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Abstract—Power-aware graphics architectures are receiv-
ing more attention recently. In this paper we analyze ren-
dering techniques suitable for low power devices. One tech-
nique that looks promising is Tile Rendering. This technique
decomposes a scene into tiles and renders each tile indepen-
dently. For several scenes we compute a tile size that allows
most triangles to be rendered without being divided into sub-
triangles. It is also shown that this technique reduces the
bandwidth requirements substantially. Furthermore, differ-
ent methods for approximating the data traffic to and from
a graphics rasterizer are presented.
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I. INTRODUCTION

3D graphics emerges rapidly in consumer electronics.
Although lots of approaches have been proposed for PC-
based or entertainment platforms, 3D graphics rendering
still does not often appear in embedded systems such as
PDAs, mobile phones, car navigation systems, etc. With
the widespread use of raster scan displays and the increas-
ing desire for faster interactivity, higher image complexity,
and higher resolution in displayed images, several tech-
niques have been proposed for rasterizing primitive graph-
ical objects.

Recent graphics systems use triangle rasterization to
represent computer generated graphics. In fact, most
graphics applications released in the last few years depend
almost completely on triangle rasterization performance.
Recently, the focus of graphics performance optimization
is shifting to bandwidth requirements as well as transfor-
mation and lighting computations.

One important concern for mobile devices is the power
consumption, thus power-aware architectures are gaining
more interest in the last years. Two important sources of
power consumption are buses and caches. Since tile ren-
dering architectures reduce the data traffic required by the
graphics accelerator by using a small, on-board memory
to render a scene instead of an off-chip frame buffer, they
seem to be suitable for low-power devices. In this paper we
describe several rendering techniques based on the tile ren-

dering model and discuss the trade-offs that can be made
to implement these rendering models in low-power graph-
ics devices. An optimal tile size is computed based on data
traffic constraints.

This paper is organized as follows. After describing the
principles of graphics rendering in Section Il, we present
the selected rendering methods used in this study in Sec-
tion I11. In Section IV we estimate the amount of data
traffic between the CPU and the accelerator as well as the
traffic between the accelerator and the frame buffer. Exper-
imental results are presented in Section V, and conclusions
and future work are given in Section VI.

Il. BACKGROUND

In order to understand where the rendering process
fits in a real-time 3D rendering system, we briefly de-
scribe the four major functions of the traditional graph-
ics pipeline [3], [7]: geometry processing, fragment gener-
ation, hidden surface removal, and frame buffer display.
The 3D geometries of scenes are commonly defined in
terms of triangles. In the first stage, matrix transforma-
tions are applied to the triangle vertices to transform ver-
tices through different coordinate spaces such as the ob-
ject (model) space, world space, eye space, and projec-
tion space. This results, after a perspective division and
a viewport transformation, in a perspective mapping of
the triangles to the 2D display. The second stage consists
of the fragment generation, shading, and texture mapping
of fragments. Texture mapping is a technique that adds
adding realism to computer generated scenes by mapping
2D images onto 3D objects. The third stage is hidden sur-
face removal that can be accomplished, for instance, by us-
ing a z buffer algorithm, and the final stage is the display
of the rendered image stored in the frame buffer. Depend-
ing on the aggressiveness of an implementation, parts of
the graphics pipeline can be implemented in software and
others can be mapped in hardware for better performance.

The rasterizer performs the second and third stages de-
scribed above. The input to the rasterizer consists of tri-



angles described by vertices and additional properties of
each vertex such as color and texture coordinates. Further-
more, textures must be transferred to the rasterizer or the
rasterizer will have to access the textures from the main
memory.

Basically, there are two working modes for an accelera-
tor
1. Immediate Mode - each primitive is sent to the raster-
izer only once, and each primitive is executed immediately
after it was received.
2. Display List Mode - primitives are stored and sent to the
rasterizer as a list afterwards, not necessarily in the same
order as they were received.
While the Immediate Mode seems to be faster than the Dis-
play List Mode since it is does not require buffering of the
primitives, it will be shown that the Display List operation
mode allows more optimizations that reduce bandwidth
and power consumption on different buses to be applied.

I1l. TILE RENDERING

This section describes the basic organizations of a tradi-
tional and tile renderer and discusses several tile rendering
variants.

A traditional rasterizer is depicted in Figure 1. The basic
functionality of such a rasterizer is as follows. The Trans-
form and Lighting (TnL) Engine processes the geometry
data at vertex level (changes in coordinates, lighting com-
putations, etc.). After that, the processed vertices are sent
to the rasterizer as primitives such as points, lines, and
triangles. The rasterizer scan-converts each triangle into
fragments (pixels). It also performs one or more read op-
erations from the texture buffer (memory) if texturing is
enabled. Finally, for each pixel it is determined if the pixel
is obscured by another pixel using, for instance, a z (depth)
buffer algorithm. One access to the z buffer is needed to
retrieve the old z value and, eventually, a z buffer write op-
eration is executed if the pixel is not occluded by the pre-
vious written pixels. Also a write operation to the frame
buffer is performed if the z test succeeded.

Considering that current accelerators are bandwidth lim-
ited and current rendered scenes contain a significant
amount of pixels rendered but not visible in the final scene
(i.e., there is overdraw), one possible modification to the
above architecture is to use a tiled architecture. This tech-
nique decomposes a scene into smaller regions called tiles
and renders each tile independently. The advantage of this
approach is that it allows a smaller, faster memory to be
integrated closer to the rasterizer for storing z values and
color components of one tile so that the accesses to the
frame and z buffer are local, on-chip, accesses. Only after
all the primitives of a tile have been rendered, the tile con-
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tent, color components, and depth values, are sent to the
frame buffer.

The basic organization of a tile renderer is depicted in
Figure 2. Since in this architecture only parts of the scene
are rendered, only the triangles that are (completely or par-
tially) contained within the considered tile need to be sent
to the rasterizer. With tile rendering, a triangle might cover
more than one tile, so we first need to store all primitives
in a so called scene buffer and sort them into bins that cor-
respond to the tiles. A tile renderer is, therefore, based on
the display list model.

A. Tile Rendering Variants

Tile rendering introduces one additional step in the ren-
dering pipeline that sorts the primitives into bins that cor-
respond to the tiles. Since a primitive can can cover more
than one tile, it can be placed in several bins. A basic tile
renderer operates as follows. First, it receives the primi-
tives to be rendered. The primitives must be sorted accord-
ing to their tile repartition. After that, the data associated
with each tile is fetched from the external frame buffer. A
list of primitives that are relevant to the respective tile is
also sent to the rasterizer. After all primitives for the tile
have been rendered the content of the tile is sent to the
external frame buffer.

An alternative of the above scheme is to perform tri-
angle clipping in software so that triangles are clipped at
tile boundaries. The advantage of such an architecture is
that the triangle set-up time on the rasterizer can be faster,
but the disadvantage is that the triangles fragments are not
necessarily triangles, so they should either be splitted into
more primitives thereby increasing the amount of data traf-
fic or the rasterizer should be able to render other shapes
besides triangles.

These methods, however, have the problem that they
render each primitive even though maybe none of the pix-



els generated for the respective primitive are visible at the
end. One possibility to eliminate this problem is to use
multistep rendering [8]. First, a partial rendering is per-
formed to determine the visible pixels. This requires a
supplementary buffer to store a primitive id for the last vis-
ible pixels. Thereafter, only the primitives that have visible
pixels are fully rendered.

If there is enough memory on-chip to store sufficient
information for each pixel so that it can be generated later-
on without resending the primitive, then less traffic be-
tween the CPU or main memory and the rasterizer can be
achieved. In this paper we consider only the basic tile ren-
dering model.

IV. DATA TRAFFIC

Some papers that discuss tile rendering (e.g,. [2]), are
mainly concerned by the overlap of triangles with respect
to tile size. Overlap is defined as the number of tiles that
a primitive covers. If a primitive covers n tiles then it
needs to be sent to the accelerator n times. So only the
traffic between the CPU or main memory to the acceler-
ator was considered. To obtain a more accurate estimate
of power consumption, we consider the total data traffic,
i.e, not only the traffic from the CPU or main memory to
the accelerator but also the traffic between the accelerator
and the frame buffer. In this section we estimate the total
amount of data traffic.

Data traffic between the graphics chip and other compo-
nents of the system such as the CPU, main memory, and
the frame buffer can be divided into two categories:

1. Geometrical data needed to describe a primitive. In case
of a triangle this data consists of triplets, each of them con-
taining:

« coordinates of one point (z,y, z, w),

« One or two color components (r, g, b, a) and, eventu-
ally, specular color (r1, g1, b1), and

« the texture coordinates (u, v).
2. Data needed to render a specific primitive:

« texture data (image arrays of colors),

« z buffer data (integer),

« frame buffer pixel color (r, g, b, a) (used for blending),
and

« other supplementary data such as stencil values, accu-
mulation values, etc.
Usually, the geometrical data is transferred from the CPU
or main memory to the accelerator, while the data needed
to render a primitive is mostly transferred between the ac-
celerator and the dedicated graphics memory.

As an example, suppose we have to render ¢ triangles,
each of them having the following properties:

« Each coordinate is represented as a 16-bit integer.

« Each color component is 8 bits.

« No specular color is present.

« Each texture is mip-mapped and the initial level is 256
elements wide and 256 elements high. Multiplying this
with the element width of 16 bits we obtain that the size of
the initial level is 256 x 256 x 16 = 1Mb. Since every next
level is a quarter of the size of the level below, the total
texture size of all levels is:

log, 256 4

> (Z)i X IMb ~ 2 x 1Mb ~ 170kB.

i=0

Therefore, the total amount of geometry data geom_data(t)
to transfer from the processor to the graphics chip is

geom_data(t) = t x tri_data, Q)
where,
triidata = Vrx (VxCs+CxCCs+T xTs)
= 3x(4x2+4x1+2x2)=48B, (2
tri_data = number of bytes required
to render a triangle
Vr = number of vertices
\% = number of coordinates per vertex

Cs = coordinate size (bytes)

C = number of color components
CCs = color component size (bytes)
T = number of texture coordinates
Ts = texture coordinate size (bytes)

Thus, there is a linear relation between the number of tri-
angles and the amount of geometric data traffic between
the CPU and the accelerator.

For texture data, the situation is different, however. Due
to the fact that a texture can be reused inside a frame or
across frames, most of the time textures are brought to the
dedicated graphics memory from which they can be ac-
cessed faster than from the system memory, so actually
the texture data traffic is growing slower than linear in the
number primitives to be rendered. The total amount of
traffic transferred from the processor or main memory to
the graphics chips is:

data front = geom_data(t) + texture_data +

state_change, 3)

where the state_change term comprises the updates to
the state of the rasterizer (e.g. enable/disable depth test,
change texture wrapping modes, etc). The amount of



state_change data is usually negligible compared with the
geometry data and the texture data.

The total amount of data transferred to and from the ac-
celerator is:

total data = data_front + data_back, 4)

where the data_back term of the equation accounts for the
data traffic between the accelerator and the off-chip graph-
ics memory and it can be estimated separately for a tradi-
tional renderer and a tile-based renderer. In all situations
we assume that the texture data is cached due to its high
locality properties.

For a frame rendered on a traditional renderer:

databack = Ov x (Bc+2x Bz+
TMR x TPP x Btc) x W x H.(5)
where,
Ov = the overdraw

Bc = number of bytes per color

2 = accounts for one z read
and one z write
Bz = bytes per z component
TMR = texture miss ratio
TPP = texels per pixel
Btc = bytes per texture element (color)
w = image width
H = image height

For a Tile-Based Renderer we have:

databack = (OvxTMR x TPP x Btc+ Bc)
xW x H, (6)

since we have no z data traffic, and the color information
is written only once from the accelerator (tile buffer) to the
off-chip memory.

A data traffic comparison between a traditional renderer
and a tile-based renderer will be presented in Section V-A.

V. RESULTS

We used as a benchmark a widespread game, namely
“Quake Il Arena”(Q3). This game is almost a standard in
benchmarking 3D (OpenGL [9]) performance of a graph-
ics accelerator. Even though this benchmark is no longer
the most stressing application for current (PC) accelera-
tors, it can be used as a reference for a low-power ac-
celerator. We also used, AWadvs-04 that belongs to the
viewperf graphics benchmark suite [6].Depending on the
benchmark configuration (i.e., realism level), different re-
sults can be obtained. For instance, an accelerator that

1e+06 [ — - —
F Triangles ——
100000 M. 4

10000

1000

Number of triangles

=

Q

o
T

10

1 . LU
10 100 1000

10000

100000 1e+06
Triangle size (bytes)

Fig. 3. Triangles histogram. This figure shows for each triangle
size, the number of triangles having that size.

60

50

40

D . E
. M\m MM qu W/h n} ” [ .A
R TR

1 59 117 175 233 291 349 407 465 523 581 639 697 7556 613 871 020 987 1045 1103 1161 1210 1277 1335

Frames

Fig. 4. Average height and width of a triangle (computed from
average area).

supports multitexturing can reduce by about half or more
the number of triangles received from the host processor
and also the fragments sent to the frame buffer are re-
duced with the same factor, due to the internal blending
of textures. On the other hand, supporting multitexturing
increases the computational complexity of the rasterizer
since when more than one texture may need to be accessed
and combined for each pixel. This approach has the ad-
vantage that it reduces the bandwidth from the rasterizer
to the frame buffer, but on the other hand it might affect
the locality of data in a texture cache [5], [1] used for ac-
celerating the accesses to the texture memory.

A. Optimal Tile Sze

An optimal tile size can be determined from the average
triangle size, so that most triangles can be rendered with-
out being divided into sub-triangles. Given P triangles of
average pixel area A, a total of P x A pixels must be ac-
cessed to render the scene. Assuming the scene covers a
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screen of NV pixels and that each triangles are overlaid in
D layers everywhere, we have [4]:

PxA=NxD @)

where D is the depth complexity. The average height or
width of a triangle is proportional to

N x D

(@)
Figure 4 depicts the average triangle widths and heights,
computed using Equation (8), for the frames we have stud-
ied. Some similar results are presented in [5].

On the other hand, if a bounding box for each triangle
is used then the results are more accurate since the ratio
of the bounding box width and height is taken into ac-
count instead of assuming equal width and height. Fig-
ure 5 presents the average height and width computed sep-
arately. Table | presents the percentages of triangles that
fit into a given tile size, for different tile sizes. If we con-
sider the ratio of the increase in tile size and the percentage
of triangles covered for that tile size, the the optimum tile
size is 32 x 32.

Average width = Average height = VA =

Tile Tile Width
Height | 16 32 48 64
16 52,31 | 59.1 | 61.46 | 62.81
32 60.75 | 70.05 | 73.71 | 75.79
48 62.65 | 73.01 | 77.42 | 79.96
64 63.81 | 74.68 | 79.48 | 82.39
TABLE |

PERCENTAGES OF TRIANGLES THAT FIT IN A GIVEN TILE
SIZE (PIXELS).

Still this is only an estimation of the optimal tile size,
since some triangles even though are smaller than a tile
can cover several tiles. A more relevant result is obtained
by computing the actual number of triangles transferred
for each tile. In Table Il and Table Il the number of
triangles transferred from the CPU (or main memory) to
the rasterizer is depicted for Q3 and AWadvs-04, respec-
tively. The initial number of triangles to be rendered was
6,037,311 for Q3 and 14,020,076 for AWadvs-04. The
number frames was 1346 for the Q3 benchmark, and 600
for the AWadvs-04 benchmark. Furthermore, the resolu-
tion used for rendering was 640 x 480 pixels for Q3 and
1260 x 938 pixels (the default) for AWadvs-04. Compar-
ing the result from Tables Il and Il again for ratio of the
number of triangles that are sent to a tile and the tile size,
a tile size of 32 x 32 is optimal.

Tile Tile Width
Height 16 32 48 64
16 32,815 | 23,393 | 19,776 | 18,589
32 24,638 | 16,673 | 13,896 | 13,178
48 21,629 | 14,767 | 12,243 | 11,586
64 20,118 | 13,643 | 11,256 | 10,630
TABLE Il

NUMBER OF KILOTRIANGLES TRANSFERRED AS A
FUNCTION OF TILE SIZE (PIXELS), FOR Q3.

Tile Tile Width (Pixels)

Height 16 32 48 64
16 22,372 | 20,372 | 19,731 | 19,445
32 20,877 | 18,502 | 17,696 | 17,386
48 20,510 | 17,959 | 17,077 | 16,726
64 20,363 | 17,705 | 16,783 | 16,403

TABLE 111

NUMBER OF KILOTRIANGLES TRANSFERRED AS A
FUNCTION OF TILE SIZE (PIXELS), FOR AWADVS-04.

It can be expected that the results obtained for AWadvs-
04 are better than those obtained for the Q3, since
AWadvs-04 is a high-end benchmark that uses, by default,
a higher resolution than Q3. It also has a larger percentage
of small triangles. If we would have scaled the resolution
of AWadvs-04 to 640 x 480, since we are concerned with
low-power devices with small consoles, then the results
obtained for AWadvs-04 would have been even better.

The second part of the data traffic is the traffic between
the accelerator and the local graphics memory that is not



on-chip. For the traditional architecture this traffic is di-
rectly proportional to the number of rendered pixels. For
a tile based architecture this traffic is almost independent
of the amount of rendered pixels since it involves only the
transfer of tile data to the frame buffer and in rare cases
from the frame buffer to the tile buffer.

The amount of data traffic between the accelerator and
the off-chip graphics memory for one frame, can be de-
termined analytically using the overdraw factor and the
texture miss ratio. For Q3 we determined that without
multitexturing enabled the overdraw is about 5.7 and a
texture miss ratio of 10% even when using a small [1]
(256B) texture cache. For the traditional approach, the
data transferred between the accelerator and the off-chip
memory can be approximated using Equation (5). So
if the image size is 640 x 480, the amount of data is
5.7x (44 (14+1) x4+40.1 x3x4)x640 x 480 ~
22MB. For the tile-based renderer, using Equation (6),
only (44 5.7 x 0.1 x 3 x 4) x 640 x 480 ~ 3.17TMB. So
the data traffic from the accelerator to the off-chip mem-
ory in case of the tile-based rendering is reduced approx-
imately by a factor of 6.94. On the other hand the data
transferred from the CPU or main memory to the acceler-
ator can be computed using Equation (1). For the tradi-
tional renderer : 6,037,311 =+ 1346 x 48 = 210.2kB, and
for a tile-based renderer with a tile size of 32 x 32 pixels:
16,672,896 + 1346 x 48 = 580.6kB.

Thus at the cost of increasing the data traffic on the bus
from the main memory to the accelerator, a larger data traf-
fic is saved on the bus that connects the accelerator with the
local memory.

V1. CONCLUSIONS

An overview of the current used rasterizing methods has
been presented. A tile size of 32 x 32 pixels, considering
actual applications complexity and realistic level, appears
to be optimal. We have also shown that tile-based render-
ing reduces considerably the amount of traffic between the
accelerator and the off-chip memory while the increase in
data traffic from the CPU or main memory to the acceler-
ator is only by a factor of 2.76. Considering that current
rasterizers are more bandwidth limited than computational
speed, we believe that tile rendering is a suitable technique
for low- power devices since it provides faster on-chip ac-
cess to the tiled frame and z buffers. The tile rendering
method also provides an elegant solution to the ever in-
creasing depth complexity of the rendered scenes.
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