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Abstract— The Complex Streamed Instruction Set (CSI)
architecture was proposed in order to overcome the limita-
tions of existing multimedia-oriented ISA extensions, such
as Intel’s MMX and SSE. One of the main limitations is
the large amount of instructions which has to be executed.
In CSI, instructions operate on data streams of arbitrary-
length, which allows to dramatically reduce the instruction
counts for the kernels with sufficient amount of data-level
parallelism. Previously, we have shown that CSI provides
impressive performance improvements for several impor-
tant multimedia kernels and applications. In these experi-
ments the kernels were coded using elementary arithmetic
CSI instructions such as addition, multiplication, etc. Many
kernels, however, perform more complex operations and,
thus, need to be translated to multiple elementary CSI in-
structions. For some kernels, CSI provides special-purpose
instructions that collapse several elementary operations in
a single complex one and thereby achieve an additional re-
duction of the number of executed instructions. In this pa-
per we study the performance provided by an example of
such an instruction. Using the SimpleScalar simulator, we
evaluate performance of the superscalar CPU augmented
with the CSI execution unit on the Paeth prediction kernel
of the image encoder/decoder for the PNG image compres-
sion standard. Simulation results show that the kernel-level
performance of the 4-way superscalar CPU augmented with
the CSI execution unit improves by the factor of 12.9x when
this kernel is implemented using the special-purpose CSI in-
struction instead of the elementary ones.

Keywords— Processor Architecture, Multimedia ISA Ex-
tensions, Data-level parallelism

I. INTRODUCTION

The growing importance of multimedia applications for
the desktop market motivated major processor vendors to
extend the instruction set architectures (ISAs) with instruc-
tions that can be used to implement key multimedia al-
gorithms efficiently. Examples of such extensions are the
Visual Instruction Set (VIS) for the UltraSPARC architec-
ture and MMX for the x86 architecture [10], [12]. These
extensions are, essentially, load-store vector architectures

with short vector registers, which are called the multimedia
registers. In each 64-bit vector register a vector consisting
of eight 8-bit, four 16-bit, or two 32-bit elements can be
stored. The instructions provided in VIS and MMX exploit
the data-level parallelism present in multimedia codes by
operating on all vector elements in parallel.

The ISA extensions mentioned above have proven to
provide significant performance benefits [11]. These bene-
fits, however, are limited because of several characteristics
of short-vector SIMD extensions. First, the fixed size of
the registers limits the number of parallel operations per-
formed by a single VIS or MMX instruction to at most 8.
Much higher amounts of parallelism are present in many
multimedia kernels where the same operation often has to
be performed on data streams consisting of tens to hun-
dreds of elements. To implement such kernels using VIS
or MMX, long streams have to be split into sections that
fit into the 64-bit registers. This process, called sectioning,
results in a large number of instructions that have to be ex-
ecuted. Second, VIS and MMX implementations of mul-
timedia kernels require a significant number of overhead
instructions needed for aligning the data and converting
it between different packed data types, increasing the in-
struction count even further. According to [11], up to 41%
of the total instruction count for VIS constitutes overhead.
High dynamic instruction counts increase the pressure on
the decode-issue logic of a superscalar processor. For ex-
ample, in [3] we showed that, provided enough functional
units are available in the processor, for the 4-way and 8-
way issue CPUs, the processor issue width limits the per-
formance on the MPEG-2 and JPEG codecs.

The Complex Streamed Instruction (CSI) Set was pro-
posed in order to overcome the limitations of short-vector
SIMD extensions mentioned above. Two-dimensional
streams of arbitrary length can be processed by a single
CSI instruction which performs the actual computation, as
well as memory accesses, sectioning, aligning and con-
version between different data formats. Previous studies
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of the superscalar processors enhanced with a CSI exe-
cution unit show that, for a wide range of media appli-
cations, such processors exhibit dramatic reduction of the
instruction counts and execution time, comparing to the
same processors enhanced with existing commercial me-
dia extensions, such as VIS [8], [4], [3]. In these stud-
ies, the compute-intensive kernels were coded using ele-
mentary arithmetic CSI instructions such as addition, mul-
tiplication, etc. Many important kernels, however, per-
form more complex operations and, therefore, are trans-
lated into multiple elementary CSI instructions. We re-
mark that an interesting scenario could occur if the multi-
ple operations required for the main computation could be
grouped and compounded into a single complex operation
which doesn’t require more cycles than the simple ones.
In such a case, a new instruction that specifies this com-
plex operation can be introduced. This single complex in-
struction can then be used to substitute the multiple simple
instructions which are used to implement the main opera-
tion. It was shown that the main computations which are
performed by a number of important media kernels, such
as the Sum of Absolute Differences (SAD) of the MPEG-
2 encoder, the Paeth Prediction of the PNG image codec,
and others, can be implemented at acceptable cost in ded-
icated hardware and, therefore, lend themselves to such
a technique [7], [13]. In this paper we extend CSI with
the special-purpose instruction which computes the Paeth
prediction. We use the corresponding kernel to study the
performance benefits provided by this new CSI instruction
in order to decide if the addition of dedicated hardware re-
quired for it can be justified. The paper is structured as
follows. In Section II we present a brief overview of the
CSI architecture and extend CSI with the special-purpose
instruction for Paeth prediction. Section III sketches an
example implementation the CSI execution unit. In Sec-
tion IV we present the experimental results. The conclu-
sions are drawn in Section V.

II. CSI ARCHITECTURE

In this section we briefly review the CSI architecture
and then extend it with the special-purpose instruction for
acceleration of the Paeth prediction scheme.

CSI Architecture Overview. CSI is a memory-to-
memory vector-like architecture. CSI instructions process
arbitrary-length streams of data located in memory. A
single instruction is responsible for loading source stream
data, converting it (if necessary) from storage to computa-
tion format, performing the main computation and storing
the results. For example, the csi add instruction loads
two input streams from memory, adds their corresponding
elements, and writes the resulting stream back to mem-
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Fig. 1. Two-dimensional stream format. Each box represents a
byte. Filled boxes are stream elements.

ory. Stream elements follow a two-dimensional access pat-
tern, as shown in Figure 1 Each stream consists of an ar-
bitrary number of rows, and the row elements are stored
at a fixed stride which will be referred to as the horizon-
tal stride. There is also a fixed stride between consecutive
rows, which will be referred to as the vertical stride. Such
an access pattern is typical for media kernels. All the ele-
ments of a stream have the same data type, which should
be one of the following 7 standard arithmetic types: 8-, 16-
, or 32-bit binary integer (signed or unsigned), or the 32-
bit single precision floating-point format (IEEE 754 for-
mat). The strides, together with the address of the first
element (called the Base), and some additional parame-
ters, which describe the format of the stream elements,
completely specify the stream. All these parameters of a
stream are stored in a set of stream control registers (SCR-
set), which consists of eight 32-bit registers. Programmer-
visible state of CSI contains 16 SCR-sets. CSI instruc-
tions address their stream operands by addressing the cor-
responding SCR-sets. For details of the CSI architecture,
such as format and functions of individual registers within
each SCR-set, the reader is referred to [8].

Extending CSI with the Paeth instruction. Figure 2
presents the C-code of the Paeth prediction kernel which
is extracted from an implementation of the Portable Net-
work Graphics (PNG) image compression standard. This
code fragment implements an important stage of the PNG
coding process. It computes the Paeth prediction for each
pixel d of the current row, starting from the second pixel.
The Paeth prediction scheme selects from the 3 neigh-
boring pixels a, b, and ¢, that surround d as depicted in
Figure 3, the pixel that differs the least from the value
p = a + b — ¢ (which is called the initial prediction). The
selected pixel is called the Paeth prediction for d. If the
pixel rows contained length + 1 elements, length predic-
tion values are produced. The CSI instruction set, as it
was introduced in [8], contained only standard arithmetic
instructions, such as add and multiply. Althoug these in-
structions are sufficient for a CSI implementation of the
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void Paeth_predict_row(char *prev_row, char *curr_row,
char *predict_row, int length)

{ char *bptr, *dptr, *predptr;

chara, b, c, d;

short p, pa, pb, pc;

bptr = prev_row+1;
dptr = curr_row+1;
predptr= predict_row+1;

for(i=1; 1 < length; i++)

{ ¢ = *(bptr-1); b = *bptr;

a=*(dptr-1); p=a+b-c;pa=abs(p - a); pb =abs(p - b);
pe = abs(p - ¢); if ((pa < pb)&&(pa<pc) *predptr = a;
else if (pb<pc) *predptr = b;

else *predptr = c;

bptr++; dptr++; predptr++;
}
}

Fig. 2. The Paeth prediction routine according to the PNG spec-
ification [1].

Fig. 3. Definition of a, b, ¢, and d according to PNG specifica-
tion

presented kernel, in order to achieve additional speedups,
we extend the CSI instruction set with the special-purpose
instruction csi_paeth. For each triple a, b, and ¢ of
corresponding elements of the source operand streams,
which are described by the SCR-sets SCRSi, SCRSj,
and SCRSKk,the instruction computes the Paeth prediction
value and stores it into the destination stream, which is
described by SCRS1. Because elementary operations re-
quired for computing of the Paeth prediction are collapsed
in a single complex operation specified by the proposed
instruction, the whole loop of the kernel can be translated
into a single csi_paeth instruction.

ITI. EXAMPLE IMPLEMENTATION

CSI instructions (even those performing simple arith-
metic operations) are inherently complex because a sin-
gle instruction performs the main operation as well as all
the miscellaneous tasks, such as address-generation, mem-
ory access, etc. The proposed csi_ paeth instruction
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Fig. 4. Datapath of the Stream Unit

is even more complex because of the complexity of the
arithmetic operation it performs. Therefore, it is impor-
tant to verify if all the CSI instructions are implementable.
This issue was addressed in [5], [7]. The general organi-
zation of the CSI execution unit was described in [5]. It
is depicted in Figure 4. We recall that a typical CSI in-
struction, such as csi_add, has two input and one output
arithmetic streams, and performs the following operations.
The instruction loads source stream data from memory,
unpacks (if necessary) the stream elements from storage
to computational format, performs a certain operation on
corresponding elements, packs (again if necessary) the re-
sults, and stores the resulting data stream back to memory.
Since these operations are independent, they can be exe-
cuted in a pipelined fashion, Therefore, the CSI execution
unit is organized as a pipeline in which stream data flows
through a sequence of stages which perform these opera-
tions. Data flows through the datapath in the way, which
is shown in the picture: the source stream data is loaded
by the memory-interface unit and placed into the input
stream buffers. From there it flows through the unpack
units to the SIMD functional units medADD and medMUL
that perform the main operation specified by an instruc-
tion. The medADD unit performs performs the Paeth pre-
diction and usual addition, subtraction and bitwise logical
operations. The latency of the Paeth prediction is assumed
to be two cycles, while the latency of the addition, sub-
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traction and logical operations is assumed to be one cycle.
A cycle is comparable to a general-purpose ALU cycle.
The medMUL execution unit performs the packed multi-
ply operation. It could also incorporate multiply related
operations, complex media hardwired functions (see, for
example, [7]), sum of absolute differences [14]. The la-
tency of the medMUL is at least two cycles and the unit is
assumed to be fully pipelined. From the SIMD functional
units, the results are then passed through the pack unit and
placed into the output stream buffer, from where they are
taken by the MIU and stored back to memory.

As described above, the SIMD execution unit medADD
is assumed to be capable of performing the Paeth predic-
tion with the latency of 2 cycles. In [7] it was shown, that
such a unit is implementable and the cost of the implemen-
tation was estimated.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance provided by the
proposed new instruction, we simulated superscalar pro-
cessors extended with only standard CSI instructions and
the same processors extended with standard CSI instruc-
tions and with csi paeth. For illustration purposes we
also simulated the processors without any media exten-
sion. We studied the pngtest image coding benchmark,
which is provided together with 1ibpng library, a pub-
lic domain implementation of the PNG image compression
standard [9].

A. Simulation Methodology and Tools

The simulator we used is the sim-outorder sim-
ulator of the SimpleScalar toolset (release 3.0) [2].
This cycle-accurate simulator simulates an out-of-order
multiple-issue processor. A corrected version of the Sim-
pleScalar memory model based on SDRAM specifica-
tions given in [6] was used. To simulate the bench-
mark on the standard superscalar processors, we created
the executable pngtest scalar, which was obtained
by compiling the sources using the gcc compiler. For
simulation of the superscalar CPUs extended just with
standard CSI instructions and the same CPUs addition-
ally extended with the complex csi paeth instruc-
tion, two other executables, pngtest csi simple
and pngtest csi complex were created. These pro-
grams were obtained by manually rewriting the Paeth pre-
diction kernel in assembly and then compiling it together
with all the other sources. In the first case, the kernel was
rewritten using only the standard CSI instructions. Since
the main loop of the paeth predict kernel contains
data-dependent control, the masked versions of the arith-
metic CSI instructions were used [4]. In the second case,

TABLE 1
PROCESSOR CONFIGURATION.

Clock rate 1660 MHz
Issue width 4
Register update unit size 64
Load-store queue size 32
Branch Prediction
Bimodal predictor size 2K
Branch target buffer size 2K

Return-address stack size 8
Functional unit types, number
and cycles (latency, recovery)

Integer ALU 4 (1/1)
Integer MULT 4

multiply 3/1)

divide (20/19)
Cache ports 2 (1/1)
CSI unit 1

datapath width 16/32 bytes
Pack/Unpack unit 3 (1/1)
medADD unit 1

ALU operations (1/1)

Paeth prediction 2/1)
medMUL unit 1

multiply 3/1)

divide (20/19)

the new csi paeth instruction was employed to imple-
ment the loop. The test image pngtest . png, which has
132 pixels per row, was used as input for all three versions
of the pngtest program.

B. Modeled Processors

The base system is a 1660 MHz 4-way superscalar pro-
cessor with out-of-order issue and execution based on the
Register Update Unit (RUU). The processor parameters
are listed in Table I. The pngtest benchmark exhibits
a very high instruction cache hit rates. Therefore, and in
order to reduce simulation time, a perfect instruction cache
is assumed. The processor is configured with the 32 KB 4-
way associative L1 data cache which has the cache line
size of 64 bytes and with the 1 MB 2-way associative L2
data cache having 128 byte lines. The access times for
the caches are 1 and 6 CPU cycles, respectively. The main
memory is the standard 166 MHz SDRAM memory which
has the row access, the row activate and the precharge
times of 2 (memory) cycles. The memory bus is 64 bytes
wide and is clocked at 166 MHz as well. Two types of
the CSI-enhanced processors have been simulated: CPUs
with the CSI unit which can execute only standard CSI
instructions and CPUs with the CSI unit which, in addi-
tion to these instructions, can execute the new complex
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Processor Type Average instruction count
standard superscalar 4838.63
superscalar+simple CSI 239.92
superscalar+complex CSI 44.00

TABLE IT
AVERAGE NUMBER OF EXECUTED INSTRUCTIONS FOR THE
PAETH PREDICTION KERNEL

csi_paeth instruction. For CSI instructions, the laten-
cies of their main arithmetic operations are the same as the
latencies of the corresponding scalar instructions. The la-
tency of the main operation for csi_paeth is assumed
to be 2 cycles. Latencies of the miscellaneous operations
performed by the CSI unit are presented in Table I. For
each of two types of the CSI units, two configurations were
studied: one capable of processing 16 and another capable
of processing 32 bytes in parallel.

The CSI unit is interfaced to L1 cache and a whole
cache block is brought to the unit on a single access, as
described in [5]. Similar to the standard superscalar pro-
cessor, the CSI-enhanced processor uses two cache ports
which are time-multiplexed between load and store ac-
cesses for source, mask and destination streams.

C. Results

The goal of the experiments we have carried out for
this study is to evaluate the performance provided by the
special-purpose csi_paeth instruction and to compare
it with the performance provided by the standard arith-
metic CSI instructions. Such comparison is necessary in
order to decide whether augmenting the CSI execution unit
with the specialized hardware required for implementation
of csi paeth can be justified.

One of the goals for which the csi_paeth instruction
was introduced, is to reduce the instruction counts. There-
fore, prior to presenting the performance figures we study
the number of instructions executed by all three types of
processors: plain superscalar CPUs, the same CPU ex-
tended with standard CSI instructions, and the CPUs ex-
tended with standard and the special-purpose CSI instruc-
tions. Table II presents the average dynamic instruction
counts exhibited by the mentioned processors (which are
referred as standard superscalar, superscalar+simple CSI
and superscalar+complex CSI) on the Paeth prediction
kernel of the pngtest program. This table shows that
employing simple CSI instructions provides a superscalar
CPU with the 20.2x reduction of the number of executed
instructions. If, instead of the simple CSI instructions,
the special-purpose CSI instruction csi paeth is em-

Processor Type CSI datapath width
non-CSI | 16 bytes | 32 bytes
std 1924.55
std +simple CSI 555.96 | 410.04
std +complex CSI 43.54 36.83
TABLE III

AVERAGE EXECUTION TIME (IN CYCLES) FOR THE PAETH
PREDICTION KERNEL

ployed, an additional 5.43x reduction can be achieved.
We remark here that although the whole loop of the
paeth prediction kernel is reduced to a single instruction
csi paeth, the total instruction count of the kernel is
44 (instead of just 1). This happens due to the auxiliary
CSl instructions which are needed to initialize the individ-
ual control registers of the SCR-sets with parametersof the
operand streams.

We now present performance figures for the studied pro-
cessors. Table III depicts the average number of cycles
required for the execution of the paeth prediction kernel.
The three types of the processors are referred as std (stan-
dard superscalar), std+simple CSI (superscalar extended
with simple arithmetic CSI instructions), and std+complex
CSI (superscalar extended with simple CSI instructions
and with the complex csi paeth instruction). The re-
sults show that the CSI execution unit, which supports
only simple CSI instruction and is capable of processing
16 bytes in parallel, improves the kernel performance by
a factor of 3.46x. Enhancing such execution unit with the
specialized hardware for the csi_paeth instruction pro-
vides an additional speedup of 12.9x. The speedup of such
CSI-enhanced superscalar CPU over the baseline CPU is
equal to 44.2x. These results show that the additional
costs associated with the specialized hardware required for
csi_paeth are justified by a dramatic performance im-
provement. Table IIT also shows that the performance of
the both types of CSI-enhanced CPUs improves when the
amount of the parallel execution hardware is increased.
This result is important because of the current trends in
microprocessor technology, which allow a designer to put
dozens or even hundreds of functional units on a single
chip. The challenge is to feed these units with instructions
and data in order to keep them utilized. CSI offers a possi-
ble solution to this challenge.

V. CONCLUSIONS

In this paper we extended the Complex Streamed In-
struction set (CSI) with a special-purpose instruction
csi_paeth, which computes the Paeth prediction for
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three streams of input pixels. Two dofferent CSI im-
plementations of the Paeth prediction kernel of the PNG
image codec are studied: first one uses only standard
CSI instructions, while the second employs the new
csi paeth instruction. The comparison of these two
implementations shows the following. The second imple-
mentation executes 5.43 times less instructions than the
first one. Furthermore, when executed on a 4-way issue
CSI-enhanced superscalar processor with CSI unit capa-
ble of processing 16 bytes in parallel, the second imple-
mentation outperforms the first one by the factor of 12.9x.
These results show that the costs of the specialized hard-
ware needed to implement such a complex instruction, are
justified by impressive performance improvements.
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