HIGH-LEVEL INTELLIGENCE-ORIENTED SIMULATION

Tudor Niculiu', Chouki Aktoufz, Sorin Cotofané3

! TU Bucharest,EE Faculty, luliu Maniu Blvd. 1-3, 77202 Bucuresti 6, Romania
2 ut Valence, Ee Faculty, 51 Barthélémy de Laffemas, 26901valence, France
I Ty Delft, Ee Faculty, Mekelweg 4, 2600 GA Delft, The Netherlands

Abstract.—Intelligence is complementary to faith =
(intuition, inspiration, imagination) and it needs
(conscience, adaptability, intention). Conscience
simulation demands transcending the present limits
of computability to what we call simulability, by an
intensive effort on extensive research to integrate
essential mathematical and physical knowledge

guided by philosophical goals. Applying "Divide et -

Impera et Intellige” to hierarchy types reveals their
comprehensive constructive importance based on
structural approach, symbolic meaning, object-
oriented representation. Formalizing hierarchical
descriptions, we created a theoretical kernel that can
be used for self-organizing systems. A way to begin
is hierarchical simulation. Conscience supposes
sincerity; this can be implemented as testability at
high-level.

1. ARGUMENT & CONCEPTS

After adaptability, conscience is the next part
of intelligence that needs better understanding.
It can be considered self-awareness of
individual faith and intelligence, as well as of
the relation to the local context (society) and to
the global one (universe). To appear,
conscience needs both correct self-knowledge
as sincerity to the community. To simulate it
hard-soft we aim convergence of concurrent
research directions: formal abstraction by
theory of hierarchy types, comprehensive
construction of structural symbolic concepts,
and high-level simulaticn of testability.

Competent design of hardware-software
systems need the study of hierarchy types, the
intelligent communication between different
domains, the formal verification/ test. We
extend the theory of hierarchy types to
integrate communication properties as well as
correctness and testability, to suit the
behavioral specification of today’s complex
system design. The high-level approach of
these problems permits the intervention of an
intelligent agent to adapt techniques, models or

0-7803-7440-1/02/$17.00 © 2002 IEEE

381

methods to the particular design. The agent can
be a designer, assisted by man-machine dialog
interface, or an intelligent system. Testability
measures the difficulty of test; it is used in this
paper to emphasize the high-level strategy.

2. HIERARCHY TYPES

Coexistent interdependent hierarchies structure

the universe of models for complex systems,

e.g., hard/ soft ones. They belong to different

hierarchy types, defined by abstraction levels,

block structures, classes, symbolization and
knowledge abstractions. Abstraction and
hierarchy are semantic and syntactical aspects
of a unique fundamental concept, the most
powerful tool in systematic knowledge;
hierarchy results formalizing abstraction.

Different hierarchy types correspond to the

abstraction kind they reflect (abstraction goal):

« Class hierarchy (Tconcepts) <> virtual
framework to represent any hierarchy,
based on form-contents dichotomy,
modularity, inheritance, polymorphism.

« Symbolization hierarchy (Tmathematics)
<> stepwise formalism for all kind of types.

o Structure hierarchy (Tmanaging) >
recursive "Divide et Impera et Intellige".

« Construction hierarchy (Tsimulation) >
simulation = design/verification framework
of autonomous levels for different grades
of abstraction.

. Knowledge hierarchy (Ttheories) <>
reflexive abstraction ("in a deeper sense"),
aiming that each level has knowledge of its
inferior levels, including itself.

3. INTELLIGENCE SIMULATION

Understanding and construction [Niculiu] have
correspondent hierarchy types: their syntax
relies on classes, their meaning on symbols and
their use on modules. The hierarchy types can

be formalized in the theory of categories.
Constructive type theory permits formal
specification and verification by generating an
object satisfying the specification. Conscience
is self-awareness of individual intelligence
(adaptability, conscience, intention) and faith
(intuition, inspiration, imagination), as well as
of the relation to the local context (society) and
to the global one (universe). The convergence
process of evolution demands struggle against
time, with structure as ally. Conscience needs,
more than discrete recurrence, continuous
feedback. Social and individual conscience are
mostly divergent nowadays, ie., we only
performed "Divide et Impera", neglecting "et
Intellige". It's high time to correct this.

The structure of the communication between
heterogeneous parts of the simulated system
and with its exterior should reflect the
hierarchies of the simulation technique/ model/
method. Representation is a 1-to-1 mapping
from the universe of systems to a hierarchical
universe of models, so a representation can be
inverted. Object-orientation suits for this as a
model needs knowledge and manipulation, so
it has two complementary parts: description
and operation. We define a general hierarchical
approach for complex simulation, applying it
to handle communication between different
domains implied by hard-soft systems. It
combines dynamic objects handled in software
with parallel activities realized in hardware. A
main constraint for the simulation is testability.
Design-for-testability techniques applied to
different models assisted by specific methods
increase the fault coverage and reduce the test
generation time. Modification of the system's
specification to improve testability performed
at higher levels of the design hierarchy reduces
the complexity of their generation/ application.
We propose a behavioral adaptable DFT
technique. Behavior of the complex system
under design is specified initially in a high-
level description language, representing the
highest level of the construction hierarchy.
This way we also contribute to hard-soft DFT

4. DESIGN FOR TESTABILITY

DFT must suit the behavioral specification of
today’s complex system design. Referring to
high-level synthesis, DFT can operate before,

382

while or after it. The first choice permits the
intervention of an intelligent agent for adapting
the DFT technique, model or method to the
particular design. We call it behavioral
adaptable DFT. It improves the testability,
measured with adequate methods. This is done
direct on the behavioral specification or aided
by special representations, which permit return
to the behavioral description after improving
the testability of the system to be designed.
The second choice is synthesis for testability,
while the third could be called - register-
transfer level - DFT. This paper concentrates
on an improved structural BADFT.

Memory Elements Description

Memory elements - registers (arrayed FFs)/
flip-flops/ latches (clock-less FFs) - are
represented in behavioral descriptions by
variables or signals. Variables are description
objects local to processes/ subprograms, used
to store intermediate values between sequential
statements, characterized by free assignment

(exception: global variables). Signals are
permanent description objects to link
concurrent elements: components/ processes/
concurrent assignments, demanding

synchronized assignment, declared locally -

within architecture, block or other declarative

region, or globally - in extended package. In

the context of a process synchronized by a

clock signal, in a behavioral description,

signals implicated in- simple/ multiple signal
assignment generate memory during synthesis.

Instances of this rule are:

« Multiple synchronization points, i.e.,
several wait statements with identical
synchronization conditions) infer memory
elements. This allows describing Finite
State Machines without declaring the state
variables. Several wait statements with
different synchronization conditions are not
yet able for synthesis.

o If a signal is read, its value used, before
being assigned, it infers’ memory. A
particular case of this rule is a conditional
statement that does not affect a signal in
every of its branches.

An analog rule can be formulated for variables:
« Inside a process, a variable that must hold
values between iterations of the process
implies memory elements, i.e., a variable

which is set but not used between
synchronization statements infers memory.
This happens also for variables being read
before assigned.

The context is not restrictive, as all concurrent
statements are equivalent to processes
(excepting direct/ component instance
creation). For called subprograms, the rules of
memory inference can be deduced directly:
pure functions (without side effects) do not
infer memory elements - while procedures,
because of their side effects, do.

DFT Techniques

The most used DFT techniques are Scanning,
Built-In Self-Test and Test Point Insertion.
They can be applied at the different levels of
the design hierarchy (behavior, RTL, logic)
and can be combined. We begin with PS
applied to the autonomous blocks of the
behavioral (V)HDL specification, but the other
techniques can contribute to improve the
testability of the behavioral specification or the
way to this goal. All types of hierarchy are
implied in this approach: class-object
framework, symbolization degree and module
structure, as well as design/ knowledge
approach.

High-Level Improved Partial Scan

S-graph = (FFs, combinationalPaths) is a
weighted directed graph; testability is related to
cycles and sequential depth, but can also be
represented, partially or totally, by the node
weights. The S-graph is used as intermediate
format of high-level synthesis in literature, but
can be managed as model of the behavioral
description. From structural point of view,
feedback cycles among registers are mainly
responsible for low testability, as their total
length influences exponentially the complexity
of test generation. Only the maximal strongly
connected sub-graphs must be considered
when reducing the cycle-size-sum, because
strong connected is dual to a-cyclic. The next
structural attribute that testability depends on
(linearly) is sequential depth. The algorithm to
eliminate cycles is minimum Feedback Vertex
Set. It consists in finding the smallest set of
(weighted) nodes whose removal results in a
directed a-cyclic graph (DAG). Self-loops and

383

other loop-structures that do not pose test
problems can be excepted, e.g., by absorbing
them in nodes. This algorithm is NP-complete;
different solutions to reduce the complexity
must be applied to the graph: partitioning and
FVS-preserving transformations. Formal or
heuristic testability measures (to be improved)
can be defined on the structural model.
Examples of these measures are: probabilistic
metrics for signals/ variables (randomness,
transparency) operated within a Markov chain
model, respectively, with composition rules.
The weights of the S-graph retain the cost/ gain
to scan a node, e.g., gain < (number X length
of cycles that contain the node, sequential
depth reduction).

G=(V,A), directed graph; FVS: G—>min w(V’),
G =(V-V,A-I(V’)- O(V")) a-cyclic.

G’ can be replaced by: G’ = (V, A-I(V")).

As FVS is NP-complete, heuristics are used to
sort the vertices of the S-graph and to
formulate appropriate continuation criteria.
Even more, they can improve testability by
transformations that preserve functionality as
well as timing of the specification. An
alternative to heuristics is using graph theoretic
algorithms to reduce the graph before FVS.

We enhanced the structural technique by
textual methods used for test point insertion:
Syntactical analysis on the behavioral
description is used to measure the testability,
determining different aspects that reduce it for
the specified module [Larsson]. Hard-to-test
parts, represented by variables/ signals, are
indicated, so register selection for PS can be
guided. A HDL behavioral specification is
used directly to measure and to improve
testability. Different aspects that contribute to
low testability of the hardware corresponding
to objects of the system’s/ component’s
specification of behavior are combined and
compatibilized by algebraic operations to
reflect the testability of a signal/ variable.
Experimented textual testability measures are:
restricted value range of variable/ signal in a
description statement, non-uniform distribution
caused by an operation on the values of
variables/ signals, reduced accessibility of
instructions caused by conditions.

Behavioral Enhanced S-Graph for BADFT
We present an example of the approach. An

intelligent interface assures the translation, in
both senses, from B-VHDL description to a
structural representation of the required
behavior that guides the PS (BS-graph). A
knowledge base assists generating the
weighted directed graph (FFs, combinational
paths) and to return to text the differences
caused by transformation for testability
improvement. The rules of correspondence
between description object assignments and
registers, as well as rules to translate the data
flow of behavioral specification to weighted
arcs in the graph counterpart and to combine
different testability measures in node weights
guide the first step, while incrementing rules
for VHDL description solve the last one.
Testability for behavioral description based on
data objects and data functions results, as
usual, from controllability and observability. If
the test vectors applied on the input of a
description module form a complete vector set,
the module is controllable. A complete vector
set causes every element of the module, on the
current description level, to traverse its whole-
defined value range for objects and input range
for functions. If the values of all elements of
the module can be determined of its response
to a complete vector set, it is observable. The
FS case is solved [Fleury]. First, memory
elements- are located among the HDL-objects;
each is related to a number of FFs depending
on the type of the considered variable/ signal..
Then, a scan chain is built that contains all
design FFs; this implies following steps: the
number n(x) of FFs for each behavioral object
X 1s determined; the behavioral VHDL
description of scan is added for each located
memory element; the n local scan chains
corresponding . to the memory elements
contained in the array mem are connected. The
difference to FS needed by PS for the return
translation is a pointing scheme for the scanned
objects among signals/ variables of the
behavioral specification. This can be managed
by an adequate data structure or by using
access types or attributes in VHDL. What
remains to add is the partial register selection.
FFs are selected for scan, but when a register is
used in parallel, it candidates entirely for scan.
For PS, the variables/ signals inferring memory
are sorted to select incrementally the scan
elements that will be eventually mapped to the
scan register. The- selection is integrated,

384

applying together, for every iteration of the
graph’s method, the function to measure and
that to improve testability. We combine
structural and textual DFT methods. A
supplementary analysis of node relationship
can reduce the number of iterations affected to
testability improvement: <= grouping hard-to-
test parts according to their interdependencies,
so that, at each iteration, parts of different
groups can be improved together without
affecting each other. Nodes are grouped
together, if they share the shortest justification
path from primary input or shortest
propagation path to primary output. The
testability values for all variables/ signals are
ranged and the objects sorted in increasing
order of their testability. After selecting the
hardest-to-test object (represented as node in
the BS-graph model) at the current iteration,
the sorted list of nodes is traversed grouping
the nodes on the shortest paths of the selected
object to I/O together, while the rest of the
nodes are selected for scan, in decreasing
hardness-to-test order. The idea can be
extended to cycle reduction.

V. CONCLUSIONS

A necessary condition to find the right way to
intelligent simulation is hierarchical hardware-
software analog-digital intelligence simulation,
which has to be assisted by high-level
adaptable design for testability. Applying
"Divide et Impera et Intellige" to hierarchy
types (structural approach, symbolic meaning,
object-oriented representation) comprehensive
construction is revealed. Further, hierarchical
descriptions in the formalism of categories
guide us to a kernel for self-organizing systems
demanding for self-awareness.

REFERENCES

1. H. Fleury, C. Aktouf, C. Robach: A. Practical
Technique for Behavioral Scan Insertion,
International Test Synthesis Workshop, 1999.

2. E. Larsson: High-Level Testability Analysis &
Enhancement Techniques, Ph.D. Thesis,
Linkoping Untversity, 1998.

3. T.Niculiu, S. Cotofana: Hierarchical Intelligent
Mixed Simulation, European Simulation
Multiconference, 2002.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

