
An Investigation on FPGA based SAD Hardware
Implementations

Stephan Wong, Bastiaan Stougie, and Sorin Cotofana
Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology,
Stephan@Dutepp0.ET.TUDelft.NL

Abstract— In this paper, we argue that the utilization
of field-programmable gate array (FPGA) structures can
improve the performance of embedded systems based on
programmable processor cores. Furthermore, in multime-
dia processing it is well-known that the sum-of-absolute-
differences (SAD) operation is the most time-consuming op-
eration when implemented in software running on such pro-
grammable processor cores. This is mainly due to the se-
quential characteristic of such an implementation. There-
fore, in this paper we investigate several hardware imple-
mentations of the SAD operation and map the most promis-
ing one in FPGA. Our investigation shows that an adder tree
based approach yields the best results in terms of speed and
area requirements and has been implemented as such by
writing high-level VHDL code. Due to the limited number
of I/O pins of current commercially available FPGA chips,
we opted to implement the SAD over multiple chips by uti-
lizing a single design. The design was functionally verified
by utilizing the MAX+plus II 10.1 Baseline software pack-
age from Altera Corp. and then synthesized by utilizing the
LeonardoSpectrum software package from Exemplar Logic
Inc. Preliminary results show that the design can be clocked
at 380 Mhz. This result translates into a faster than real-time
full search in motion estimation for the main profile/main
level of the MPEG-2 standard.

Keywords—sum of absolute difference, field-programmable
gate array, hardware synthesis.

I. I NTRODUCTION

In video coding, similarities between video frames can
be exploited to achieve higher compression ratios. How-
ever, moving objects within a video scene diminish the
compression efficiency of the straightforward approach
that only considers pels1 located at the same position in
the video frames. In order to achieve higher compres-
sion efficiency,motion estimationwas introduced in an
attempt to accurately capture such movements. In the
MPEG-1/2 multimedia standards, it is performed for ev-
ery macroblock, i.e., an array of16× 16 pels, in the to be
encoded frame by finding its ‘best’ match in a reference

1Pel stands for picture element and represents the smallest color data
unit of a picture or video frame.

frame. The most commonly used metric to evaluate the
match is the “sum of absolute differences” (SAD), which
adds up the absolute differences between corresponding
elements in the macroblocks. The SAD operation is very
time-consuming due to the complex nature of the abso-
lute operation and the subsequent multitude of additions.
In [15], a parallel hardware implementation was proposed
to speed up the SAD computation process. This paper also
describes amongst others this parallel hardware implemen-
tation of the SAD operation and focus on their implemen-
tation in field-programmable gate arrays (FPGAs). The
reasons to utilize FPGAs are discussed in the following.

Traditionally, the design of embedded multimedia pro-
cessors was very much similar to microcontroller design.
This meant that for each targeted set of multimedia ap-
plications, an embedded multimedia processor needed to
be designed in specialized hardware (commonly referred
to as Application Specific Integrated Circuits (ASICs)).
In the early nineties, we were witnessing a shift in the
embedded processor design approach fuelled by the need
for faster time-to-market times. In embedded processor,
this resulted in the utilization of programmable processor
cores augmented with specialized hardware units imple-
mented in ASICs. Consequently, time-critical tasks were
implemented in specialized hardware units while other
tasks were implemented in software to be run on the pro-
grammable processor core [13]. This approach allowed a
programmable processor core to be re-used for different
sets of applications and only the augmented units need to
be (re-)designed for specific application areas.

Currently, we are witnessing a new trend in embedded
processor design that is again quickly reshaping the em-
bedded processor design. Instead of implementing the
time-critical tasks in ASICs, these tasks are to be imple-
mented in field-programmable gate arrays (FPGA) struc-
tures or comparative technologies [4], [14], [16], [6]. The
reasons for and the benefits of such an approach include
the following:
• Increased flexibility: The functionality of the embed-
ded processor can be quickly changed without requiring

567

another roll-out of the embedded processor itself and de-
sign faults can be quickly rectified. It also allows for quick
adaptation of new (possibly unforeseen) developments.
• Sufficient performance: The performance of FPGAs
has increased tremendously and is quickly approaching
that of ASICs [2]. This seems to be mainly due to the faster
adaptation of new technological advancements by FPGAs
than by ASICs.
• Faster design times:Faster design times are achieved
by re-using intellectual property (IP) cores or by slightly
modifying them. More importantly, high-level design lan-
guages (such as VHDL) can be used in the design process
and thereby speeding it up significantly.

The mentioned advantages and enabling FPGA have
even resulted in that programmable processor cores are im-
plemented on the same FPGA structure, e.g., Nios from
Altera [1] and MicroBlaze from Xilinx [3].

In this paper, we investigate several hardware imple-
mentation alternatives for the sum-of-absolute-differences
(SAD) operation in terms of expected speed and area. The
three implementation alternatives are based on a sequen-
tial adder, a systolic array of adders, and a pipelined adder
tree, alternatively. The sequential adder based implemen-
tation yields the lowest area requirements, but it requires
the most cycles to complete. The systolic array based im-
plementation requires slightly less cycles to complete, but
at the same time much more area is needed. The pipelined
adder tree based implementation is the best approach since
it requires less area than the systolic array based imple-
mentation and since it requires the lowest number of cy-
cles to complete. This approach has been chosen to be
implemented in FPGA hardware.

This paper is organized as follows. Section II discusses
the background of multimedia processing and motion esti-
mation in particular in which the SAD operation is being
utilized. Section III discusses the implementation alterna-
tives in detail and selects the most promising one. Sec-
tion IV describes the chosen multi FPGA chip design and
presents the generic design for all chips. Furthermore, the
synthesis results of this design are presented. Finally, Sec-
tion V concludes this paper with some remarks.

II. BACKGROUND

Digital video compression entails the utilization of
many coding techniques with the ultimate goal to reduce
the size of the digital representation of a video sequence.
The same techniques used to compress digital pictures,
e.g., in the JPEG picture standard, can be applied to single
video frames. Such techniques exploit the fact that col-
ors in photographic images tend to only gradually change
when traversed from one side to another. In the video cod-

ing case, the fact that subsequent video frames do not differ
much can be similarly exploited in order to increase com-
pression efficiency.

All coding techniques can be categorized into two main
categories, namely lossy and lossless techniques. Lossy
coding techniques remove pel information that the human
eye is unable to perceive using coding techniques such as
the discrete cosine transform and quantization. The infor-
mation that has been removed in most cases cannot be ex-
actly regained, but it usually can only be approximated.
On the other hand, lossless coding techniques do not re-
move any information. Instead, it exploits redundancies,
i.e., similarities, between pels found in and between video
frames which results in the representation of pel informa-
tion using fewer bits. A lossless coding technique is pre-
dictive coding which predictscurrent pel(s) usingrefer-
encepel(s) and then store the difference(s) between the
prediction and the current pel(s). Assuming redundancy
between pels, the differences are usually small and can be
coded using less bits than the coding of the original pels.
Predictive coding can use pels from the same video frame
as reference pels (intra-coding) or pels from other video
frames (inter-coding). Inter-frame predictive coding can
contribute to the overall compression efficiency, because
consecutive video frames are usually similar, i.e., they do
not differ much. In this sense, the reference pels can be
found in a reference frame located at the same position as
the current pels in the current to be coded frame. This
approach can also be used to capture scene changes by
choosing the reference frames in the near future of the cur-
rent (to be encoded) frame instead from its past. However,
such a straightforward approach has one major drawback.
Objects in a video scene tend to move around resulting
in poor compression performance of the straightforward
inter-frame predictive coding method, because pels located
at the same location in consecutive frames are now quite
different.

Motion estimation has been introduced in an attempt
to capture the motion of objects within a video scene. I.e.,
find the best match between the pel(s) in the current frame
and the pel(s) in the reference frame. To this end, a search
area within the reference frame must be traversed in or-
der to find the best match. After finding the best match,
the difference(s) between the pels must be coded together
with the difference between the locations (motion vector).
Motion estimation can be performed for single pels in the
current frame, but it is rarely used, because the coding of
motion vectors for single pels reverses the gains of predic-
tive coding. Therefore, block-based motion estimation is
the most commonly used form in which a search is per-
formed in the reference frame for a block of pels in the

568

current frame.
Two key issues are associated with motion estimation

in general, namely the size of the search area and which
metric to use for determining the ‘best match’. The first
issue is a trade-off, because a limited search area reduces
the possibility of finding a ‘best match’ and an exceed-
ingly large search area results in many unnecessary com-
putations. In order to reduce the number of computations,
many search area traversing methods have been proposed
in literature [11], [7], [9], [8]. The second issue relates
to finding a metric that will guarantee a good coding per-
formance. Two of such metrics are themean square error
(MSE) and themean absolute difference(MAD).

Considering that block-based motion estimation is most
commonly used in multimedia standards such as MPEG-
1 [12], MPEG-2 [5], and Px64 [10], we briefly highlight
the block-based forms of the MSE and the MAD metrics.
Such a block is usually16×16 in size and is referred to as
macroblock. The MSE is calculated as follows:

MSE(x, y, r, s) =

1
256

15∑

i=0

15∑

j=0

(A(x+i,y+j) −B((x+r)+i,(y+s)+j))
2

with 0 ≤ x,y < framesize
with (r, s) being the motion vector
with A(x,y) being a current frame pel at(x, y)
with B(x,y) being a reference frame pel at(x, y)

Due to the square operation on the differences, this met-
ric is less commonly used. Instead, the MAD is used more
often and it is calculated as follows:

MAD(x, y, r, s) =

1
256

15∑

i=0

15∑

j=0

|(A(x+i,y+j) −B((x+r)+i,(y+s)+j))|

with 0 ≤ x,y < framesize
with (r, s) being the motion vector
with A(x,y) being a current frame pel at(x, y)
with B(x,y) being a reference frame pel at(x, y)

The vector(x, y) denotes the location of the to be en-
coded macroblock in the current frame. Bothx andy are
multiples of 16 due to the blocksize is16 × 16. The (mo-
tion) vector2 (r, s) denotes the location of the macroblock

2Contrary tox andy, arer ands not multiples of 16 as the granularity
of the search area is on the pel level.

to be used as a prediction in the reference block relative to
the location of the to be coded macroblock in the current
frame. Due to the computational simplicity of the MAD
and reasonable accuracy, it is being used more often than
the MSE. The MAD can be rewritten to:

MAD(x, y, r, s) =
SAD(x, y, r, s)

256

The division by256 in (binary) computer arithmetic is
translated into an easy shifting the final SAD result by8
bits. Therefore, we are focusing solely on the SAD in the
remainder of this paper.

III. SAD IMPLEMENTATION ALTERNATIVES

In this section, we investigate several design alterna-
tives in implementing the ”sum of absolute differences”
operation. We can observe that the SAD operation can
be divided into two stages. In theabsolutestage, all the
|Ak − Bk|’s calculated (possibly in parallel) before these
results are summed up in thesumstage.
The absolutestage: All data valuesAk andBk are con-
sidered to be unsigned 8-bit numbers. In a straightforward
implementation approach, the data valuesAk andBk are
converted to a number representation that accommodates
negative values allowing the values to be subtracted from
each other. In the case that the result of the subtraction is
negative, the result must be changed to a positive value.
The discussed implementation approach has two main dis-
advantages. First, arithmetic encompassing negative num-
bers require more bits to represent the same range of posi-
tive values. Furthermore, additional logic is needed to per-
form boundary checks. Second, there is an occasional de-
lay incurred by the last step (negative→ positive) leading
to an extension of all data-paths since the delay can not be
pre-determined.

Before we discuss the next approach, we have to note
that the subtraction of two unsigned numbers (e.g.,Ak −
Bk) is performed by addingAk with a bit invertedBk

(Bk = 2n − 1− Bk) and adding a ‘hot’ one:Ak + (2n −
1 − Bk) + 1 = 2n + Ak − Bk. Assuming thatBk ≤ Ak,
the resulting carry (2n) of the addition can be ignored. In
the case that no carry was generated,Bk was greater than
Ak and the addition yields an incorrect addition.

Utilizing the previously discussed subtraction of two un-
signed numbers, it is possible to maintain the bit length of
the valuesAk andBk. However, the effort of perform-
ing an addition in order to determine whether a carry is
generated is wasted in the case that no carry was gener-
ated. Therefore, we propose to implement a carry gener-
ator to calculate the carry based on the well-known carry-

569

propagate algorithm. We have to note that no actual addi-
tion is being performed. Based on the result of the carry
generator, the right value (Ak or Bk) is bit inverted and
added to the remaining value (Bk or Ak) together with a
’hot’ one. While this approach is already faster than the
straightforward approach (since onlyaddition is needed),
the performance of the overall SAD operation can be fur-
ther improved by delaying the summation to be included
in the sumstage. This approach is depicted in Figure 1.
We have to note that in thesumstage all the ’hot’ ones
must taken care of. This can be done by counting all the
needed ’hot’ ones and adding this count (256) as an addi-
tional summation term in thesumstage.

Exor Exor

Invert

Carry_generator

Carry Carry

B

A_out B_out

A

Fig. 1. Utilizing a carry generator in theabsolutestage.

In conclusion, the second approach proved to be bene-
ficial in terms of area (not requiring more bits) and speed
(no addition is required). Furthermore, this approach also
allows a tighter integration of theabsolutestage withsum
stage since we have substituted the subtraction in the MAD
definition with an addition.
The sumstage: In this stage, all theK summation terms
(Xk) outputted by theabsolutestage must be summed up.
To this end, we propose three different methods which we
have termed: sequential addition, systolic array of adders,
and pipelined adder tree.

Carry Propagate Adder

Sum Register

Xk

Sk

Sk-1

Fig. 2. Sequential addition with carry propagate adder.

A possible implementation of sequential addition is de-
picted in Figure 2. In this figure, the values from theabso-
lute stage are summed utilizing a carry propagate adder
(CPA), e.g., a carry look-ahead adder or a ripple carry
adder, and a sum register. The precision of the sum regis-

ter can be pre-determined, because the bit-length of input
values and the number of addition terms are known before-
hand. However, this also dictates the length of the carry
propagate adder which is much slower due to the longer
bit length of its inputs. The amount of cycles to calculates
the result is:K× length of CPA (in bits).

Carry Save Adder

Xk

Ck

Sk-1

Carry Propagate Adder

Sk

SC

Ck-1

Fig. 3. Sequential addition with carry save adder.

Another possible implementation of sequential addition
is depicted in Figure 3. In this figure, a carry save adder
is used to calculate the intermediate sum value (block S)
and carry value (block C). Since such a carry save adder
performs a 3-to-2 reduction, in each cycle a new addition
term can be added. After the lastXK term has been en-
tered, the final sum and carry values are added in the carry
propagate adder. This implementation takes “K+ length
of CPA” cycles to calculate the result. Both possibilities of
a sequential addition require only a small area, but vary in
speed in terms of cycles.

C
arry Save A

d
d

er Bu
ffer

Bu
ffer

P

C

P

C

C
arry Save A

d
d

er Bu
ffer

Bu
ffer

P

C

P

C

C
arry Pro

p
ag

ate A
d

d
er

P

C

C
arry Save A

d
d

er Bu
ffer

Bu
ffer

P

C

P

C

X0..2

X3 XK

...

...

'1' Buffer 'K-2' Buffers

Fig. 4. Addition utilizing a systolic array.

A possible implementation of addition utilizing a sys-
tolic array is depicted in Figure 4. In this systolic array, the
intermediate result flows through that array. In addition, at
each stage a newXk is being added to the intermediate re-
sult. As a result, all theXk values must be bufferedk − 2
cycles and thereby requiring considerable amounts of area.
On the other hand, an advantage of this approach is that the
implementation is pipeline-able. This allows input values
to be put into the array at each cycle and will produce a
result in each cycle (after a certain startup time).

570

Fig. 5. An example adder tree in dot notation.

The third approach is based on the pipelined adder tree
which utilizes full adders in order to add three bits (of the
same weight) and produce a sum bit and a carry bit (called
3-to-2 reduction). By iteratively applying this method, all
the summation termsXk can be reduced to two intermedi-
ate summation terms. These two intermediate summation
terms are then added by utilizing a carry propagate adder.
A simplified adder tree which starts with six summation
terms is shown in Figure 5. In this figure, each bit is repre-
sented with a black dot and the full adder is represented by
a gray box. This method has several advantages. First, it
allows optimizations within the adder tree since the adder
tree is fixed. Second, it is pipeline-able. Third, it requires
considerably less area since no buffering of the input is re-
quired. Fourth, it has a considerably smaller latency than
the other two implementation methods to produce the first
result. Finally, it allows the additional summation terms
from theabsolutestage when utilizing the method depicted
in Figure 1 to be easily included in the adder tree.

In conclusion, based on our preliminary estimations
based on number of cycles and area, it is best to combine
the carry generator based implementation (for theabso-
lute stage) and the adder tree based implementation (for
thesumstage).

IV. VHDL IMPLEMENTATION AND SYNTHESIS

RESULTS

In the previous section, we have selected to implement
the SAD operation based on the carry generator method
(depicted in Figure 1) for theabsolutestage and the adder
tree for thesumstage. In this section, we discuss two pos-
sible multi-chip designs. Multi-chip designs are needed,
because currently available chips only have± 1000 I/O
pins which is not enough to encompass a fully parallel de-
sign of the SAD operation. Such a parallel design has the

following I/O pin requirements: (512 inputs× 8 bits) +
16 output bits+ 1 clock signal= 4113 pins. At the time
of this investigation, the Altera STRATIX EP1S80 was the
largest commercially available FPGA chip in terms of I/O
pins (= 1234) and served as the basis for our investigation
into multi-chip designs.

Fig. 6. A 4-chip design.

A 4-chip design is depicted in Figure 6. By distribut-
ing the input pins over four chips, the I/O pin requirements
can be significantly reduced. Furthermore, we have opted
to implement one generic design (depicted in Figure 6) for
all chips which significantly reduced the design time. The
generic design is such that two modes are supported. The
first mode performs the operations needed in theabsolute
stage, i.e., utilizing the carry generator (CG), till the point
just after ”Adder Tree 1”. This mode is used by chips 2
through 4. The second mode (employed by chip 1) also
starts calculating thesumstage, but continues with ”Adder
Tree 2” by utilizing the results from the other three chips.
The I/O pin requirements are as follows: (64 carry gener-
ators (CGs)× 2 inputs× 8 bits)+ (1 output to other chip
× 22 bits) + 3 input from other chips× 22 bits+ 16-bit
SAD output+ 1 clock= 1129 pins.

CG
 CG
 CG

Adder Tree 1

Adder Tree 2

Final Adder

..................

......

outputs from

other chips

output to

other chip

SAD result

A B A BA B
8 8 8 8 8 8

22

22
22
22

16

Fig. 7. The generic chip’s internal organization.

The number of cycles to calculate the SAD result is29
clock cycles. The functionality of the design has been ver-
ified by utilizing the MAX+plus II 10.1 Baseline software
package from Altera Corp. The synthesis results after run-
ning LeonardoSpectrum are presented in Table I.

571

Device utilization for EP1S80F1508C

Resource Used Avail Utilization
IOs 1129 1213 93.08%
LCs 7765 79040 9.82%
Memory Bits 0 7427520 0.00%
DSP block 9-bit elems 0 176 0.00%

Clock Frequency Report
Clock : Frequency
CLK : 380.7 Mhz

TABLE I
SYNTHESIS RESULTS OF THE GENERIC CHIP

IMPLEMENTATION .

We can observe in the table that our implementation uti-
lizes93% of the available I/O pins. Furthermore, since our
design only requires9% of the chip area, we envision that
more functionality (like DCT, IDCT) be included on the
same chip by multiplexing the I/O pins. Finally, the chip
can be clocked at a frequency of380 Mhz. We can note
that this implementation on the STRATIX FPGA is I/O
bound since the frequency corresponds to the data arrival
time of2.63 ns. Assuming that the memory is fast enough
to provide the needed data, our design is able to support
full search for the main profile/main level (720×576 reso-
lution) in the MPEG-2 standard. The full search algorithm
requires30 frames/second× 1620 macroblocks/frame×
1620 SAD operations/macroblock= 78782000 SAD op-
erations/second. This translates into that every12.70 ns
one SAD operation must be performed which is much
larger than2.63 ns which is the (cycle) time needed to pro-
duce a SAD result in our pipelined design.

V. CONCLUSIONS

In this paper, we have argued that the sum-of-absolute-
differences (SAD) operation is commonly used in video
encoding schemes in order to determine the ’closeness’ of
two macroblocks (a16 × 16 array of pels). We have es-
tablished that the SAD operation can be divided into two
stages, namelyabsoluteand sum. For each stage, sev-
eral implementation alternatives can be identified. Based
on expected speed and area estimates we have selected to
implement the SAD operation utilizing a carry generator
in the absolutestage and an adder tree in thesumstage.
Furthermore, in order to implement a fully parallel design
the I/O pin requirements exceed what is provided by cur-

rent commercially available field-programmable gate array
(FPGA) structures. Therefore, we have chosen to imple-
ment the SAD by utilizing4 chips. We have to note that
only a single generic design was utilized for all4 chips.
The synthesis results show that1129 I/O pins are required
and 7765 LCs are utilized which translates into an area
utilization of about9%. Finally, the presented pipelined
implementation is able to perform faster than real-time full
search in motion estimation for the main profile/main level
of the MPEG-2 standard.

REFERENCES

[1] Nios Embedded Processor. http://www.altera.com/products/
devices/excalibur/exc-niosindex.html.

[2] Virtex-II 1.5V FPGA Family: Detailed Functional Description .
http://www.xilinx.com/partinfo/databook.htm.

[3] Xilinx MicroBlaze. http://www.xilinx.com/xlnx/
xil prodcatproduct.jsp?title=microblaze.

[4] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebel-
ing. Architecture Design of Reconfigurable Pipelined Datapaths.
In Proceedings of the 20th Anniversary Conference on Advanced
Research in VLSI, pages 23–40, March 1999.

[5] B. G. Haskall, A. Puri, and A. N. Netravali.Digital Video: An
introduction to MPEG-2. Digital Multimedia Standard Series.
Chapman and Hall, 1996.

[6] J. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Re-
configurable Coprocessor. InProceedings of the IEEE Symposium
of Field-Programmable Custom Computing Machines, pages 24–
33, April 1997.

[7] J. R. Jain and A. K. Jain. Displacement Measurement and Its
Applications in Interframe Image Coding.IEEE Transactions on
Communications, COM-29(12):1799–1808, December 1981.

[8] S. Kappagantula and K. Rao. Motion Compensated Predictive
Coding. InProc. Int. Tech. Symp. SPIE, San Diego, CA, August
1983.

[9] T. Koga, K. Linuma, A. Hirano, Y.Iijima, and T. Ishiguro. Motion-
Compensated Interframe Coding for Video Conferencing. InNTC
81 Proceeding, pages G5.3.1–5, New Orleans, LA, December
1981.

[10] M. Liou. Overview of the px64 kbit/s Video Coding Standard.
Communications of the ACM, 34(4):59–63, April 1991.

[11] B. Liu and A. Zaccarin. New Fast Algorithms of the Estimation
of Block Motion Vectors.IEEE Transactions on Circuits and Sys-
tems for Video Technology, 3(2):148–157, April 1993.

[12] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall.
MPEG Video Compression Standard. Digital Multimedia Stan-
dard Series. Chapman and Hall, 1996.

[13] S. Rathnam and G. Slavenburg. An Architectural Overview of
the Programmable Multimedia Processor, TM-1. InProceedings
of the COMPCON ’96, pages 319–326, 1996.

[14] R. Razdan and M. Smith. A High-Performance Microarchitecture
with hardware-programmable Functional Units. InProceedings
of the 27th Annual International Symposium on Microarchitec-
ture, pages 172–180, November 1994.

[15] S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek. The
Sum-Absolute-Difference Motion Estimation Accelerator. In
Proceedings of the 24th Euromicro Conference, 2000.

[16] R. Wittig and P. Chow. OneChip: An FPGA Processor with Re-
configurable Logic. InProc. of the IEEE Symposium on FPGAs
for Custom Computing Machines, pages 126–135, April 1996.

572

