Reconfigurable DWT Unit Based on Lifting

Georgi Kuzmanov, Bahman Zafarifar, Prarthana Shresha, Stamatis Vasdli adis
Computer Engineeaing Lab, Delft University of Techndogy,
P.O. Box 5031, 260@5A Delft, The Netherlands
Phore: +31(0)15 278 7364&-mail: G.Kuzmanov@ET. TUDelft.NL

Abstract] At algorithmic level, the so-called lifting
scheme represents the fastest implementation of the Discrete
Wavelet Transform (DWT). In this paper, a hardware
accelerator for the lifting scheme is described. A lifting-
based DWT unit was implemented in reconfigurable
hardware, namely the Xilinx VIRTEX |l FPGA. The
hardwar e module achieves the acceleration using techniques
as pipelining, data re-usability, parallel operating sub-units
and some specific features of the Xilinx FPGAs. A VHDL
model was developed and synthesized with the
implementation tools of the FPGA vendor. Synthesis results
prove the feasibility of a 50 MHz FPGA implementation,
allowing processing rates between 85 and 1087 pictures per
second for a range of standard picture dimensions. To
estimate the performance gains from the hardware module,
we compare these results against a pure software
implementation of the algorithm from the LIFTPACK
software package. For picture size of 720 x 560 pixels,
assuming clock frequency of 50 MHz for the hardware
module, simulation results indicate a speed-up of over 5
times versus a pure softwar e realization on a 1 GHz general
purpose MIPS processor. Moreover, the speed-up grows for
larger images and filters with higher degrees. The hardware
area costs are estimated to be 985 Virtex 11 CLB dlices, 669
Flip-Flops, 22 Block RAM and 8 multiplier blocks for a
basis structure. The design is generic and scalable, which
allows better performance when more parallel sub-unitsare
implemented.

Keywords— Data compression, DWT, Lifting scheme,
Reconfigurable unit

I. INTRODUCTION

The Discrete Wavelet Transform (DWT) has become a
basic encoding technique for recent data compresson
agorithms. In Wavelet Transform, dilations and
trandations of a mother wavelet are used to perform a
spatial/frequency analysis on the inpu data. Varying the
dilation and trandation d the mother wavelet, produces a
customizable time/frequency analysis of the inpu signal.

Compared to traditional DCT-based processng, DWT
yields higher compresson ratios and bketter visual quality.
For example, the DCT-based JPEG agorithm yields good
results for compresson ratios up to 101. As the
compresgon ratio increases further, coarse quantizaion o
the DCT coefficients causes blocking effeds in the
decompressed image. In contrast, for Wavelet Transform
followed by Embedded Zero Tree ecoding algorithm,
compresgon ratios of the order of 1001 have been
achieved, dtill yielding reconstructed images at acceptable
quality. Software implementations of the DWT, however,
athough gedly flexible, appea to be the performance
bottleneks in red-time systems. Hardware
implementations, in contrast, offer high performance but
poar flexibility. A compromise solution d thisdilemmais
the reoconfigurable hardware implementation. It alows
more flexibility to be preserved, acaompanied by spead-up
gains from the recnfigurable hardware operation.

At algorithmic level, the so-cdled lifting scheme
describes an efficient implementation o the Wavelet
Transform. In the lifting scheme, half of the data samples
are used to predict the other half. The transform processis
split i nto three phases, which are iterated urtil all samples
are predicted. Applying the inverse transform in the lifting
scheme is aso very easy and, as long as the transform
coefficients are not quantized, it will aways result in a
perfed recnstruction d the original picture, regardlessof
the predsion d the gplied arithmetic. Moreover, it is
possble to use integer arithmetic withou encourtering
problems due to finite predsion a roundng.

This paper proposes a novel hardware design d the
lifting besed Wavelet Transform. The unit is implemented
in reconfigurable (FPGA) techndogy and is meant to be
integrated as an extension to a general-purpose procesor
in a astom-computing datform [2]. To maximize the
performance of the design, we utili ze diff erent techniques
such as pipelining, parallel operating modues, data

reusability and specific features of the chosen FPGA
platform (Xilinx Virtex Il). The software package Lift
pack [1] was used for performance evauation of the
design. We first optimized the software for integer
arithmetic and used it as a benchmark. The benchmark
was then executed using the cycle accurate simulator Sim-
outorder, from the SimpleScalar toolset [3]. Finally, we
compared the simulated performance of the pure software
to a custom computing implementation. Synthesis and
simulation results indicate:

 trivial reconfigurable area cost of 985 Virtex || CLB
dlices, 669 Flip-Flops, 22 Block RAMS and 8
multiplier blocks for a basis structure;

e performance improvement (reconfigurable vs.
software) of over 5 times for large images,

» larger pictures and longer (polynomial) filters result in
even better performance of the reconfigurable design;

e simulations showed the potentia of the design to
achieve high performance for popular filters used in
JPEG2000, when they are factorized in Lifting steps
and implemented in the proposed design.

The remainder of the discussion is organized as follows.
Section Il gives some background information on the
DWT and describes the Lifting scheme. Section Il
discusses the hardware implementation issues followed by
the results of the performance analysis, presented in
Section V. Finaly, the conclusions are presented in
Section V.

I[l. BACKGROUND

Wavelets introduce a new mathematical concept to
decompose a function, say f(t), into sets of other functions
referred to as wavel et bases:

HOED WA (2)

To have an efficient compression of function f, i.e.,
fewer (nonzero) coefficients C. _, it is very important to

T,S?
choose a suitable set of functions , ((t) . These functions
can be a set of dilations (scales) and translations of one
chosen mother wavelet ((t) (see Fig. 1), frequently
referred to as first-generation (classical) wavelets[9].

Amplitude

Amplitude
_ =

Fig. 1 Trandations (left) and dilations (right) of the same
prototype (mother) wavelet

This set of functions resembles the basis functions of the
Fourier Transform and is defined as:

W, .= %w(t%) @

Where s is the scaling factor and 7 is the translation
factor. The wavelet coefficients are calculated as follows
(forward wavelet transform):

Co = [T O, (D) ©

The inverse wavelet transform, conversely, uses the
computed wavelet coefficients and superimposes them in
order to calculate the original data set.

Far more flexible are the second-generation wavelets,
which are not necessarily trandations and dilations of the
same prototype function.

A. The Discrete Wavelet Transform

In DWT dilation factors are chosen to be powers of 2,
therefore the set of dilations and translations of the mother
wavelet is defined as:

N _
()Uj,k(t) =22P(27't-k) (4)
Here j is the scaling factor and k is the trandation

factor. Forward and inverse transforms are then calculated
using the following equations:

¢ = [T O, d@) 5)

f(t)= zjykcj,kwj,k(t) (6)

The DWT analyzes the data at different frequencies
with different (time) resolutions. This principle is called
Multi Resolution Anaysis (MRA) and means that we
analyze data in different window sizes. When analyzing

with a large window, we natice the global behavior of the
signal and, conversely, when analyzing with a small
window, we focus onits locd feaures. Wavelet functions
can be nedly held finite in bah time axd frequency
domains. Therefore they can be used to approximate data
with dscontinuities or spikes or deted the wntours of
objedsin images [4]. Multi resolution decomposition o a
signd into its coarser and finer comporents is useful for
data compresson, feaure extradion and de-noising.

The DWT can be implemented using dff erent prospeds
of the transform. For example, the wavelet coefficients
can be generated uwsing dyadic filter banks, cdled
synthesis filters. The inpu signal is $lit into two signals
using a lowpass filter h(t) and its orthogoral highpass
filter g(t). Multiple “scdes’ are obtained by repeaing the
filtering process on the lowpass branch ouputs only.
Another implementation-oriented prosped of the DWT is
the Fast Wavelet Transform. The DWT isfadorized into a
product of a few sparse matrices using similarity
properties. When these fadors are multiplied by a vedor,
the order of operations reduces, therefore the transform is
cdled “fast”. At agorithmic level, however, the fastest
ever known redization d DWT is based onthe so-cdled
lifting scheme.

B. Thelifting scheme

One receant, fast implementation d DWT is the Lifting
scheme [10], which can be used to construct both first and
seond-generation wavelets. The idea behind the Lifting
scheme is to use half of the data samples to predict the
other half and repea this until al the samples are
predicted. The dgorithm consists of three simple steps,
applied repetitively on the samples. Split phase, Predict
phase and Update phase, al ill ustrated in Fig. 2.

{(+)
Y |
| j

Split Predict Update

R

Fig. 2: Split, Predict and Update phasesin the lifting
scheme (forward transform)

Split phase: Assume that the scheme starts at level O.
We denate the data set as A, where k represents the data

>
» Vik

ﬂ«ﬁ—],k

element and 0 signifies the iteration level 0. In the first
stage, the data set is Plit into two aher sets: the even

samplesA_, , and the odd samples y_,, (seeFig. 2). This

isalso referred to as the Lazy Wavelet transform becaiuse it
does nat de-correlate the data, but just sub-samples the
signal into even and oddsamples. We use negative indices
acording to the conwvention that the smaller the data set,
the smaller the index:
A1k = Ao2k (7)
Yok = Aozket (8)
Predict Phase (dual lifting): The next step isto use the
even sub-set A_, to predict the oddsub-set y_,, usinga

prediction function P(A_,). The more arrelation

presented in the original data, the doser will the predicted
value be to the origina y_, . Now, the oddset y_, will

be replacal by the difference between itself and its
predicted value. Thus,
Yok =Awk—P (A—l,k) 9)

Different functions can be used for prediction d odd
samples. The eaiest choice is to predict that an odd
sample is just equal to its neighbaing even sample. This
prediction method is result to the Haar wavelet.
Obvioudly, thisis an essy but nat redistic choice, as there
is no reason why the odd samples dhoud be equa to the
even ores. Alternatively, seoond a higher degree
interpolation functions can be used for prediction.
Depending onthe degree of the interpdating function N,
we can measure failure to predict y. N is referred to as the
number of dual vanishing moments and defines the degree
of the poynomials that can be predicted by the dual
wavelet.

Update Phase (primal lifting): In this gage the
coefficients A, ae lifted with the help o the

neighbaing wavelet coefficients y, so that a cetain scdar
quantity Q, e.g. the mean, is preserved.
QA1) = Qo) (10
A new operator U is introduced that ensures the
preservation d this quantity:
/\—1,k = /\—1,k + U(Y_1) (12)
Operator U uses a wavelet coefficient of the airrent
level (yx) to upcdte N even samples of the same level

(AjW). Nis also known as the number of real vanishing
moments, not necessary equal to N.

Inverse Transform: One of the alvantages of the
lifting scheme is that the inverse transform is very trivial.
The inversion rules are: revert the order of the operations,
invert the signs in the lifting steps, and replace the split

step by aMerge step:

1- Update phase }\j’k:)\ij - U(y]k)

2- Predict phase Yik=Yik T P()\]k)

3- Mergephase: Ajiiok = A jx O A jraoke1 = Vi

These three phases are repededly applied onthe even
samples, transforming helf of the samples ead pass
(level), urtil all samples are transformed.

2-D transform: 2-D transform is performed by
applying the 1-D transform algorithm conseautively on
the rows and columns of a 2-D signal. Starting from the
first iteration level, the 1-D forward transform is first
applied to al the rows, and then to al the clumns.
Subsequently we move to the next iteration level and
repea the gore mentioned steps, and so on.

Advantages of the Lifting Scheme:

1. Liftingschemeisfast: For longfilters, Lifting scheme
has a complexity of order n/2, compared with a
complexity of order n for classca wavelet
implementation.

2. All operations within a lifting step can be dore
entirely in peralel, while the only sequential part is
the order of lifting operations.

3. Lifting can be dore in-place therefore an auxili ary
memory is nat neaded. At every summation pant the
new stream replacesthe old ore.

4, Lifting dlows integer-to-integer transform, while
kegoing a perfed reconstruction d the original data
Set.

5. Lifting alows adaptive wavelet transforms. The
analysis of afunction can start from the marsest level,
followed by chta processng at finer levelsin the aeas
of interest.

. HARDWARE IMPLEMENTATION
The implementation o the lifting algorithm will be

explained asuuming a signa of length 12 and a
polynomial filter with numbers of dual and red vanishing

~

moments, both equal to 4 (L=12, N=4, N =4).

A. The Predict module

All predict phase cdculations are ill ustrated in Fig. 3.
The magnified circle depicts the aithmetic operations
involved in the cdculation o ead y:
yj—l_:(/\j,k'Fi,O)+(/\j,k+2'Fi,1)+(/\j,k+4'Fi,2)+(/\j,k+6'Fi,3)
In ather words: 4 multi plicaions, 4 additions/ subtradions
and 16 memory accesses (4 times read A, rea lifting
coefficients, read y, and write y). These operations

oo Aoz 2 Aor Aoe Aos Ags Agr Ao Ao e Ao

20 | Fag—]
Fan Au
Vi3

Fig. 3: Calculations of the Predict phase

consume quite many procesor cycles when implemented
sequentially on a general-purpose processor, which
motivated ou ultimate goal to speed upthese cdculations
in hardware. In ou design we introduwce parallée
processng and chta reusability as depicted in Fig. 4. To
med the requirement for high memory throughpu, we
brea this design problem into four sub-problems and
devise asolutionto ead of them:
1. Accessng N As concurrently
2. Accessng N filter coefficients concurrently
3. Realinginpu y concurrently
4. Writing bad predicted y concurrently

Accessing N As concurrently: From Fig. 3, it can be
see that in the cdculations of two conseautive ys, at least
threeout of four Asare wmmon. Thisimplies that reading
only ore A from the memory will be sufficient to cdculate
the following y,, provided that As from the precealing
cdculations are temporaly stored in bufers for reuse.
Therefore, we implemented a pipeline of N stages for A
inpus. When being initialized, the pipeline is filled in N
cycles. After that, N As are issued to the unit in parallel
(seeFig. 4)

Fig. 4: The Predict module

Accessing N filter coefficients concurrently: This can
be accomplished by using a separate bank of RAM for the
filter coefficients, as depicted in Fig. 4.

Reading input y concurrently: For the paralel
processing of the unit, y inputs have to be read
simultaneously with A inputs. This means that two
different locations of the image storage area have to be
accessed at the same moment. To solve this design
problem, we utilize the embedded true dual port RAM
blocks of the Xilinx Virtex 1| FPGA chip. These RAM
blocks feature two separate input/output ports, which can
be addressed independently from each other. Using these
internal dual port RAMs for picture data, y and A inputs
can be accessed concurrently (see Fig. 4).

Writing back predicted y concurrently: Reading y
and A inputs simultaneously, occupies both ports of the
dual port picture RAM. To write the predicted y back into
memory within the same system cycle, we designed the
picture RAM to operate at a frequency two times higher
than the rest of the design. In this case four memory
locations per system cycle are addressed.

B. The update module

Fig. 5 illustrates the calculations for the update phase.
In each row, one y updates 4 As, which implemented in
software looks like:

forn=0to N
{)\j-l,n +:yi * I—i,n }

This results in 4 multiplications, 4
additions/subtractions and 16 memory accesses. To
synchronize the update with the predict modules, we
utilize the same design considerations for both of them.
The same problems, regarding memory throughput, have
been solved:

1. Accessing N As concurrently

2. Accessing N filter coefficients concurrently
3. Reading input y concurrently

4. Writing back N updated As concurrently
Concurrent access to N filter coefficient is
implemented similarly to the prediction module.

Ao Yao Aez var Aps Ya2 6 Y13 8 Y14

)10 Y15

<]
e

RN
e
]

r,
)
N
M)
x
M)

.
S
] <
<

C
b
<
X

Az Alq 1

Fig. 5: Calculations of the Update phase

Observing Fig. 5, it can be noticed that the output of
each row is the input of the subsequent row, except for at
most one output, which has to be written back to the
memory. It means that if the outputs of each stage are
made available for the inputs of the following stage, all
stages lead to at most one value to be written back to the
memory, and one value to be read from the memory. The
exception here is the first row, which needs 4 memory
reads, and the last row that produces 4 outputs to be
written back, which have to be done in 4 cycles. This

reduces N memory reads and N memory writes to only

one read and one write per cycle. Fig. 6 depicts the update
module. The pipeline is filled from different sources to
accommodate all combinationsillustrated in Fig. 5.

To increase the calculation accuracy, the stored filter
datais scaled up. The predict and update modules in Fig.
4 and Fig.6, include logic for scaling down the result after
each multiplication (illustrated by triangular symbols).
The control signal FW/IV switches between summation
and subtraction, to make the modules perform both
forward and inverse transform.

Update Update Update Update
filter filter filter filter
RAM RAM RAM RAM
0 1 Py

Updaie

coefficient 2

Updaie

b Update
coefficient 0 coefficient 1

N 4
7 W

o AL 0 77 FwWiIv

Fig. 6: The Update module

C. Parallel operation of Predict and Update modules

It was explained how the predict and update modules
calculate the outputs in one cycle. However, parallel
operation of both modules leads to 6 memory operations
per cycle (for predict module, A and yinputs and y output,
and for update module, A and yinputs and A output). The
dual port memory is accessed twice per system cycle,
accommodating a maximum of 4 memory accesses a
cycle. Therefore, parallel operation of both predict and
update module, exceeds the memory bandwidth. In the
forward transform, the three required memory accesses for
the predict module can be directly accommodated from

the picture RAM. Also the output of the update module
can be directly written back to the picture. Further, we
explain how data are provided to the inputs of the Update
module.

Providing data to y input of the update module: It
can be seen in Fig. 2 that the yinput of the update module
can be fed with the output of the predict module.
Introducing a First-1n-First-Out (FIFO) buffer between the
output of predict module and the y input of the update
module, absorbs the unequal delivery and consumption
rate of data at the beginning and the end of the predict and
update phases (see Fig. 7).

A An

FIFO Predict
module

. fﬁ leMn_|

Fig. 7: Synchronizing FIFO buffersfor forward transform

Ain

Update

module from picture RAM

14
FIFO

to picture RAM

Providing data to A input of the update module:
Fig. 2 shows that the update phase uses the same As as the
predict phase, but at a different time. Consequently, it is
not possible to fill the A pipelines of both predict and
update modules with the output of the picture RAM.
Placing a FIFO buffer before the A input of the update
module is the answer to this timing problem. This buffer,
in fact, solves the synchronization problems and alows
the update module to reuse the As read by the predict
module (see Fig.7). In inverse transform the FIFOs
provide data to the inputs of the predict module. Fig. 8
illustrates the schematic view of the design.

D. Hardware resource usage

As we mentioned earlier, we have synthesized the
design for the Xilinx Virtex || FPGA technology. Table |
presents the hardware resource usage of the unit for atest
picture of 64x32 pixels (8 bits gray-scale) and 4-4
polynomial filter. Except for the number of RAM blocks,
the values in Table | aso apply for larger picture
dimensions.

External RAM_data_out 0-15
External RAM_data_out 16-31
External_RAM
data_in0-15 transform2D_done__
datalnl daialri datalri daialnl daialri datalri datalnl daialri external_RAM_address__
external_RAM_write_enable_)
Update Jpdate {¢]Update Jpdate l¢— update filter_wrife|enable o 2 Predict |¢fPredict |¢JPredict |¢JPredict |¢— preditt [filter_write_enable external_RAM_enable__
Flléer] F”Ia e F|I2ter e F|I3ter ¢ update filter_address 'é -g Flger e F”;a e F|I2ter] Flga — predift [fifter_address external_RAM_data_out |
{
] L L le— clock b= ‘g % L L] Le— clock ook
|4 i cl
datgy datg datd datgy g\ O‘ O‘ ™ datg datd datgy datg
out Oout Oout Out Luwuwg Out Oout Out Out addr&AE l— read addressA
[TRETRN T 51 1
’1 ’1 '1 l Picture [*— write_addressA
coeff0 coeffl coeff2 coeff3 A coeff0 coeffl coeff2 coeff3| RAM atalnA [fe— E’ggri‘ila'?fsM
in dataln i A -
dataOut FIFO . o = Ext RAM
Update T T Predict T Dierna_RAM
module FW_IV FW_IV module FW_Iv atalnB_[i [+~ External_RAM
l l l data_in 16-31
dataOut t Yin Yout
A Vin dataln oy
A FIFO pddressB 0 [+~ read_addressB
T [+ write_addressB
S R A A ililili T3 TTTTT o
g go > 3 g Z2eex 2 = 3
g8 g3 2 B S¢ CEEE g 2 g85%%
s & = o5& o & 883
<! Lo g <! 5550
o E = | = s L9
L g g‘ B 3 g g
ook Qo g T gl gl
— clocl =L ge
T 335
—> Rgi"”k Control 28 ol o
—r . =
4 unit ER:
— transform2D_restart 28
— | Fwav
— external_RAM_enable
— external_RAM_data_in

Fig. 8: Top level organization of the hardware DWT unit.

TABLEI
HARDWARE RESOURCE USAGE OF THE DESIGN

Target Device Xilinx x2v1000
Clock frequency > 5x10" Hz
Number of Slices 985

Total Number 4 input LUTs 1637
Number of Flip-Flops 669
Number of Block RAMs 22
Number of MULT18X18s 8

IV. PERFORMANCE ANALYSIS

In this section we explain the performance analysis
framework and present the result of simulations carried
out on different images and filters to analyze the
performance of the module.

A. Performance analysis benchmark

To measure the performance improvement due to the
introduction of the new functiona unit, the execution
time of a pure software implementation of the Fast
Lifting DWT algorithm was compared to the execution
time when using the hardware accelerator. Using

Liftpack [1] as software implementation and Sim-
outorder of the Simplescalar toolset [3], a benchmark
was setup to define the software execution time. [7] and
[8] explain the performance analysis in detail. The
performance measurement metric is given by:

SW exec time
Speedup HW exec time
where SW exec time and HW exec time denote software
and hardware (execution) times spent to execute the
benchmark algorithm in software and in hardware
respectively. Denoting TNEC as the Total Number of
Execution Cycles, assuming a general purpose processor
running at 1 GHZ (10°Hz) and DWT unit running at
5x10’ Hz (see Table 1), we define:

(12)

SW exectime = TNE)SSW [sec] (13)

HW exec time= HW tr time+ DTT ,[SeC] (14)

HWIr time = 1 Ciw [sec] (15)
5x10

where HW tr time is the time for the hardware DWT
transform. DTT denotes data transfer time, which is the
time for sending data to and from the hardware module.

B. Performance analysis of different polynomial filters

A number of simulations were performed in order to
compare the performance gains due to hardware
acceeration for different configurations of picture size
and filter types. In this ®dion, the performance gain for
different pdynomia filters are @mpared. Tablell
summarizes the results of the simulations for a mnstant
picture size of 352 x 288 and Fig.9 illustrates the
performance gains graphicdly. The substantia
performance increase for higher poynomial degrees is
due to the dmost constant hardware exeaution time,
whil e the software exeaution time increases dramaticaly
with the degree of the filters. Once the pipelines of the
modue ae filled (Fig. 4 and 6, the design generates
two ouputs per clock cycle (one A and ore V)
irrespedive of the length of thefilters. Thisis one of the
primary reasons for superior performance of the design.

TABLE Il

PERFORMANCE ANALYSIS - DIFFERENT DEGREES OF POLYNOMIAL FILTERS
Filter of paynomial degrees 2-2 4-4 8-8
SW exeautiontime (useq 9831 13395 | 22061
HW exeautiontime (useQ 3210 3370 3670
Performance ratio (HW vs. SW)| 3.06 3.97 6.01

— 25,000

é __ O software

O 20,000 L exectime

3

7]

© 15,000 — — Ohardware

E exec time

< 10,000 |

(]

IS

*(—*_) 5,000 1] -

1)

NI RAEREN

2 2 4 4 8 8
degree of polynomial

Fig. 9: Performance gain- different degrees of polynomial
filters

C. Performance analysisfor different picture sizes

Filli ng the pipelines at the start of ead 1-D transform
(arow or a wlumn) leals to cyclesin which no odput is
generated. Furthermore the paralel exeaution d the
predict and upate modues cannd start immediately at
the beginning d the 1-D transform, but after number of
cycles, when bah o the inpus bemme available. The

relative dfeda of these nonproductive gycles attenuates
as lengh o the 1-D signa (picture dimension)
increases, yielding a better performance gain for larger
pictures. Table Il and Fig. 10 compare the results of
simulations on dfferent picture sizes with the same
poynomial filter (4-4).

TABLE IlI
PERFORMANCE ANALY SIS— DIFFERENT PICTURE SIZES

Picture format 176x144 | 352x288 | 720x560
SW exeadtiontime (useg 3315 13395 63301
HW exeautiontime (puseq 962 3370 12577
Performanceratio (HW vs. SW) | 3.44 3.97 5.03

5 70,000 O software

@ 0,000 —] exec. time

o) Ohardware

g 50,000 4 exec. time

~ 40,000

(0]

E 30,000 —

<

9 20,000

5

$ 10,000 | | _|

x

o 0 T T 1

176x144 352x288 720x560
picture dimensions

Fig. 10: Performance improvement for different picture
dimensions

D. Performance analysis of other filters

The proposed hardware unit has been based on
polynomial filters. However, it is possble to implement
other filters, when they are fadorized into Lifting steps,
with minor modificaions in the design. We
implemented two popuar filters, namely Le Gall 5-3
and Daubedhies 9-7 in software, and cdculated the
expeded performance gain if our hardware unit would
have been uwsed. For the hardware accéerated
performance, the 2-2 pdynomia filter was used as
estimation. The results (Table IV and Fig. 11) show that
using herdware accéeration lbased on the proposed
design, an estimated performance enhancement of facor
3.69 might be adievable for Le Gall 5-3 filter. This
estimated fador increases to more than 11 for more
computationally intensive Daubechies 9-7 filter. This
anaysis fows the grea potential of the design for
pradicd applicaions as JPEG2000 and MPEG-4 in
which these two filters are used.

TABLE IV
PERFORMANCE ANALYSIS — DIFFERENT FILTER TYPES
Polynomial | LeGall Daubechies
Filter type 2-2 5-3 9-7
SW exeautiontime (useg 8833 11860 35990
HW exeautiontime (useQ 3210 3210 3210
Estimated performance
ratio HW vs. SW 2.75 3.69 11.21
40,000
_ Osoftware

3 35,000 exec time

@ 30,000

g 25,000 Ohardware

g 20,000 exec time

5 15,000

2 10,000 []

® 5,000 f~|—

0]]]

polynomial: LeGall 5-3 Dubechies 9
2-2 -7

filter types

Fig. 11: Estimated acceleration for some popular filters

E. Reconfigurable computing environment

The propased hardware unit isintended to operatein a
custom-computing datform. The idea behind is that a
reconfigurable hardware @-exists with a re genera
purpose processor [6]. More predsely we target to the
novel reoconfigurable multimedia processors cdled
MOLEN [2]. The oncept of these processors is to
extend general-purpose achitedures with applicaion
spedfic co-procesing (DWT in ou case) mapped on
FPGAs and by means of microcode to improve FPGA
setting and exeaution.

V. CONCLUSIONS

In this paper we introduced a new hardware unit to
acceerate the Discrete Wavelet Transform. The unit is
based on the Lifting scheme dgorithm. We explained
how different parts of the dgorithm can be exeauted in
parallel, if implemented in hardware. Subsequently we
presented the results of performance aalysis of the
hardware modue. We compared these results to a pure
software implementation and concluded that the
propcsed modude wuld be beneficialy used to

acceerate the performance of the Discrete Wavelet
Transform in applicaions using it, like JPEG2000 and
MPEG-4.

VI. ACKNOWLEDGMENTS

This reseach has been suppated by PROGRESS the
embedded systems reseach program of the Dutch
organization for scientific reseach NWO, the Dutch
Ministry of Econamic Affairs, and the Tedndogy
Foundiation STW (projed AES.5021).

REFERENCES

[1] G. Fernandez, S. Periaswamy, and W. Sweldens,
LIFTPACK: A software pacage for wavelet transforms
using lifting. Wavelet Applications in Sgnal and Image
Processing 1V, pages 396408 Proc. SHE 2825 1996
http://www.cse.sc.edw~fernande/li ftpadk

[2] SVassliadis, S. Wong, and S. Cotofana. The MOLEN
pu-coded processor. In 11th International Conference on
Field Programmable Logic and Applications (FPL), 2001

[3] DougBurger, ToddM. Austin. The SimpleScdar Toadl
Set, Version 20. Technicd Report CS-TR-19971342
University of Wisconsin-Madison, 1997.
http://www.simplescdar.com

[4] W. Presset al., Numericd redpes in Fortran, Cambridge
university press New York, 1992

[5] Geeat Uytterhoven. Wavelets. software and applications,
PhD thesis, April 1999 Cathdlic University of Leuven.

[6] Stephan Wong Sorin Cotofana, and Stamatis Vassli adis.
Coarse Rewnfigurable Multimedia Unit Extension,
Proceedings of the 9th Euromicro Workshop on Parallel
and Distributed Processing PDP 2001

[7] B.Zafarifar. Micro-codable discrete wavelet transform,
M.Sc. thesis, Delft University of Techndogy, 1-6834328
(2002-03

[8] P. Shrestha. MIPS augmented with Wavelet Transform,
Performance Analysis, M.Sc. Thesis, Delft University of
Tedhndogy, 1-6834028(2002-02

[9] C. M. Bridawn. Clasdficaion d norexpansive
symmetric extension transforms for multirate filter banks.
Applied and Comp. Harmonic Analysis, 3:337-357, 1996

[10] W. Sweldens. The lifting scheme: a astom-design
construction o biorthogoral wavelets. Applied and
Comp. Harmonic Analysis, 3(2):186-200, 1996

[11] XILINX. Virtex-1l Platform FPGA Handbook December
2000

