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Abstract— This paper investigates Y 0
UV -to-R0

G
0
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0

color space conversion on FPGA-augmented TriMedia-32
processor. First, we outline the extension of TriMedia-32 ar-
chitecture consisting of FPGA-based Reconfigurable Func-
tional Units (RFU) and associated generic instructions. Then
we analyse a YUV-RGB (RFU–specific) instruction which
can process four pixels per call, and propose a scheme to im-
plement the YUV-RGB operation on RFU. When mapped on
an ACEX EP1K100 FPGA, the proposed YUV-RGB exhibits
a latency of 10 and a recovery of 2 TriMedia-32@200 MHz
cycles, and occupies 34% of the device. By configuring
the YUV-RGB facility on the RFUs at application load-
time, YUV-to-RGB color space conversion can be computed
on FPGA-augmented TriMedia-32 with a speed-up of3:3�

over the standard TriMedia-32.

Keywords— Reconfigurable computing; color space con-
version; VLIW processors; field-programmable gate arrays.

I. INTRODUCTION

Enhancing a general purpose processor with a reconfig-
urable core is a common issue addressed by computer ar-
chitects [1], [2], [3]. The idea is to exploit both the proces-
sor flexibility to achieve medium performance for a large
class of applications, and FPGA capability to implement
application-specific computations. An instance of such en-
hanced processor is TriMedia/CPU64+FPGA hybrid [4],
which proved promising results with respect to several ap-
plications: Inverse Discrete Cosine Transform [5], Entropy
Decoding [6], andY 0CbCr-to-R0G0B0 Converter [7].

In this paper, we investigate the potential impact on per-
formance yielded by augmenting a TriMedia-32 processor
with a reconfigurable core. TriMedia-32 is a 32-bit 5 is-
sue slot VLIW processor with a media-oriented instruction
set [8], [9]. We first describe the skeleton of an extension
of the TriMedia-32 architecture, which consists of FPGA-
based Reconfigurable Functional Units (RFU) and associ-
ated generic instructions. With such extension, the user is
given the freedom to define and use any computing facility
subject to the FPGA size and TriMedia-32 organization.
Then we address theY 0UV -to-R0G0B0 color space con-

version and demonstrate that significant speed-up can be
achieved on FPGA-augmented TriMedia-32 over standard
TriMedia-32 for such task.

Since theY 0UV -to-R0G0B0 conversion exhibits large
data and instruction-level parallelisms, it can be imple-
mented on TriMedia-32 with high efficiency. Obtaining
improvements for a task having a computational pattern
which TriMedia-32 has been optimised for, is indeed chal-
lenging. The main idea in achieving speed-up is to config-
ure a pipelined YUV-RGB converter on FPGA and to un-
roll the software loop calling the YUV-RGB to reduce the
penalty associated to firing-up and flushing the pipeline. In
particular, we provide configurable-hardware support for
a YUV-RGB operation which can process four pixels per
call. When mapped on an ACEX EP1K100 FPGA, the
computing unit performing the YUV-RGB operation has a
latency of10 and recovery of2 TriMedia@200 MHz cy-
cles, and occupies 34% of the device.

The experimental results indicate that by configuring
the YUV-RGB unit on FPGA at application load-time,
Y 0UV -to-R0G0B0conversion can be computed on FPGA-
augmented TriMedia-323:2� faster over the standard
TriMedia-32. Given the fact that TriMedia-32 is a 5 issue-
slot 32-bit media VLIW processor [8], such an improve-
ment within the target media processing domain indicates
that TriMedia-32 + FPGA hybrid is a promising approach.

Summarizing, the paper contributions are:
� The syntax and the semantics of the YUV-RGB user-
defined operation.
� The YUV-RGB computing unit implementation on an
ACEX EP1K100 FPGA from Altera.
� A high performance YUV-RGB–based color space con-
version implementation on FPGA-augmented TriMedia.

The paper is organized as follows. We present several
issues related toY 0UV -to-R0G0B0color space conversion
in Section II. Section III outlines the architectural exten-
sion of TriMedia-32. The FPGA-based implementation of
a Y 0UV -to-R0G0B0converter which processes four pixels
per call and its associated instructions are discussed in Sec-
tion IV. The experimental framework and the results are
presented in Section V. Section VI concludes the paper.
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II. BACKGROUND

In composite NTSC and PAL video [10], the color dif-
ference signals required to convey color information are
combined into achromasignal by quadrature modulation
using a color subcarrier,fSC . The luminance signal,luma,
andchromaare then summed into a composite signal for
recording or transmission. Summing combines brightness
and color into one signal, at the expense of introducing a
certain degree of mutual interference.

The earliest digital video equipment processed video
signals in composite forms. The composite analog video
signal is sampled with a frequency equal to a multiple
of four of the color subcarrier,4fSC [11]. Since luma
andchromaare subject to cross-contamination, image ma-
nipulation cannot be performed in the composite domain.
Thus, decoding and reencoding, andY 0UV -to-R0G0B0

color space conversion in particular are mandatory.
To make the presentation self-consistent, we will ad-

dress some issues related toY 0UV -to-R0G0B0 color space
conversion.

A. Color space conversion

According to the Trichromatic Theory, it is possible to
match all of the colors in the visible spectrum by appropri-
ate mixing of three primary colors. Which primary colors
are used is not important as long as mixing two of them
does not produce the third. For display systems that emit
light, the Red-Green-Blue (RGB) primary system is used.

A color space is a mathematical representation of a set
of colors. In the sequel, we will present two color spaces:
R0G0B0 andY 0UV .

A.1 R0G0B0 color space

Film, video, and computer-generated imagery all start
with red, green, and blue intensity components. In video
and computer graphics, a nonlinear transfer function is ap-
plied toRGB intensities to giveGamma–Corrected Red,
Green, and Blue (R0G0B0). The gamma-corrected red,
green, blue are defined on a scale from 0 to 1.0, chosen
such that shades of gray are produced whenE0

R
= E0

G
=

E0
B

, whereE0
� denotes an analog gamma–corrected signal.

In digital video, the analog signal is uniformly-
quantized on 8 bits, so that 256 equally spaced quanti-
zation levels are specified. Coding range in computing
has ade factostandard excursion, 0 to 255. Studio video
provides footroom below the black code, and headroom
above the white code; its range is standardized from 16 to
235. However, values less than 16 and greater than 235
are allowed in order to accomodate the transients that re-
sult from filtering.

A.2 Y 0UV color space

Since the human visual system has poor color acu-
ity, R0G0B0 is transformed into luminance-related quantity
called luma (Y 0), and two color difference components,
U , V , as specified by the ITU-R Recommendation BT.470
[10]. Then, color detail can be lowpass filtered without
the viewer noticing. It is worth mentioning thatY 0UV

space is unique to NTSC, PAL: it is not used in compo-
nent video, and is not used in HDTV. However, anY 0UV -
to-R0G0B0 color space conversion is useful when the
analog composite signal is sampled and discretized in or-
der to be processed digitally.

As described in [11], the digital composite signal is rep-
resented on an 8-bit unsigned integer having a range of
64 to 211 for PAL and 60 to 200 for NTSC. Therefore,
in order to preserve accuracy, it is realistic to assume that
filtering and quadrature demodulation are carried out on
16-bit integers. As a consequence, each ofY 0, U , V will
be represented on an 16-bit signed integer.

Several considerations regarding the sampling rate of
the chroma signal with respect toluma are worth to be
provided. Since the entire composite digital waveform is
sampled with a single frequency (4fSC), the color com-
ponentsU and V will have the same resolution of the
luma Y 0 after band-pass filtering and quadrature demodu-
lation. That is, an upsampling procedure which is required
for component digital video decoding, e.g., [12], does not
have to be carried out in front of the properY 0UV -to-
R0G0B0conversion.

A.3 Y 0UV -to-R0G0B0 conversion

If the gamma-corrected RGB data has a range of 0 to
255, as is commonly found in computer systems, the fol-
lowing equations describe theY 0UV -to-R0G0B0 conver-
sion [11]:

8><
>:

R0 = Y 0 + 1:140V

G0
= Y 0

� 0:394U � 0:581V

B0
= Y 0

+ 2:028U

(1)

With connection to the subsequent experiment, we
would like to mention that the mapping defined by
Equation set 1 will benefit from configurable hardware
support.

Before we will present the FPGA–based implementa-
tion of the YUV-RGB computing facility and its associated
user-defined instruction, we will outline the architectural
extension of the TriMedia-32 processor.
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III. A RCHITECTURAL EXTENSION FORTRIMEDIA

TriMedia-32 is a processor which features a rich in-
struction set optimized for media processing. Specifically,
TriMedia-32 is a 5 issue-slot 32-bit VLIW core, launch-
ing a long instruction every clock cycle [8]. Each of the
five operations in a single VLIW instruction can in prin-
ciple read two register arguments and write one register
result. The processor also supports 2-slot operations, or
super-operations [13]. Such a super-operation occupies
two adjacent slots in the VLIW instruction, and maps to
a double-width functional unit. This way, operations with
more than 2 arguments and one result are possible. The
architecture supports subword parallelism: for example,
operations on 8-bit unsigned integer vectors, or on 16-bit
signed integer vectors are possible.

Following the methodology described in [5], [6] for
a TriMedia/CPU64 processor, TriMedia-32 can be aug-
mented with one or more FPGA-based Reconfigurable
Functional Units (RFU). An RFU is embedded into the
TriMedia as any other hardwired functional unit, i.e., it
receives instructions from the instruction decoder, reads
its input arguments from and writes the computed values
back to the register file. Even though only 2-slot opera-
tions are supported by the current TriMedia simulator, we
propose to extend the concept of super-operations and pro-
vide RFUs on which up to 5-slot operations can be exe-
cuted. This extension will be very useful when vectorial
operations are mapped on the configurable hardware.

In order to use an RFU, new instructions are provided:
SET, andEXECUTE. Loading a new configuration into an
RFU is controlled by aSET instruction, whileEXECUTE
(generic) instructions launch the operations performed by
the computing resources configured on the FPGA. With
such architectural extension, the user is given the freedom
to define and use any computing facility subject to the
FPGA size and TriMedia organization. For more details
regarding this issue we refer the reader to bibliography [4].

Several considerations about the latency of an RFU-
configured computing resource are worth to be provided.
Due to layout constraints, the RFU is likely to be located
far away from the Register File (RF) in the floorplan of the
TriMedia-32. The immediate effect is that there will be
large delays in transferring data between the RFU and RF.
Consequently,read andwrite back cycles have explicitely
to be provided. In such circumstances, the latency of an
RFU-based computing resource is composed of 1 cycle for
read, the number of cycles corresponding to the FPGA de-
lay, and 1 cycle forwrite back.

For the subsequent experiment, two instances of the
TriMedia-32+FPGA hybrid are considered:

1. TriMedia @ 200MHz augmented with a single RFU,
which can run at maximum one half of TriMedia clock
frequency, that is, 100 MHz.
2. TriMedia @ 200MHz augmented with two RFUs, each
running at maximum one quarter of TriMedia clock fre-
quency, that is, 50 MHz.

In the sequel, the FPGA–based implementation of a
Y 0UV -to-R0G0B0computing unit, and its associated in-
struction are presented.

IV. YUV-RGB CUSTOM INSTRUCTION AND

COMPUTING UNIT

Since three values (red, green, and blue) are to be com-
puted for each pixel, we propose to provide configurable-
hardware support for a 3-slot YUV-RGB operation which
reads theY 0UV triplet and returns theR0G0B0 triplet.
Subject of the FPGA logic capacity and the number of
FPGA I/O pins, a different number of pixels can be pro-
cessed in parallel. Given the fact that thelumaandchroma
are represented on 16-bit signed integers, and gamma-
corrected red, green, and blue are represented on 8-bit un-
signed integers, at most four pixels can be processed in
parallel. Indeed, theYUV-RGB is a 4-way SIMD oper-
ation which transforms six 16-bit signed integer vectors
(Y 0

1
; U1; V1; Y

0
2
; U2; V2) into three 8-bit unsigned integer

vectors (R0; G0; B0):

YUV-RGB Y 0

1
; U1; V1; Y

0

2
; U2; V2 �! R0; G0; B0

whereY 0
1
; U1; V1; Y

0
2
; U2; V2; R

0; G0; B0 are all 32-bit reg-
isters. This translates to a number of6�2�16+3�4�8 =

288 I/O pins, which is acceptable for most FPGAs in gen-
eral, and ACEX EP1K100 device in particular.

Since the current TriMedia simulator does not support
super-operations on more than 2 slots, our 3-slot YUV-
RGB operation has to be emulated by sequences of 1-
and/or 2-slot operations. Therefore, we define two 2-slot
YUV-RGB instructions: YUV-RGB R, which performs
the proper conversion and returns only thered information,
andYUV-RGB GB, which returns thegreen andblue in-
formation:

YUV-RGB R Y 0

1
; U1; V1; Y

0

2
; U2; V2 �! R0

YUV-RGB GB �! G0; B0

We have to emphasize that this approach is carried out
only for experimental purpose. Fortunately, our choice is
conservative, since it is easier to schedule a single 3-slot
instruction than multiple 1- and/or 2-slot instructions.
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Fig. 1. The YUV-RGB implementation on FPGA

The FPGA–based YUV-RGB implementing the Equa-
tion set 1, is presented in Figure 1. By writing RTL-
level VHDL code, we succeeded to identify a four-stage
pipelined implementation which can run at 100 MHz on
ACEX EP1K100 device. Adding the penalty of the extra
read and write back cycles for an RFU–based operation,
the YUV-RGB has a latency of10 and recovery of2 Tri-
Media@200MHz cycles if an RFU@100MHz is consid-
ered. For an RFU@50MHz, two pipelines stages can be
merged into one, which translates into a YUV-RGB hav-
ing the latency of10 and recovery of4.

V. EXPERIMENTAL RESULTS

For the first extended TriMedia instance, a YUV-RGB
computing unit having the latency of 10 and recovery of 2
cycles is configured on the RFU@100MHz, while a YUV-
RGB computing unit with the latency of 10 and recovery of
4 cycles is configured on each of the two RFUs@50MHz
in the second extended TriMedia instance. That is, a lower
pipeline frequency at the expenses of a double size FPGA
is the trade-off of the second instance.

To performY 0UV -to-R0G0B0 conversion for an image,
calls to YUV-RGB are issued within a software loop. The
scheduled code when the RFU@100MHz is considered is
presented in Figure 2. First, LOAD operations fetch the
pixels inY 0UV format from memory. Then, pairs of YUV-
RGB R + YUV-RGB GB operations are launched to per-
form color space conversion, four pixels per call. Finally,
STORE operations send the results to a display FIFO.

According to Figure 2, 16 pixels can be processed with
the latency of 29 cycles. In order to keep the pipeline
full, a new YUV-RGB R instruction has to be issued every
two cycles (or, every four cycles in the RFU@50MHz–
based instance). Due to the limited memory bandwidth
(only two Load/Store operations can be issued per cy-
cle) this is not possible, andY 0UV -to-R0G0B0conversion
can be performed with a throughput of only 16/20 = 0.8
pixels/cycle. Unfortunately, this figure corresponds to
the ideal case of infinite loop unrolling, which can never
be achieved in practice. For a finite loop unrolling, the
overhead associated to firing-up and flushing the YUV-
RGB pipeline has to be taken into consideration. As a
rule of thumb, the throughput drops toN=(latency=16 +

(N � 1)=ideal throughput), whereN is the number of
times which the loop is unrolled. For example, the ideal
throughput drops to 0.72 pixels/cycle for4� loop un-
rolling, and to 0.55 pixels/cycle for a loop which is fully
rolled. The same judgement can be carried out for the sec-
ond RFU@50MHz–based instance. Since the results are
pretty much the same, we will not go into details.

The testing database for both pure-software and FPGA-
based color space converters consists of a stream of
images, for which theY 0, U , V components are stored in
separate tables in the main memory. The data is organized
as 16-bit signed integer vectors as resulted from filter-
ing and quadrature demodulation. TheY 0UV -to-R0G0B0

conversion is done in an SIMD fashion, by sequentially
processing four triplets ofY 0, U , V values at a time.
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YUV_RGB_GB −> G’2,B’2
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Fig. 2. The scheduling result for a YUV-RGB computing unit having the latency of 10 and recovery of 2
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The linear mapping defined by Equation set 1 is carried
out, and the result is sent to a display FIFO.

The reference for evaluating the performance of the
color space conversion carried out on FPGA-augmented
TriMedia is a pure-software implementation on standard
TriMedia [14]. The reference color space converter is im-
plemented as a loop, where each iteration processes 16 pix-
els. Since this pure-software implementation is beyond the
paper scope, we will not go into further details. However,
we still mention that by running our pure-software color
space converter on a TriMedia-32 cycle accurate simulator,
we determined that an iteration which processes 16 pixels
can be scheduled into 72 cycles, which translates into0:22

pixels/cycle. It is also worth mentioning that4:6 of 5 issue
slots are filled in with operations in the pure-software im-
plementation. This result is indeed a challenging reference
for the TriMedia-32+FPGA hybrid.

Therefore, our experiment includes two approaches:
pure software andFPGA-based. As mentioned, 0.22 pix-
els/cycle are decoded in the pure software approach, while
0.8 pixels/cycle can be decoded in the FPGA-based ap-
proach if the loop is unrolled an infinite number of times.
The configuration of the RFU is carried out at application
load time.

TheY 0UV -to-R0G0B0 performance evaluation has been
carried out considering two FPGA-augmented TriMedia-
32 instances: TriMedia-32 + 1 RFU@100 MHz and
TriMedia-32 + 2 RFUs@50 MHz. A program has been
written in C, and further compiled and scheduled with
TriMedia-32 development tools. To overcome the penalty
associated to firing-up and flushing the pipeline, the loop
calling the YUV-RGB instruction has been manually un-
rolled different numbers of times. The experimental results
reveal speed-ups on extended Trimedia-32 over standard
TriMedia-32 as follows:
� 0.55 / 0.22� 2:5� for no unrolling;
� 0.65 / 0.22� 3:0� for 4� unrolling;
� 0.72 / 0.22� 3:3� for 4� unrolling;
� 0.80 / 0.22� 3:6� for infinite unrolling.

Given the fact that TriMedia-32 is a 5 issue-slot VLIW
processor with 32-bit datapaths and a very rich multimedia
instruction set [8], such an improvement within the target
media processing domain indicates that the TriMedia-32 +
FPGA hybrid is a promising approach with respect to color
space conversion.

VI. CONCLUSIONS AND FUTURE WORK

We have described anY 0UV � to � R0G0B0 converter
on FPGA-augmented TriMedia. For such a task, the per-
formance improvement over a simple TriMedia is approx.
250% in terms of speed. The major lesson learned is that

deep pipelines implemented on the RFU can provide sig-
nificant improvements even for a performant VLIW pro-
cessor within its target media domain.
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