Reconfigurable Implementation for the AES Algorithm

Raoel Ashruf, Georgi Gaydadjiev, Stamatis Vassiliadis
Computer Engineering Laboratory,
Electrical Engineering Department,
Delft University of Technology,
Délft, The Netherlands
{rmasb, Georgi } @Dutepp0.ET.TUDelft.NL

Abstract— The choice of a platform, software, ASIC or
FPGA, is driven by several aspects, such as algorithm per-
formance, cost and flexibility. Although ASIC has the high-
est performance and the lowest unit cost, it has no flexibil-
ity at all. While software has the most flexibility of all, the
performance is very low. The MOLEN architecture, devel-
oped at the Techinical University of Delft, open up new per-
spective for this problem. The architecture is based on a
cooperation between a general purpose core processor and
reconfigurable hardware, for example a FPGA. Since cryp-
tographic algorithms are relative frequently upgraded, this
high flexibility is desperately needed. There are several rea-
sons for upgrading such as when the algorithm is broken
or there is a better algorithm or even in case where an al-
gorithm independent protocol is needed. To put it briefly
the pu-coded processor put a new perspective on great per-
formance and high flexibility. In this paper we investigate
several Rijndael (AES) implementations based on the Molen
pp-coded processor. Two types of FPGAs, Xilinx and Altera,
are evaluated in order to produce realistic results. In addi-
tion, a modified simulator based on the SimpleScalar Toolset
(v3.0)is used to estimate the performance potential. The pro-
filing of the AES code is done based on different method-
ologies. In this paper an analogy is drawn between. The
VHDL descriptions produced, are enhanced with standard
interface making them reusable for other research projects
based on the same architecture and dealing with similar data
processing problems. The AES running on the top of Molen
performs equaly good as other FPGA based solutions. The
main advantage of our solution is that reconfiguration from
one keysize to another is done faster than on pure FPGA im-
plementations. Our solution is applicable in a wide range of
devices - staring from mainframes and going down to very
limited architectures, e.g. smart card microcontrollers.

Keywords— Reconfigurable Processors, VHDL, FPGA,
AES

I. INTRODUCTION

Since privacy issues and network security are emerg-
ing due to the wide internet penetration, the research
in cryptography and application of cryptographical algo-
rithms is increasing. Not only the algorithm reliability,
but also the speed performance and implementation flex-
ibility are considered as major factors for improvement.

In the early days, ASICs (Application Specific Integrated
Circuits) where used to implement such systems. Consid-
ering the variety of algorithms and the fact that many new
standards are developed continuously, the next logical step
was to use reconfigurable hardware for implementing such
algorithms. Substantial amount of work has been reported
on cryptography implementations based on FPGAs (Field
Programmable Gate Arrays). Such systems, however, are
idle for the time a new hardware configuration is being
loaded. This fact is unacceptable for some of the systems,
e.g. transaction verification systems. Architectures con-
sisting of reconfigurable hardware and one or more general
purpose processors are considered as a good candidates for
speeding up the performance and are capable of reconfig-
uration without execution interrupting. The MOLEN pu-
coded processor [3], designed at the Delft University of
Technology is one example for such an architecture. This
paper concentrates on the speed performance of the AES
encryption algorithm mapped on the pu-coded processor.
The performance results are compared to the ANSI C soft-
ware implementation of AES as presented in [1]. Since the
realization of the used architecture was still not finalized at
the time this paper was written, the whole architecture is
simulated in a modified Simple Scalar cycle accurate sim-
ulator (v3.0) [2].

The organization of this paper is as follows. Section
Il describes the AES algorithm and analyzes different al-
gorithm parts eligible for FPGA implementation. Sec-
tion Il introduces the MOLEN pu-coded architecture used
for the implementation. Section IV shows the perfor-
mance numbers of our AES implementation based on the
MOLEN processor. Section V concludes the discussion
and presents the future developments to be completed.

I1. AES ALGORITHM ANALYSIS AND
IMPLEMENTATION

The Advanced Encryption Standard (AES), also known
as the Rijndael algorithm, is a block cipher that can en-
crypt data blocks of 128, 192 or 256 bits using symmetric
keys of 128, 192 or 256 bits. The main idea behind in-

169

troducing AES was to replace the DES (and triple DES)
algorithm used for more than 20 years now. Due to its
performance, security, efficiency, ease of implementation
and flexibility Rijndael was chosen for AES standard in the
year 2001. According to the National Institutes of Stan-
dards and Technology a computer that could crack 56-bit
DES key in just one second would need 149 trillion years
to do the same with a 128-bit AES key. Our initial in-
vestigation will only focus on the 128 bit implementation,
however, the same techniques are applicable also for big-
ger key sizes.

A. The algorithm

Rijndael is designed to use only simple byte (8-bits) op-
erations. This makes Rijndael implementations possible
even on very simple microcontrollers. The encryption of a
data block is composed of an initial XOR step with a tem-
porally key, several round transformations (depending on
the key or block size) and an additional round performed
at the end with one round step omitted. In case of 128 bits
block size, there are 9 rounds, each involving the follow-
ing four transformations (also known as round transfor ma-
tions):

ByteSub

ShiftRow
Mizcolumn
AddRoundK ey

For the final step, the Mixcolumn transformation is not
performed. For data decryption, however, different trans-
formations are used for the first three round transforma-
tions, respectively InvByteSub, Inv&hiftRow and InvMix-
Column. In addition, the round transformations are ap-
plied in an inverse sequence inside one round. This all
makes the encryption and the decryption procedures differ-
ent, enforcing separate performance investigation for both
directions.

B. Performance analysis

First we analyze each transformations based on how
many execution cycles it would take on the proposed archi-
tecture. This done to estimate which parts of the algorithm
should be implemented in hardware. As described earlier,
the AES algorithm consists of many different transforma-
tions. The first step in ciphering mode is the initialization
step. In this step the input data is xor-ed with the 128-bit
key. Since the proposed architecture will contain 4 ALUS,
it would just take 1 execution cycle to perform this oper-
ation considering the data is in place. This all makes this
step not interesting for hardware implementation. After

the initialization step, the first round will be initiated. The
first round transformation of this step will be the byte sub-
stitution (ByteSub) where 16 transformed data bytes are
substituted. This is most probably fetching data out of the
memory or inside the register file, which will also take a
limited amount of clock cycles. The next round transfor-
mation inside the round is ShiftRows. This is a simple re-
ordering of the bytes, which isn’t really explicitly needed
and can be performed together with the next transforma-
tion, that is MixColumn. Mixcolumn is based on matrix
multiplication in GF(28), which execution will definitely
cost significant amount of cycles. Profiling of the algo-
rithm shows that this stage will cost 4948605 processor
cycles while encrypting a 4k input data. The last round
transformation is again simple arithmetic operation not in-
teresting for hardware implementation. The following en-
cryption process is based on repetition of the transforma-
tions described above. For the deciphering mode only the
Inverse Mixcolumn (InvMixcolumn) transformation, will
take significant amount of clock cycles making it a good
candidate for implementation in hardware. To summarize
it, only the Mixcolumn and the Inverse Mixcolumn trans-
formation are illegible candidates for implementing it in
hardware.

C. The hardware implementation of Mixcolum and In-
verse Mixcolumn

The MixColumn transformation is a based on matrix
multiplication in GF28. Every 16 input bytes are multi-
plied by the following matrix:

02 03 01 01
01 02 03 01
01 01 02 03 @)
03 01 01 02

The multiplications are performed in GF(2%) domain.
Multiplication by a constant in GF(28) will result in xor-
ing the bits of the input byte in a particular way. For ex-
ample multiplication by the constant ”03” in GF(28) is
depicted in figure 1.

For the inverse Mixcolumn transformation all columns
are multiplied by a different matrix, which is depicted be-
low. Please note, that the matrix elements are denoted as
hexadecimal values.

0E 0B 0D 09
09 0OE 0B 0D @)
0D 09 OFE 0B
0B 0D 09 OF

This matrix is the inverse matrix of the one used in Mix-
column. The primary difference, compared to Mixcolumn,

170

in[i] A

inpurtfo:v] D_ ; auk in[in] i1
o inf1] D&
in

in[1] i1 Lt 2 auk
: auk in[n]
in[u] 7

>+ Co P17

e

$ L
in[:l-]]

irl[l]]iH1

in[i]

ok

infin] [
infi]

ok

infnl iHs
infi]

in[n iHz1
in[i]]DL

- in[i] ()

in[] iI :] auk
auk in[n]
in[1]]

Fig. 1. Multiplication by constant 3in GF(2%)

alk

are the bigger hexadecimal values of the matrix coeffi-
cients. Multiplication by these constant elements of the
Galois Field leads to more complex dependency. Since
more gates are used the Inverse Mixcolumn transforma-
tion has a longer critical path compared to the Mixcolumn
transformation. This is the main property that the decryp-
tion process is more time consuming than the encryption
process.

I1l. THE MOLEN ppu-CODED PROCESSOR

The MOLEN [3] architecture is based on a cooperation
between a general purpose core processor and reconfig-
urable hardware capable of partial reconfiguration. A new
hardware/software co-design methodology forms the ba-
sis of the MOLEN approach. In this methodology, ppu-
code is utilized that controls the reconfiguration and execu-
tion processes of the reconfigurable hardware (unit). The
MOLEN approach can support an infinite number of im-
plementations on the FPGA structure as long as they fit on
the available FPGA. Consequently, a storage unit (called
pp-code unit) is present on-chip that permanently stores
frequently used pucodes and temporarily stores less fre-
quently used pu-code in order to diminish their loading
times. This all provides a suitable platform for exploring
the hardware/software paradigm to gain the best algorithm
performance.

A. The Architecture

The machine organization is shown in figure 2. The In-
struction Buffer is an additional instruction cache, which
stores the instruction that are fetched from the memory.
The arbiter partially decodes these instructions in order to
determine if it should be issued by the core processor (CP)
or the reconfigurable hardware unit. The needed data are
fetched from the general-purpose registers (GPRs) or the
data cache. The results are written back to the same GPRs
or the data cache, while the control register (CR) stores
other status information. The reconfigurable unit consists
of a custom configured unit (CCU) and a pu-code unit.
This allows hardware reconfiguration by firmware via an
extension of the classical microcode. There are two new
instructions, which allow partial and complete reconfigu-
ration of the CCU. These are p-set and c-set instructions.
The p-set instructions configures the CCU only partially,
while the c-set instructions does it totally. For actually
executing microcode on the configured CCU, there is an
extra instruction called ezecute. These new instructions
point to the memory location where the reconfiguration or
execution microcode is stored. The sequencer is respon-
sible for the microinstruction execution sequence for the
CCU, while the p-CONTROL STORE unit only store the
microcodes. The sequencer uses a residence table to de-
termine whether the microcode is already cached in the
p-CONTROL STORE unit. The table consists the most
frequently used translations and keeps track of these trans-
lations.

MEMORY
1 BUFFER
CP
ARBITER DATA
1| prcode ccu |
1 1 1
ncoll | moonfigmrahlennt F J
GPR

Fig. 2. Block Diagram of the MOLEN architecture

171

TABLE |
THE SPEED OF THE AES IN SOFTWARE AND ON THE pu-CODED PROCESSOR. (BARRING UNFORESEEN CIRCUMSTANCES)

Encryption | Decryption
(ANSI C) Software based 68.75 kb/s | 82.75 kb/s
pp-coded processor with Xilinx FPGA || 33.75 kb/s | 34.25 kb/s
pp-coded processor with Altera FPGA || 33.50 kb/s | 34.25 kb/s
Gain with the Altera FPGA 51% 59 %
Gain with the Xilinx FPGA 51% 59%

B. The advantage of using this architecture

The choice of a platform (software, ASICs or FPGAS) is
driven by several aspects such as algorithm performance,
costs and flexibility. It is known that ASICs have the high-
est speed performance while its flexibility is very limited.
For software it is quite the opposite. Since cryptographic
algorithms are relative frequently upgraded, not only the
high flexibility is needed, but also the speed performance
is desperately needed. These needs can be fulfilled by a
FPGA. The only disadvantage of FPGAs is the unit-cost,
which is dependent of the FPGA size. Since the MOLEN
architecture is based on a combination of software and
FPGA, we get high flexibility, good performance and re-
duced cost.

IV. THE PERFORMANCE RESULTS

Both the Mixcolumn and the Inverse Mixcolumn trans-
formations are simulated in Modelsim (v5.5) and synthe-
sized with Leonardo spectrum (v2001-1a32) CAD tools.
The VHDL sources were synthesized for both Altera
EPEX20k 400FC672 and Xilinx Spartan2 2s15cs144 FP-
GAs devices. The results are presented in table 1.

TABLE I
THE CRITICAL PATH DELAY & USED CLBS OF MIXCOLUMN
AND INVERSE MIXCOLUMN

Altera Xilinx

Mixcolumn 15.24 ns | 12.73ns

Inverse Mixcolumn 21.78 ns | 14,82ns
Used CLBs for Mixcolumn 1.35% 6.94%
Used CLBs for InvMixcolumn 3.41% | 18.23%

Due to the bigger hexadecimal values of the matrix co-
efficients an increased amount of CLBs is used for the
Inverse Mixcolumn implementation compared to Mixcol-
umn. The syntehsis results vallidate the assumption, that
Inverse Mixcolumn is more compute intensive. Since the
critical path delays are known, we were able to calculate
the maximum frequencies for both Mixcolumn and Inverse
Mixcolumn. For example, the maximum clock frequency

for Mixcolumn on the Altera FPGA was determined on65
MHz.

Since the realization of the Molen pu-coded processor
was still under development, the whole architecture was
simulated in a modified version of sim-outorder simula-
tor from the Simple Scalar (V3.0) [3] toolset. We as-
sumed that the general purpose processor of the proposed
machine organization is clocked on 1 GHz. The sim-
ulator configuration was as follow: 4 integer ALUs, 1
integer MULT/Div-unit, 4 FP adders, 1 FP MULT/Div-
unit, 2 memory ports (R/W), 1 mixcolumn-unit and 1
inverseMixcolumn-unit. A 4kbyte text file with a 128-bit
key in ECB mode [1] was used as a benchmark. With the
help of microcode annotation and the synthesis results the
speed performance results were obtained. The normalized
results of the simulations are presented in table I.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the speed performace
of the AES on the Molen pu-coded processor. The pu-
coded processor allows pieces of the algorithm to execute
directly on hardware. The whole architecture was simu-
lated in a modifed sim-outorder simulator of the Simple
Scalar (V3.0) [3]. The obtained speed gain on this archi-
tecture was 51% for encryption mode and 59% for decryp-
tion mode.

When the Molen realization is finalized, the results of
this paper are to be vallidated on real hardware. In addition
to this, future work will concentrate on speed performance
for other ciphering algorithms on the Molen pu-coded pro-
cessor. Anoter important aspect for future research is the
vulnerability of algorithms on the Molen pu-coded proces-
sor.

REFERENCES

[1] J. Daemen and V. Rijmen. The design of rijndael, 2002.

[2] M.AustinE. LarsonandD. Erns. The simplescalar tool set, version
2.0, doug burger. http://mwww.simplescalar.com

[3] S. Vassiliadis S.Cotofana and S. Wong. The molen pu-coded
processor. In The 11th International Conference on Field Pro-
grammable Logic and Application (FPL), Augustus 2001.

172

