned design param-
eters. An additional benefit is that a wide variety of mi-
crocode can be generated and thus allowing a much faster
design space exploration of theρµ-code unit. An addi-
tional advantage of this approach is that when realρµ-code
is available (after a hardware design) and its characteristics
determined, we can reduce the design space based on the
results of earlier design space exploration utilizing syn-
thetic ρµ-code exhibiting similar characteristics. In this
paper, we have shown what input parameters are needed
for such a tool in order to generateρµ-code that exhibits
the required characteristics. Furthermore, we have shown
a simplified way in how we have achieved this. Future
work includes the development of a simulation tool for
theρµ-code unit that utilizes the generatedρµ-code as de-
scribed in this paper.

REFERENCES

[1] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebel-
ing. Architecture Design of Reconfigurable Pipelined Datapaths.
In Proceedings of the 20th Anniversary Conference on Advanced
Research in VLSI, pages 23–40, March 1999.

[2] J. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Re-
configurable Coprocessor. InProceedings of the IEEE Symposium
of Field-Programmable Custom Computing Machines, pages 24–
33, April 1997.

[3] R. Razdan and M. Smith. A High-Performance Microarchitecture
with hardware-programmable Functional Units. InProceedings
of the 27th Annual International Symposium on Microarchitecture,
pages 172–180, November 1994.

[4] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLENρµ-
coded Processor. InProceedings of the Conference on Field Pro-
grammable Logic 2001 (FPL2001), 2001.

[5] M. V. Wilkes. The Best Way to Design an Automatic Calculat-
ing Machine. InReport of the Manchester University Computer
Inaugural Conference, pages 16–18, July 1951.

[6] R. Wittig and P. Chow. OneChip: An FPGA Processor with Recon-
figurable Logic. InProceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, pages 126–135, April 1996.


