Synthetic Benchmark Generator for the MOLEN
Processor

Stephan Wong, Guanzhou Luo, and Sorin Cotofana
Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology,
{Stephan,Guanzhou,So}i@DuteppO0.ET.TUDelft.NL

Abstract— Most of current embedded processor designs time) applications. In this light, such cores usually have
utilize programmable processor cores augmented with spe- been complemented with specialized hardware (units) that
cialized hardwired units. Recently, we are witnessing a jncrease the performance of the overall system to an ac-
shift in this design methodology towards the utilization of ceptable level. Summarizing, in subsequent design cycles
reconfigurable hardware (e.g., field-programmable gate ar- the processor core can be re:used and only a small number
rays (FPGAS)) instead of fixed hardware. In this light, the P o . . y
MOLEN processor has been proposed that employs recon- of specialized units need to be (re—)desgned. We have to
figurable microcode (pu-code) to control both the reconfigu- note that the effort of the described design methodology

ration and execution processes of the reconfigurable hard- is considerably less than in designing a full-fledged ASIC-
ware. The pu-code is an extension to the traditional mi- based embedded processor.

crocode which includes support for reconfigurable hard-)) o
ware. In this paper, we propose an extension to the gen- Recently, we are witnessing a trend that is imple-

erally accepted hardware/software co-design methodology menting the mentioned specialized units in reconfigurable
that accomplishes the intended augmentation of reconfig- hardware, e.qg., field-programmable gate arrays (FPGAS),
urable hardware to programmable processors. Additionally, rather than fixed hardware. This approach increases the
the utiIization.of pu-code reguires on-chip storage for which empbedded processor design flexibility by allowing fast
the storage size, thg organlzatlo'n, and other design parame- prototyping. Furthermore, continued technological ad-
ters must be investigated. To this end, we propose to gener-
ate synthetic pu-code that only exhibit those characteristics vances in FPGA technology wil cert.glnly allow recon.flg-
that are relevant in the mentioned investigation. urable hardware structures to be utilized for increasingly
more applications. With the purpose of tightly integrating
a reconfigurable hardware structure with a programmable
processor, the MOLEN processor [4] was proposed which
has several advantages over other similar approaches|[1],
[3], [6], [2]. To this end, reconfigurable microcodg(
[. INTRODUCTION code) has been introduced that extends the capabilities of
. . traditional microcode[5] to include support for reconfigu-
In embedded processor design, we are clearly witness-.
: "y . - . ration of FPGA structures.
ing a shift in design methodology that is increasingly fa-
voring the utilization of programmable processor cores In this paper, first we introduce the new hard-
over application-specific integrated circuits (ASICs). Suctvare/software co-design methodology that forms the ba-
programmable processor cores can be either a genesit of the MOLEN approach. In this methodology;-
purpose processor (GPP) or a programmable digital sigradde is utilized that controls the reconfiguration and execu-
processor (DSP). This shift has been fuelled by the induien processes of the reconfigurable hardware (unit). The
try’s need to shorten the lengthy design cycles of embeMOLEN approach can support an infinite number of im-
ded processors and to reduce the associated high degigmentations on the FPGA structure as long as they fit on
costs. In particular, design cycles t§ months or longer the FPGA structure. Consequently, it is illogical to store
are rather the rule than exception. Programmable procedl the resultingpu-codes on-chip. Therefore, it is pro-
sor cores have been introduced, because their programrpased to include a storage unit (callged-code unit) on-
bility allows them be utilized in subsequent design cycleship that permanently stores frequently ugesgodes and
and thereby reducing design time and costs. However, themporarily stores less frequently used-codes in order
general consensus is that such processor cores are unédblidiminish their loading times. To allow the MOLEN ap-
to achieve the performance requirements of many (regdroach to be taken up by the industry, it is important to de-

Keywords— field-programmable gate array, synthetic
benchmarks, reconfigurable computing, reconfigurable mi-
crocode.

termine several design parameters of fhiscode unit: its units. Instructions that have been implemented in fixed
storage size and organization, and its 'caching’ algorithmkardware are issued to the ‘Core Processing Units', i.e.,
To this end,pu-code is needed that serves as input for the regular functional units such as ALUs, multipliers, and
pp-code unit simulation model. The needed-code can dividers. The instructions related to the reconfigurable unit
be obtained in two different ways. First, perform numerare issued to it accordingly. More specifically in our case,
ous hardware designs and derive their corresponging they are issued to the reconfigurable microcode unit or
code. The reapu-code generated in this way will result’ pu-code unit’. The precise functionality of this unit is ex-

in a more precise determination of the-code unit’'s de- plained in Section Ill. At this moment, it is only important
sign parameters. The main disadvantage of the descriltedecognize that it provides fixed/permanent and pageable
method is that the process is quite lengthy. In addition, weorage for reconfiguration and execution microcode that
will show that no actual (functionap)u-code is needed to control the reconfiguration and execution processes on the
determine the design parameters. Second, generate s@ustom Configured Unit’ (CCU), respectively. In the
thetic pu-code that exhibits only those characteristics thaemainder of this paper, we refer to both reconfiguration
are needed in mentionegli-code unit's design parame-and execution microcode ag:-code (explained in Sec-
ters investigation. The main advantage is that the charen IIl). The loading of microcode to the/j.-code unit’ is
acteristics of the synthetigu-code can be easily changedperformed via the ‘Arbiter’ which accesses the main mem-
and therefore allowing a much faster design space explory through the ‘Data Fetch’ unit.

ration. Consequently, when actyal-code has been gen-

erated and its characteristics has been determined, a much Vain M

. . aln iviemor
narrower design space need to be explored in order to de- !
termine the required design parameters as the design space)
exploration which utilized the synthetjgu-code can be . :

. . Instruction Data
used as a starting point. Fetch Fetch
Subsequently, in this paper we propose a method l i A

to (semi-)automatically generate synthetic (non-real) mi- : .
crocode with the main purpose of determining the design Arbiter] Reger
parameters of theu-unit. First, we establish theu-code —
characteristics that are needed and then implement a soft- - \ -

e e
ware tool that generates thgi-code accordingly. This — | ;
paper is organized as follows. In Section II, we briefly [{jecesd| ff Phoeode e ccu i
discuss the organization of the MOLEN processor. In Sec- | R ONEICURABLE UNT :
tion Ill, we present the new hardware/software co-design ""'l """""""" .

methodology of the MOLEN approach that utilizes mi-
crocode in the augmentation of reconfigurable hardware Fig. 1. General organization of the MOLEN processor.
to a general-purpose processor core. In Section IV, we
discuss the requirements that are needed in order to perSimilar to other load/store architectures, the proposed
form the pu-code unit's design parameters investigatiomachine organization executes on data that is stored in
and how these are translated into synthetic microcode tise register file and prohibits direct memory data accesses
guirements. In Section V, we present the software impléy instructions other than thead andstore instructions.
mentation of the microcode generation tool. We concluddowever, there is one exception to this rule, the CCU
this paper by presenting some concluding remarks in Sés-also allowed direct memory data access via the ‘Data
tion VI. Fetch’ unit (represented a dashed two-ended arrow). This
enables the CCU to perform much better when streaming
Il. THE MOLEN PROCESSOR data accesses are required, e.g., in multimedia processing.

In its more general form, the proposed machine orgarfiinally, exchange registers (XREGS) are included in or-
zation, which is augmented with a reconfigurable unit, ider to provide the input and output interface that is needed
depicted in Figure 1. In this organization, instructions ar® communicate arguments and results between the imple-
fetched from the main memory and are temporarily stordgented function and the remainder of the application code
in the ‘Instruction Fetch’ unit. Subsequently, these instrudSee staget in Figure 2). When only a small amount of
tions are fetched by the ‘Arbiter’ which partially decodes i1sych a unit could be for example implemented by a Field-
them before issuing them to their corresponding executi®mogrammable Gate Array (FPGA).

Initial Hardware Microcode Final

Application Code Implementation Initialization Application Code
/ main memory \
f0) :

reconfiguration A

microcode 1

end_op I’

l INPUT INTERFACE
execution =%
f0 VHDL microcode -
description execute
end_op S
¢ \ / possibility 1 OUTPUT INTERFACE
/ on-chip storage \\ possibility 2
reconfiguration USRI
execution file ntg | fed .. execution
! microcode oeable
sequence execution - pag sequence
| microcode - |
. 1 end_op .
I reconfiguration execution |
I microcode microcode | Pageable I
end_op end_op fixed
Stage 1 Stage 2 Stage 3 Stage 4

Fig. 2. Extending the hardware/software co-design with microcode concepts.

data needs to be communicated, the register file sufficesiting theset instruction, the setting of the FPGA to per-
However, by architecturally including the exchange regerm the required function is performed. By executing the
isters, a more general communication framewar&n be execute instruction, the actual execution of the function
provided in order to communicate an arbitrary number afn the FPGA is performed. We have to note that both in-

arguments and results. structions do not specify the function(s) to be performed,
instead the function(s) are performed by executingire
Il. AN Ew CO-DESIGNMETHODOLOGY code (untilend_op) which is pointed to by theset and

In the past, the augmentation of reconfigurable hardwaeeecute instructions. Additionally, an input/output inter-
with general-purpose processor cores has been done infage is required in order to communicate the argument(s)
ad-hoc manner. In this section, we propose a more genegied result(s) between the implemented function and the
methodology (depicted in Figure 2) that extends the curemaining software modules (stage 4). The innovation of
rently accepted hardware/software co-design methodolotiye MOLEN approach lies in the fact that only two new
by re-introducing the microcode concept. In this methodnstructionsset and ezecute are required to support any
ology, we start by writing the application code intended tomplementation of current and future functions. In other
be executed solely on the general-purpose processor col@ds, no new instructions need to be introduced every
(stage 1). Using this as a starting point, we continue dyme a new function must be supported. Furthermore, this
identifying ‘bottleneck’ functions that when are sped u@pproach allows the emulation of any function, either be-
will most likely result in an overall performance increaséng a single instruction or a piece of code, to be supported.
of the whole application. Such functions are then imple- As already mentioned, the MOLEN approach utilizes
mented in reconfigurable hardware by first writing highpu-code to control the setting of the CCU (see Figure 1)
level VHDL code and afterwards performing a synthesito perform a specific function and the execution of that
targeting the utilized FPGA structure. We differ from thefunction on the CCU. The needegi-code can be stored
more traditional approach in that we generate reconfigin either the main memory or on-chip close to the CCU in
ration and execution microcode that control both the rehe pu-code unit. A simplified view of the internal organi-
configuration (or setting) process and execution processz¥tion of thepu-code unit is depicted in Figure 3. In this
the reconfigurable hardware, respectively (stage 2). Thigure, the storage of theu-code associated with thet
generateghu-code is then stored in either the main memandexzecute instructions are stored separately in the SET
ory or on-chip for fast accessing (stage 3). Finally, thand EXECUTE storage facilities, respectively. A more de-
original application code is modified by first introducingtailed organization of either storage facilities within ke
two new instructions, namelyet andexecute. By exe- Control Store is given in Figure 4. The storage is further

*The precise organization and communication mechanisms of the qu-wded into a fixed part and a pageable part. The fixed part

change registers is subject for future research. Therefore, no details §RtaINS thepu-code that is commonly used throughout
provided in this section. the supported range of functions and therefore will benefit

design parameters of the-code unit, like its organization
and storage size, and its loading and caching mechanisms.
To allow a faster investigation, a simulation model of the
pu-code unit is utilized angu-code is needed to serve as
input. The most accurate determination will be obtained
when realpp-code is being utilized in the investigation,
but performing numerous hardware designs in order to ob-
tain the needeg@u-code is a lengthy process. Therefore,
we opted to generate synthetig-code that exhibit the re-
quired characteristics in order to perform the mentioned in-
vestigation. An additional advantage is that when peal
code has been generated and its characteristics determined,
E p-Control Store an even faster.dgsign space exploration can bg performed
-- since we can limit the design space. The requirements to
Fig. 3. Internal organization of theu-code unit. perform this investigation are discussed in the next section.

from CCU

module Sequencer :

pageable

e e e T S

to CCU
EXECUTE

fixed

pageable

_ IV. SYNTHETIC MICROCODE GENERATION
mostly when they are permanently stored on-chip. The

pageable part contains the:-code that is occasionally N this section, we derive the input parameters of the

used and therefore only need to be temporarily availapfynthetic microcode generation tool as follows. First, we

on-chip. Finally, it is important to note that the microin-€stablish what design parameters of gecode unit must

structions are loaded into blocks which is similar to th&€ determined. Then, we derive the characteristics of the

fact that multiple words are loaded into a line in regula@enerated synthetic microcode which in turn can be eas-

caches. ily translated into input parameters of the envisioned mi-
crocode generation tool. The design parameters gifthe

SET or EXECUTE code unit that must be determined are the following:

block block

Tt cton’ ! « Storage size and organization: It must be determined

module 1, winstruction 2 |]

! | what the storage size is of on-chip storage for frequently

ol pirion? used and non-frequently uspg-code. More specifically,

L mcrostucions we must determine the sizes of the fixed and pageable stor-
ages. Furthermore, we must determine the internal organi-
zation of the on-chip storage for which a possible organi-

zation (utilizing blocks) was suggested in Figure 4.

T e amnen? e « Caching mechanisms: Having determined the storage

' : size and organization of theu-code unit, we must de-

_ termine how this is utilized to permanently or temporar-

] | ily store thepu-code. More specifically, we must deter-

! : mine the loading mechanisms and replacements strategies

of pu-code in thepp-code unit.

Before we continue our discussion, we have to note that

Fig. 4. Internal organization of the SET and EXECUTE storage:i-code and microcode in general are composed of mod-

ules which in turn contain the microinstructions. Such
The pu-code execution is performed as follows. Firstmodules can be perceived as small (micro-)programs that
using thep-Control Store addressCS+), it is deter- can call each other during execution. In the following, we
mined which block of microcode must be executed. Thenescribe two main characteristics of the-code that will
microinstructions within such a block are forwarded ta@ertainly have an influence on the mentioned design pa-
the microinstruction register (MIR). Depending on the mirameters:

croinstruction executed or results from the CCU, the next Mix of modules: This characteristic mostly influences

microinstruction to be executed is determined by the sthe storage size and organization of the-code unit.

guencer. This process ends wheread_op microinstruc- pu-code that contains many frequently used modules are
tion is encountered. likely to require a large fixed storage, because storing them
In this framework, it is important to investigate severain the pageable storage will most likely result in many re-

L microinstuctions

\ module 1, instruction i
1| module 1, pinstruction i+1

module j pinstruction b,

L microinstuctions JEEE
‘module j, winstruction 41

module 1, pinstruction Ny M-

L microinstuctions

M [module k, instruction 1
module k, pinstruction 2

module 2, instruction N

fixed pageable

[I Generated modules ++

A

Determine
module size

Generated
microinstructions ++
A

Generate
instruction?

Regular Generate Jump

jump or regular?

Generate
regular Forward

microinstruction

Generate
jump forward or
backward?

Backward

Determine Determine
jump step size jump step size
Generate Generate
jump jump
microinstruction microinstruction

y A A

Fig. 5. The microcode generator flowchart.

placementd Similarly, pu-code that contains many non-structionsand thepercentage of jump microinstructions
frequently used modules require a large pageable stordggrthermore, we specify thange of jump stepdecause
since a small pageable storage will again result in margmall jumps are likely to be within one module and thus
replacements. not requiring the execution of another module. This in
« Frequency and type of module calls: This character- turn diminishes the need for loading another module. Fi-
istic mostly influences the caching scheme of ghecode nally, we specify theatio between forward and backward
unit. When the execution of theu-code contains a lot of jumps Since backward jumps are more likely to call al-
calls from one module to another, it requires a more inteteady loaded modules, this ratio influences the likelihood
ligent scheme for the loading and replacemenfiotode. that new modules must be loaded (thus replacing already
Furthermore, it important to determine whether the callsaded ones).
are to already loaded modules or to new modules.

Having said this, we can determine several input param- V. SOFTWARE IMPLEMENTATION
eters of the synthetic microcode generation tool. Regard-

ing the first characteristic, we have to specify: then-
. , ware implementation of the microcode generation tool. We
ber of modulestherange of module sizePepending on) , .
-.have to re-iterate that the tool's purpose is not to generate

how frequent the modules are called, we can determl?e . . . : .
unctional pu-code since its functional behavior does not

their utilization frequency during execution. Another pa- . T .
rameter that can be specified and that can have an infﬁﬁeCt the investigation into the design parameters of the

ence on the storage size of the-code unit is thenicroin- W—code un?t. 'I_'he Input/output characteristic of the tools
struction width Regarding the second characteristic, we depicted in Figure 6.

have to introduce a distinction between regular microin-
structions and call microinstructions (called jumps). This

is done by specifying theercentage of regular microin- Input file ’—» ;{C’}g";‘é
Generator

3Having many replacements is detrimental to the overall performance

since the loading ofu-code into thepu-code unit takes a considerable o
amount of time. Fig. 6. Input/output characteristic of the benchmark generator.

In this section, we describe the principle behind the soft-

Synthetic
Microcode

Parameters

Output file

The parameters determined in the previous section seraed caching schemes for the pageable storage. Due to the
as the input to the microcode generator. Based on the giviarat that reajp.-code is hard to obtain, we opted to gener-
parameters (presented to the generator as a text-file), sgte synthetipu-code that exhibits the required character-
thetic microcode is generated and stored in a text-file fastics in order to investigate the mentioned design param-
further processing by, e.qg., th@-code unit simulator. The eters. An additional benefit is that a wide variety of mi-
flowchart used to generate thg-code is depicted in Fig- crocode can be generated and thus allowing a much faster
ure 5. In this flowchart, a number of modules is generatatksign space exploration of thg:-code unit. An addi-
until number of moduleis reached. A module is createdtional advantage of this approach is that when ppatode
by generating a number of microinstructions that is equa available (after a hardware design) and its characteristics
to the module’s size which is randomly determined baseatetermined, we can reduce the design space based on the
on therange of module size®epending orpercentage of results of earlier design space exploration utilizing syn-
regular/jump microinstructionsa similar ratio of regular thetic pu-code exhibiting similar characteristics. In this
and jump microinstructions are generated. For the jump ipaper, we have shown what input parameters are needed
structions, the jump direction and step size are determinémt such a tool in order to generapg-code that exhibits
by ratio between forward and backward jumasdrange the required characteristics. Furthermore, we have shown
of jump stepsrespectively. a simplified way in how we have achieved this. Future

After the generation of the synthefg:-code, the statis- work includes the development of a simulation tool for
tics of the generatedu-code is being gathered in order tothe pp-code unit that utilizes the generated-code as de-
reflect its actual characteristics. This is done due to the fagtribed in this paper.
that a random number generator is used to determine the
variables utilized in the blocks "Determine module size”,
"Determine jump step size”, "Generate jump or regular?’l] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebel-
and "Generate jump forward and backward”. However, ing. Architecture Design of Reconfigurable Pipelined Datapaths.

. . In Proceedings of the 20th Anniversary Conference on Advanced
results have shown that the deviation from the input pa- gogearchin VLSpages 23-40, March 1999.

REFERENCES

rameters is rather small. [2] J. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Re-
configurable Coprocessor. Rroceedings of the IEEE Symposium
VI. CONCLUSIONS ANDFUTURE WORK of Field-Programmable Custom Computing Machingages 24—
33, April 1997.

In this paper, we highlighted that in the embedded pr@s) r. Razdan and M. Smith. A High-Performance Microarchitecture
cessor design, the utilization of programmable processors with hardware-programmable Functional Units. Rroceedings
is becoming more commonplace due to the possibility of of the 27th Annual International Symposium on Microarchitecture
e . . pages 172-180, November 1994.
re-using the processor core in subsquent deglgn Cyc'ﬁf's. Vassiliadis, S. Wong, and S. Cotofana. The MOLEM-
Such processor cores are augmented with specialized hard-coged processor. IRroceedings of the Conference on Field Pro-
ware (units) in order to increase the overall performance. grammable Logic 2001 (FPL20013001.
In the past, such specialized units have been implementgt M. V. Wilkes. The Best Way to Design an Automatic Calculat-

i At AL T . ing Machine. InReport of the Manchester University Computer
in fixed hardware, e.g., application-specific integrated cir Inaugural Conferencepages 16-18, July 1951,

cuits, but we are Witnessing a shift towards an implement@i] R. Wittig and P. Chow. OneChip: An FPGA Processor with Recon-
tion in reconfigurable hardware, e.g., field-programmable figurable Logic. InProceedings of the IEEE Symposium on FPGAs
gate arrays (FPGASs). In this light, the MOLEN proces- for Custom Computing Machingsages 126-135, April 1996.

sor was introduced which tightly integrated support for

such reconfigurable hardware by utilizing reconfigurable

microcode pu-code). In this paper, we have discussed the

extended hardware/software co-design methodology that

employs thepu-code. Consequently, the utilization of

pp-code requires on-chip storage in order to improve the

loading times ofpu-code. For this purpose, thg.-code

unit was introduced that incorporates fixed/permanent and

pageable storage for frequently used and non-frequently

pu-code, respectively. In order for the MOLEN processor

to be taken up by the industry, several design parameters

of the pu-code unit must be determined: organization and

size of the fixed and pageable storages ofgfrecode unit

