A Flexible Simulator for Exploring Hardware Rasterizers

losif Antochi, Ben Juurlink, and Stamatis Vassiliadis
Computer Engineering Laboratory, Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands
Phone: +31 (0)15 27 83644, Fax: +31 (0)15 27 84898
E-mail: {t kg| benj | stamati s}@e. et.tudel ft.nl

Abstract— Owing to technological advances, applications
that once run on PCs are now becoming available on battery-
powered, mobile devices such as PDAs and even mobile
phones. Due to specific limitations of these devices such
as power consumption and gate count restrictions, until re-
cently, their processing power was limited. To overcome the
limited processing power, different multimedia accelerators
have been designed and implemented. In order to design and
evaluate the performance and power consumption of such
multimedia accelerators, in particular hardware graphics
accelerators, we started implementing a flexible OpenGL
simulator. This paper describes this simulator suitable for
design space exploration of hardware graphics accelerators
at the architectural level.

Keywords—graphics architecture, rasterizer simulator.

I. INTRODUCTION

The performance of interactive graphics architectures
[1][2][3] has been improving at phenomenal rates over the
past few decades. The demand was for faster and more
powerful renderers, thus only solving the system design
problem of how to achieve maximum rendering perfor-
mance from the technology available to implement the sys-
tem was an issue. On the other hand, with the advent of
mobile platforms for computing and communications, sys-
tem designers and integrators were confronted with a mas-
sive shortage of low-cost, moderate-to-high performance
3D graphics systems suitable for low-power operation.
Only recently, a few proposed and commercially imple-
mented 3D graphics architectures [4][5][6] have emerged
amenable for the strict requirements of “green” mode of
operation of embedded systems. For this shifted paradigm,
viewed in the larger context of system-on-chip afford-
able today, the design methodology is still in its infancy
and rather an unexplored field, nevertheless looking very
promising to researchers and with a large room for inno-
vation.

The main goal of our project is the design of a low-
power 2D and 3D graphics accelerator for mobile termi-
nals equipped with an ARM core. The purpose of this
accelerator is to relieve the burden of graphical compu-
tations from the ARM CPU core. Initially, the accelerator

concerns only the back-end stage of the graphics pipeline,
more specifically, the rasterization stage.

In order to design and evaluate the performance and
power consumption of such an accelerator, we needed an
OpenGL architectural level hardware graphics simulator.
We searched for a flexible OpenGL simulator and to the
best of our knowledge, an architectural level hardware
graphics simulator was not publicly available. There are,
however, software OpenGL implementations that support
profiling such as GLSim [7] from Stanford and GLDebug
from SGI. Since we could not found an appropriate simula-
tor four our purpose we started designing our own flexible
simulator framework. Our simulator is based on the freely
available Mesa library [8] (it is coupled with the Mesa
library as a driver) and it simulates the back-end of the
OpenGL graphics pipeline (the rasterization stage). The
main advantage of the presented simulator is that it allows
a high degree of flexibility for studying the different trade-
offs (e.g. the format and the precision used to represent the
coordinates of the graphics primitives) that can be made at
the architectural level of a graphics hardware accelerator.

The simulator accurately measures the data traffic be-
tween different parts of the system. Since data traffic
accounts for a large part of the overall energy consump-
tion [9], reducing the power consumption can be achieved
by optimizing the data traffic between different blocks of
the accelerator and between the accelerator and the main
memory/CPU. Early, high-level estimation of data traffic
is needed in order to reduce the architectural design space,
since complete exploration of the search space at, for ex-
ample, the gate level is infeasible.

Il. BACKGROUND

The design of a hardware architecture for a computer
graphics pipeline requires a thorough understanding of the
algorithms involved at each stage, and the implications
these algorithms have on the organization of the pipeline
architecture. The choice of algorithm, the flow of geom-
etry data through the pipeline, and bit width precision are
crucial issues in the design of new hardware accelerators.
Making these decisions correctly requires intensive inves-

tigation and experimentation.

One of the most important terms encountered in com-
puter graphics is Color. Due to the fact that computers
have finite resources, all the values used for computation
in computer generated graphics have a certain degree of
approximation. In the case of the color values, the RGB
representation it is widely used. In this representation each
color that we want to represent will be obtain by specifying
its Red ,Green and Blue components (channels), so each
color (or approximation) can be represented as a combina-
tion of the three primary components mentioned above. As
a practical example, most present graphics cards represent
colors either as a 16-, 24-, or 32-bit values, each represen-
tation having a number of bits allocated per RGB compo-
nent (e.g. A 16-bit color value has a 5-bit Red component,
a 6-bit Green component, and a 5-bit Blue component).
In some cases, for instance when it is necessary to simu-
late transparency, another channel (named Alpha) can be
added, and the new tuple is called an RGBA color. There
are also other systems to represent colors based on lumi-
nance or intensity but we do not describe them here. For
the same reason (limited resources) the output device (dis-
play) of a computer has a discrete nature being organized
as an array of elements, each element being able to store
a color component. This organization of the output sys-
tem has an impact on the visual quality of the represented
scenes since, if the number of points per output device is to
small, unpleasant visual effects can occur. One of this ef-
fects is aliasing. This effect is observed even in the simple
case of drawing a line that is neither vertical nor horizon-
tal. Instead of displaying a continuous smooth line, the
display can represent a line that has a “stair-case” shape.

Another term often used in graphics is texture. Usu-
ally a texture represents an image that will be mapped on
a 3D object in order to make its appearance more realis-
tic. The advantage of using this approach to draw a 3D
object, instead of defining each point of the object, is that
the computations required to draw the object are drasti-
cally reduced due to the fact that some computations are
executed only on the vertices of the respective object. For
some applications (e.g. games) a texture might represent
more than a pattern that will be mapped onto a object. For
instance, if we choose to represent a wooden box, besides
the look of wood material also the sound that is produced
when we hit the box is important so it becomes part of the
texture, but from the graphics point of view this is irrele-
vant since only the color components are used to represent
objects.

3D graphics refers to systems used to create and ma-
nipulate a modeled “world” or scene on a computer and to
display the world on the 2D computer screen in a realis-

tic way. The world is typically constructed from objects
made up from meshes of adjoining triangles or polygons
each defined by its vertices. Each vertex has a number of
properties including its position in 3D space (z, v, z) and
color. Each polygon additionally has some global proper-
ties such as texture. To allow users to interact with the 3D
world, either to view it from a new position or to change
objects within it, the entire world must be processed to
produce a new image to be displayed on a screen "view-
port”. This processing consists of three main steps: trans-
form and lighting, hidden surface removal, and texturing
and shading. Transformation alters the world as objects
move within it or as a user’s point of view changes. Each
change can affect the position of any or all of the vertices
within the world. Lighting then performs the calculations
necessary to simulate the effect of different lights on ob-
jects in the scene, affecting the color of each vertex as a
result. Finally texturing and shading determine the color
of each pixel in the scene by taking into account both the
color of the polygons and their texture. Textures are stored
in memory and the relevant pixel from the texture map
(called texels) are retrieved and used to texture each pixel
before it is written into the display memory. Depending on
the texturing technique, each output pixel requires a dif-
ferent number of texels. The simplest technique, called
point sampling texturing, uses a single texel from the tex-
ture map. More advanced texturing schemes interpolate
among more texels to accurately estimate the texture for
the output pixel.

Even though we focus on 3D graphics, it is worth men-
tioning that 2D graphics is also an important part of a
computer graphics accelerator. A 2D graphics accelera-
tor should include circuitry able to speed up the execu-
tions of functions like line drawing, block transfers, area
fill, logical and arithmetic mixing, map masking, scissor-
ing, and hardware cursor. On the other hand, traditionally,
the 3D graphics generation process has a pipeline struc-
ture. The main function of a 3D graphics pipeline is to
generate three dimensional objects on a two dimensional
device while taking into consideration factors such as light
sources, lighting models, textures and other information
that would have an impact on rendering quality.

I1l. PROPOSED FRAMEWORK

In order to implement the framework for the simulator,
besides the Mesa library, we have searched for a portable
and flexible library to be used for the simulator graphi-
cal interface (windows, menus) but also for the underlying
components of the simulator such as communication and
synchronization. One important criterion in choosing the
library was retargetability, so that the simulator to be eas-

ily ported and run on different systems. Also an object
oriented approach was preferred. The best available so-
lution was found to be the Qt library [10], which is easy
to learn and, hence, suitable for the implementors and the
extenders of the simulator.

A. Global Structure of the Simulator

The structure of the simulator framework is depicted in
Fig. 1. Input for the simulator is generated by running ap-
plications (benchmarks) through the Mesa library, which is
augmented so that it sends the specific rasterization prim-
itives to the simulator. Based on the performance evalua-
tion of the obtained results the rasterizer architecture can
be modified, and the whole process is restarted.

Q1)

‘ Application ‘

I

1
) z
Simulator Front-end I : ©]
% (Augmentend Mesg) oee- i New Architecture ‘ 5
= | i é
S i | [}
3 i TCPIP ! ! =
= | : P
9 | Simulator Back-end o | ‘ Performance Eval. ‘ z
=
)
I

Fig. 1. The simulator framework.

Actually, the simulator is designed as two distinct enti-
ties:

o The Front-end. This part corresponds to the augmented
version of the Mesa library. It receives data to be rendered
from the benchmarks and implements the Transform and
Lighting stages of the OpenGL pipeline. The rasterization
instructions are sent to the back-end of the simulator.

o The Back-end. This unit is the core of the simulator.
This unit receives data from the augmented Mesa unit and
simulates the rasterizer.

The communication between the Front-end and the
Back-end is implemented using the TCP/IP protocol. This
allows the benchmark and the Front-end to be run on one
machine and the simulator on another. This approach can
be useful for running applications that are grabbing the in-
put devices, so that the user cannot interact with other ap-
plications while the current application is running, or run
full-screen since the simulator can be controlled separately
on another machine. Furthermore, the Front-end can use
the Mesa software rasterizer to display the result of the
rendering process. By running the rasterizer simulator on
another machine, a visual comparison of the image gen-
erated by the Mesa software rasterizer (the reference) and

image generated by the simulator can be performed. Since
the simulator might implement different algorithms in or-
der to improve performance or reduce power (e.g. using
different precision to represent colors or coordinates), the
image quality can be affected so in order to evaluate the
effect of the trade-offs to the image quality, a comparison
to a reference image can be performed.

The simulator can also read data from files written by
the Augmented Mesa unit for off-line processing.

B. Front-end (Mesa)

Since we are mainly concerned about the rasterization
part of an OpenGL hardware accelerator, we searched for
a software OpenGL implementation that can be used to
perform the required operations needed before the rasteri-
zation stage of the graphics pipeline. After examining cur-
rent software OpenGL implementations, we determined
that Mesa is one of the most complete software implemen-
tations of OpenGL and that it can be considered a reference
implementation. Recently, SGI released its free reference
OpenGL implementation [11], but it seems that this imple-
mentation requires an X Server in order to be functional,
since it is an extension to an X server.

The structure of the Mesa Library is depicted in Fig. 2.
Mesa provides a kernel “Mesa Core” that handles the in-
terface with the applications, the 3D pipeline generation,
and context management. The Software Rasterizer (Off-
Screen Mesa) is a device independent renderer which can
be compiled without major modifications on any architec-
ture, since it provides the simplest structure of a graphics
device by directly using the main memory for output of the
rendering process.

For each hardware device that needs to be controlled
by Mesa, a device driver table must be filled in which de-
scribes its capabilities regarding the rendering of triangles,
lines, and/or points. If the device does not implement in
hardware one of the above mentioned primitives, then the
default software rasterizer is used to render the respective
primitive. This ensures that whenever a primitive is not di-
rectly supported in hardware, it will always be supported
in software. This device table is actually where we hooked
up into Mesa and provided our own rasterization routines.
The real rasterization process is implemented as a sepa-
rate application so that the Mesa part of our simulator (the
front-end) is completely separated from the actual simula-
tor (the back-end).

C. Back-end (Qt)

In this section we describe the function of each unit and
discuss the issues that need to be investigated.

Mesa Core

Device Driver Entry Points

1 |

Software Rasterizer
(OS Mesa)

Triangle Line Point

Acceleration

I

A Graphics Accelerator

Acceleration Acceleration

Fig. 2. The Structure of Mesa Library v3.4.

The Back-end of the simulator was implemented using
an Object Oriented approach, each component is repre-
sented by an object. By using a separate object for each
unit, each unit can be easily modified as long as the in-
terface remains the same, which makes the simulator very
flexible. furthermore, by using a highly portable library as
a back-end of our simulator, the Qt library, the machines
that can be used as simulation platforms can be easily ex-
tended.

Depending on the implementation solutions, there are
some specific blocks to each accelerator but there are also
some common blocks that each hardware rasterizer should
contain. The datapath with the control logic of a simple
3D graphics accelerator is depicted in Fig. 3. The imple-
mentation is organized as a pipeline which is composed of
the following stages: Bus Interface, Triangle Setup, Span
Interpolation, Texture Processing, Pixel Processing, and
Video Memory.

C.1 Bus Interface

This unit is responsible for the data transfers among
the rasterizer and the processor or main memory. Instruc-
tions sent by the processor, are received here and parts of
them (the opcodes) dispatched to the Control Logic unit.
The remaining parts of the instructions (the operands) are
buffered and later sent to the units that require them such
as Triangle Setup or Texture Processing.

C.2 Triangle Setup Unit

Considering a complete software implementation of a
graphics library as a reference, we can distinguish increas-
ing degrees of acceleration of the graphics primitives by
moving their execution from the host processor to a dedi-
cated graphics processing device. Most 3D graphics archi-
tectures include a rasterizer to which the 3D vertex coordi-
nates in image space, their associated color values, and for
some architectures also texture coordinates, are sent. For

Bus Interface

T

TriangleSetup [T~ CZ-_]

—

Span Interpolation <--

) i

Texture Processing

)

Pixel Processing | | _____.

Control

Logic

,,,,,,,,,

Video Memory
Frame, Z, and ;\Fﬂe;(r;u(;re
Stencil Buffers y

Fig. 3. Thedatapath with the control logic of asimple 3D graph-
ics accelerator.

rasterization it is common to use triangles or triangle strips
as basic drawing primitives. The rasterizer interpolates the
depth and color values for all the pixels bounded by the
edges which define the triangles. Since triangles are pla-
nar shapes, a first idea to draw a triangle would be to lin-
early interpolate the vertex parameters along the edges and
then linearly interpolate the edge values along scan lines.
The problem that might appear is that linear interpolation
is correct only when all three vertices have the same depth
(z distance) from the observer. Otherwise, a “perspective
correction” is needed since the human perception of depth
is not linear, but hyperbolic.

Moving the slope and setup calculations for triangles to
the rasterizer off-loads the host processor from intensive
calculations and can significantly increase 3D system per-
formance. Besides freeing the main processing unit, com-
puting triangle setup data on the hardware rasterizer has
the additional advantage of freeing the data bus, or in other
words, to allow a higher triangle transfer rate to the hard-
ware accelerator. The usual amount of geometry informa-
tion required to draw a triangle is presented in Table I. If
the triangle setup stage is implemented in hardware, then
the group called “Setup parameters™ in Table | will be
computed by this unit, so the required geometry data traffic
between the CPU and the hardware accelerator is reduced
considerably.

Parameters

Triangle data

\ertices

Zo, Yo, 20, T1, Y1, 21, T2, Y2, 22

Colors

70, 490, b07 @q, 1, g1, b17 a1, 12, g2, b27 a

Texture Coordinates

up, Vo, U1, V1, U2, V2

Setup parameters

Edge interpolation increments

Az /Ay (for 3 edges)

color increments

or/dx, or/dy, dg/dx,dg/dy,
0b/dxz, 6b/oy, da/dx,da by

depth increments

dz/0x, 0z/dy

texture increments

du/dx, du/dy, ov/dx, dv/dy

TABLE
DATA NEEDED TO SETUP (DRAW) A TRIANGLE.

C.3 Span Interpolation Unit

The function of this unit is to linearly interpolate a set of
parameters passed from the Triangle Setup unit. To under-
stand what the problems are at this unit we should recall
that on each vertex of an object in the initial 3D scene the
following transformations are applied:

1. Transform coordinates form local to world coordinates.
2. Transform coordinates from world to eye coordinates.
3. Transform coordinates (perspective projection) from
eye coordinates to device (window) homogeneous coordi-
nates.

4. Perform primitive clipping.

5. Transform to normalized window coordinates.

The point in enumerating the above coordinate system
transformations is that the last coordinate system used be-
fore device coordinates are the eye coordinates. Linearly
interpolating all the parameters relative to window coordi-
nates does not always correspond to a linear interpolation
of the same parameters in eye space. The only case when
linear interpolation in window coordinates corresponds to
linear interpolation in eye space is when all the vertices of
the primitive have the same depth (z) value in the eye coor-
dinates. To obtain a correctly rendered primitive, theoreti-
cally, a division per parameter (e.g. color components and
texture coordinates) that has to be correctly interpolated,
should be performed, at each interpolation point. If a ver-
tex in the eye coordinates has the following homogeneous
representation: P, = [x., Y, 2e, We), t0 Obtain the window
coordinates, a perspective projection should be performed
and the respective homogeneous coordinates are P, =
[T, Yuw, 2w, Wey]. TO Obtain the normalized window coor-
dinates each component has to be divided by the w,, com-
ponent. Thus the window coordinates of the vertex P are

P{U = Pw/ww = [xw/wunyw/wwuZw/wwaww/ww] =

[, ybys 205 1], A similar process should be applied to

the other parameters of each vertex (colors, texture coordi-
nates) (more details are presented in [12]). So to correctly
render using a linear interpolation method the following
steps have to be performed

1. Construct a vector of values for each vertex of the tri-
angle

V= [xumyun Zwsy Wy P1,P2, P35 -5 Py 1]7

where n is the number of parameters that have to be in-
terpolated for each vertex, and the parameters pq, ..., p,
represent colors or texture coordinates.
2. Divide V by w,,. The new vector is

V/ = [xivvyim Z,iu, 17p/17p,2)péa "')p;fm 1,]a

where 1/ = 1/w,,.

3. Linearly interpolate all the elements of V" along poly-
gon edges and across scan lines inside the triangle.

4. At each pixel divide the parameters p; by the corre-
sponding 1’ value to get the proper perspectively projected
p values.

It is guaranteed that 1’ # 0, because after clipping all
w,, are positive.

Also, since division is slower than multiplication, if
there are many parameters p to interpolate then instead of
computing n divisions per pixel, each having the same di-
visor, one division and n multiplications can be computed
instead.

All parameters computed at this unit are sent to the fol-
lowing units on a “per fragment” base. Thus from now on
fragments are processed instead of primitives. Mostly a
fragment corresponds to a pixel, but this is not always true
since a fragment can be discarded so it might never be part
of the final image or it can be altered before reaching the
frame buffer.

C.4 Texture Processing Unit

Texture mapping is one of the methods employed to ob-
tain realistic picture generation. To obtain real-time per-
formance, usually a hardware implementation is required.
Texture mapping introduces two major problems: texture
coordinates computation and texture filtering. Comput-
ing texture coordinates is an operation which can intro-
duce rendering latency compared with the computation of
pixel coordinates. Usually, pixel coordinates are computed
by means of linear interpolation, but for “perspective cor-
rected” texture coordinates, linear interpolation is insuf-
ficient [13] and a hyperbolic interpolation is used or ap-
proximated. Texture filtering is also an important opera-
tion since it can introduce more rendering latency in the
graphics pipeline. A texture unit is a part of the graph-
ics pipeline which computes the physical texel coordinates
and applies a texture filtering method on each pixel pre-
sented at the input. Textures can have different dimensions
(usually powers of 2). Therefore, to obtain independence
of the texture size, all units before the texture unit use rel-
ative values (e.g. real numbers in the range [0,1]), for tex-
ture coordinates, and at the texture unit these coordinates
are transformed to physical texture coordinates. According
to the filtering method (point sampling, linear, bilinear, or
trilinear), the texture unit computes the RGB components
for the current pixel using 1, 2, 4, or 8 texels. It is im-
portant to note that for each pixel as many as 8 accesses
to the texture memory might be needed, so the bandwidth
between the texture unit and the texture memory should be
about 8 times larger than the bandwidth between the span
generator and the texture unit. In order to reduce the data
traffic from the texture memory to the texture unit and also
the power consumption which is important in low power
devices, and due to the high spatial locality, a texture cache
can be used between the texture unit and the texture mem-
ory. In a previous work [14], we proposed employing a
very small (128-512 bytes) texture cache between the tex-
ture unit and the texture memory. Some issues that need to
be investigated at this unit are:

1. Mip-map level selection when using mip-maps

2. What happens if the texture coordinates are larger than
the texture size?

3. How is the color from a texture map combined with the
incoming (RGBA) color?

C.4.a Mip-map Level Selection. One reason for using
mip-mapping is to increase the texture filtering quality by
using prefiltered (smaller) copies (texture planes) of the
original textures. The problem is that it needs to be known
how to select the “best” texture plane(s). The “best” tex-
ture plane is the plane for which the ratio texels per pixel

is the closest to 1. There can be two situations:
1. Magnification - one texel is mapped to multiple pixels.
2. Minification - multiple texels are mapped to the same
pixel.

In order to find the best texture plane(s) the following
parameters can be used. Let p(z,y) be a scale factor and
let

)\,(ZL', y) = 10g2 (p(l’, y)) (1)
Then the “level of detail” parameter A(x, y) is defined as

Max_LD, N(z,y) > Max_LD
May) = N(z,y), Min_LD < X(z,y) < Max_LD
©Y= 0 MinLD, X(z,y) < Min_LD

unde fined Min_ LD > Max_LD

)
where Max_LD and Min_LD are constants corresponding
to the minimum and the maximum level of detail. If
A(z,y) is less than or equal to a constant ¢ the texture
is said to be magnified. If it is greater, the texture is
minified. The value of ¢, the minification vs. magnifica-
tion switch-over point, is computed with respect to the
minification and magnification filters. If the magnifica-
tion filter is given by LINEAR and the minification filter
is given by NEAREST_MIPMAP_NEAREST or NEAR-
EST_MIPMAP_LINEAR, then ¢ = 0.5. This is done to
ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise ¢ = 0.

Considering that the u, v texture coordinates, for each
interoplation point, are functions of = and y, that is u =
u(z,y),v = v(z,y) then the p function used in Eq. (1) is
defined as:

p(r,y) =

(5 () () ()

While it is agreed that Equation (3) gives the best re-
sult when texturing, it is often impractical to implement.
Therefore, an implementation may approximate the ideal
p with a function f subject to the following conditions:

1. f is continuous and monotonically increasing in
|0u/dx|, |du/dy|, |dv/dz|, as well as |dv/dy|.

2. Let

~ maxd |24 |2
MM = tHax dx || dy
~maxd 2] |2
Mo = Hhax dx || oy

Then max{m,, m,} < f(z,y) < my + my,.

C.4.b Texture Warping Modes. Texture parameters re-
ceived from the span interpolation unit are multiplied by
the texture size for the selected plane (level) of the tex-
ture. After this procedure the obtained texture coordinates
can be larger than the size of the texture. According to
OpenGL specification in order to reduce the texture coor-
dinates to the size of the texture space the coordinates can
be clamped or repeated [15, pp. 124-125].

C.4.c Texture Blending Functions . After obtaining a
color from a texture map, the next step is to define how this
color is combined with the incoming fragment’s color. Ac-
cording to [15], a separate constant RGBA color can also
be used to compute the final color of a fragment besides
the primary color of the fragment and the color obtained
from texturing. Traditionally, there are four combining
functions that can be used: Replace, Modulate, Decal, or
Blend. Newer graphics accelerators (e.g. Geforce 3 and 4
from Nvidia, and Radeon 8500 and 9700 from Ati) have
a more complex blending scheme since they implement
a programmable texture unit called “Pixel shader”. We
only implement the four standard modes of blending, but
the simulator can be extended to support more advanced
blending functions. Furthermore, modern graphics accel-
erators are using multiple texturing units to reduce render-
ing latency, but this approach, in the case of low-power de-
vices, for instance, might be less practical due to the gate
count limitation and power consumption.

More detailed information about the texturing process
can be found in [15].

C.5 Pixel Processing Unit

This unit is responsible for various tasks at the pixel
(“fragment”) level. As shown in Fig. 4, this unit can also
be organized as a pipeline. For each block depicted in
Fig. 4, a corresponding C++ class was implemented. Thus
to simulate a different hardware implementation, it is pos-
sible to rewrite or inherit the provided implementation with
an implementation that emulates the hardware unit to be
simulated. Typical operations performed at this unit are
various tests to eliminate pixels that were generated by the
previous stages of the rasterizer but are not part of the fi-
nal scene. Also at this level a pixel can have its properties
modified (e.g. blending process).

C.5.a Tests. The most common tests (each of which can
be disabled) are:

« Pixel ownership test - this test is used to determine if a
pixel really belongs to the current graphic context or to an-
other window that obscures the current context. If the pixel
is not owned by the current context then it is discarded.
Otherwise it is passed along the pipeline.

« Scissor test - this test determines if the pixel lies within
a specified rectangle.

« Alpha test - this test is passed if the pixel’s alpha value
is in a certain (selectable) relation (e.g. less, less or equal,
greater) with a fixed reference value.

o Stencil test - this test is passed if the value stored in the
stencil buffer at the pixel’s coordinate is in a certain rela-
tion (selectable) with a reference value.

« Depth buffer test - this test is passed if the pixel’s z-value
is in a certain relation with the z-value stored at the pixel’s
coordinate in the z buffer.

More details about the presented tests can be found in [15].

C.5.b Blending. At this unit a pixel’s color components
and alpha value are combined with the color components
and alpha value of the pixel already in the frame buffer at
the pixel’s coordinates.

C.5.c Dithering. Dithering is an operation that assigns
to a pixel a value that can be different than the initial
color presented at the entry of this unit. The new as-
signed color can be a function of the pixel’s initial color
and the pixel’s coordinates. The eventually new assigned
color value should not exceed the maximum representable
value in the frame buffer. The dithering process can be
used when the number of bits of the colors stored in the
frame buffer is smaller than the number of bits used to rep-
resent the colors in the rasterizer.

C.5.d Logical Operations. For the final phase a pixel can
be combined with the pixel stored in the frame buffer by
applying a logical operation such as AND, XOR, COPY,
CLEAR and others.

Fragment+ |
Associated Fog —= Color Sum
Data
L Pixel Ownership Scissor Alpha
Test Test Test
Depth Stencil
Test Test
Frame
. i X . Buffer
Blending Dithering LogicOp —— or
Pixel
Cache

Fig. 4. Pixel Processing Unit.

C.6 Video Memory

The video memory is implemented as a flexible compo-
nent that can be configured to simulate, at a high level, a
memory module. Actually the memory component serves
as an underlaying component for frame, stencil, and depth
buffers, and also for textures.

D. The Control Logic

In order to control the units described in Section IlI-
C we implemented a control unit. The operation of the
control unit depends of the opcodes of the instructions re-
ceived from the Bus interface unit. The control unit is re-
sponsible for the synchronization among the components
that are part of the graphics pipeline and simulates the
Control logic of a hardware rasterizer.

IV. CONCLUSIONS

In this paper we presented the structure of a framework
for a flexible OpenGL rasterizer simulator. The framework
allows the exploration of the architectural design space for
an OpenGL compliant rasterizer. By using an object ori-
ented approach we achieved a high degree of flexibility so
that the evaluation process of different rasterizer architec-
tures can be performed easily. Our simulator framework
is ongoing work, and it has to be extended so that it can
produce not only data traffic estimations but also power
consumption estimations.

REFERENCES

[1] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Israel. Pixel-
planes 5: A heterogeneous multiprocessor graphics system using
processor-enhanced memories. Computer Graphics, 23(3), 1989.

[2] M. Suzuoki et. al. A microprocessor with a 128-bit cpu, ten
floating-point mac’s, four floating-point dividers, and an mpeg-
2 decoder. IEEE Journal of Solid-State Circuits, 34(11), 1999.

[3] M. Eldridge, H. Igehy, and P. Hanrahan. Pomegranate: A Fully
Scalable Graphics Architecture. In Proceedings of the Conference
on Computer Graphics, pages 443-454, New Orleans, 2000.

[4] B.-S.Liang, W.-C. Yeh, Y.-C. Lee, and C.-W. Jen. Deferred light-
ing: A computation-efficient approach for real-time 3-d graphics.
In Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1V.657-1V.660, Geneva, May 2000.

[5] B.-S. Liang and C.-W. Jen. Computation-effective 3-d graphics
rendering architecture for embedded multimedia system. IEEE
Transactions on Consumer Electronics, 46(3):735-743, August

2000.

[6] PowerVR Technologies. 3D Graphical Processing, November
2000.

[71 GLSim, http://graphics.stanford.edu/courses/cs448a-01-
fall/glsim.html.

[8] Mesa 3D Library, http://www.mesa3d.org.

[9] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. De
Man. Global Communication and Memory Optimizing Trans-
formations for Low-Power Signal Processing Systems. In VLSI
Signal Processing Workshop, 1994.

[10]
[11]

[12]

[13]

[14]

[15]

Qt Library, http://www.trolltech.com.

Silicon Graphics Inc’s OpenGL sample
http://oss.sgi.com/projects/ogl-sample/.

P. Heckbert. Survey of Texture Mapping. IEEE Computer Graph-
ics and Applications, pp. 56-67, November, 1986.

P. Heckbert. Fundamentals of Texture Mapping and Image Warp-
ing. Technical Report uch/csd 89/516, University of California,
Berkeley, 1989.

losif Antochi, Ben Juurlink, Andrea Cilio, and Petri Liuha. Trad-
ing Efficiency for Energy in a Texture Cache Architecture. In Pro-
ceedings of the 4th International Conference on Massively Paral-
lel Computing Systems (to appear), 2002.

Mark Segal and Kurt Akeley. The OpenG LT Graphics System:
A Specification. Silicon Graphics, April 1999.

implementation,

