

Abstract At algorithmic level, the so-called lifting
scheme represents the fastest implementation of the Discrete
Wavelet Transform (DWT). In this paper, a hardware
accelerator for the lifting scheme is described. A lifting-
based DWT unit was implemented in reconfigurable
hardware, namely the Xilinx VIRTEX II FPGA. The
hardware module achieves the acceleration using techniques
as pipelining, data re-usability, parallel operating sub-units
and some specific features of the Xilinx FPGAs. A VHDL
model was developed and synthesized with the
implementation tools of the FPGA vendor. Synthesis results
prove the feasibility of a 50 MHz FPGA implementation,
allowing processing rates between 85 and 1087 pictures per
second for a range of standard picture dimensions. To
estimate the performance gains from the hardware module,
we compare these results against a pure software
implementation of the algorithm from the LIFTPACK
software package. For picture size of 720 x 560 pixels,
assuming clock frequency of 50 MHz for the hardware
module, simulation results indicate a speed-up of over 5
times versus a pure software realization on a 1 GHz general
purpose MIPS processor. Moreover, the speed-up grows for
larger images and filters with higher degrees. The hardware
area costs are estimated to be 985 Virtex II CLB slices, 669
Flip-Flops, 22 Block RAM and 8 multiplier blocks for a
basis structure. The design is generic and scalable, which
allows better performance when more parallel sub-units are
implemented.

Keywords— Data compression, DWT, Lifting scheme,
Reconfigurable unit

I. INTRODUCTION

The Discrete Wavelet Transform (DWT) has become a
basic encoding technique for recent data compression
algorithms. In Wavelet Transform, dilations and
translations of a mother wavelet are used to perform a
spatial/frequency analysis on the input data. Varying the
dilation and translation of the mother wavelet, produces a
customizable time/frequency analysis of the input signal.

Compared to traditional DCT-based processing, DWT
yields higher compression ratios and better visual quality.
For example, the DCT-based JPEG algorithm yields good
results for compression ratios up to 10:1. As the
compression ratio increases further, coarse quantization of
the DCT coeff icients causes blocking effects in the
decompressed image. In contrast, for Wavelet Transform
followed by Embedded Zero Tree encoding algorithm,
compression ratios of the order of 100:1 have been
achieved, still yielding reconstructed images at acceptable
quality. Software implementations of the DWT, however,
although greatly flexible, appear to be the performance
bottlenecks in real-time systems. Hardware
implementations, in contrast, offer high performance but
poor flexibilit y. A compromise solution of this dilemma is
the reconfigurable hardware implementation. It allows
more flexibilit y to be preserved, accompanied by speed-up
gains from the reconfigurable hardware operation.

At algorithmic level, the so-called lifting scheme
describes an eff icient implementation of the Wavelet
Transform. In the li fting scheme, half of the data samples
are used to predict the other half. The transform process is
split i nto three phases, which are iterated until all samples
are predicted. Applying the inverse transform in the li fting
scheme is also very easy and, as long as the transform
coeff icients are not quantized, it will always result in a
perfect reconstruction of the original picture, regardless of
the precision of the applied arithmetic. Moreover, it is
possible to use integer arithmetic without encountering
problems due to finite precision or rounding.

This paper proposes a novel hardware design of the
li fting based Wavelet Transform. The unit is implemented
in reconfigurable (FPGA) technology and is meant to be
integrated as an extension to a general-purpose processor
in a custom-computing platform [2]. To maximize the
performance of the design, we utili ze different techniques
such as pipelining, parallel operating modules, data

Reconfigurable DWT Unit Based on Lifting
Georgi Kuzmanov, Bahman Zafarifar, Prarthana Shrestha, Stamatis Vassili adis

Computer Engineering Lab, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft , The Netherlands

Phone: +31(0)15 278 7364 E-mail: G.Kuzmanov@ET.TUDelft .NL

reusability and specific features of the chosen FPGA
platform (Xilinx Virtex II). The software package Lift
pack [1] was used for performance evaluation of the
design. We first optimized the software for integer
arithmetic and used it as a benchmark. The benchmark
was then executed using the cycle accurate simulator Sim-
outorder, from the SimpleScalar toolset [3]. Finally, we
compared the simulated performance of the pure software
to a custom computing implementation. Synthesis and
simulation results indicate:
• trivial reconfigurable area cost of 985 Virtex II CLB

slices, 669 Flip-Flops, 22 Block RAMS and 8
multiplier blocks for a basis structure;

• performance improvement (reconfigurable vs.
software) of over 5 times for large images;

• larger pictures and longer (polynomial) filters result in
even better performance of the reconfigurable design;

• simulations showed the potential of the design to
achieve high performance for popular filters used in
JPEG2000, when they are factorized in Lifting steps
and implemented in the proposed design.

The remainder of the discussion is organized as follows.
Section II gives some background information on the
DWT and describes the Lifting scheme. Section III
discusses the hardware implementation issues followed by
the results of the performance analysis, presented in
Section IV. Finally, the conclusions are presented in
Section V.

II. BACKGROUND

Wavelets introduce a new mathematical concept to
decompose a function, say f(t), into sets of other functions
referred to as wavelet bases:

∑=
s ss tctf

, ,,)()(
τ ττ ψ (1)

To have an efficient compression of function f, i.e.,
fewer (nonzero) coefficients sc ,τ , it is very important to

choose a suitable set of functions)(, tsτψ . These functions

can be a set of dilations (scales) and translations of one
chosen mother wavelet)(tψ (see Fig. 1), frequently

referred to as first-generation (classical) wavelets [9].

Fig. 1 Translations (left) and dilations (right) of the same
prototype (mother) wavelet

This set of functions resembles the basis functions of the
Fourier Transform and is defined as:

)(
1

)(, s

t

s
ts

τψψ τ
−= (2)

Where s is the scaling factor and τ is the translation
factor. The wavelet coefficients are calculated as follows
(forward wavelet transform):

∫
∞

∞−
=)()()(,, tdttfc ss ττ ψ (3)

The inverse wavelet transform, conversely, uses the
computed wavelet coefficients and superimposes them in
order to calculate the original data set.

Far more flexible are the second-generation wavelets,
which are not necessarily translations and dilations of the
same prototype function.

A. The Discrete Wavelet Transform

In DWT dilation factors are chosen to be powers of 2,
therefore the set of dilations and translations of the mother
wavelet is defined as:

2
, () 2 (2)

j
j

j k t t kψ ψ
− −= − (4)

Here j is the scaling factor and k is the translation
factor. Forward and inverse transforms are then calculated
using the following equations:

∫
∞

∞−
=)()()(,, tdttfc kjkj ψ (5)

∑=
kj kjkj tctf

, ,,)()(ψ (6)

The DWT analyzes the data at different frequencies
with different (time) resolutions. This principle is called
Multi Resolution Analysis (MRA) and means that we
analyze data in different window sizes. When analyzing

with a large window, we notice the global behavior of the
signal and, conversely, when analyzing with a small
window, we focus on its local features. Wavelet functions
can be neatly held finite in both time and frequency
domains. Therefore they can be used to approximate data
with discontinuities or spikes or detect the contours of
objects in images [4]. Multi resolution decomposition of a
signal into its coarser and finer components is useful for
data compression, feature extraction and de-noising.

The DWT can be implemented using different prospects
of the transform. For example, the wavelet coeff icients
can be generated using dyadic filter banks, called
synthesis filters. The input signal is split i nto two signals
using a lowpass filter h(t) and its orthogonal highpass
filter g(t). Multiple “scales” are obtained by repeating the
filtering process on the lowpass branch outputs only.
Another implementation-oriented prospect of the DWT is
the Fast Wavelet Transform. The DWT is factorized into a
product of a few sparse matrices using similarity
properties. When these factors are multiplied by a vector,
the order of operations reduces, therefore the transform is
called “ fast” . At algorithmic level, however, the fastest
ever known realization of DWT is based on the so-called
lifting scheme.

B. The lifting scheme

One recent, fast implementation of DWT is the Lifting
scheme [10], which can be used to construct both first and
second-generation wavelets. The idea behind the Lifting
scheme is to use half of the data samples to predict the
other half and repeat this until all the samples are
predicted. The algorithm consists of three simple steps,
applied repetitively on the samples: Split phase, Predict
phase and Update phase, all ill ustrated in Fig. 2.

 Fig. 2: Split, Predict and Update phases in the lifting
scheme (forward transform)

Split phase: Assume that the scheme starts at level 0.
We denote the data set as 0,kλ where k represents the data

element and 0 signifies the iteration level 0. In the first
stage, the data set is split i nto two other sets: the even
samples 1,kλ− and the odd samples 1,kγ − (see Fig. 2). This

is also referred to as the Lazy Wavelet transform because it
does not de-correlate the data, but just sub-samples the
signal into even and odd samples. We use negative indices
according to the convention that the smaller the data set,
the smaller the index:

λ-1,k = λ0,2k (7)
γ-1,k = λ0,2k+1 (8)

Predict Phase (dual lifting): The next step is to use the
even sub-set 1,kλ− to predict the odd sub-set 1,kγ − using a

prediction function P(1,kλ−). The more correlation

presented in the original data, the closer will t he predicted
value be to the original 1,kγ − . Now, the odd set 1,kγ − will

be replaced by the difference between itself and its
predicted value. Thus,

1,kγ − = λ-1,k − P (1,kλ−) (9)

Different functions can be used for prediction of odd
samples. The easiest choice is to predict that an odd
sample is just equal to its neighboring even sample. This
prediction method is result to the Haar wavelet.
Obviously, this is an easy but not realistic choice, as there
is no reason why the odd samples should be equal to the
even ones. Alternatively, second or higher degree
interpolation functions can be used for prediction.
Depending on the degree of the interpolating function N,
we can measure failure to predict γ. N is referred to as the
number of dual vanishing moments and defines the degree
of the polynomials that can be predicted by the dual
wavelet.

Update Phase (primal lifting): In this stage the
coeff icients 1,kλ− are li fted with the help of the

neighboring wavelet coeff icients γ , so that a certain scalar
quantity Q, e.g. the mean, is preserved.

Q(λ-1,k) = Q(λ0,k) (10)
A new operator U is introduced that ensures the

preservation of this quantity:

1,kλ− := 1,kλ− + U(1,kγ −) (11)

 Operator U uses a wavelet coeff icient of the current

level (γj,k) to update N
~

 even samples of the same level

(λj,k). N
~

is also known as the number of real vanishing
moments, not necessary equal to N.

Inverse Transform: One of the advantages of the
li fting scheme is that the inverse transform is very trivial.
The inversion rules are: revert the order of the operations,
invert the signs in the li fting steps, and replace the split

step by a Merge step:
1- Update phase λj,k = λj,k – U(γj,k)
2- Predict phase γj,k = γj,k + P(λj,k)
3- Merge phase: λ j+1,2k = λ j,k ∪ λ j+1,2k+1 = γ j,k
These three phases are repeatedly applied on the even

samples, transforming half of the samples each pass
(level), until all samples are transformed.

2-D transform: 2-D transform is performed by
applying the 1-D transform algorithm consecutively on
the rows and columns of a 2-D signal. Starting from the
first iteration level, the 1-D forward transform is first
applied to all the rows, and then to all the columns.
Subsequently we move to the next iteration level and
repeat the afore mentioned steps, and so on .

Advantages of the Lifting Scheme:
1. Lifting scheme is fast: For long filters, Lifting scheme

has a complexity of order n/2, compared with a
complexity of order n for classical wavelet
implementation.

2. All operations within a li fting step can be done
entirely in parallel, while the only sequential part is
the order of li fting operations.

3. Lifting can be done in-place, therefore an auxili ary
memory is not needed. At every summation point the
new stream replaces the old one.

4. Lifting allows integer-to-integer transform, while
keeping a perfect reconstruction of the original data
set.

5. Lifting allows adaptive wavelet transforms. The
analysis of a function can start from the coarsest level,
followed by data processing at finer levels in the areas
of interest.

III . HARDWARE IMPLEMENTATION

The implementation of the li fting algorithm will be
explained assuming a signal of length 12 and a
polynomial filter with numbers of dual and real vanishing

moments, both equal to 4 (L=12, N=4, N
~

=4).

A. The Predict module

All predict phase calculations are ill ustrated in Fig. 3.
The magnified circle depicts the arithmetic operations
involved in the calculation of each γ :

).().().().(3,6,2,4,1,2,0,,1 ikjikjikjikjj FFFF +++− +++=− λλλλγ

In other words: 4 multiplications, 4 additions/ subtractions
and 16 memory accesses (4 times read λ, read li fting
coeff icients, read γ, and write γ). These operations

Fig. 3: Calculations of the Predict phase

consume quite many processor cycles when implemented
sequentially on a general-purpose processor, which
motivated our ultimate goal to speed up these calculations
in hardware. In our design we introduce parallel
processing and data reusabilit y as depicted in Fig. 4. To
meet the requirement for high memory throughput, we
break this design problem into four sub-problems and
devise a solution to each of them:
1. Accessing N λs concurrently
2. Accessing N filter coeff icients concurrently
3. Reading input γ concurrently
4. Writing back predicted γ concurrently

Accessing N λλs concurrently: From Fig. 3, it can be
seen that in the calculations of two consecutive γ s, at least
three out of four λs are common. This implies that reading
only one λ from the memory will be suff icient to calculate
the following γ,, provided that λs from the preceding
calculations are temporally stored in buffers for reuse.
Therefore, we implemented a pipeline of N stages for λ
inputs. When being initialized, the pipeline is fill ed in N
cycles. After that, N λs are issued to the unit in parallel
(see Fig. 4)

Fig. 4: The Predict module

Accessing N filter coefficients concurrently: This can
be accomplished by using a separate bank of RAM for the
filter coefficients, as depicted in Fig. 4.

Reading input γγ concurrently: For the parallel
processing of the unit, γ inputs have to be read
simultaneously with λ inputs. This means that two
different locations of the image storage area have to be
accessed at the same moment. To solve this design
problem, we utilize the embedded true dual port RAM
blocks of the Xilinx Virtex II FPGA chip. These RAM
blocks feature two separate input/output ports, which can
be addressed independently from each other. Using these
internal dual port RAMs for picture data, γ and λ inputs
can be accessed concurrently (see Fig. 4).

Writing back predicted γγ concurrently: Reading γ
and λ inputs simultaneously, occupies both ports of the
dual port picture RAM. To write the predicted γ back into
memory within the same system cycle, we designed the
picture RAM to operate at a frequency two times higher
than the rest of the design. In this case four memory
locations per system cycle are addressed.

B. The update module

Fig. 5 illustrates the calculations for the update phase.
In each row, one γ updates 4 λs, which implemented in
software looks like:

for n=0 to N
~

{ λj-1,n += γi * Li,n }

This results in 4 multiplications, 4
additions/subtractions and 16 memory accesses. To
synchronize the update with the predict modules, we
utilize the same design considerations for both of them.
The same problems, regarding memory throughput, have
been solved:

1. Accessing N
~

 λs concurrently

2. Accessing N
~

 filter coefficients concurrently
3. Reading input γ concurrently

4. Writing back N
~

 updated λs concurrently

Concurrent access to N
~

 filter coefficient is
implemented similarly to the prediction module.

Fig. 5: Calculations of the Update phase

Observing Fig. 5, it can be noticed that the output of
each row is the input of the subsequent row, except for at
most one output, which has to be written back to the
memory. It means that if the outputs of each stage are
made available for the inputs of the following stage, all
stages lead to at most one value to be written back to the
memory, and one value to be read from the memory. The
exception here is the first row, which needs 4 memory
reads, and the last row that produces 4 outputs to be
written back, which have to be done in 4 cycles. This

reduces N
~

memory reads and N
~

 memory writes to only

one read and one write per cycle. Fig. 6 depicts the update
module. The pipeline is filled from different sources to
accommodate all combinations illustrated in Fig. 5.

To increase the calculation accuracy, the stored filter
data is scaled up. The predict and update modules in Fig.
4 and Fig.6, include logic for scaling down the result after
each multiplication (illustrated by triangular symbols).
The control signal FW/IV switches between summation
and subtraction, to make the modules perform both
forward and inverse transform.

Fig. 6: The Update module

C. Parallel operation of Predict and Update modules

It was explained how the predict and update modules
calculate the outputs in one cycle. However, parallel
operation of both modules leads to 6 memory operations
per cycle (for predict module, λ and γ inputs and γ output,
and for update module, λ and γ inputs and λ output). The
dual port memory is accessed twice per system cycle,
accommodating a maximum of 4 memory accesses a
cycle. Therefore, parallel operation of both predict and
update module, exceeds the memory bandwidth. In the
forward transform, the three required memory accesses for
the predict module can be directly accommodated from

the picture RAM. Also the output of the update module
can be directly written back to the picture. Further, we
explain how data are provided to the inputs of the Update
module.

Providing data to γγ input of the update module: It
can be seen in Fig. 2 that the γ input of the update module
can be fed with the output of the predict module.
Introducing a First-In-First-Out (FIFO) buffer between the
output of predict module and the γ input of the update
module, absorbs the unequal delivery and consumption
rate of data at the beginning and the end of the predict and
update phases (see Fig. 7).

Predict
module

λλin

γγin

Update
module

λλin

γγin λλout γγout
γγ

FIFO

λλ
FIFO

to picture RAM

from picture RAM

Fig. 7: Synchronizing FIFO buffers for forward transform

Providing data to λλ input of the update module:
Fig. 2 shows that the update phase uses the same λs as the
predict phase, but at a different time. Consequently, it is
not possible to fill the λ pipelines of both predict and
update modules with the output of the picture RAM.
Placing a FIFO buffer before the λ input of the update
module is the answer to this timing problem. This buffer,
in fact, solves the synchronization problems and allows
the update module to reuse the λs read by the predict
module (see Fig. 7). In inverse transform the FIFOs
provide data to the inputs of the predict module. Fig. 8
illustrates the schematic view of the design.

D. Hardware resource usage

As we mentioned earlier, we have synthesized the
design for the Xilinx Virtex II FPGA technology. Table I
presents the hardware resource usage of the unit for a test
picture of 64x32 pixels (8 bits gray-scale) and 4-4
polynomial filter. Except for the number of RAM blocks,
the values in Table I also apply for larger picture
dimensions.

Predict
module

Update
module

λin

γin λout
γout γγ

FIFO

λλ
FIFO

0
1

1
0

1
0

U
pd

at
e

γ i
n_

re
se

t

FW_IV

0

dataOut

dataOut

0
1

1
0

dataIn

dataIn

0
1

1
0

λin λout

γin γout

Picture
RAM

γF
IF

O
_r

ea
d_

en
ab

le

γF
IF

O
_S

in
it

γ F
IF

O
_w

ri
te

_e
na

bl
e

cl
oc

k

Update
Filter

3

Update
Filter

2

Update
Filter

1

Update
Filter

0

dataIn

coeff1 coeff0 coeff2 coeff3

data
Out

data
Out

data
Out

data
Out

dataIn dataIn dataIn

Predict
Filter

3

Predict
Filter

2

Predict
Filter

1

Predict
Filter

0

dataIn

predict_filter_write_enable

predict_filter_address

clock

coeff1 coeff0 coeff2 coeff3

data
Out

 data
Out

data
Out

dataIn dataIn dataIn

pr
ed

ic
t_

λ_
en

ab
le

F
W

_I
V

C
lo

ck

λF
IF

O
_r

ea
d_

en
ab

le

λF
IF

O
_S

in
it

λ F
IF

O
_w

ri
te

_e
na

bl
e

cl
oc

k
FW_IV

0
1

1
0

read_addressA

External_RAM
Data_in 0-15

clock

addressA

dataInA

write_addressA

Externa_ RAM_
active

1
0

dataInB

0
1

read_addressB

clock

addressB

write_addressB

External_RAM
data_in 16-31

update_filter_write_enable

update_filter_address

clock

pi
ct

ur
e_

R
A

M
_e

na
bl

eA

pi
ct

ur
e_

R
A

M
_e

na
bl

eB

pi
ct

ur
e_

R
A

M
_w

ri
te

_e
na

bl
eA

pi

ct
ur

e_
R

A
M

_w
ri

te
_e

na
bl

eB

R
A

M
_c

lo
ck

up
da

te

λ_
en

ab
le

F
W

_I
V

C
lo

ck

External_RAM_
data_in 0-15

FW_IV

data
Out

up
da

te

ne
xt

λ

External_RAM_data_out 0-15
External_RAM_data_out 16-31

RAM_clock
clock

reset

FW-IV
transform2D_restart

external_RAM_enable
external_RAM_data_in

transform2D_done

external_RAM_write_enable
external_RAM_address

external_RAM_enable
external_RAM_data_out

Control
unit

Fig. 8: Top level organization of the hardware DWT unit.

TABLE I
HARDWARE RESOURCE USAGE OF THE DESIGN

Target Device Xilinx x2v1000
Clock frequency > 5x107 Hz
Number of Slices 985
Total Number 4 input LUTs 1637
Number of Flip-Flops 669
Number of Block RAMs 22
Number of MULT18X18s 8

IV. PERFORMANCE ANALYSIS

In this section we explain the performance analysis
framework and present the result of simulations carried
out on different images and filters to analyze the
performance of the module.

A. Performance analysis benchmark

 To measure the performance improvement due to the
introduction of the new functional unit, the execution
time of a pure software implementation of the Fast
Lifting DWT algorithm was compared to the execution
time when using the hardware accelerator. Using

Liftpack [1] as software implementation and Sim-
outorder of the Simplescalar toolset [3], a benchmark
was setup to define the software execution time. [7] and
[8] explain the performance analysis in detail. The
performance measurement metric is given by:

meHW exec ti

meSW exec ti
Speedup = , (12)

where SW exec time and HW exec time denote software
and hardware (execution) times spent to execute the
benchmark algorithm in software and in hardware
respectively. Denoting TNEC as the Total Number of
Execution Cycles, assuming a general purpose processor
running at 1 GHZ (109Hz) and DWT unit running at
5x107 Hz (see Table I), we define:

910
SWTNEC

 timeexecSW = ,[sec] (13)

DTTtimeHW trmeHW exec ti += ,[sec] (14)

7105×
= HWTNEC

 HW tr time ,[sec] (15)

where HW tr time is the time for the hardware DWT
transform. DTT denotes data transfer time, which is the
time for sending data to and from the hardware module.

B. Performance analysis of different polynomial filters

A number of simulations were performed in order to
compare the performance gains due to hardware
acceleration for different configurations of picture size
and filter types. In this section, the performance gain for
different polynomial filters are compared. Table II
summarizes the results of the simulations for a constant
picture size of 352 x 288 and Fig.9 ill ustrates the
performance gains graphically. The substantial
performance increase for higher polynomial degrees is
due to the almost constant hardware execution time,
while the software execution time increases dramatically
with the degree of the filters. Once the pipelines of the
module are fill ed (Fig. 4 and 6), the design generates
two outputs per clock cycle (one λ and one γ)
irrespective of the length of the filters. This is one of the
primary reasons for superior performance of the design.

TABLE II
PERFORMANCE ANALYSIS - DIFFERENT DEGREES OF POLYNOMIAL FILTERS

Filter of polynomial degrees 2-2 4-4 8-8
SW execution time (µsec) 9831 13395 22061
HW execution time (µsec) 3210 3370 3670
Performance ratio (HW vs. SW) 3.06 3.97 6.01

0

5,000

10,000

15,000

20,000

25,000

2 2 4 4 8 8

degree of polynomial

ex
ec

 t
im

e
(m

ic
ro

 s
ec

o
n

d
s)

software
exec time

hardware
exec time

Fig. 9: Performance gain- different degrees of polynomial
filters

C. Performance analysis for different picture sizes

Filli ng the pipelines at the start of each 1-D transform
(a row or a column) leads to cycles in which no output is
generated. Furthermore the parallel execution of the
predict and update modules cannot start immediately at
the beginning of the 1-D transform, but after number of
cycles, when both of the inputs become available. The

relative effect of these non-productive cycles attenuates
as length of the 1-D signal (picture dimension)
increases, yielding a better performance gain for larger
pictures. Table III and Fig. 10 compare the results of
simulations on different picture sizes with the same
polynomial filter (4-4).

TABLE III
 PERFORMANCE ANALYSIS – DIFFERENT PICTURE SIZES

Picture format 176x144 352x288 720x560

SW execution time (µsec) 3315 13395 63301
HW execution time (µsec) 962 3370 12577
Performance ratio (HW vs. SW) 3.44 3.97 5.03

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

176x144 352x288 720x560

picture dimensions

ex
ec

u
ti

o
n

 t
im

e
(m

ic
ro

 s
ec

) software
exec. time

hardware
exec. time

Fig. 10:Performance improvement for different picture
dimensions

D. Performance analysis of other filters

The proposed hardware unit has been based on
polynomial filters. However, it is possible to implement
other filters, when they are factorized into Lifting steps,
with minor modifications in the design. We
implemented two popular filters, namely Le Gall 5-3
and Daubechies 9-7 in software, and calculated the
expected performance gain if our hardware unit would
have been used. For the hardware accelerated
performance, the 2-2 polynomial filter was used as
estimation. The results (Table IV and Fig. 11) show that
using hardware acceleration based on the proposed
design, an estimated performance enhancement of factor
3.69 might be achievable for Le Gall 5-3 filter. This
estimated factor increases to more than 11 for more
computationally intensive Daubechies 9-7 filter. This
analysis shows the great potential of the design for
practical applications as JPEG2000 and MPEG-4 in
which these two filters are used.

TABLE IV
PERFORMANCE ANALYSIS – DIFFERENT FILTER TYPES

Filter type
Polynomial
2-2

LeGall
5-3

Daubechies
9-7

SW execution time (µsec) 8833 11860 35990
HW execution time (µsec) 3210 3210 3210
Estimated performance
ratio HW vs. SW 2.75 3.69 11.21

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

polynomial:
2 - 2

LeGall 5 - 3 Dubechies 9
- 7

filter types

ex
ec

u
ti

o
n

 t
im

e
(m

ic
ro

 s
ec

)

software
exec time

hardware
exec time

Fig. 11: Estimated acceleration for some popular filters

E. Reconfigurable computing environment

The proposed hardware unit is intended to operate in a
custom-computing platform. The idea behind is that a
reconfigurable hardware co-exists with a core general
purpose processor [6]. More precisely we target to the
novel reconfigurable multimedia processors called
MOLEN [2]. The concept of these processors is to
extend general-purpose architectures with application
specific co-processing (DWT in our case) mapped on
FPGAs and by means of microcode to improve FPGA
setting and execution.

V. CONCLUSIONS

In this paper we introduced a new hardware unit to
accelerate the Discrete Wavelet Transform. The unit is
based on the Lifting scheme algorithm. We explained
how different parts of the algorithm can be executed in
parallel, if implemented in hardware. Subsequently we
presented the results of performance analysis of the
hardware module. We compared these results to a pure
software implementation and concluded that the
proposed module could be beneficially used to

accelerate the performance of the Discrete Wavelet
Transform in applications using it, li ke JPEG2000 and
MPEG-4.

VI. ACKNOWLEDGMENTS

This research has been supported by PROGRESS, the
embedded systems research program of the Dutch
organization for scientific research NWO, the Dutch
Ministry of Economic Affairs, and the Technology
Foundation STW (project AES.5021).

REFERENCES

[1] G. Fernandez, S. Periaswamy, and W. Sweldens,
LIFTPACK: A software package for wavelet transforms
using li fting. Wavelet Applications in Signal and Image
Processing IV, pages 396-408. Proc. SPIE 2825, 1996,
http://www.cse.sc.edu/~fernande/li ftpack

[2] S.Vassili adis, S. Wong, and S. Cotofana. The MOLEN
ρµ-coded processor. In 11th International Conference on
Field Programmable Logic and Applications (FPL), 2001

[3] Doug Burger, Todd M. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical Report CS-TR-1997-1342,
University of Wisconsin-Madison, 1997.
http://www.simplescalar.com

[4] W. Press et al., Numerical recipes in Fortran, Cambridge
university press, New York, 1992

[5] Geert Uytterhoven. Wavelets: software and applications,
PhD thesis, April 1999, Catholic University of Leuven.

[6] Stephan Wong, Sorin Cotofana, and Stamatis Vassili adis.
Coarse Reconfigurable Multimedia Unit Extension,
Proceedings of the 9th Euromicro Workshop on Parallel
and Distributed Processing PDP 2001

[7] B.Zafarifar. Micro-codable discrete wavelet transform,
M.Sc. thesis, Delft University of Technology, 1-68340-28
(2002)-03

[8] P. Shrestha. MIPS augmented with Wavelet Transform,
Performance Analysis, M.Sc. Thesis, Delft University of
Technology, 1-68340-28(2002)-02

[9] C. M. Brislawn. Classification of nonexpansive
symmetric extension transforms for multi rate filter banks.
Applied and Comp. Harmonic Analysis, 3:337-357, 1996

[10] W. Sweldens. The li fting scheme: a custom-design
construction of biorthogonal wavelets. Applied and
Comp. Harmonic Analysis, 3(2):186-200, 1996

[11] XILINX. Virtex-II Platform FPGA Handbook, December
2000.

