
A Hardware/Software Co-Simulation Environment for
Graphics Accelerator Development in ARM-Based SOCs

Dan Crisu, Sorin Cotofana, and Stamatis Vassiliadis
Computer Engineering Laboratory

Faculty of Information, Technology, and Systems
Delft University of Technology

Mekelweg 4, 2600 GA Delft, The Netherlands
Phone: +31 15 2783644 Fax: +31 15 2784898

E-mail: {dan|sorin|stamatis}@ce.et.tudelft.nl

Abstract— This paper focuses on the challenging aspects
of developing a versatile hardware/software co-design and
co-simulation environment for the development of 3D graph-
ics hardware accelerators in ARM-based system-on-chip de-
signs. The tool we propose integrates the ARMulator, the
cycle-accurate instruction-level simulator for the ARM low-
power processor family, with an augmented open source Sys-
temC modeling framework and simulation engine, which
allows the development of cycle-accurate or more abstract
models of software algorithms, hardware architectures, and
system-level design. The tool permits the simulation of
an entire computer graphics pipeline allowing experimental
software/hardware partitioning schemes, and performance
monitoring in terms of throughput and power consumption.
Moreover, it provides graphical output for the visualization
of the potential impact tweaking the algorithms or the bit
operand width precision may have on the resulted image
quality.

Keywords—graphics architecture; hardware/software co-
simulation; system-on-chip; ARM processor; ARMulator;
SystemC

I. INTRODUCTION

With the recent proliferation of embedded systems using
the system-on-chip (SOC) design paradigm such as mobile
PDA’s (Personal Digital Assistants), cellular phones, and
other portable computing appliances, the request for in-
creasingly fast, graphics-reach user-friendly interfaces and
entertainment environments opened new market opportu-
nities for 3D real-time rendering graphics systems meant
to accelerate these features. The challenge posed by the se-
vere cost constraints on products for the mobile consumer
market requires a new breed of graphics rendering hard-
ware to be developed with a very low power consumption
and low implementation costs. This implies that perfor-
mance/power/cost trade-offs have to be investigated and
decisions have to be made early in the design process re-
garding the most suitable partition between features that
must be provided by software and features that will be

mapped in hardware.
In this context, designing and assessing the performance

of hardware architectures for accelerating graphics has
proved to be a difficult endeavor. Among the reasons are
the absence of well-established benchmark programs (al-
though graphics system specifications like OpenGL [1]
and Direct3D [2] exist for many years) and the lack of
specific tools to support the graphics architecture devel-
opment process [3]. As a consequence, heterogeneous de-
sign exploration frameworks were created by connecting
custom-made tools with tools borrowed from other fields
of computer architecture research, thus raising a lot of
problems that have to be solved like the interoperability,
flexibility, and specificity for the intended purpose [3] [4]
[5]. To overcome these difficulties, and to produce an ef-
ficient and productive design environment, a first attempt
toward an integrated software/hardware co-design frame-
work for graphics hardware accelerators was presented in
[6]. In this framework, a number of software tools were
developed in the C++ language to work either standalone
or alongside hardware models written in a high level hard-
ware description language (VHDL) to aid in algorithm re-
search and hardware design. The software tools are based
on an extensive library of C++ classes designed to enable
accurate software modeling of both number representation
(multiple precision fixed- and floating-point data types)
and hardware arithmetic units in a graphics pipeline. This
library of classes allows also the exploration of the graph-
ics algorithms at both algorithmic and behavioral levels,
prior to the hardware design using VHDL. Mixed-model
simulation (C++/VHDL) is also possible. Although this
co-design framework addresses well the issue of speci-
ficity and although its generality allows a large number
of problems pertaining to graphics accelerator develop-
ment to be solved within the framework, the mixed-model
simulation is cumbersome. The run-time integration and
synchronization during simulation of the parts modeled in
VHDL (behavioral or RT level) with the software mod-

255

els of the rest of the graphics pipeline components is per-
formed via a file sharing mechanism, which by definition
it is slow and it is delayed further by the protocol of data
exchange needed at the C++/VHDL interface. Another
drawback of the framework is the impossibility to refine
a high-level functional model down to the implementation
in a single language. Usually at the RT level the refine-
ment of the model in C++ has to be ended abruptly and the
model has to be prepared for hardware synthesis by being
completely rewritten in VHDL without taking advantage
of any previously developed source code, making this a
very tedious and error-prone process.

In addition to the imperious need of an early perfor-
mance assessment of the hardware architectures for ac-
celerating graphics, the energy consumption is a critical
system-level design factor to be accounted for the graph-
ics architectures that are targeted to the embedded portable
appliance market. Studies have demonstrated that circuit-
and gate-level techniques have less than a 2× impact on
power, while architecture- and algorithm-level strategies
offer savings of 10 − 100× or more [7]. Hence, the great-
est benefits are derived by trying to assess early in the de-
sign process the merits of the potential implementation.
Ideally, when designing a graphics accelerator for an em-
bedded system, a designer would like to explore a number
of architectural alternatives and test functionality, energy
consumption, and performance without the need to build a
prototype first.

Usually, typical mobile embedded systems are built of
commodity components and have a microprocessor-based
architecture. Full system evaluation is often done on pro-
totype boards resulting in long design times. Power con-
sumption estimation can be done only late in the design
process, after the prototype board was built, resulting in
slow power tuning turnarounds that doesn’t meet the re-
quirement of fast time to market. On the other hand, using
field programmable gate array (FPGA) hardware emula-
tors for functional debugging, with a fast prototyping time,
can neither give accurate estimates of energy consumption
nor of the performance.

Among the tools preferred for early performance assess-
ment at the algorithmic and architectural level, in the last
decade, were the cycle-accurate instruction-set simulators.
Unfortunately, for power consumption estimation this ap-
proach was seldom easy to follow. There were only a few
academic tools for power estimation (all based on or inte-
grated in the SimpleScalar instruction set simulator toolset
framework [8] [9] [10]) and almost no commercial prod-
ucts.

For several target general purpose processors a number
of techniques emerged in the last few years. The proces-

sor energy consumption for an instruction trace was gen-
erally estimated by instruction-level power analysis [11]
[12]. This technique estimates the energy consumed by
a program by summing the energy consumed by the exe-
cution of each instruction. Instruction-by-instruction en-
ergy costs, together with non-ideal effects, are prechar-
acterized once for each target processor. A few research
prototype tools that estimate the energy consumption of
processor core, caches, and main memory have been pro-
posed [13] [14]. Memory energy consumption is esti-
mated using cost-per-access models. Processor execution
traces are used to drive memory models, thereby neglect-
ing the non-negligible impact of a non ideal memory sys-
tem on program execution. The main limitation of these
approaches is that the interaction between memory system
(or I/O peripherals) and processor is not modeled. Cycle-
accurate register-transfer level energy estimation was pro-
posed in [9]. The tool integrates RT level processor sim-
ulator with DineroIII cache simulator and memory model.
It was shown to be within 15% of HSPICE simulations.

The drawback of all the above methods to estimate the
power consumption is that they are based on certain archi-
tectural templates, i.e., general purpose processors and can
be hardly adapted to model graphics accelerators embed-
ded in system-on-chip designs.

This paper focuses on the challenging aspects of de-
veloping a versatile hardware/software co-design and co-
simulation environment for the development of graphics
hardware accelerators in ARM-based system-on-chip de-
signs. The tool we propose integrates the ARMulator
[15], the cycle-accurate instruction-level simulator for the
ARM low-power processor family, with an augmented
open source SystemC modeling framework and simula-
tion engine [16] [17], which allows the development of
cycle-accurate or more abstract models of software al-
gorithms, hardware architectures, and system-level de-
sign. The fundamental motivator for choosing the Sys-
temC modeling language is the possibility to refine down
to the implementation details an entire system specified at
higher levels of abstraction, i.e., at the functional level,
in a single language. Also, automatic synthesis of hard-
ware is also possible from the RTL subset of the Sys-
temC language [18]. The tool permits the simulation of an
entire computer graphics pipeline allowing experimental
software/hardware partitioning schemes, and performance
monitoring in terms of throughput and power consumption
estimated at the RT level. Moreover, it provides graphical
output for the visualization of the potential impact tweak-
ing the algorithms or the bit operand width precision may
have on the resulted image quality.

The rest of the paper is organized as follows. The func-

256

tions that are performed by a 3D graphics accelerator in a
real-time graphics rendering system are presented in Sec-
tion II. The benefits of the system-level modeling that can
be derived by employing the SystemC language are pre-
sented in Section III. The design exploration framework
that we propose for embedded graphics accelerator de-
velopment in ARM-based system-on-chip designs is dis-
cussed in Section IV. Finally, Section V presents the con-
clusions and describes future work in the area.

II. A TYPICAL 3D GRAPHICS RENDERING SYSTEM

A 3D graphics rendering system is organized conceptu-
ally as a number of stages chained in a pipelined fashion.
The main function of this pipeline is to generate, or render,
a two-dimensional image on a raster screen, given a virtual
camera, a scene populated with three-dimensional objects,
light sources and atmospheric conditions (fog). The ob-
jects in the scene can be made of different materials, can
have different colors, or have different images imprinted
on their surface (textures). Furthermore, their appearance
may be affected by the light sources, the lighting models,
and the atmospheric conditions. The conceptual stages of
the graphics pipeline are the application, the geometry, and
the rasterizer stage [19] [20]. They are presented in Fig-
ure 1.

The application stage is dealing only with object speci-
fication and scene management tasks. To enumerate only
a few, it specifies how the objects are constructed from
connected geometrical forms, what material properties are
bound to the objects, it specifies the kind and the num-
ber of objects and light sources in the scene, the spatial or
temporal relationships intra- or inter-objects, or between
objects and light sources. The most important outcome of
the computations performed in this stage is the scene de-
composition in a number of rendering primitives (points,
lines, triangles) to be fed to the next stage. The appli-
cation stage is always implemented in software, performs
floating-point computations, and the outcome of the com-
putations performed here has a tremendous impact on the
workload of the subsequent stages.

The geometry stage is responsible for the majority of
the per-primitive operations or per-vertex operations. Ba-
sically, in this stage, matrix transformations are applied
to the rendering primitives received from the application
stage, resulting in a perspective mapping of the triangles
to the 2D display. This conceptual stage has several func-
tional stages: the model and view transform, the lighting,
the projection, the clipping, and the screen mapping stage.
In the model and view transform stage, the rendering prim-
itives are remapped from their own system of coordinates
to a common system of coordinates having the camera at

its origin. In the lighting stage, for the incoming primitives
that are to be affected by the light sources, a lighting equa-
tion is used to compute a color at each vertex of the prim-
itive. This equation takes into account the location of the
light sources and their properties, the position and normal
of the vertex, and the properties of the material belonging
to the vertex. In the projection stage, usually a perspec-
tive transform is applied to the incoming primitives. The
perspective transform mimics the way we perceive the ob-
jects’ size with the distance towards horizon. In the clip-
ping stage, only the primitives wholly or partially inside
the viewing volume (what can be seen through the cam-
era) are passed to the next stage. The primitives partially
inside the viewing volume have to be clipped, and the part
that is outside the viewing volume is not propagated. In
the screen mapping stage the (clipped) primitives have still
three-dimensional coordinates. However, the x and y coor-
dinates of each primitive’s vertex are specified in a differ-
ent range than the coordinate range of the screen and, nec-
essarily, they have to be “stretched” (translated + scaled)
to form coordinates in the screen range. The z coordinate
is not affected by this mapping and it is propagated un-
changed. Thus, the primitives that have survived at the end
of the geometry stage are passed on to the rasterizer stage
with the vertices specified in the new screen coordinates x

and y, and the old coordinate z. The geometry stage is usu-
ally implemented in software, although high-performance
graphic systems exist that implement this conceptual stage
in hardware. The operations performed in this stage are
floating-point computations.

Given the primitives received from the geometry stage
with transformed and projected vertices, colors, and tex-
ture coordinates computed for this vertices, the goal of
the rasterizer stage is to assign correct colors to the pix-
els on the screen to render an image correctly. This pro-
cess is called rasterization or scan conversion. Unlike the
geometry stage, which handles per-primitive operations,
the rasterizer stage handles per-pixel operations. During
rasterization, the information needed for the screen pix-
els covered by the primitive is interpolated from the data
(colors and texture coordinates) associated with its pro-
jected vertices on the screen. The two-dimensional images
of the projected primitives are stored in a memory called
the frame buffer, which is read periodically by the display
controller to form the image on the screen. The rasteri-
zation is concerned only with the producing of a series of
frame buffer addresses and values (called fragments) us-
ing a two-dimensional description (screen coordinates x

and y, colors, and texture coordinates) of the vertices of
a point, line segment, or polygon. Each fragment so pro-
duced is fed to the next functional stage (inside the con-

257

* implemented in software

Model & View

Transform
Lighting Projection Clipping

Screen

Mapping

Geometry Stage

* floating-point computations

* usually implemented in software

Rasterization
Texture

Mapping

Fog

Blending

Per-Fragment Operations

(including Z-Buffering)
Anti-aliasing

Buffer

Frame

Rasterizer Stage

* integer (fixed-point) computations

* implemented always in hardware for graphics accelerating purposes

To the display

controller

* floating-point computations

Application Stage

Fig. 1. A typical 3D graphics pipeline.

ceptual rasterizer stage) that performs operations on indi-
vidual fragments before they finally alter the frame buffer.
These operations include color alteration based on the tex-
tures assigned per primitive and texture coordinates, fog
blending, conditional updates into the frame buffer based
on incoming and previously stored depth values z in the
depth buffer or z-buffer, blending of incoming fragment
colors with stored colors, as well as masking and other
logical operations on fragment values. Due to the sam-
pling process involved by rasterization, a chain of filter-
ing operations followed by resampling may be necessary
on fragment values to alleviate the inherent aliasing phe-
nomenon (e.g., the staircasing effect of lines drawn on a
raster screen). Finally, the fragments that will survive in
the frame buffer, after all of the primitives have been pro-
cessed, will produce the final image. The rasterizer stage
is implemented in hardware wherever exists the need for
graphics acceleration and it usually involves only integer
(fixed-point) arithmetic.

In fact, due to the computational explosion in the ras-
terizer stage (operations performed per-pixel, not per-
primitive), this stage constitutes the only stage that it is
truly implemented in every graphics hardware accelera-
tor. The rasterizer stage is divided in the functional stages
that were presented, but a functional stage describes only
the task to be performed in the pipeline, it does not spec-
ify the way the task is executed in the underlying hard-
ware pipeline. A functional pipeline stage may be di-
vided in several hardware pipeline stages, or two func-
tional pipeline stages may be implemented in one hard-
ware pipeline stage. Also, a hardware pipeline stage may
be parallelized in order to meet high performance de-

mands. On the other hand, for every function performed
in the rasterizer stage a considerable number of hardware
algorithms exists. A description of these algorithms is be-
yond the scope of the paper (to start with, the reader is re-
ferred to [19] [20]). Within a hardware algorithm datapath,
various fixed-point data formats and precision can be em-
ployed that might have an impact on the quality of the gen-
erated image. As a consequence, different performance-
power-cost trade-offs would have to be explored by a de-
signer to choose the best solution for the to be developed
graphics hardware accelerator.

To summarize, the conceptual stages of the 3D graph-
ics pipeline are mapped on a typical computer system
equipped for 3D graphics as described in the sequel. The
graphics software application is running on the host pro-
cessor of the system. The software application corre-
sponds to the conceptual application stage of the graph-
ics pipeline. The software application is relying on a 3D
graphics library (perceived in the sense of a software in-
terface to the graphics hardware [21]) like OpenGL or Di-
rect3D to have its graphic calls taken care further. This 3D
graphics library executes usually the conceptual geometry
stage on the host processor. The code that implements the
geometry stage in the library can further make calls to the
graphics hardware accelerator by means of a standardized,
virtual interface. However, between this virtual interface
and the graphics hardware accelerator (on which the con-
ceptual rasterizer stage is mapped) there is another piece of
code executed on the host processor called a device driver.
This device driver performs the function of a hardware ab-
straction layer and it translates the calls through the virtual
interface in actual memory-mapped or programmable I/O

258

instructions (seen from the host processor point of view)
particular to the graphics hardware accelerator’s input and
output register port mapping in the system address space.
Finally, the rasterizer stage is executed in hardware on the
graphics hardware accelerator. The benefit of this scheme
is the resultant portability of the graphics software appli-
cation between computer systems equipped with different
3D graphics accelerators, at the cost of changing only the
device driver. This is usually a non-issue, the device driver
being developed jointly with the graphics hardware accel-
erator.

III. SYSTEMC MODELING BENEFITS

SystemC represents the newest system-level specifica-
tion and design language [16] [17] [22], and it was a
response to the increasing system complexity facing the
designers nowadays. For example, a modern system-on-
chip may well contain one or more processors (for control,
digital signal processing, multimedia processing), on-chip
memories, accelerated hardware units for dedicated func-
tions, peripheral control devices, linked together by a com-
plex on-chip communication network. Along, complex
layered software architectures are necessary to coordinate
the inner working of such integrated device. As a conse-
quence, the SystemC language was developed to allow in
a single language to be specified, simulated, designed, and
implemented complex systems with functionality imple-
mented both in hardware and software forms.

More in particular, the SystemC language is developed
on top of the C++ language, in order to capitalize on
the extensive infrastructure of capture, compilation, and
debugging tools already available. In addition, with an
object-oriented language base, it allows for modeling flex-
ibility, parametrization, and facilitates reuse, through ca-
pabilities such as templates and inheritance. Intellectual
property (IP), available from third-parties, can be delivered
in a secured form (in a compiled form as object code) to
be linked and embedded in the system description. Also,
the SystemC language does not impose any constraints on
the design flow, the designer is free to use whatever ap-
proach she/he might consider fit for the system. As said, it
is possible to use top-down, bottom-up, or even middle-out
design flow methodologies without any restriction.

Regarding the way a particular SystemC model reflects
its real-world implementation, there are many aspects of
accuracy that SystemC can capture:
• structural accuracy — whether the partitioning between
hardware and software is modeled and whether major
hardware and software modules within the implementa-
tion are evident, whether the signals and pins of the ac-
tual implementation are reflected in the hardware model,

or for software models, whether the communication be-
tween tasks is refined down to the level of communica-
tion mechanisms provided by the target real-time operat-
ing system;
• timing accuracy — whether the model reflects the timing
of the actual implementation expressed in absolute time
units, or at the clock-cycle level, or whether the timing is
not expressed at all;
• functional accuracy — whether certain complex func-
tionality is simplified in a high-level model to speed up the
simulation, or whether the functionality is reflected down
to minute detail in the model;
• data organization accuracy — whether the software data
structures and the data layout within the model match
those used within the implementation;
• communication protocol accuracy — whether the com-
munication protocols used in the target implementation are
reflected in the model and at what level of abstraction;
• hierarchical accuracy — whether the accuracy issues
discussed above are extended also to the child modules of
the particular module model.

As a consequence, multiple levels of abstraction can be
selected to model a complex system: the straightforward
executable specification, the untimed or timed functional
model, the transaction-level model, the behavioral hard-
ware model, the pin-accurate, cycle-accurate hardware
model, or the register-transfer (RT) level model. Even it
may be possible to mix these levels of abstraction when
modeling various parts of a system [22]. Also, automatic
synthesis of hardware is possible from the RTL subset of
the SystemC language [18] which allows a single language
to be used for modeling, design exploration via simulation
and refinement, and hardware synthesis.

We will present in the sequel a short overview of the
SystemC language philosophy. The SystemC language
and its support libraries are built entirely on standard C++.
This means that any program written in SystemC may be
compiled with a C++ compiler to produce an executable
program. To introduce its own semantics based on own
higher-level constructs, the SystemC uses a layered ap-
proach in its specification. The base layer of SystemC pro-
vides an event-driven simulation kernel. This kernel works
with events and processes in an abstract manner, without
knowing their semantics. An event is represented by an
object that determines whether and when a process’s ex-
ecution should be triggered or resumed. The processes
support (static or dynamic) sensitivity lists to specify on
what kind of events they have to react. The notification
of events that cause sensitive processes to be triggered can
be immediate at the current simulation time instant, can
be delta-delay notifications after an infinitesimal amount

259

of time, or nonzero-delay notifications after a specified
amount of time has elapsed. The three flavors of event no-
tification have different consequences and allow hardware
and software behavior to be mimicked. Other elements of
SystemC include modules and ports for representing struc-
tural information, and interfaces and channels as an ab-
straction for communication. Channels are used for hold-
ing and transmitting data, and an interface describes the
(sub)set of operations that the channel provides for ma-
nipulating data. Ports are well-defined boundaries of a
module that act like proxy objects to facilitate access to
channels through interfaces. The kernel and these abstract
elements together form the core language. Alongside the
core language is a set of data-types (and their associated
overloaded operators) that are useful for hardware model-
ing and certain kinds of software programming (in digital
signal processors): fixed-precision and arbitrary-precision
integral types, bits and bit-vectors types, four-valued logic
types, resolved types, fixed-point types etc. Equally, the
native C++ data types can be employed. The elementary
channels library layer is immediately above the core lan-
guage, and include models that are widely applicable, such
as signals (that can be used to model hardware signals),
timers, and FIFO buffers. Although are specified apart
from the core language, the data types and the elementary
channels library have a broad usefulness and are regarded
as part of the SystemC standard. On top of these libraries
belonging to the standard, using native C++ mechanisms,
other high-level libraries can be implemented to accommo-
date different models of computation and design method-
ologies. For more detailed information, the reader is re-
ferred to [22].

The opportunities offered by the SystemC language in
setting the infrastructure needed by hardware/software co-
simulation, system design exploration, and hardware de-
sign made it the vehicle of choice in our endeavor to inves-
tigate and develop a 3D graphics hardware accelerator to
augment ARM-based system-on-chip designs.

IV. THE PROPOSED DESIGN EXPLORATION

FRAMEWORK

In this section we present our design exploration sce-
nario for a low-power, low-cost 3D graphics hardware ac-
celerator to be employed as a coprocessor or a peripheral
unit coupled with an ARM CPU core on a system-on-chip
design.

A. System Model

Figure 2 gives an overview of the system modeling strat-
egy that we propose. The central elements of our architec-
tural design exploration framework are:

- ARMulator [15], a cycle-accurate instruction-level sim-
ulator for the ARM low-power processor family, without
power estimation capabilities;
- a reference implementation of a SystemC simulator, that
can be downloaded as source-code from the OSCI organi-
zation’s WWW site [23];
- GRAAL (GRAphics AcceLerator) Simulator, our own
custom-designed tool that acts as a graphical front-end for
SystemC simulation control and data vizualization;
- our custom-designed library for RTL power consump-
tion estimation;
- a model in the SystemC language of the to be developed
3D graphics hardware accelerator that is the subject of our
investigation;
- the graphics software application in a binary form, which
will run on the ARMulator model of the ARM processor,
and will make use of the capabilities of the graphics hard-
ware accelerator.

The simulation scenario can be explained briefly as fol-
lows. The instruction set architecture of the ARM family
of processors offers room for extensions to be added by
providing the so called coprocessor instructions. Referring
to the Figure 2, the inputs from the user are a description
in SystemC of a candidate architecture for the 3D graph-
ics hardware accelerator coupled as a coprocessor and the
graphics software application program to be run on the
ARM processor. The graphics software application will
link statically the graphics libraries (e.g., OpenGL) with
the afferent device drivers for the graphics hardware accel-
erator (as discussed in Section II). The provided program
is then compiled using the ARM native compiler. Usu-
ally, the device driver code will embed, beside ARM na-
tive instructions, specific coprocessor instruction. These
specific instructions, when executed on the ARMulator,
will be recognized as non-native or coprocessor instruc-
tions and they will trigger callback functions, installed us-
ing the ARMulator API (application programming inter-
face), so specific actions (e.g., new data or commands are
fed to the hardware description simulated in SystemC) can
be taken1. Moreover, every clock cycle (this might be the
case only when the graphics hardware accelerator is mod-
eled at cycle-accurate level), the ARMulator will sent sig-
nals to the SystemC simulator to advance the state of the
simulated hardware description one more clock cycle. In
this simple way the simulated hardware description of the
graphics accelerator will process its own data in lockstep
with the ARM processor pipeline. Also, irrespective of the
level of abstraction chosen to model the graphics hardware

1For the synchronization between the ARMulator and the Sys-
temC simulator a two-phase reliable communication protocol (request-
acknowledge) is employed.

260

Simulation Control

Data Vizualization

Power consumption estimation

ARM binary code

ARM Instruction-level Simulator
(ARMulator)

3D Graphics Hardware Accelerator Description

(in SystemC language)

System coprocessor

Caches

+

ARM Processor Core Model

Peripheral Extension Module

ARMulator

Instructions

D
ata

SystemC Simulator

- SystemC simulation phase

- signal toggle statistics tracking

Post-simulation Phase

Simulation Phase

Elaboration Phase

T
w

o-phase synchronization protocol

Start/Pause

Resume/Kill

SystemC simulation

Graphic formatting

options

Performance

vizualization

Transfering
hardware

buffers
content

- inter-tool communication setup

- SystemC elaboration phase

- other performance metrics

GRAAL (GRAphics AcceLerator) Simulator

(request - acknow
ledge)

Fig. 2. The graphics hardware accelerator design exploration framework.

accelerator, the content of the relevant hardware buffers in-
side the accelerator can be visualized in real-time during
the simulation. Moreover, if the graphics hardware accel-
erator is modeled at the register-transfer level (RTL), every
clock cycle the activity on internal relevant signals is also
collected and, after the simulation is finished, it is mod-
eled statistically. Thus, at the end of the simulation (in
the post-simulation phase referring to Figure 2), the total
power consumption of the graphics hardware accelerator
per graphics software program executed on the ARM pro-
cessor is estimated. In the virtue of the SystemC’s rich
expressiveness, other performance metrics might be esti-
mated with ease.

In the following sections, particular aspects of interest
to our design exploration framework implementation are
presented.

B. Simulation control

The GRAAL (GRAphics AcceLerator) Simulator pro-
gram, presented in Figure 2, was developed to provide a
graphical front-end for SystemC simulation control and
data visualization in our graphics hardware accelerator de-
sign exploration framework. For the time being, it is a
stand-alone program, implemented using the OSF Motif
toolkit [24] [25] for UNIX / X Window System worksta-
tions. As soon as the undergoing refinement of the refer-
ence SystemC simulator implementation will settle down

to a more stable form, the rationale behind keeping the
GRAAL Simulator program completely distinct from the
SystemC simulation engine will disappear. At that point
in time, for the sake of efficiency, the code to provide a
graphical front-end for the SystemC simulation engine will
be transferred from the GRAAL Simulator program and
adapted to the SystemC simulator implementation inter-
nals.

The data visualization aspects of the GRAAL Simu-
lator program will be covered in Subsection IV-C. In
this subsection only SystemC simulation engine control
aspects of the GRAAL Simulator program will be dis-
cussed. For the sake of brevity, the executable program
that will result from linking the compiled SystemC model
alongside the SystemC simulation engine libraries will be
called throughout this subsection the SystemC simulator
program.

The basic idea is to enable the GRAAL Simulator pro-
gram to launch the SystemC reference simulator as an in-
dependent software entity. The challenges that have to be
solved by the GRAAL Simulator program is to be able to
control a number of aspects of the SystemC simulation
without making any slightest modification to the source
code of the SystemC reference simulator. These aspects
involve the capability to start, pause, resume, and abort the
SystemC simulation process at any time, and to have all the
messages normally displayed by the SystemC reference

261

Fig. 3. SystemC simulation control in GRAAL Simulator program.

simulator redirected and captured in the graphical front-
end of the GRAAL simulator program. Fortunately, the
mechanisms provided by the system libraries of the UNIX
operating system [26] and the OSF Motif toolkit API made
this task possible. Before presenting details about how the
control was implemented, a few words about these soft-
ware mechanisms are necessary in order to facilitate the
understanding of the algorithmic steps taken.

Processes are the primitive units for allocation of sys-
tem resources. Each process has its own address space
and one or more threads of control. A process executes
a program; one can have multiple processes executing the
same program, but each process has its own copy of the
program within its own address space and executes it in-
dependently of the other copies. Each process is identified
by a unique process ID number. Processes are organized
hierarchically. Each process has a parent process that ex-
plicitly created it. The processes created by a given parent
are called its child processes. A child inherits many of
its attributes from the parent process. Child processes are
created with the fork() system call. The child process
created by forking a process is a copy of that (parent) pro-
cess, except that it has its own process ID. A newly forked
child process continues to execute the same program as its

parent process, at the point where the fork() system call
returns. The return value of the fork() system call is
used to find out if the program is running in the parent pro-
cess or in the child process. The child process can execute
another program from that of its parent by using the ex-
ecv() system call. The program residing on the filesys-
tem that the child process is executing is called its process
image. Starting execution of a new program causes the
child process to forget all about its previous process image;
when the new program exits, the child process exits too, in-
stead of returning to the previous process image (parent’s
process image). To control the evolution of a child pro-
cess from the parent process, signals (software interrupts
delivered to a process) can be delivered from the parent
process to the child process. Among them it can be men-
tioned SIGSTOP to pause a process, SIGCONT to resume
a paused process, and SIGKILL to abort a process. To
make a child process to announce its parent process of its
completion, a SIGCHLD signal handler for the child pro-
cess has to be registered within the parent process. Then
the waitpid() system call has to be used in the parent
process to request exit status information from the child
process.

To redirect the output messages from a child process to

262

the parent process, pipes are employed. A pipe is a mech-
anism for interprocess communication; data written to the
pipe by one process can be read by another process. The
data is handled in a first-in, first-out (FIFO) order. The pipe
has no name; it is created by the pipe() system call in
the parent process before forking and it is inherited from
the parent process by the child process after the forking
takes place. Then a call to the dup2() system call is per-
formed in the child process (before the execv() system
call) to force the child process, after a new process image
has been loaded, to use one end of the pipe as its standard
output channel (a pipe have to be employed for each of the
descriptors of the standard output streams stdout and
stderr). The other end of the pipe will be used by the
parent process to capture the messages sent by the child
process on one of its standard output streams. Also, to
report in the parent process errors encountered early in the
child process (e.g., to report that the execv() system call
to load a new process image has not succeeded), another
pipe has to be set in the parent and inherited by the child
process for this purpose.

An issue that will further increase the complexity of the
scheme explained above has to do with the communica-
tion asynchronism between the child process and a parent
process that employs an X-based graphical user interface
(GUI). A signal such as SIGCHLD or data sent through
the pipes can be received from the child process asyn-
chronously in the context of the current running parent pro-
cess. If the parent process would like to display the data
received or to display messages about the child process sta-
tus by making X routine calls right away from inside the
handlers that the parent has installed for this eventuality,
this will lead to problems. This scheme of operations can
severely interfere with the transmission and processing of
X protocol messages between the X server and the applica-
tion client (the parent process), because this asynchronous
events could potentially be delivered right in the middle
of an X call which is manipulating the event queue. Any
attempt by the handler to call further X routines in these
circumstances might garbage any messages which are in
progress. The solution to this problem is to register these
handlers with the Xt Toolkit Intrinsics library (a library on
which OSF Motif toolkit is built) that will delay the pro-
cessing of the received events until a time when the parent
process knows it is safe to make X routine calls.

The algorithmic steps (simplified) performed to set up
the SystemC simulation engine as a child process of the
GRAAL Simulator process are presented next. These steps
are performed in the GRAAL Simulator program up to the
forking point, then the steps will be split in steps taken in
the parent process and in the child process. The steps are:

1. create a pipe (the error pipe) that will be used to catch
and report errors from the child process before the Sys-
temC simulator program image is loaded by the child pro-
cess;
2. create a pipe (the stdout pipe) for redirecting the
messages on the stdout stream of the child process;
3. open or create a file with a user-specified name for log-
ging the messages on the stdout stream of the child pro-
cess;
4. create a pipe (the stderr pipe) for redirecting the
messages on the stderr stream of the child process;
5. open or create a file with a user-specified name for log-
ging the messages on the stderr stream of the child pro-
cess;
6. perform forking and by examining the return value (the
process ID) of the fork() system call, branch in:
• steps for the child process
(a) using dup2() system call, connect the stdout

stream of the child process to one end of the stdout pipe;
(b) using dup2() system call, connect the stderr

stream of the child process to one end of the stderr pipe;
(c) load using the execv() system call the reference

SystemC simulator as a new process image for the child
process;
(d) report any errors from the previous steps to the parent

process via the error pipe.
• steps for the parent process
(a) install a handler for the SIGCHLD signal sent by the

child process and register the handler with the Xt Toolkit
Intrinsics library to process X routine calls safely;
(b) install a handler for the error messages received

through the error pipe from the child process and register
the handler with the Xt Toolkit Intrinsics library;
(c) install a handler for the messages received through

the stdout pipe from the child process and register the
handler with the Xt Toolkit Intrinsics library;
(d) install a handler for the messages received through

the stderr pipe from the child process and register the
handler with the Xt Toolkit Intrinsics library;

From now on, all the communication aspects between
the GRAAL Simulator program and the reference Sys-
temC simulator are in place. Moreover, as an outcome
of the algorithmic steps mentioned, the SystemC simula-
tion is running. By using the child process ID of the Sys-
temC simulator program and the signals SIGSTOP, SIG-
CONT, and SIGKILL, the GRAAL simulator program can
pause, resume, or abort the SystemC simulation. The mes-
sages displayed by the SystemC simulator program are
also logged in user-specified files. The simulation control
panels are presented in Figure 3. The first two panels are
allocated for the messages displayed by the reference Sys-

263

temC simulator. The third panel provides feedback about
the tasks that are currently performed by the GRAAL Sim-
ulator program in response to the actions selected by the
user from the graphical menus. It is also used to signal
different error conditions that might appear.

C. Data visualization

The design exploration framework being developed in
particular to investigate graphics hardware accelerator ar-
chitectures, means to visualize in a graphical form various
buffers inside the graphics hardware accelerator has been
provided. In this way, it is possible, while the SystemC
simulation is running, to analyze the impact tweaking the
algorithms or the bit operand width precision may have
on the resulted image quality. It is also possible with the
data visualization tool to spot artifacts in an image, gener-
ated by the graphical algorithms employed in the graphical
pipeline and hence, may be a valuable debugging tool.

The data visualization tool is flexible enough to display
in real-time with regard to SystemC simulation, in differ-
ent windows, all kinds of buffers that the designer of a
graphics hardware accelerator would like to monitor: the
display frame buffer, the depth or z-buffer, and other tem-
porary (hardware or software) memory buffers used for
image compositing tasks. It is in particular designed to
visualize the buffers of a particular class of low-cost, low-
power rasterizers that employs a tiling architecture. The
tiling architectures were adopted as a way to counteract
the huge increase in storage and bandwidth requirements
of full-scene antialiasing [27]. In a tiling architecture, the
screen is divided in a number of non-overlapping regions,
or tiles, which are processed serially. After a complete tile
is rasterized, the image resulted for that tile is copied in
the global display frame buffer, then the rasterization is re-
peated for the next tile until all the tiles of a screen are pro-
cessed. The costs of a tile-based rasterizer are much lower
due to the fact that the intermediate fragment values only
need to be maintained for the tile, not for the whole screen.
Thus, for these types of architectures, all the buffers per-
taining to a tile-based graphics hardware accelerator can
be visualized and the current-processed tile location can
be marked in the global display frame buffer.

To facilitate the image analysis of the buffer content,
functions for zoom in, zoom out are provided, as well
the possibility to capture, at the current zoom level, the
buffer’s data visualization window content (or only what
can be seen through the window viewport) as a graphical
image on disk. In addition, to aid in the algorithm devel-
opment, or debugging, the center of the pixels, or the ren-
dering primitives whose image is rasterized, can be super-
imposed on top of the buffer content. To help the designer

to catch algorithm errors like locations left uninitialized in
the buffers, those portions are drawn in the buffer’s visu-
alization window with a special stipple marking. A few
of these features can be seen in Figure 4, where the con-
tent of a display frame buffer that undergoes a color test is
presented.

Regarding the data visualization implementation in our
design framework, a one-way communication mechanism
from the SystemC simulator to the GRAAL Simulator was
devised. This scheme is based on software, inter-process
communication FIFOs in UNIX. A FIFO special file is
similar to a pipe, but instead of being an anonymous, tem-
porary connection, a FIFO has a name like any other file
in the system. Processes open the FIFO by name in or-
der to communicate through it. A process that writes in a
FIFO special file has to have another process listening to
the FIFO, otherwise it will deadlock.

For these scheme to work, multiple FIFOs, one for ev-
ery buffer whose content is intended to be visualized and
one for the rendering primitives that will be overlaid on
the buffer content, will be employed to carry data between
the GRAAL Simulator process and the SystemC simula-
tor. Because the GRAAL Simulator program launches the
SystemC simulator as a child process, it has to set first
these FIFOs for listening. For this purpose, it makes use
of a configuration file in which the names of the FIFO spe-
cial files employed by the SystemC simulator are commu-
nicated. The two processes have also to agree about the
format of the data packets that will be used in the com-
munication via FIFOs. Hence, a common header file, in
which the templates for data communication are declared
and defined, will be employed by the GRAAL Simulator
program and the special modules for data communication
that will augment the graphics hardware accelerator Sys-
temC model.

After the FIFOs for communication will be opened for
reading in the GRAAL Simulator program, handlers will
be installed to process any events (e.g., a new data packet
was received) that might appear on these FIFOs. Because
we want that every change in the simulated graphics hard-
ware accelerator’s buffers to be mirrored in the data visu-
alization window, the handlers will be also registered with
the Xt Toolkit Intrinsics library to process X routine calls
safely.

On the SystemC simulator side, the FIFOs will be
opened for writing as soon as possible, for instance at the
elaboration time (Figure 2), otherwise the GRAAL Simu-
lator will deadlock. The elaboration is that phase of execu-
tion in which the SystemC library routines undertake the
preparatory work to construct and connect the objects for
simulation, as prescribed by the designer. In the SystemC

264

Fig. 4. Display frame buffer content visualization in GRAAL Simulator program during SystemC simulation.

simulator model of the graphics hardware accelerator, spe-
cial modules for data communication will be employed
alongside the modules that constitutes the graphics hard-
ware accelerator. These special modules will be connected
in parallel with the buffers receiving the same incoming
data stream. This stream will be formatted into the data
packets that will be pushed through the FIFO for buffer vi-
sualization in the GRAAL Simulator program. Thus, the
right place to open the FIFOs for writing would be the
bodies of these special modules’ constructors (a module
in SystemC is implemented as a C++ object).

D. Power consumption estimation

The design exploration framework can be employed for
power consumption estimation once the graphics hardware
accelerator model has been refined down to the register-
transfer (RT) level.

To estimate the power consumption at the RT level, we
adopted the estimation techniques presented in [7]. The
premise for the success of such methodology consists in
the existence of a library of hardware cells (various op-
erators for datapath part, gates for control logic, and bit-

cells, decoders, sense amplifiers for memory cores) speci-
fied at the layout-level. Once such a library exists, it can be
precharacterized resulting in a table of effective capacitive
coefficients for every element in the library. Then using
only this tables and the activity statistics derived during the
register-transfer level simulation the power consumption
can be estimated easily. This precharacterization has to
be done only once and only the effective capacitive coeffi-
cients table are needed for power estimation. The prechar-
acterization results are valid only for a specific library of
hardware cells and a given IC technology.

The power is analyzed separately for the four main
classes of chip components: datapath, memory, control,
and interconnect. For the first two classes, a model called
the Dual Bit Type (or DBT) model is developed and it
demonstrated good results, with power estimates typically
within 10-15% of results from switch-level simulations.
The DBT model achieves its high accuracy by carefully
modeling both physical capacitance and circuit activity.
The key concept behind the technique is to model the ac-
tivity of the most significant (sign) bits and least signifi-
cant bits separately. The DBT model applies only to parts

265

Activity

Analysis

Power analysis

Datapath

Power analysis

Memory

Power analysis

Control

Power analysis

Interconnect

Power Models

& Coefficient Tables

(precharacterized,
hardware library dependent)

Estimator
Power

Power Consumption Estimation

Fig. 5. The power consumption estimation strategy modeled in SystemC.

of the chip that manipulate data. A separate model is in-
troduced to handle power estimation for control logic and
signals. This model is called the Activity-Based Control
(ABC) model. The method relies on the observation that
although the implementation style of the controller (e.g.,
ROM, PLA, random logic, etc.) can heavily impact the
power consumption, it is still possible to identify a number
of fundamental parameters that influence the power con-
sumption regardless of the implementation method. In a
chip, datapath, memory, and control blocks are joined to-
gether by an interconnect network. The wires comprising
the network have capacitance associated with them and,
therefore, driving data and control signals across this net-
work consumes power. The precise amount of power con-
sumed depends on the activity of the signals being trans-
ferred, as well as the physical capacitance of the wires.
The DBT and ABC models provide the activity informa-
tion for control and data buses, but the physical capaci-
tance depends on the average length of the wires in each
part of the design hierarchy.

The details of the software implementation of this
methodology for high-level power estimation and the re-
sults obtained are described in a previous paper [28]. The
porting of that software implementation in the new Sys-
temC paradigm is ongoing. Referring to the Figure 2,
the power consumption estimation component modeled in
SystemC can be refined as presented in Figure 5. The main

components that can be identified in the figure are:

- Precharacterized Power models and Effective Capaci-
tance Coefficient Tables Module, that contain for a library
of hardware cells all the technology dependent informa-
tion required by the power analysis modules to compute
the power consumption; the tables are derived only once
for a given library of hardware cells;
- Activity Analysis Module, that feeds the Power Analy-
sis modules (power calculators) with statistics about signal
activity inside the simulated hardware description;
- Power Analysis Modules, that estimate the power con-
sumption in the datapath, control, memory, and intercon-
nect based on statistics received from the Activity Analy-
sis Module and lookups in the effective capacitance coef-
ficient tables;
- Power Estimator Module, that adds the estimates of
power consumption of datapath, control, memory, and in-
terconnect and offers the total figure of power consumption
inside the graphics hardware accelerator unit per graphics
software application executed on the ARM processor.

To gather statistics about the signal activity, in SystemC
were designed channels that inherit from the sc signal
primitive channel class (the sc signal objects are used
to model hardware signals in SystemC) and have addi-
tional code to keep track of the toggling transitions. Sys-
temC module classes for every particular hardware class,
e.g., datapath, memory, control, or interconnect have been

266

started to be developed with functionality (member func-
tions) targeted to power analysis and power estimation.
Then RT level modules for hardware units that have ad-
ditionally embedded power estimation capability can be
derived by double inheritance from the bare RT level hard-
ware module class (the RTL modules used normally for
simulation and synthesis) and from the power-aware mod-
ule class for the hardware class that hardware unit belongs
to. The interconnection between two such power-aware
modules will be realized with the new channels that ac-
count for the toggling transitions.

V. CONCLUSIONS

In this paper were presented challenging aspects solved
in the development of a versatile hardware/software co-
design and co-simulation environment for the develop-
ment of graphics hardware accelerators in ARM-based
system-on-chip designs. The tool integrates the ARMu-
lator, the cycle-accurate instruction-level simulator for the
ARM low-power processor family, with an augmented
open source SystemC modeling framework and simulation
engine, which allows the development of cycle-accurate
or more abstract models of software algorithms, hard-
ware architectures, and system-level design. The fun-
damental motivator for choosing the SystemC modeling
language was the possibility to refine down to the im-
plementation details an entire system specified at higher
levels of abstraction, i.e., at the functional level, in a
single language. The tool permits the simulation of an
entire computer graphics pipeline allowing experimental
software/hardware partitioning schemes, and performance
monitoring in terms of throughput and power consumption
estimated at the RT level. Moreover, it provides graphical
output for the visualization of the potential impact tweak-
ing the algorithms or the bit operand width precision may
have on the resulted image quality. Automatic synthesis of
hardware can be also achieved form the SystemC RT level
model of the graphics hardware accelerator.

The porting of a previous software implementation
of power consumption prediction in the new SystemC
paradigm is ongoing. The design exploration framework
probably will suffer further modifications by replacing the
ARMulator for the sake of efficiency with an ARM CPU
core SystemC model. These issues will be addressed in
future papers.

REFERENCES

[1] M. Segal and K. Akeley. The OpenGL Graphics System: A Spec-
ification (Version 1.2.1). Silicon Graphics, Inc., 1999.

[2] http://www.microsoft.com/windows/directx/default.asp.
[3] Ziyad S. Hakura and Anoop Gupta. The Design and Analysis of

a Cache Architecture for Texture Mapping. In Proceedings of the

24th International Symposium on Computer Architecture, pages
108–120. ACM Press, 1997.

[4] Homan Igehy, Matthew Eldridge, and Kekoa Proudfoot. Prefetch-
ing in a Texture Cache Architecture. In Proceedings of the 1998
EUROGRAPHICS/SIGGRAPH Workshop on Graphics Hard-
ware, pages 133–142. ACM Press, 1998.

[5] Michael Cox, Narendra Bhandari, and Michael Shantz. Multi-
Level Texture Caching for 3D Graphics Hardware. In Proceed-
ings of the 25th Annual International Symposium on Computer
Architecture, pages 86–97. IEEE Press, 1998.

[6] Jon P. Ewins, Phil L. Watten, Martin White, Michael D. J. Mc-
Neill, and Paul F. Lister. Codesign of graphics hardware accel-
erators. In Proceedings of the 1997 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 103–110. ACM Press,
1997.

[7] Paul Landman. High-Level Power Estimation. In International
Symposium on Low Power Electronics and Design, pages 29–35,
Monterey CA, 1996.

[8] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version
2.0. Technical Report Nr. 1342, University of Wisconsin-Madison
Computer Sciences Department, June 1997.

[9] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and
W. Ye. Energy-Driven Integrated Hardware-Software Optimiza-
tions Using SimplePower. ISCA 2000, 2000.

[10] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations. In
Proceedings of the 27th International Symposium on Computer
Architecture, pages 83–94, Vancouver, BC, June 2000.

[11] V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction Level
Power Analysis and Optimization of Software. Journal of VLSI
Signal Processing Systems, 13(2–3):223–238, 1996.

[12] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded
software: A first step toward software power minimization. IEEE
Transactions on VLSI Systems, 2:437–445, December 1994.

[13] Y. Li and J. Henkel. A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems. In Proceed-
ings of Design Automation Conference, pages 188–193, 1998.

[14] B. Kapoor. Low Power Memory Architectures for Video Appli-
cations. In Proceedings of 8th Great Lakes Symposium on VLSI,
pages 2–7, 1998.

[15] ARM Limited. ARM Developer Suite version 1.1, 1999.
[16] The Open SystemC Initiative, URL: http://www.systemc.org. Sys-

temC version 2.0 — User’s Guide (Update for SystemC 2.0.1),
2002.

[17] The Open SystemC Initiative, URL: http://www.systemc.org.
Functional Specification for SystemC version 2.0 (Update for Sys-
temC 2.0.1), 2002.

[18] Synopsys Inc. Describing Synthesizable RTL in SystemC (Version
1.1), 2002.

[19] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Com-
puter Graphics: Principles and Practice, Second Edition in C.
Addison-Wesley, 1996.

[20] T. Möller and E. Haines. Real-Time Rendering. A K Peters, Ltd.,
1999.

[21] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Pro-
gramming Guide, Third Edition, The Official Guide to Learning
OpenGL, Version 1.2. Addison-Wesley, 1999.

[22] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, 2002.

[23] The Open SystemC Initiative (OSCI), URL:
http://www.systemc.org.

[24] A. Fountain, J. Huxtable, P. Ferguson, and D. Heller. The Defini-

267

tive Guides to the X Window System, Vol. 6A — Motif Program-
ming Manual for Motif 2.1. O’Reilly & Associates, Inc., 2001.

[25] A. Fountain and P. Ferguson. The Definitive Guides to the X Win-
dow System, Vol. 6B — Motif Reference Manual for Motif 2.1.
O’Reilly & Associates, Inc., 2001.

[26] W.R. Stevens. Advanced Programming in the UNIX Environment.
Addison-Wesley, 1993.

[27] A. Herrera. Technology and Solutions for Antialiasing of Com-
puter Graphics. Technical report, Jon Peddie Associates, 2000.

[28] D. Crisu, S.D. Cotofana, and S. Vassiliadis. An Energy-Aware Ar-
chitectural Exploration Tool for ARM-Based SOCs. In Proceed-
ings of 12th Annual Workshop on Circuits, Systems and Signal
Processing, ProRISC 2001, November 2001.

268

