Chapter 6

THE DELFT-JAVA ENGINE
Microarchitecture and Java Acceleration

John Glossner

Sandbridge Technologies, Inc.
White Plains, NY, USA
glossner@sandbridgetech.com

Stamatis Vassiliadis

Délft University of Technology
Délft, The Netherlands
stamatis@cardit.et.tudelft.nl

Abstract

Keywords:

This chapter describes the DELFT-JAvA architecture and the mechanisms re-
quired to dynamically translate JVM instructions into DELFT-JAVA instruc-
tions. Using a form of hardware register allocation, we transform stack bot-
tlenecks into pipeline dependencies which are later removed using register re-
naming and interlock collapsing arithmetic units. The hardware requirements
to perform this translation are not excessive when support for Java language
constructs are incorporated into the processor’s ISA. When combined with su-
perscalar techniques and multiple instruction issue, we remove up to 60% of
translated dependencies. When compared with a realizable stack-based imple-
mentation, our approach accelerates a Vector Multiply execution by 2.7x when
hardware constraints were considered. Because this approach requires minimal
additional hardware for Java translation, it is an efficient technique for executing
Java bytecode.

Java, Computer Architecture, dynamic translation, processor design

1. Introduction

We have designed the DELFT-JAVA processor [GV97]. An important fea-
ture of this architecture is that it has been designed to efficiently execute Java

DRAFT January 22, 2002, 10:33pm DR AF T

106 JAVA MICROARCHITECTURES

Virtual Machine (JVM) bytecode. The architecture has two logical views: 1)
a Java Virtual Machine Instruction Set Architecture(ISA) and 2) a RISC-based
ISA. The Java Virtual Machine is a stack-based ISA with support for standard
datatypes, synchronization, object-oriented method invocation, arrays, and ob-
jectallocation [LY99]. An important property of Java bytecode is that statically
determinable type state enables simple on-the-fly translation of bytecodes into
efficient machine code [G0s95]. We utilize this property to dynamically trans-
late Java bytecode into DELFT-JAVA instructions. Because the bytecodes are
stored as pure Java instructions, Java programs generated by Java compilers ex-
ecute on a DELFT-JAVA processor without modification. Programmers who
wish to take advantage of other languages that exploit the full capabilities of
the DELFT-JAVA processor may do so but require a specific compiler. Some
additional architectural features in the DELFT-JAVA processor that are not di-
rectly accessible from JVM bytecode include pointer manipulation, multime-
dia SIMD instructions, unsigned datatypes, and rounding/saturation modes for
DSP algorithms.

This chapter is dedicated to describing the organizational techniques the
DELFT-JAVA processor uses to accelerate Java bytecode. We provide microar-
chitectural support for dynamic translation, dynamic linking, multiple thread
units, multiple instruction issue, dependency collapsing, and other features
common to modern superscalar processors. These techniques take advantage
of key Java language properties to transparently extract parallelism without
programmer intervention.

The presentation is as follows: First we describe our concurrent multi-
threaded organization and describe how multiple thread units and multiple in-
struction issue efficiently accelerate Java program execution. We introduce
briefly a method for accelerating Java dynamic method invocation through the
use of a Link Translation Buffer (LTB). We next describe how indirect access
to the register file provides the basic mechanism required to dynamically trans-
late JVM instructions. We then provide an example of the translation process
and describe special hardware features we incorporated to assist translation.
We also discuss instructions that are not translated. We then present results on
a number of simulated machines and conclude by summarizing our investiga-
tion.

2. Concurrent Multithreaded Organization

In this section, we present a concurrent multithreaded organization of the
DELFT-JAVA architecture. As shown in Figure 6.1, this organization pro-
vides hardware support for multiple context instruction issue and global in-
struction scheduling. The organization supports multiple concurrent execution
of threads which share global execution units. As depicted by the large rect-

DRAVFT January 22, 2002, 10:33pm D R A F T

The Déelft-Java Engine 107

Decoder Translated Local Retire
Instruction
Window
Df/namic idx
ava Regs
Translation Compounding
L+] Scheduler
Prefetch Local
Icache Issue

‘ Global Scheduler ‘
‘ Global Issue ‘
Context 0 Context N
N LY X "
Registers Registers
Exec PPN Exec
Unit 0 Unit M
Global Retire
I/D Cache [

Control Unit
- Thread Schedule
- Class Resolution
- Synchronization

Link
Translation
Buffer

Figure6.1. DELFT-JAVA concurrent multi-threaded processor organization showing multiple
thread units, local and global processor units, thread register files, cache memory, control unit,
and Link Translation Buffer (LTB)

angle with ellipsis in Figure 6.1, we define a context as a hardware supported
thread unit. Each context assumes that the processor’s organization incorpo-
rates (logically) an instruction cache (the Prefetch Icache), a Dynamic Java
Translation unit, a decode unit, a translated instruction window unit, a local in-
struction scheduler, a local instruction issue unit, and an instruction retire unit.
A context does not include any shared resources such as a first level (L1) cache
(the 1/D block), execution units, a register file, global instruction schedulers,
nor global issue units.

The term thread is generally used to refer to the programmer’s view of a
thread - a possibly concurrent stream of independent executing instructions
[LB96, KSS96]. In this chapter, the term context denotes the hardware on
which a thread may run. The system software may map any number of threads
to a particular context.

B Operation: All instructions are fetched from global shared memory (e.g.,
common to all contexts) and placed into a global L1 on-chip instruction cache

DRAFT January 22, 2002, 10:33pm DR AF T

108 JAVA MICROARCHITECTURES

(I/D Cache). Each context also assumes a (logical) zero level (LO) instruction
cache to provide concurrent per context instruction fetch capacity (Prefetch
Icache). During normal user-level operation, all instructions are fetched as
Java instructions. After being fetched, most Java instructions are dynamically
translated into the DELFT-JAVA instruction set by the Dynamic Java Trans-
lation unit. Because the instructions are stored in cache memory as Java in-
structions, branching and method invocation code produced by Java compilers
will execute properly on the DELFT-JAvA architecture. After translation, the
instructions are decoded and placed in a local instruction window (e.g., local
to each context). The instruction window keeps track of issued and pending
instructions. The local instruction scheduler (Compounding Scheduler Unit)
is responsible for determining how instructions within the window should be
scheduled. This unit takes the instructions in a RISC form and performs in-
struction combining and compounding. Often, in stack based architectures,
a number of optimizations pertaining to stack manipulation can be efficiently
folded [MO98]. The DELFT-JAVA processor may also dynamically build in-
ternal compound instructions [VBE94]. Whereas combining and compound-
ing have to do with grouping both independent and dependent instructions for
concurrent execution, folding, by contrast, has to do with combining multiple
operations into a single operation (e.g., a local variable access and an add op-
eration). Instructions are then sent to the local issue unit after they have been
scheduled. The local issue unit determines if the instructions that have been
locally scheduled can be issued to the global instruction scheduler. To resolve
interlock dependencies, an interlock collapsing unit could be used [PV94].
All instructions that require access to shared resources must be forwarded
to the global instruction scheduler. This unit schedules the aggregated instruc-
tions from each context. Any number of implementation dependent scheduling
policies can be utilized including priority-based, round-robin, earliest deadline,
etc. The Java language specifies that in the absence of explicit synchronization,
a Java implementation is free to update main memory in any order [GJS96].
This relaxed memory consistency model allows the scheduler to reorder the
instructions from individual contexts to optimize the utilization of the shared
execution units. After all instructions that request global shared resources have
been scheduled, they are sent to the global issue unit. This unit ensures that
global resources are available to begin issuing instructions. Instructions may
be issued in one of two forms: single independent instructions and compound
parcels. A parcel is a dynamically built compound instruction. Parcels are
particularly effective in reducing the logic complexity of implementations and
execute in less cycles when used in conjunction with interlock collapsing units.
In a traditional processor implementation, most execution units would require
bypass circuitry. As the number of global execution units becomes large, it is
no longer feasible to provide general bypassing between all sets of execution

DRAVFT January 22, 2002, 10:33pm D R A F T

The Delft-Java Engine 109

units. In the DELFT-JAVA processor, this requirement is removed by provid-
ing compound instructions which collapse interlocks and then scheduling the
interlocked instructions within a parcel. The global issue unit has the capability
of reordering the execution of individual instructions and parcels. If the global
issue unit can find available resources, it can splice an independent instruction
from an alternative context into a parcel. Since contexts are independent, this
ensures that an instruction spliced into a parcel does not cause invalid results.
Additionally, because each instruction contains a unique context identification,
the results are forwarded to the proper context.

After global execution, all results are forwarded to the global retire unit.
This unit removes the requirement for a general interconnection unit between
all contexts and execution units. If instructions were not executed specula-
tively, the global retire unit writes the results to the register file after forward-
ing the instruction to the local retire unit. Otherwise, the result is maintained
in the retire unit until the conditional outcome is known. All instructions even-
tually return to the local retire unit in the context from which they originated.
This unit is responsible for committing state to the context. Each context may
retire multiple instructions per cycle.

B Registers: From the perspective of a context, the register file consists
of a standard 32 entry by 32-bit register array. From the perspective of the
machine, this resource is managed as a global register file that is addressed by
a context identifier that is appended to the instruction’s register reference. An
alternative organization would be to place the register files logically within a
context. This organization however creates a proliferation of register file ports.
Managing the register file as a global resource reduces the number of ports to
the peak retire rate of the machine versus the peak retire rate of a context.

Instructions have two methods of accessing the register file: 1) direct RISC-
style references and 2) indirect index access. Even though there is an indirect
reference, all instructions physically execute using direct RISC-style register
references. The indirect index registers are only used to translate instructions.
This implies that they are not part of the register file and do not affect the
execution path.

The Java Virtual Machine instruction set architecture is inherently stack
based [LY99]. When executing Java instructions, the register file index reg-
isters create a circular buffer that is mapped to the operand stack in memory.
A set of valid and modified bits are associated with each register. These bits
are maintained logically within the local context. These registers automatically
prefetch and spill as the stack size changes.

B Execution and Context Switching: When a thread begins execution
within a context, the offset registers are written with the location of the frame,
operand stack, and local variables memory locations. Additionally, the regis-
ter file tags within the context are reset. When the operand stack address is

DRAFT January 22, 2002, 10:33pm DR AF T

110 JAVA MICROARCHITECTURES

written to the offset register, the context begins to generate speculative load
instructions. This allows the register file to pre-fill only if there is adequate
bandwidth available to the L1 cache. It also reduces cache thrashing because
the L1 cache is not obligated to evict data upon a speculative load.

As instructions begin to execute, if the speculative pre-loads were success-
ful, context execution proceeds without delay. If the pre-loads were not suc-
cessful and the data is required for execution, the local context re-issues the
load non-speculatively. This effectively raises the priority of the load instruc-
tion. When the data arrives at the context, a valid bit associated with that reg-
ister file location is set. If the register is modified at any point during program
execution, the modified bit is set. If the processor has spare resources, a specu-
lative cache store instruction is generated. If there is spare bandwidth available,
the processor stores the updated memory location and resets the modified bit.
Otherwise, execution continues with a delayed write-back.

In some cases, the global thread management unit may determine that a par-
ticular software thread has resulted in an unacceptable degradation of a hard-
ware context (e.g., lock request, priority inversion, etc.). In this case, the unit
may make a request to the context to perform a context switch so that a new
thread may be mapped to the context. Since results are only committed by the
retire unit, it is possible to interrupt a context at any time. When a context be-
comes invalid, it signals the global instruction scheduler and issue unit to flush
any remaining instructions in the queue. It then checks the modified bits of the
register file to determine if any values must be written back into memory. After
all state has been saved in memory, the context may signal the global thread
management unit that a new thread may be mapped to the context. Even though
the context is now free to map a new thread onto it, it may still be the case that
an instruction was executing at the time of the context switch request. It is the
responsibility of the global retire unit to ensure that any instructions received
from execution units destined for the switched context are not forwarded to the
local retire unit. This is not difficult to implement when the longest instruction
execution time is less than the context switch time.

B Control Unit: The control unit is responsible for managing system re-
sources, ensuring synchronization, cache locking, dynamically linking classes,
performing 1/O operations, running operating systems, loading instructions,
and generally performing system functions. Since the JVM does not provide
all the functionality generally required by a full operating system, many of
these functions have been grouped into a special control unit. A control unit is
analogous to a context except that it contains additional resources that are not
necessarily required within a context. These resources could be implemented
within a context but with a large number of contexts it would lead to unaccept-
able duplication of typically idle hardware. There are no architectural limits on
the number of control units permitted in a system. The control unit is a logical

DRAVFT January 22, 2002, 10:33pm D R A F T

The Delft-Java Engine 111

independent entity so that the complexity of bussing between global system
resources such as caches is significantly reduced. Some of the differences that
distinguish the control unit from a context are:

First, a control unit has direct access to the Link Translation Buffer[GV98,
Glo01]. The LTB acts as a global repository for dynamically resolved names.
During dynamic linking, the name of the class or field to be resolved is con-
tained in the constant pool. After a process called resolution, the name con-
tained within the constant pool can be associated with a physical location in
memory. This association is placed in the Link Translation Buffer. If the con-
trol unit finds the constant pool address in the LTB and the requesting class has
access permissions to the data, then the control unit very quickly returns the re-
solved address. There is still a potential problem that the LTB may hold invalid
data (e.g., when a class is unloaded). The control unit is responsible to remove
associations that are no longer valid by issuing a £1ushLTB instruction. A
program may also completely disable the LTB.

Second, the global instruction scheduler has direct access to the control unit
and may schedule instructions on execution units that are inherently owned
by the control unit. This is to ensure that all addresses are resolved through
the control unit and that all synchronization is performed by the control unit.
When execution has completed, instructions are returned to the global retire
unit which then returns the results to the context requesting the operation. Care
must be taken by the Global Retire Unit to ensure that any locks acquired for a
context that have undergone a context switch are released.

Third, any unimplemented instructions trap first through the global instruc-
tion scheduler and global issue unit to the control unit. The control unit then
either halts execution if it is an illegal instruction or can emulate the instruction
sequence and return the instruction to the global retire unit.

Fourth, the control unit is responsible for synchronization. This is because
generally it may be possible for an object to have acquired a lock but the locked
object may not be fully resident in the L1 instruction cache. The easiest way
to deal with this issue is to lock down all cache lines associated with object
synchronization. Another alternative is to have the control unit check each
address as it is brought into the cache to ensure that the address is not contained
within an already locked object. If it is the context that currently owns the lock
that requested the instruction, the new instructions are brought into the cache.
If it is any other context requesting the instruction, the context is placed in a
blocked state. This reduces thrashing within the cache and allows the thread
scheduler to make better decisions about the mapping of threads to contexts.

Fifth, a thread scheduler in the control unit is responsible for mapping all of
the software threads in the system to particular hardware contexts. It may up-
date the state of threads (i.e., from active to blocked), it may preempt threads,
and it may create and destroy threads. There are no restrictions on the map-

DRAFT January 22, 2002, 10:33pm DR AF T

112 JAVA MICROARCHITECTURES

pings of threads to contexts. Multiple threads may be mapped to a single con-
text or to multiple contexts.

Finally, the control unit performs all the necessary functions required in
physical processors that are not required in virtual machines. These include
1/O access, initialization, and system administration functions.

3. Enhancing Performance

Accelerating the JVM interpreter is only one aspect of Java performance im-
provement implemented in the DELFT-JAVA processor. We utilize a number
of techniques including pipelining, load/store architecture, register renaming,
dynamic instruction scheduling with out-of-order issue, compound instruc-
tion aggregation, collapsing units [P\VV94], branch prediction, a link translation
buffer [GV98], and standard register files. We selectively describe some of
these mechanisms.

B Removing Hazards:. A common problem with stack architectures is that
the stack may become a bottleneck for exploiting instruction level parallelism.
Since the results of operations typically pass through the top of the stack, many
interlocks are generated in the translated instruction stream [Cas96]. Register
renaming allows us to remove false dependencies in the instruction stream. In
addition, an interlock collapsing unit can be used to directly execute interlock
dependencies [VBE94, PVV94, VPBI3].

B Multiple Instruction Issue: After translation the instructions are placed
in an instruction window. Once instructions are translated into a RISC-based
form, superscalar techniques are used to extract instruction level parallelism
from the instruction stream. Reservation stations are an effective means of
determining which instructions can execute concurrently [Tom67]. Since all
thread-units operate independently, multiple instructions can be issued from
each thread unit as well as multiple thread units.

B Bounds Checking: The Java language specifies that arrays must be
bounds checked [GJS96]. Special register sets can be provided for this pur-
pose. The microarchitecture is not required to implement them but the archi-
tecture supports the use of bounds checking.

4, Dynamic Trandlation

The DELFT-JAVA architecture supports the same basic datatypes as the Java
Virtual Machine. We dynamically translate JVM instructions into DELFT-
JAvA instructions by providing indirect access into the register file. Figure 6.2
shows a set of index registers. Each index (e.g., ix, iy, and it) is 5-bits wide
with separate entries for each source and destination operand. Every indirect
operation accesses the index register file to obtain the last previously allocated
register. An immediate field within the instruction format can be used to spec-

DRAVFT January 22, 2002, 10:33pm D R A F T

The Delft-Java Engine 113

1dx[7]
o e
0 Resohed
o o Registers
idx[1] Post fpre
ide[0] X iy it update
IsJava —

; Update Offset
adjust Register
Crverflow § Underflow

Figure 6.2. Indirect register access mechanism showing indirect memory locations (idx), up-
date adders, underflow/overflow signal, and resolved register address multiplexor

ify offsets from the original index value. In addition, a pre/post-increment field
specifies whether the index uses a pre-incremented or post-incremented value
to resolve the register reference. For most translated Java instructions this
can be inferred from the operation. For general indirect instructions, which
are useful in vector operations, it is beneficial to directly specify a pre or post
increment. Once the operands are transformed from an indirect address to a di-
rect register reference, they are placed in the instruction window for dispatch.
If an overflow or underflow of the register file is detected by the hardware, the
offset register that maps the register file into main memory must be adjusted.

As shown in Figure 6.2, the register file may be configured to act as a mem-
ory cache. In this case, a base register indicates the starting memory address
being cached. Valid and modified bits control the write-back to memory when
overflow or underflow is detected.

Program 4.1 Indirect instructions
add r2, ro, rl
addi [idx7] ++it, 2-ix, iy
storei [idx7] base0 + #3, it+1

To illustrate how these operations are performed, consider the code shown
in Program 4.1. A typical RISC-style instruction is shown in line 1. The add
mnemonic specifies the operation, r2 is the destination (target) register. Reg-
isters r0 and rl are the source operands. When no type is explicitly specified,

DRAFT January 22, 2002, 10:33pm DR A F T

114 JAVA MICROARCHITECTURES

Register File Tags
r3l .
Resolved Y3l v [n Ilain Meranry
RerEl L] a0
ister D
5 5 o5 Stack
0 L |F Tizmit
I
o E
I
1l
13l
130
20
8]
]
displacerment 0
offset ——— —
Basze address i 1l
Stack
ulimit

Figure 6.3. Indirect register mapping showing how a resolved register address is mapped to
main memory. Tag bits allow the processor to read/write only valid data.

a w32 (signed integer 32-bits) type is implied. In line 2, addi specifies that
an indirect add will occur. The idx[7] implies that the 8-th index register is
to be selected. The source operand 2-ix implies that an immediate value of 2
(which is specified in the instruction format) is pre-updated with the contents
of idx[ix][7] to determine the source operand. In line 3, a memory store opera-
tion is performed. The target operand is a memory location addressed by base
register baseO with an immediate displacement of 3. To calculate the source
operand, the value contained in idx[it][7] is used. In practice, the only way
for this to happen is to be in Java translation mode (which provides for locked
indexing using it). Since it+1 contains the +1 on the right hand side of the
expression, it implies that idx[it][7] is post-incremented by 1. For JVM byte-
codes, the pre/post increment values can be implied from the JVM instruction.

Figure 6.3 shows the indirect mapping translation. The resolved register
address from Figure 6.2 is used as an index into the register file. This address is
also used as a displacement which maps the register file into Main Memory. A
32-bit base address is set by the DELFT-JAVA processor to point to the starting
memory location. A 32-bit offset is added to provide the current mapping of the
register file to the stack main memory. If the amount of required stack storage
exceeds the register file limit, a signal is sent to the DELFT-JAVA processor
and the offset is adjusted as needed. The tags control whether all the data
is written back on an overflow or underflow. It is possible to be continually

DRAVFT January 22, 2002, 10:33pm D R A F T

The Déelft-Java Engine 115

updating main memory in the background while bytecode execution proceeds.

Program 4.2 Vector multiply example

class VectorMultiply {
public static final int MAXVEC = 100;
public static void main(String[] args) {
int[] a,b,c;
a = new intfMAXVEC];
b = new intfMAXVEC]
¢ = new intfMAXVEC];
for(inti=0; i<MAXVEC; i++) { // init arrays
a[i] =1i; b[i] = 2*i; c[i] = 0;
}
for(int i=0; i<MAXVEC; i++) {
c[il = a[i] * b[i};
P}

4.1 Example Translation

In this section we present the translation of a Vector Multiply example. Pro-
gram 4.2 shows a rudimentary Java program that reads an element of a vector
from array a[], multiplies it with a fully disambiguated array b[], and stores the
result in another independent array c[]. The Java language specifies that array
memory is allocated on the heap. The operations take place on an element by
element basis.

H Inner Loop Bytecode: When compiled with -O optimization using Sun’s
Java JDK 1.1, the bytecodes produced for the inner loop of Program 4.2 (e.g.,
clil=a[i]*b[i}) are shown in Program 4.3. To be able to load a single element
from an array, the address of the array is pushed onto the stack (Program 4.3
line 1) followed by the index to load (Program 4.3 line 2). Previously (not
shown in Program 4.3), each array was allocated on the heap. As a result of
executing the instruction " newarray int” , the heap address is returned on the
stack. This address was immediately stored into a Local Variables location
(e.g. LV[1], LV[2], and LV[3] for a[], b[], and c[] respectively).

H Trandlated Bytecode: Program 4.4 shows the vector multiply inner loop
bytecode translated into DELFT-JAvVA indirect instructions. Because instruc-
tions are being translated from Java, all operand indirect references are with
respect to the target location. When a program is about to begin execution
of Java bytecodes, a ” branchJVM” instruction is executed by a DELFT-JAVA
processor. As shown in Figure 6.2, this configures the IsJava control switch to
use the ” it” reference. The " base.LV" name is a symbolic name for one of the
DELFT-JAVA base registers. As shown in Program 4.4 line 1, loading a Java

DRAFT January 22, 2002, 10:33pm DR AF T

116

JAVA MICROARCHITECTURES

Program 4.3 Compiled inner loop bytecode

[y

P OO0 ~NOoO ol wiN

aload_3
iload 5
aload_1
iload 5
iaload
aload_2
iload 5
iaload
imul

0 iastore

; address of c[0] on heap

; index into c[]

; address of a[0]

; index into a[]

; load element from a[index]
; address of b[0]

; index into b[]

; load element from b[index]
; multiply a[i]*b[i]

; store it into c[index]

Program 4.4 Translation bytecode

Opc
load
load
load
load
load
load
load
load
mpy
store

[idx7]
[idx7]
[idx7]
[idx7]
[idx7]
[idx7]
[idx7]
[idx7]
[idx7]
[idx7]

Indirect Register
—it, base_LV + #3
—it, base_LV + #5
—it, base_LV + #1
—it, base_LV + #5
++it, ++it + it
—it, base_LV + #2
—it, base_LV + #5
++it, ++it + it
++it, it, ++it

2+it + 1+it, it

DRAVF T January 22,

2002, 10:33pm DR AF T

The Delft-Java Engine 117

array reference from a local variable is translated as an indirect load with base
register plus displacement. Notice that after the translation most of the type
information contained within the Java instruction is removed. It is therefore
important for a separate program to verify the bytecodes prior to execution if
security is an issue.

Program 4.5 Final DELFT-JAVA instructions

Opc Direct Register
[l initial value of idx[7][it] = 24

i1 load r23 <= Mem[base_LV + #3]
i load r22 <= Mem[base_LV + #5]
i3 load r21 <= Mem[base_LV + #1]
ia load r20 <= Mem[base_LV + #5]
i5 load r21 <= Mem[r21 + r20]

is load r20 <= Mem[base_LV + #2]
iz load r19 <= Mem[base_LV + #5]
is load r20 <= Mem[r20 + r19]

i9 mpy r2l<r20*r21

i10 Store Mem[r23 +r22] < r21

B Executed Bytecode: Program 4.5 shows the operation code mnemonic
and the final resolved instruction. For this example, we assume that the value
contained in idx[7][it] is 24. Of notable observation is the large number of
Memory accesses required. However, it should be noted that most of these are
not global memory accesses but rather Local Variable accesses which may be
cached locally or even stored in a small buffer. The Java language currently al-
lows up to 2'6 local variables. Implementations which do not store this much
memory locally (e.g., when the Local Variables are allocated to registers) must
dynamically allocate spill memory to accommodate a particular program’s re-
quirements.

4.2 Har dware Support

In order to perform Java translation, the DELFT-JAVA processor has a num-
ber of special registers that control the dynamic translator. When the proces-
sor transitions to Java-mode using a branchJVM instruction, the programmer
views the processor as a Java Virtual Machine and translation is automatically
enabled. In any of the privileged modes, the translator is disabled. When dy-
namic translation is enabled, the register file caches the top of the Java stack.
This is accomplished by using architected base and offset/displacement regis-
ters within the architecture. During normal Java execution, the register file can
cache up to 32 stack entries. In addition, the actual top of the stack may be off-
set from the memory location that points to it to allow for delayed write-back.
The Java language specifies that in the absence of explicit synchronization, a

DRAFT January 22, 2002, 10:33pm DR AF T

118 JAVA MICROARCHITECTURES

Table6.1. Java Virtual Machine instructions with special support in the DELFT-JAVA proces-
sor

anewarray invokeinterface! multianewarray arraylength
athrow invokestatic newarray checkcast
getfield jorow! putstatic getstatic
goto_w! monitorenter wide instanceof
new putfield tableswitch ! (traps)
invokespecial invokevirtual lookupswitch! monitorexit

Java implementation is free to update the main memory in any order [GJS96].
Therefore, each context may maintain a set of register file status bits that allow
a more balanced utilization of bandwidth constrained resources.

To ensure proper sequencing of instructions during Java translation, all in-
structions are assumed to be stored as JVM bytecode. To transition to kernel-
mode, a special reserved JVM instruction is used. The JVM specification states
that 3 opcodes will permanently be reserved for implementation dependent
purposes [LY99]. The DELFT-JAVA processor utilizes one of these instruc-
tions to transition a context between JVM execution and general DELFT-J AVA
execution. When the context is executing in kernel-mode, instructions are as-
sumed to be stored as 32-bit DELFT-JAVA instructions. This allows the branch
decode logic to operate correctly without modifying Java compilers while com-
pilers specific to our architecture can take advantage of hardware-specific fea-
tures. Additionally, it is not necessary for all DELFT-JAVA instructions to
execute in kernel mode. A security scheme may be implemented using a su-
pervisor invoked transition to native user-mode DELFT-JAVA execution.

4.3 Non-translated I nstructions

Primarily, we dynamically translate arithmetic and data movement instruc-
tions. In addition to the translation process, the architecture provides direct
support for a) synchronization, b) array management, ¢) object management,
d) method invocation, e) exception handling, and f) complex branching op-
erations. The Java instructions shown in Table 6.1 have special support in
our architecture. These instructions are dynamically translated but only the
parameters which are passed on the stack are actually translated. The high-
level JVM operations are translated to equivalent high-level operations in the
DELFT-JAvVA architecture. In addition, four instructions which are greater
than the 32-bit DELFT-JAVA instruction format width trap.

DRAVFT January 22, 2002, 10:33pm D R A F T

The Delft-Java Engine 119

Table 6.2. Processor organization characteristics for various processor models

Model Renaming Issue L/Sunits Latency
IS No inorder 00 1

IX No inorder 00 1

IR Yes 000 00 1

PS No inorder 00 4

PX No inorder 00 4

PR Yes 000 00 4

BR Yes 000 2LV/2H 4

5. Results

Our general methodology for describing experimental results is to report
on kernel performance. This illustrates the effectiveness of the techniques but
does not require the tremendous time required to implement a full JVM and
all the associated libraries written in native methods. Generally, our results are
validated against both an analytical model and where possible a C++ model of
the DELFT-JAVA processor.

In this section we describe the results for a DSP Vector Multiply. We de-
scribe seven machine models and report on the relative performance of these
models. A summary of the machine characteristics is shown in Table 6.2. The
Ideal Stack (IS) model does not attempt to remove stack bottlenecks nor does
it include pipelined execution. It assumes all instructions including memory
operations complete in a single cycle. The Ideal Translated (1X) model uses
the translation scheme described above. It also includes multiple inorder issue
capability but no register renaming. The Ideal Translated with Register Renam-
ing (IR) model includes out-of-order execution but with unbounded hardware
resources. In addition to the ideal machines, we also measured the perfor-
mance on a more practical machine. The Pipelined Stack (PS) model assumes
a pipeline latency of 4 cycles for all memory accesses to the Local Variables
or Heap memory. The Pipelined Translated (PX) model and the Pipelined with
Register Renaming (PR) include the same assumptions for memory latency
but are equivalent to the 1X and IR models in other respects. The final exper-
iment looked at the additional constraint of bounded resource utilization. We
allowed two concurrent accesses to the Local Variable and Heap memories.
We maintained a four cycle latency for each memory space.

Figure 6.4 shows the relative performance of each of the models. We chose
the Pipelined Stack as the basis for comparison since it is a potentially realiz-
able implementation. We note that compared with a reasonable implementa-
tion, the ideal stack (IS) model is 3.5 times faster than the PS model. When we

DRAFT January 22, 2002, 10:33pm DR AF T

120 JAVA MICROARCHITECTURES

10

oIs
EIX
EIR
ors
HPX
ia OPR
EER

i

Vector Multiply

Figure 6.4. Performance results of a vector-multiply routine for various processor models
showing speedup normalized to an implementable pipelined stack model

Table6.3. Processor performance and speedup for various processor models normalized to an
implementable pipelined stack model

Model Peak Issue IPC Soeedup
IS 1 1.0 35
IX 4 1.7 5.8
IR 6 2.5 8.8
PS 1 0.3 1.0
PX 4 0.6 2.2
PR 6 0.9 3.2
BR 2 0.8 2.7

compare the 1X model with the IS model, we were able to reduce the stack bot-
tlenecks by 40%. When register renaming was also applied in the IR model,
the stack bottlenecks were reduced by 60%. When bounded resources con-
strained the issue capacity of the BR model, the performance still was 3.2x
better than the PS model. In addition, register renaming with out-of-order ex-
ecution successfully enhanced performance by about 50% in comparison with
the same model characteristics but with in-order execution.

Table 6.3 shows the summary of instructions issued, peak issue rate, and
overall speedup. In the unbounded resource case, a peak issue of 6 instructions

DRAVFT January 22, 2002, 10:33pm D R A F T

The Déelft-Java Engine 121

per cycle was achieved with the ideal, register-renamed, out-of-order execution
model. The in-order issue peak rate was 4 instructions. When resource con-
straints were applied, the peak issue rate dropped to 2 and the average IPC was
0.8 even with out-of-order execution. However, the speedup achieved from the
reduced stack bottlenecks was still 2.7x.

0. Conclusions

We have presented our approach to Java hardware acceleration using dy-
namic instruction trandation. In hardware assisted dynamic translation, JVM
instructions are translated on-the-fly into the DELFT-JAVA instruction set.
This is accomplished through the use of indirect register file access. The addi-
tional indirect access hardware and decoder logic requirements to perform this
translation are not excessive when support for Java language constructs are in-
corporated into the processor’s ISA. This technique allows application level
parallelism inherent in the Java language to be efficiently utilized as instruc-
tion level parallelism while providing support for other common programming
languages such as C and C++. We have shown that our dynamic translation
technique (which is a form of register allocation) is useful in removing up to
40% of stack bottlenecks [GV99]. When register renaming is combined with
our translation technique, upwards of 60% of stack dependencies can be re-
moved. Our technique effectively converts stack dependencies into pipeline
hazards which are later removed from the instruction stream using superscalar
techniques. When compared with a realizable stack-based implementation, our
approach accelerates a Vector Multiply execution by 2.7x when hardware con-
straints were considered. Because this approach requires minimal additional
hardware for Java translation when incorporated into an out-of-order super-
scaler machine, it is an efficient technique for executing Java bytecode.

DRAFT January 22, 2002, 10:33pm DR AF T

