PROCEEDINGS OF THE 3D PROGRESS WORKSHOP ON EMBEDDED SYSTEMS

Microarchitectural Extension for Lifting-based DWT

Georgi Kuzmanov, Bahman Zafarifar,

Prarthana Shrestha, Stamatis Vassiliadis

Computer Engineering Lab, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

Phone:+31-(0)15-27-87364

Abstract— At algorithmic level, the so called lifting
scheme represents the fastest implementation of the Dis-
crete Wavelet Transform (DWT). In this paper, we inves-
tigate a novel microarchitectural extension for the DWT
based on the lifting scheme. A new fast lifting DWT
(FLWT) instruction is introduced as an ISA Extension of a
MIPS architecture. Simulations have been carried out by
a cycle accurate simulator (SimpleScalar). As benchmark
software, we have used a modified version of the pack-
age LIFTPACK, optimized for integer arithmetic. A mi-
crocodable DWT unit has been implemented on a recon-
figurable hardware platform - namely the Xilinx FPGA
VIRTEX II. In order to accelerate the transform process,
the hardware module utilizes pipelining, data reusability,
data parallelism and some specific features of the Xilinx
FPGAs. We have used the original synthesis tools of the
FPGA vendor to get realistic data for the performance of
the unit. Simulation results indicate a speedup of over 4
times versus the pure software implementation, assuming
clock frequencies of 50 MHz for the DWT module and 1
GHz for the General Purpose MIPS. An important advan-
tage of the module is that for higher degrees of the filter
polynomial, its speed up versus the pure software imple-
mentation would be even higher. It is also noted that the
speedup increases when the dimensions of the processed
pictures grow. More dramatic improvements in perfor-
mance can be achieved, since the design can be scaled-up
to utilize higher degrees of parallelism. The introduced mi-
croarchitecture can be utilized by wavelet based encoding
tools and standards like JPEG 2000, MPEG-4, etc.

Keywords— Data compression, DWT, Lifting scheme,
Microarchitecture, ISA Extension

I. INTRODUCTION

Due to its advantageous features, the Discrete
Wavelet Transform (DWT) has emerged to become a
basic encoding algorithm for recent data compression
standards. During the last decade intensive research
efforts have been spent both on the theoretical foun-
dations of DWT and on its practical implementation
in modern signal and image processing systems. Some
of the advantages of wavelets are:

e Good decorrelating behavior which can be applied
for efficient compaction of data.
o Localization both in space(time) and scale (fre-

© PROGRESS/STW 2002, ISBN 90-73461-34-0

E-mail: G.Kuzmanov@ET.TUDelft.NL

quency) domains. Hence wavelets can easily detect
local features in a signal.

o« Wavelets are based on multi-resolution analysis,
which allows analyzing a signal at different resolution
levels.

o Wavelets are smooth, which can be characterized by
their number of vanishing moments (to be explained
later). The higher the number of vanishing moments,
the better smooth signals can be approximated in a
wavelet basis.

« Fast and stable algorithms to calculate the Discrete
Wavelet Transform (DWT) and its inverse are already
available.

On the other hand, regarding the required compu-
tational time, a pure software implementation of the
DWT is recognized to be a substantial performance
bottleneck in systems utilizing it. Therefore, its accel-
eration is a key research issue. At algorithmic level,
the so called lifting scheme [7] represents an imple-
mentation of the DWT, recognized to be the fastest
ever known.

In this paper we evaluate a hardware acceleration
of the lifting scheme, using a microcodable Fast Lift-
ing Wavelet (FLWT) co-processing unit coupled with
a General Purpose Processor (MIPS in this case). As
a benchmark software we utilize a modified version
of LiftPack [4], a package for lifting based wavelet
transforms. The extended microarchitecture is sim-
ulated by Sim-Out-Order, a cycle accurate simula-
tor from the SimpleScalar tool set [3]. An FPGA
prototype of the FLWT unit has been designed [10]
and synthesized with the recent (Virtex II) technol-
ogy of Xilinx [9] . The timing parameters, obtained
from the synthesis, are used for the microarchitec-
tural simulations. Further, we implement Polinomial,
Daubechies 9-7, and Reversible Le Gall 5-3 filters with
bi-orthogonal wavelets and analyze the hardware vs.
software (HW /SW) speedups by changing various pa-
rameters.

Assuming clock frequency of 1GHz for the General
Purpose Processor and 50 Mhz for the FLWT unit,
simulation results indicate:

OCTOBRE 24, 2002 JAARBEURS UTRECHT NL

e HW/SW speedups of 3.5, 4.0, and 5.0 for picture
formats of 176 x 144, 352 x 288, and 720 x 560 respec-
tively.

« HW/SW speedups of 3, 4, and 6 for filters with
Polinomial degrees of 2-2, 4-4, and 8-8 respectively.

o« HW/SW speedups estimated to be 3, 3.7, and 11 for
polinomial, Reversible Le Gall 5-3, and Daubechies 9-
7 bi-orthogonal filters respectively.

The remainder of the discussion is organized as fol-
lows. Section II gives some background information
on DWT and its possible implementations. In Section
III, the lifting scheme is discussed. Section IV de-
scribes the investigated microarchitectural extension
and some modeling considerations. Simulation results
are reported in Section V. Finally, the conclusions are
represented in Section VI.

II. BACKGROUND

Wavelets, literally meaning small waves, are math-
ematical concepts for decomposing a function, say f,
into sets of other functions known as wavelet bases-
U, 5(t).

f= Z Ca,b ’ \Ija,b(t) (1)
t

To have an efficient representation of the signal f us-
ing only a few coefficients C y, , it is very important to
use a suitable family of functions ¥, ;. The functions
VU, » should match the features of the data we want to
represent. Time-limited signals (space-limited in case
of pictures) can be represented efficiently using a basis
of block functions (Dirac delta functions), but these
block signals do not efficiently handle frequency limi-
tations. Band-limited signals can be represented effi-
ciently using a Fourier basis but Sines and Cosines are
not limited in time. Wavelet functions, as a compro-
mise between the pure time-limited and band-limited
basis functions, combine the best of both.

In order to get the variable time-frequency localiza-
tion (resolution), a wavelet called mother wavelet or
prototype function V(t) is defined as shown in Figure
1. Basis functions W, 1 (t) are calculated as scaled and
translated versions of the prototype:

1 t—a

AR !)

where b is the scaling coefficient and «a is the trans-
lating coefficient.

The Discrete Wavelet Transform (DWT) with res-
olution level j (scale b = 27) at time k is defined as:

\I}a,b(t) =

Win(t) =278 W@t k) (3)

109

()

Ml

Fig. 1. Wavelet Prototype Function - an example

Considering Equations (1) and (3), any signal can
be represented as the sum of a set of wavelet coeffi-
cients at an infinite number of scales:

F) = Cin-0j(t) (4)
.k

+00

Cip = / (1) U (b)dt (5)
—0o0

This equation resembles the Fourier Transform and is

called the classic wavelet transform [1].

Wavelets in image compression. Some of the fea-
tures of wavelets, that make them very successful and
widely implemeted in recent image compression algo-
rithms are:

o Wavelets provide high compression ratios: in terms
of visual quality they perform much better than com-
peting technologies like DCT.

o The wavelet transforms are symmetric: both the
forward and the inverse transform have the same com-
plexity, allowing fast compression and decompression.
o Multi-resolution signal analysis allows progressive
transmission and zooming, without the need for ex-
tra storage.

o Wavelets can be used for various image-processing
operations. The possibility to combine image process-
ing and compression is a very appealing factor.

DWT implementations. DWT can be implemented
using different prospects of the transform. For exam-
ple, the wavelet transform coefficients can be gener-
ated using 2 channel filter banks called synthesis fil-
ters. The input signal is split into two signals using a
lowpass filter h(t) and its orthogonal or bi-orthogonal
highpass filter g(t). Multiple levels or ”scales” of the
wavelet transform are made by repeating the filtering
and decimation process on the lowpass branch outputs

only. The process is typically carried out for a finite
number of scales, resulting the wavelet coefficients.

Another implementation-oriented prospect of the
DWT is the Fast Wavelet Transform. In this case, the
DWT can be factorized into a product of a few sparse
matrices using similarity properties. When these fac-
tors are applied to the multiplication with a vector,
the order of operations reduces, thus the transform is
called " fast”.

At algorithmic level, however, the fastest ever
known DWT implementation is based on the so called
the lifting scheme. We describe this new prospect of
the DWT in the Section to follow .

III. THE LIFTING SCHEME

The Lifting scheme is an efficient implementation
of a wavelet transform algorithm. It was primarily
developed as a method to improve wavelet transform,
and then it was extended to a generic method to cre-
ate so-called second-generation wavelets (i.e. wavelets
which do not necessarily use the same function proto-
type at different levels). Second-generation wavelets
are much more flexible and powerful than first gener-
ation wavelets [7]. In [2], it is shown that any discrete
wavelet transform can be obtained with a finite num-
ber of lifting steps. The lifting scheme is an implemen-
tation of the filtering operations at each level. The
algorithm can be described in three phases, namely:
Split phase, Predict phase and Update phase, as illus-
trated in Figure 2.

>\j+l,k .
—» Split

Fig. 2. The Lifting Scheme

Assume the scheme starts at data set of Ao where
k represents the data element and zero signifies the
original data level:

Split Phase. In the first stage, the data set A
is split into two other sets: the A_; and the vy_q.
The negative indices have been used according to the
convention that the smaller the data set, the smaller
the index. The splitting is done by separating the set
of even samples and the odd samples. This is also
referred to as the lazy wavelet transform because it
does not de-correlate the data but just sub-samples

110

the signal into even and odd samples.

Predict Phase or Dual Lifting. The next step is to
use the A_; ; subset to predict the y_; ; subset with
the use of prediction function P(A_;;). The more
correlation is presented in the original data, the closer
will the predicted value be to the original A_1 ;. Now,
the set v_1 will be represented by:

Y1k = Aokl — P(A1k)

The prediction functions can be broadly divided
into piecewise linear (of order 2) and non-linear or
interpolating subdivision:

Piecewise linear model - the odd samples are pre-
dicted as the average of its two (even) neighbors, A_;
and Ag g1 , which is given by:

Yor gk = Ao2kt1 — 5(A1k + Aost1)

Interpolating subdivision - this model uses the same
basic idea as piecewise linear but uses 2 or more neigh-
bors to either side.

Depending on the order of subdivision (interpola-
tion), denoted by N, the wavelet coefficients can mea-
sure failure to predict. For instance, N =2 indicates
the failure to be linear and N=/ measures the failure
to be cubic. N is referred to as the number of dual
vanishing moments and defines the degree of the poly-
nomials that can be predicted by the dual wavelet.

Update Phase or Primal Lifting. In this stage the
coefficient A_y ;, is lifted with the help of the neighbor-
ing wavelet coefficients so that a certain scalar quan-
tity @ (e.g.,the mean), is preserved.

QA -1k) = Q(Aok)

Therefore, a new (update) operator U is applied:

At = Ak +U(y-1,k)

In this phase, a scaling function is calculated from
the previously calculated wavelet coefficients to main-
tain some properties among all the A\ coefficients
throughout every level. The order of this function
will be some even value N called real vanishing mo-
ment, not necessary equal to V.

Inverse Transform. The inverse transform of the
lifting scheme is just the reverse data flow in the setup
of forward transform with small changes like switch-
ing additions and subtractions and also switching di-
visions and multiplications:

1. Update: \jr = Nk — U(vjk)
2. Predict: vj i = vjx + P(\jk)
3. Merge: Aji12r = A UNjs12041 = Vjke

Advantages of the lifting scheme, compared to the
classical filter bank algorithm:

1. Lifting leads to a speedup, therefore it is also re-
ferred to as fast lifting wavelet transform (FLWT).

2. All operations within a lifting step can be done
entirely parallel while the only sequential part is the
order of lifting operations.

3. Lifting allows adaptive wavelet transforms.

4. Lifting can be done in-place, which means auxil-
iary memory is not needed. The new stream at every
summation point replaces the old one.

5. It is easy to build non-linear wavelet transform by
Lifting, for example, integer-to-integer transform.

IV. MODELING THE EXTENDED
MICROARCHITECTURE

In this section we will briefly discuss the hard-
ware platform considerations for a time-effective im-
plementation of the FLWT. We will also present some
modelling issues, regarding the proposed simulation
scheme.

In order to support the new operations imposed by
FLWT and to preserve the flexibility of the software
implementation of the wavelet transform, we decided
to extend a generic MIPS Instruction Set Architecture
(ISA) with one new instruction. In this paper we refer
to the new instruction as FLWT and assume that it
is supported by a hardware unit, implemented on a
reconfigurable platform. Some of the general design
considerations of this unit are:

o Integer to integer transform. Integer arithmetic
is suitable for fast implementations of the discrete
wavelet transform at low hardware complexity.

o Separate control circuitry, utilizing microcode.

o Internal pipelining to exploit parallel processing and
data reusability.

o FPGA-based implementation to obtain realistic per-
formance evaluation and to verify the design.

Since hardware implementation details (extensively
described in [10]) are outside the scope of this paper,
we will proceed to describe the simulation model of
the FLWT ISA extension (more details can be found
in [6]). A general view of a General Purpose Processor
(GPP), augmented with a FLW'T is depicted in Figure
3.

The GPP model. In our simulation framework the
GPP is a generic MIPS processor, described in the
SimpleScalar simulator environment. The new func-
tional unit "FLW'T” was added in the resource pool
of Sim-Outorder, along with 4 integer ALUs, 1 inte-
ger MULT/DIV unit, 4 Floating Point (FP) adders,
1 FP MULT/DIV unit and 2 memory ports. In order
not to modify the compiler, we used the instruction
annotation mechanism (provided by the SimpleScalar
ISA) and in essence extended the ISA with the new

111

Instruction Fetch |«

Decode & Issue Register File
4 A

y
| | ,

Lru | [ru] e > Memory
unit <
|
l

Fig. 3. GPP augmented with FLWT unit

FLWT instruction.

Memory simulation. In SimpleScalar, the cache
configuration can be represented in the order of num-
ber of blocks, block size and associatively as 128:32:4
and 1024:64:4 for 1st level and 2nd level cache respec-
tively. While reading data, the latency of a hit is 1 cy-
cle. If it is a miss, then the miss penalty is 6 cycles for
1st level cache and 32 cycles for 2nd level cache. The
total load latency was calculated as the summation of
individual load latencies. After the transform opera-
tion, the data was written back to the host memory
through the Write Port of SimpleScalar. The write la-
tency is 1 cycle. Both Read and Write Ports are used
to transfer data between the FLWT unit and the host
memory, enabling read-transform-write pipelining in
the unit.

V. SIMULATION AND RESULTS

In order to determine the performance gain pro-
vided by the FLWT unit, we compiled both annotated
and non-annotated versions of the benchmark source
code using tools from the SimpleScalar tool set (Ver-
sion 3.0). Then we executed both versions of bench-
marks on the modified Sim-outorder, which supported
the new instructions and contained the FLW'T unit.

A. Simulation Framework

Benchmark modifications.Two major modifications
of the benchmark software (LiftPack) have been made,
beforehand.

o Integer to Integer Transform. The original software
has been modified towards mapping integers to inte-
gers. At the expense of introducing non-linearity in
the transform, the Predict and Update filter coeffi-
cients have been scaled and rounded to integers. Inte-
ger to integer lifting-based DWT is fully reversible and

allows a perfect reconstruction of the original image.
e Two extra filters (besides the polinomial) have been
implemented to build a realistic application environ-
ment. We chose the Le Gall 5-3 and Daubechies 9-7
filters, because they have been approved and included
in the normative part of the JPEG 2000 standard[5].

Performance evaluation. Our main performance
metric is the speedup of FLWT operation, which is
given as the ratio between the software execution time
(TH¥) and hardware execution time (T55).

TEX
Speedup = % (6)

T
Software execution time is the total amount of time
spent to execute the FLWT operation, without con-
sidering the time spent by software for user interfaces
and file handling procedures. The Total Number of
Ezecution Cycles (TNEC) for actual software imple-

mentation is calculated as:

TNECsw = TNEC,.;,;, — TNECY, [cycles] (T)

where TN EC,,;; is TNEC when the original (non-
annotated) source code of LiftPack is run; TNECY,
denotes TNEC when the source code is annotated, to
support the new FLWT instruction and the latency
of this instruction is set to 0. Using Equation (7),
we refine the TNEC spent only by the pure DWT
algorithm and ignore all other additional operations in
the benchmark software (e.g., operating system calls).

The MIPS processor was assumed to run at 1 GHz,

thus the software execution time is;
TEX — TNECsw [sec]

SW = 7109

Hardware execution time is the total time taken by
FLWT unit to perform the transform, including the
time required to load data into the unit and write it
back to the memory. The transform execution time
was obtained from the realistic hardware model built
in Xillinx FPGA (Virtex II family), which operates
at clock frequency of 50 MHz. Regarding data trans-
fer time (DT Tww), we consider two hardware limita-
tions:
o Data transfer time due to memory organization
(DTTrEM)-
o Data transfer time defined by the maximum op-
erating frequency of the FPGA implementation
(DTTrpga)-
From these data transfer times, we consider the longer
one:

112

DTTyw = MAX(DTTyenm, DTTrpca)
and the hardware execution time is:

EX TNEC
THW = Tﬂféw + DTTHW, [SGC]

B. Simulation Results

The simulation results were obtained upon execut-
ing the benchmark software (LiftPack) on the cycle
accurate simulator Sim-Outorder. Due to some im-
plementation issues of the simulator, the results on
each execution may deviate in the range of maximum
+2%. For all experiments we assume that the GPP is
running at 1 GHz and that the clock frequency of the
FPGA implementation of the FLWT unit is 50 MHz.

The performance analysis results obtained from
Liftpack are presented in Table I. With the applica-
tion of the FLWT unit, the execution time of wavelet
transform becomes 3.5 times faster for picture size of
176 x 144, 4 times - for 352 x 288 and 5 times - for
720x560. The rise in speedup with the picture dimen-
sion is because of more efficient use of the pipelines
due to longer data elements during 1-D transform. All
simulations were performed with the polynomial filter
degree of 4-4. A graphical representation of the com-
parison between hardware execution time and soft-
ware execution time is shown in Figure 4.

70000 T T
Software
60000 - Hardware n

50000

40000

30000

Exec. time [microsec]

20000

10000

176X144 352x288 720x560
picture dimensions

Fig. 4. Influence of picture dimensions on performance

Experiments indicate that the speedup increases
when the polynomial degrees of the filter increase. Ta-
ble II presents the simulation results carried out with
different degrees of the polinomial filter from Liftpack.
All Experiments were made for a single picture size of

352 x 288 pixels. The speedups for filter degrees of
2x2 4x4, and 8 x 8 are 3, 4 and 6 times respec-

TABLE I
PERFORMANCE ANALYSIS - DIFFERENT PICTURE SIZES

Picture size 176 x 144 | 352 x 288 | 720 x 560
TNEC hardware 46 000 160 000 586 000
Time to transform in HW (usec) 920 3 200 11 720
Pictures per second in HW 1 087 313 85
HW data transfer limit (usec) 42 170 673
TNEC software 3314 925 | 13 395 008 | 63 300 925
Software Execution Time (usec) 3315 13 395 63 301
Hardware Execution Time (usec) 962 3 370 12 577
Speedup HW vs. SW 3,5 4,0 5,0
TABLE II

PERFORMANCE ANALYSIS - DIFFERENT DEGREES OF POLINOMIAL FILTERS
Filter of polinomial degree 2-2 4-4 8-8
TNEC hardware 152 000 160 000 175 000
Time to transform in HW (usec) 3 040 3200 3 500
Pictures per second in HW 329 313 286
HW data transfer limit (usec) 170 170 170
TNEC software 9 831 292 | 13 395 008 | 22 061 284
Software Execution Time (usec) 9 831 13 395 22 061
Hardware Execution Time (usec) 3 210 3 370 3670
Speedup HW vs. SW 3,0 4,0 6,0

tively. These results are visualized in Figure 5.

24000 T 1
B Software § 7]
Hardware HEEEE [40000
-~ | |
20000 [~ SN
\
\
- . - Software =3 -
o § 35000 Hardware N %
2 16000 - N - N
3 - S 30000 % -
o -~ —~ 3 —~—
g 12000 1~ = N 2 25000 =
2 = N S =
. | % § | k3 Ay
» \ \ o — \.. —
8000 = g v -~
= J g N
- = N - = - =
~— —~ < 15000 —~
= N 2 N
4000 - = . &5 =
= B 10000 |- S
22 4-4 8-8 “\\\\\
- __ —
: : : : 5000 —~
Fig. 5. Performance for different polinomial filter degrees a
In Table III, we present simulation results for re- 0 I :

versible and irreversible wavelet transform using poly-
nomial filter, Le Gall 3-5 filter and Daubechies 9-7
filters. We made an estimation of the hardware trans-
form time on the basis of Liftpack with polynomial

filer 2-2 and carried out the analysis for a 352 x 288
picture. It was found that speedup of Daubechies 9-7,
Le Gall 5-3 and Liftpack with 2-2 polynomial was 11,
3,7 and 2,8 times respectively (Figure 6).

polinomial Le Gall Daubechies
2-2 5-3 9-7

Fig. 6. Performance comparison of Polynomial, Le Gall
5-3 and Daubechies 9-7 filters

113

TABLE III
PERFORMANCE ANALYSIS - DIFFERENT FILTER TYPES

Filter type polynomial: 2-2 | Le Gall 5-3 | Daubechies 9-7
Estimated TNEC hardware 152 000 160 000 175 000
Time to transform in HW (usec) 3 040 3040 3 040
Pictures per second in HW 329 329 329

HW data transfer limit (usec) 170 170 170
TNEC software 8 833 192 11 860 033 35990 178
Software Execution Time (usec) 8 833 11 860 35 990
Hardware Execution Time (usec) 3210 3 210 3 210
Speedup HW vs. SW 2,8 3,7 11,0

To get a quantitative measure of the effect of the
memory latencies on the hardware execution time, we
analyze 2 cases:

Case 1: The picture data are read from memory
for each execution of the 1-D transform and written
back after the transform. This requires less internal
memory, equal to the length of a line. For instance,
the picture size of 352 x 288 requires only 352 storage
elements. However, data have to be read each time
for the transform operation.

Case 2: All picture data are read at the beginning
of the transform and written back after the completion
of the 2-D transform. This requires a sufficiently large
internal memory to store the full picture data but less
memory transfers than in case 1.

The simulation data for different picture sizes and
their analysis is given in Table IV. The total number
of pixels to be transferred was obtained from the Sim-
plescalar simulator and reflects the number of times
the FLWT unit accesses the host memory, during the
total transform operation. The total read/write la-
tency (processor cycles) indicate the number of cycles
that the external RAM takes to transfer the data to
and from the hardware module. The total read/write
latency time by processor is the time that the exter-
nal RAM takes to transfer the data to and from the
hardware module.

The results indicate that the latencies for
read/write operations for case 1 are 6 times more for
picture size 352 x 288 and 12 times more for picture
size 720 x 560 in comparison to Case 2. The reason
is that the FLWT algorithm operates multiple times
on the same pixel in different levels, according to its
multi resolution scheme. Case 1 requires reading 270
270 pixels for a picture format of 352 x 288 pixels,
while case 2 requires only 101 376 pixels for the pic-
ture of the same format. In addition, the more data
are read, the equal data have to be written back, hence
resulting more writing latency.

Another major factor for increasing the latency in
case 1 is the inherent cache misses due to accessing
the sparse memory locations, which cannot be held in
a cache memory. Data of consecutive rows of an image
are generally aligned in a linear array in the external
memory. In case 2, these data are read sequentially
resulting in less frequent misses. But, in case 1 data
are sequentially accessed only during the first level
horizontal transform, while in the first level column
transform the distance between two data elements is
equal to the length of a row of the picture. With the
increase in the level of transform the distance between
the data to be read grows and thus the reading latency
also increases.

The effect of reading and writing latencies on the
hardware execution time is shown graphically in Fig-
ure 7. These results led us to design our FLWT unit
to read all picture data into the internal memory be-
fore beginning the transform operation and write the
data back to external memory after the transform is
completed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated a hardware acceler-
ation of the DWT with a co-processing unit. The
unit supports a new FLW'T instruction and was imple-
mented on a reconfigurable platform as an augmenta-
tion of a GPP (MIPS). The new instruction was intro-
duced as an ISA extension of the MIPS architecture.
For the quantitative analysis, simulations were carried
out on a cycle accurate simulator. For benchmarking,
we used a publicly available software package [4] and
augmented it with new industry approved function-
ality. We executed the benchmark software both on
standard and augmented MIPS architectures and an-
alyzed the results. We worked out the details for 3
different lifting schemes, based on polinomial filters,
reversible wavelet transform (Le Gall 5-3 filter) and
irreversible wavelet transform (Daubechies 9-7 filter).

114

TABLE IV
MEMORY ACCESS LATENCIES - DIFFERENT PICTURE DIMENSIONS

Case 1 Case 2

Picture format 352 x 288 | 720 x 560 | 352 x 288 | 720 x 560
Total number of pixels to be transferred | 270 270 | 1 075194 | 101 376 403 200
Total read latency [cycles] 748 920 | 9447 987 | 96 621 655 237
Total write latency [cycles] 270270 | 1075194 | 50 688 201 600
Total read/write latency [usec] 1019 10 523 147 857
HW data transfer limit [pusec] 170 673 170 673
Time for data transfer [psec] 1019 10 523 170 857
HW Execution Time [usec] 3 200 11 720 3 200 11 720
HW execution time [usec] 4219 22 243 3370 12 577

24000 |

Case 1
Case 2

20000

16000

)

12000 -

8000

Hardware exec. time [microsec]

4000

.

352X288 720x560
picture dimensions

Fig. 7.
forms

Comparison of execution time for 1D and 2D trans-

Simulation results indicate that the hardware accel-
erator can substantially speed up the Lifting Wavelet
transform (up to 11 times). Furthermore, the speed
gain was found to increase with the picture size and
the degree of the filter polynomials. The influence
of data memory access latencies on the overal per-
formance of the system was analyzed in two extreme
cases of data transfer schemes.

In the future, we intend to implement the investi-
gated FLW'T extension into a custom computing ma-
chine [8] and to estimate the influence of FPGA re-
configuration time on the overall performance of the
system. Processors, augmented with the presented
microarchitecture can be efficiently utilized by wavelet
based encoding tools and standards like JPEG 2000,
MPEG-4, etc.

115

VII. ACKNOWLEDGEMENTS

This research is supported by PROGRESS, the em-
bedded systems research program of the Dutch orga-
nization for Scientific Research NWO, the Dutch Min-
istry of Economic Affairs, and the Technology Foun-
dation STW (project AES.5021).

REFERENCES

[1] C.M.Brislawn.
extension transforms for multirate filter banks.
and Comp. Harmonic Analysis, 3:337-357, 1996.

[2] I Daubechies and W. Sweldens. Factoring wavelet trans-
forms into lifting steps. J. Fourier Anal. Appl., 4(3):245-
267, 1998.

[3] D.C.Burger and T.M.Austin. The simplescalar tool set,
version 2.0. Technical Report CS-TR-1997-1342, Univer-
sity of Wisconsin-Madison, 1997.

[4] G. Fernandez, S. Periaswamy, and W. Sweldens. LIFT-
PACK: A software package for wavelet transforms using
lifting. In M. Unser, A. Aldroubi, and A. F. Laine, editors,
Wawvelet Applications in Signal and Image Processing IV,
pages 396-408. Proc. SPIE 2825, 1996.

[5] ISO/IEC FCD 15444-1:2000. JPEG 2000 Image Coding
System (Final Commettee Draft V1.0), 16 March 2000.

[6] P. Shrestha. MIPS augmented with wavelet transform:
Performance analysis. M.Sc. Thesis, Delft University of
Technology, July 2002.

[7] W. Sweldens. The lifting scheme: A custom-design con-
struction of biorthogonal wavelets. Appl. Comput. Har-
mon. Anal., 3(2):186-200, 1996.

[8] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN
rm-coded processor. In 11th International Conference on
Field Programmable Logic and Applications (FPL), 2001.

[9] XILINX. Virtex-II Platform FPGA Handbook, December

2000.

B. Zafarifar. Micro-codable discrete wavelet transform.

M.Sc. Thesis, Delft University of Technology, July 2002.

Classification of nonexpansive symmetric

Applied

