
  

 

Abstract At algorithmic level, the so-called lifting 
scheme represents the fastest implementation of the Discrete 
Wavelet Transform (DWT). In this paper, a hardware 
accelerator for the lifting scheme is described. A lifting-
based DWT unit was implemented in reconfigurable 
hardware, namely the Xilinx VIRTEX II FPGA. The 
hardware module achieves the acceleration using techniques 
as pipelining, data re-usability, parallel operating sub-units 
and some specific features of the Xilinx FPGAs. A VHDL 
model was developed and synthesized with the 
implementation tools of the FPGA vendor. Synthesis results 
prove the feasibility of a 50 MHz FPGA implementation, 
allowing processing rates between 85 and 1087 pictures per 
second for a range of standard picture dimensions. To 
estimate the performance gains from the hardware module, 
we compare these results against a pure software 
implementation of the algorithm from the LIFTPACK 
software package. For picture size of 720 x 560 pixels, 
assuming clock frequency of 50 MHz for the hardware 
module, simulation results indicate a speed-up of over 5 
times versus a pure software realization on a 1 GHz general 
purpose MIPS processor. Moreover, the speed-up grows for 
larger images and filters with higher degrees. The hardware 
area costs are estimated to be 985 Virtex II CLB slices, 669 
Flip-Flops, 22 Block RAM and 8 multiplier blocks for a 
basis structure. The design is generic and scalable, which 
allows better performance when more parallel sub-units are 
implemented. 
 

Keywords— Data compression, DWT, Lifting scheme, 
Reconfigurable unit 
 

I. INTRODUCTION 

The Discrete Wavelet Transform (DWT) has become a 
basic encoding technique for recent data compression 
algorithms. In Wavelet Transform, dilations and 
translations of a mother wavelet are used to perform a 
spatial/frequency analysis on the input data. Varying the 
dilation and translation of the mother wavelet, produces a 
customizable time/frequency analysis of the input signal. 

Compared to traditional DCT-based processing, DWT 
yields higher compression ratios and better visual quality. 
For example, the DCT-based JPEG algorithm yields good 
results for compression ratios up to 10:1. As the 
compression ratio increases further, coarse quantization of 
the DCT coeff icients causes blocking effects in the 
decompressed image. In contrast, for Wavelet Transform 
followed by Embedded Zero Tree encoding algorithm, 
compression ratios of the order of 100:1 have been 
achieved, still yielding reconstructed images at acceptable 
quality. Software implementations of the DWT, however, 
although greatly flexible, appear to be the performance 
bottlenecks in real-time systems. Hardware 
implementations, in contrast, offer high performance but 
poor flexibilit y. A compromise solution of this dilemma is 
the reconfigurable hardware implementation. It allows 
more flexibilit y to be preserved, accompanied by speed-up 
gains from the reconfigurable hardware operation.  

At algorithmic level, the so-called lifting scheme 
describes an eff icient implementation of the Wavelet 
Transform. In the li fting scheme, half of the data samples 
are used to predict the other half. The transform process is 
split i nto three phases, which are iterated until all samples 
are predicted. Applying the inverse transform in the li fting 
scheme is also very easy and, as long as the transform 
coeff icients are not quantized, it will always result in a 
perfect reconstruction of the original picture, regardless of 
the precision of the applied arithmetic. Moreover, it is 
possible to use integer arithmetic without encountering 
problems due to finite precision or rounding. 

This paper proposes a novel hardware design of the 
li fting based Wavelet Transform. The unit is implemented 
in reconfigurable (FPGA) technology and is meant to be 
integrated as an extension to a general-purpose processor 
in a custom-computing platform [2]. To maximize the 
performance of the design, we utili ze different techniques 
such as pipelining, parallel operating modules, data 
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reusability and specific features of the chosen FPGA 
platform (Xilinx Virtex II). The software package Lift 
pack [1] was used for performance evaluation of the 
design. We first optimized the software for integer 
arithmetic and used it as a benchmark. The benchmark 
was then executed using the cycle accurate simulator Sim-
outorder, from the SimpleScalar toolset [3]. Finally, we 
compared the simulated performance of the pure software 
to a custom computing implementation. Synthesis and 
simulation results indicate: 
• trivial reconfigurable area cost of 985 Virtex II CLB 

slices, 669 Flip-Flops, 22 Block RAMS and 8 
multiplier blocks for a basis structure; 

• performance improvement (reconfigurable vs. 
software) of over 5 times for large images;  

• larger pictures and longer (polynomial) filters result in 
even better performance of the reconfigurable design; 

• simulations showed the potential of the design to 
achieve high performance for popular filters used in 
JPEG2000, when they are factorized in Lifting steps 
and implemented in the proposed design. 

The remainder of the discussion is organized as follows. 
Section II gives some background information on the 
DWT and describes the Lifting scheme. Section III 
discusses the hardware implementation issues followed by 
the results of the performance analysis, presented in 
Section IV. Finally, the conclusions are presented in 
Section V. 

II. BACKGROUND 

Wavelets introduce a new mathematical concept to 
decompose a function, say f(t), into sets of other functions 
referred to as wavelet bases: 

∑=
s ss tctf
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To have an efficient compression of function f, i.e., 
fewer (nonzero) coefficients sc ,τ , it is very important to 

choose a suitable set of functions )(, tsτψ . These functions 

can be a set of dilations (scales) and translations of one 
chosen mother wavelet )(tψ  (see Fig. 1), frequently 

referred to as first-generation (classical) wavelets [9].  

    
 

Fig. 1 Translations (left) and dilations (right) of the same 
prototype (mother) wavelet 

This set of functions resembles the basis functions of the 
Fourier Transform and is defined as: 
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Where s is the scaling factor and τ  is the translation 
factor. The wavelet coefficients are calculated as follows 
(forward wavelet transform):  

∫
∞
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The inverse wavelet transform, conversely, uses the 
computed wavelet coefficients and superimposes them in 
order to calculate the original data set. 

Far more flexible are the second-generation wavelets, 
which are not necessarily translations and dilations of the 
same prototype function.  

A. The Discrete Wavelet Transform 

In DWT dilation factors are chosen to be powers of 2, 
therefore the set of dilations and translations of the mother 
wavelet is defined as: 

2
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Here j is the scaling factor and k is the translation 
factor. Forward and inverse transforms are then calculated 
using the following equations: 

∫
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The DWT analyzes the data at different frequencies 
with different (time) resolutions. This principle is called 
Multi Resolution Analysis (MRA) and means that we 
analyze data in different window sizes. When analyzing 



  

with a large window, we notice the global behavior of the 
signal and, conversely, when analyzing with a small 
window, we focus on its local features. Wavelet functions 
can be neatly held finite in both time and frequency 
domains. Therefore they can be used to approximate data 
with discontinuities or spikes or detect the contours of 
objects in images [4]. Multi resolution decomposition of a 
signal into its coarser and finer components is useful for 
data compression, feature extraction and de-noising. 

The DWT can be implemented using different prospects 
of the transform. For example, the wavelet coeff icients 
can be generated using dyadic filter banks, called 
synthesis filters. The input signal is split i nto two signals 
using a lowpass filter h(t) and its orthogonal highpass 
filter g(t). Multiple “scales” are obtained by repeating the 
filtering process on the lowpass branch outputs only. 
Another implementation-oriented prospect of the DWT is 
the Fast Wavelet Transform. The DWT is factorized into a 
product of a few sparse matrices using similarity 
properties. When these factors are multiplied by a vector, 
the order of operations reduces, therefore the transform is 
called “ fast” . At algorithmic level, however, the fastest 
ever known realization of DWT is based on the so-called 
lifting scheme. 

B. The lifting scheme 

One recent, fast implementation of DWT is the Lifting 
scheme [10], which can be used to construct both first and 
second-generation wavelets. The idea behind the Lifting 
scheme is to use half of the data samples to predict the 
other half and repeat this until all the samples are 
predicted. The algorithm consists of three simple steps, 
applied repetitively on the samples: Split phase, Predict 
phase and Update phase, all ill ustrated in Fig. 2.  

 

 Fig. 2: Split, Predict and Update phases in the lifting 
scheme (forward transform) 

Split phase: Assume that the scheme starts at level 0. 
We denote the data set as 0,kλ  where k represents the data 

element and 0 signifies the iteration level 0. In the first 
stage, the data set is split i nto two other sets: the even 
samples 1,kλ− and the odd samples 1,kγ −  (see Fig. 2). This 

is also referred to as the Lazy Wavelet transform because it 
does not de-correlate the data, but just sub-samples the 
signal into even and odd samples. We use negative indices 
according to the convention that the smaller the data set, 
the smaller the index: 

λ-1,k = λ0,2k          (7) 
γ-1,k = λ0,2k+1         (8) 

Predict Phase (dual lifting): The next step is to use the 
even sub-set 1,kλ− to predict the odd sub-set 1,kγ −  using a 

prediction function P( 1,kλ− ). The more correlation 

presented in the original data, the closer will t he predicted 
value be to the original 1,kγ − . Now, the odd set 1,kγ −  will 

be replaced by the difference between itself and its 
predicted value. Thus,  

1,kγ − = λ-1,k − P ( 1,kλ− )       (9) 

Different functions can be used for prediction of odd 
samples. The easiest choice is to predict that an odd 
sample is just equal to its neighboring even sample. This 
prediction method is result to the Haar wavelet. 
Obviously, this is an easy but not realistic choice, as there 
is no reason why the odd samples should be equal to the 
even ones. Alternatively, second or higher degree 
interpolation functions can be used for prediction. 
Depending on the degree of the interpolating function N, 
we can measure failure to predict γ. N is referred to as the 
number of dual vanishing moments and defines the degree 
of the polynomials that can be predicted by the dual 
wavelet. 

Update Phase (primal lifting): In this stage the 
coeff icients 1,kλ−  are li fted with the help of the 

neighboring wavelet coeff icients γ , so that a certain scalar 
quantity Q, e.g. the mean, is preserved.  

Q(λ-1,k) = Q(λ0,k)       (10) 
A new operator U is introduced that ensures the 

preservation of this quantity: 

1,kλ− := 1,kλ− + U( 1,kγ − )      (11) 

 Operator U uses a wavelet coeff icient of the current 

level (γj,k) to update N
~

 even samples of the same level 

(λj,k). N
~

is also known as the number of real vanishing 
moments, not necessary equal to N.  

Inverse Transform: One of the advantages of the 
li fting scheme is that the inverse transform is very trivial. 
The inversion rules are: revert the order of the operations, 
invert the signs in the li fting steps, and replace the split 



  

step by a Merge step: 
1- Update phase  λj,k = λj,k – U(γj,k) 
2- Predict phase  γj,k = γj,k + P(λj,k) 
3- Merge phase: λ j+1,2k = λ j,k ∪ λ j+1,2k+1 = γ j,k  
These three phases are repeatedly applied on the even 

samples, transforming half of the samples each pass 
(level), until all samples are transformed. 

2-D transform: 2-D transform is performed by 
applying the 1-D transform algorithm consecutively on 
the rows and columns of a 2-D signal. Starting from the 
first iteration level, the 1-D forward transform is first 
applied to all the rows, and then to all the columns. 
Subsequently we move to the next iteration level and 
repeat the afore mentioned steps, and so on . 

Advantages of the Lifting Scheme: 
1. Lifting scheme is fast: For long filters, Lifting scheme 

has a complexity of order n/2, compared with a 
complexity of order n for classical wavelet 
implementation.  

2. All operations within a li fting step can be done 
entirely in parallel, while the only sequential part is 
the order of li fting operations. 

3. Lifting can be done in-place, therefore an auxili ary 
memory is not needed. At every summation point the 
new stream replaces the old one. 

4. Lifting allows integer-to-integer transform, while 
keeping a perfect reconstruction of the original data 
set. 

5. Lifting allows adaptive wavelet transforms. The 
analysis of a function can start from the coarsest level, 
followed by data processing at finer levels in the areas 
of interest. 

III . HARDWARE IMPLEMENTATION 

The implementation of the li fting algorithm will be 
explained assuming a signal of length 12 and a 
polynomial filter with numbers of dual and real vanishing 

moments, both equal to 4 (L=12, N=4, N
~

=4). 

A. The Predict module 

All predict phase calculations are ill ustrated in Fig. 3. 
The magnified circle depicts the arithmetic operations 
involved in the calculation of each γ : 

).().().().( 3,6,2,4,1,2,0,,1 ikjikjikjikjj FFFF +++− +++=− λλλλγ  

In other words: 4 multiplications, 4 additions/ subtractions 
and 16 memory accesses (4 times read λ, read li fting 
coeff icients, read γ, and write γ). These operations 

 

Fig. 3: Calculations of the Predict phase 

consume quite many processor cycles when implemented 
sequentially on a general-purpose processor, which 
motivated our ultimate goal to speed up these calculations 
in hardware. In our design we introduce parallel 
processing and data reusabilit y as depicted in Fig. 4. To 
meet the requirement for high memory throughput, we 
break this design problem into four sub-problems and 
devise a solution to each of them: 
1. Accessing N λs concurrently 
2. Accessing N filter coeff icients concurrently 
3. Reading input γ concurrently 
4. Writing back predicted γ concurrently 

Accessing N λλs concurrently: From Fig. 3, it can be 
seen that in the calculations of two consecutive γ s, at least 
three out of four λs are common. This implies that reading 
only one λ from the memory will be suff icient to calculate 
the following γ,, provided that λs from the preceding 
calculations are temporally stored in buffers for reuse. 
Therefore, we implemented a pipeline of N stages for λ 
inputs. When being initialized, the pipeline is fill ed in N 
cycles. After that, N λs are issued to the unit in parallel 
(see Fig. 4) 



  

Fig.  4: The Predict module 

Accessing N filter coefficients concurrently: This can 
be accomplished by using a separate bank of RAM for the 
filter coefficients, as depicted in Fig. 4. 

Reading input γγ concurrently: For the parallel 
processing of the unit, γ inputs have to be read 
simultaneously with λ inputs. This means that two 
different locations of the image storage area have to be 
accessed at the same moment. To solve this design 
problem, we utilize the embedded true dual port RAM 
blocks of the Xilinx Virtex II FPGA chip. These RAM 
blocks feature two separate input/output ports, which can 
be addressed independently from each other. Using these 
internal dual port RAMs for picture data, γ and λ inputs 
can be accessed concurrently (see Fig. 4). 

Writing back predicted γγ concurrently: Reading γ 
and λ inputs simultaneously, occupies both ports of the 
dual port picture RAM. To write the predicted γ back into 
memory within the same system cycle, we designed the 
picture RAM to operate at a frequency two times higher 
than the rest of the design. In this case four memory 
locations per system cycle are addressed. 

B. The update module 

Fig. 5 illustrates the calculations for the update phase. 
In each row, one γ updates 4 λs, which implemented in 
software looks like: 

for n=0 to N
~

 
{ λj-1,n += γi * Li,n  } 

This results in 4 multiplications, 4 
additions/subtractions and 16 memory accesses. To 
synchronize the update with the predict modules, we 
utilize the same design considerations for both of them. 
The same problems, regarding memory throughput, have 
been solved: 

1. Accessing N
~

 λs concurrently 

2. Accessing N
~

 filter coefficients concurrently 
3. Reading input γ concurrently 

4. Writing back N
~

 updated λs concurrently 

Concurrent access to N
~

 filter coefficient is 
implemented similarly to the prediction module. 

 

Fig. 5: Calculations of the Update phase 

Observing Fig. 5, it can be noticed that the output of 
each row is the input of the subsequent row, except for at 
most one output, which has to be written back to the 
memory. It means that if the outputs of each stage are 
made available for the inputs of the following stage, all 
stages lead to at most one value to be written back to the 
memory, and one value to be read from the memory. The 
exception here is the first row, which needs 4 memory 
reads, and the last row that produces 4 outputs to be 
written back, which have to be done in 4 cycles. This 

reduces N
~

memory reads and N
~

 memory writes to only 



  

one read and one write per cycle. Fig. 6 depicts the update 
module. The pipeline is filled from different sources to 
accommodate all combinations illustrated in Fig. 5.  

To increase the calculation accuracy, the stored filter 
data is scaled up. The predict and update modules in Fig. 
4 and Fig.6, include logic for scaling down the result after 
each multiplication (illustrated by triangular symbols). 
The control signal FW/IV switches between summation 
and subtraction, to make the modules perform both 
forward and inverse transform. 

 

Fig. 6: The Update module 

C. Parallel operation of Predict and Update modules 

It was explained how the predict and update modules 
calculate the outputs in one cycle. However, parallel 
operation of both modules leads to 6 memory operations 
per cycle (for predict module, λ and γ inputs and γ output, 
and for update module, λ and γ inputs and λ output). The 
dual port memory is accessed twice per system cycle, 
accommodating a maximum of 4 memory accesses a 
cycle. Therefore, parallel operation of both predict and 
update module, exceeds the memory bandwidth. In the 
forward transform, the three required memory accesses for 
the predict module can be directly accommodated from 

the picture RAM. Also the output of the update module 
can be directly written back to the picture. Further, we 
explain how data are provided to the inputs of the Update 
module. 

Providing data to γγ input of the update module: It 
can be seen in Fig. 2 that the γ input of the update module 
can be fed with the output of the predict module. 
Introducing a First-In-First-Out (FIFO) buffer between the 
output of predict module and the γ input of the update 
module, absorbs the unequal delivery and consumption 
rate of data at the beginning and the end of the predict and 
update phases (see Fig. 7). 
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Fig. 7: Synchronizing FIFO buffers for forward transform 

Providing data to λλ input of the update module: 
Fig. 2 shows that the update phase uses the same λs as the 
predict phase, but at a different time. Consequently, it is 
not possible to fill the λ pipelines of both predict and 
update modules with the output of the picture RAM. 
Placing a FIFO buffer before the λ input of the update 
module is the answer to this timing problem. This buffer, 
in fact, solves the synchronization problems and allows 
the update module to reuse the λs read by the predict 
module (see Fig. 7). In inverse transform the FIFOs 
provide data to the inputs of the predict module. Fig. 8 
illustrates the schematic view of the design. 

D. Hardware resource usage 

As we mentioned earlier, we have synthesized the 
design for the Xilinx Virtex II FPGA technology. Table I 
presents the hardware resource usage of the unit for a test 
picture of 64x32 pixels (8 bits gray-scale) and 4-4 
polynomial filter. Except for the number of RAM blocks, 
the values in Table I also apply for larger picture 
dimensions. 
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Fig. 8: Top level organization of the hardware DWT unit. 

 

TABLE I 
HARDWARE RESOURCE USAGE OF THE DESIGN 

 

Target Device  Xilinx x2v1000 
Clock frequency > 5x107 Hz 
Number of Slices 985 
Total Number 4 input LUTs 1637 
Number of Flip-Flops 669 
Number of Block RAMs 22 
Number of MULT18X18s 8 

IV. PERFORMANCE ANALYSIS 

In this section we explain the performance analysis 
framework and present the result of simulations carried 
out on different images and filters to analyze the 
performance of the module.  

A. Performance analysis benchmark 

 To measure the performance improvement due to the 
introduction of the new functional unit, the execution 
time of a pure software implementation of the Fast 
Lifting DWT algorithm was compared to the execution 
time when using the hardware accelerator. Using 

Liftpack [1] as software implementation and Sim-
outorder of the Simplescalar toolset [3], a benchmark 
was setup to define the software execution time. [7] and 
[8] explain the performance analysis in detail. The 
performance measurement metric is given by: 

meHW exec ti

meSW exec ti
Speedup = ,      (12) 

where SW exec time and HW exec time denote software 
and hardware (execution) times spent to execute the 
benchmark algorithm in software and in hardware 
respectively. Denoting TNEC as the Total Number of 
Execution Cycles, assuming a general purpose processor 
running at 1 GHZ (109Hz) and DWT unit running at 
5x107 Hz (see Table I), we define: 

910
SWTNEC

 timeexecSW =      ,[sec]   (13) 

DTTtimeHW trmeHW exec ti +=   ,[sec]   (14) 

7105×
= HWTNEC

  HW tr time     ,[sec]   (15) 

where HW tr time is the time for the hardware DWT 
transform. DTT denotes data transfer time, which is the 
time for sending data to and from the hardware module. 

 



  

B. Performance analysis of different polynomial filters 

A number of simulations were performed in order to 
compare the performance gains due to hardware 
acceleration for different configurations of picture size 
and filter types. In this section, the performance gain for 
different polynomial filters are compared. Table II 
summarizes the results of the simulations for a constant 
picture size of 352 x 288 and Fig.9 ill ustrates the 
performance gains graphically. The substantial 
performance increase for higher polynomial degrees is 
due to the almost constant hardware execution time, 
while the software execution time increases dramatically 
with the degree of the filters. Once the pipelines of the 
module are fill ed (Fig. 4 and 6), the design generates 
two outputs per clock cycle (one λ and one γ) 
irrespective of the length of the filters. This is one of the 
primary reasons for superior performance of the design.  

TABLE II  
PERFORMANCE ANALYSIS  - DIFFERENT DEGREES OF POLYNOMIAL FILTERS  

 
Filter of polynomial degrees 2-2 4-4 8-8 
SW execution time (µsec) 9831 13395 22061 
HW execution time (µsec) 3210 3370 3670 
Performance  ratio (HW vs. SW) 3.06 3.97 6.01 
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Fig. 9: Performance gain- different degrees of polynomial 
filters 

C. Performance analysis for different picture sizes  

Filli ng the pipelines at the start of each 1-D transform 
(a row or a column) leads to cycles in which no output is 
generated. Furthermore the parallel execution of the 
predict and update modules cannot start immediately at 
the beginning of the 1-D transform, but after number of 
cycles, when both of the inputs become available. The 

relative effect of these non-productive cycles attenuates 
as length of the 1-D signal (picture dimension) 
increases, yielding a better performance gain for larger 
pictures. Table III and Fig. 10 compare the results of 
simulations on different picture sizes with the same 
polynomial filter (4-4). 

TABLE III  
 PERFORMANCE ANALYSIS – DIFFERENT PICTURE SIZES 

 

Picture format 176x144 352x288 720x560 

SW execution time (µsec) 3315 13395 63301 
HW execution time (µsec) 962 3370 12577 
Performance ratio (HW vs. SW) 3.44 3.97 5.03 
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Fig. 10:Performance improvement for different picture 
dimensions 

D. Performance analysis of other filters 

The proposed hardware unit has been based on 
polynomial filters. However, it is possible to implement 
other filters, when they are factorized into Lifting steps, 
with minor modifications in the design. We 
implemented two popular filters, namely Le Gall 5-3 
and Daubechies 9-7 in software, and calculated the 
expected performance gain if our hardware unit would 
have been used. For the hardware accelerated 
performance, the 2-2 polynomial filter was used as 
estimation. The results (Table IV and Fig. 11) show that 
using hardware acceleration based on the proposed 
design, an estimated performance enhancement of factor 
3.69 might be achievable for Le Gall 5-3 filter. This 
estimated factor increases to more than 11 for more 
computationally intensive Daubechies 9-7 filter. This 
analysis shows the great potential of the design for 
practical applications as JPEG2000 and MPEG-4 in 
which these two filters are used. 



  

 

TABLE IV 
PERFORMANCE ANALYSIS  – DIFFERENT FILTER TYPES 

 

Filter type 
Polynomial 
2-2 

LeGall  
5-3  

Daubechies 
9-7 

SW execution time (µsec) 8833 11860 35990 
HW execution time (µsec) 3210 3210 3210 
Estimated performance 
ratio  HW vs. SW  2.75 3.69 11.21 
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Fig. 11: Estimated acceleration for some popular filters 

E. Reconfigurable computing environment 

The proposed hardware unit is intended to operate in a 
custom-computing platform. The idea behind is that a 
reconfigurable hardware co-exists with a core general 
purpose processor [6]. More precisely we target to the 
novel reconfigurable multimedia processors called 
MOLEN [2]. The concept of these processors is to 
extend general-purpose architectures with application 
specific co-processing (DWT in our case) mapped on 
FPGAs and by means of microcode to improve FPGA 
setting and execution. 

V. CONCLUSIONS 

In this paper we introduced a new hardware unit to 
accelerate the Discrete Wavelet Transform. The unit is 
based on the Lifting scheme algorithm. We explained 
how different parts of the algorithm can be executed in 
parallel, if implemented in hardware. Subsequently we 
presented the results of performance analysis of the 
hardware module. We compared these results to a pure 
software implementation and concluded that the 
proposed module could be beneficially used to 

accelerate the performance of the Discrete Wavelet 
Transform in applications using it, li ke JPEG2000 and 
MPEG-4. 
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