
Design Considerations of a Multiple Inner Product
and Accumulate Vector Functional Unit

Pyrrhos Stathis Stamatis Vassiliadis Sorin Cotofana
Electrical Engineering Department,

Delft University of Technology,
Delft, The Netherlands

Email:
�
pyrrhos,stamatis,sorin � @dutepp0.et.tudelft.nl

Abstract— A large number of scientific applications re-
quire computations that involve operations on sparse ma-
trices. Due to irregularities induced by the diverse sparsity
patterns, many operations on sparse matrices execute inef-
ficiently on traditional scalar and vector architectures. In
order to tackle this issue a scheme has been proposed [1]
that alleviates the sparse matrix storage and computation
overhead on vector processors. The scheme introduces a
new sparse matrix storage format and utilizes the Multi-
ple Inner Product and Accumulate (MIPA) vector pipelined
functional unit to perform the sparse matrix vector multi-
plication, the function that constitutes the core operation of
most sparse matrix applications. The implementation of the
MIPA functional unit poses a number of challenges and its
design considerations will be the focus of this work. The
MIPA unit operates on a vector containing the nonzero el-
ements of a sparse matrix with the associated positional in-
formation and a multiplicand vector in order to produce a
vector containing a number of inner products. The vector of
nonzero elements, as defined by the scheme in [1], represents
a number of partial rows of the sparse matrix. Therefore,
the processing of the vector produces multiple data streams
within the MIPA unit that correspond to the multiplicity of
rows it represents. This fact, combined with the necessity
to feed back data over a multi-stage floating point adder
to perform the accumulation, results in a scheduling prob-
lem. In this paper we propose a MIPA functional unit de-
sign that addresses this issue in an efficient manner. Simula-
tion results on a sparse matrix benchmark suit suggest that
by using our proposed scheduling scheme utilizing a mul-
tiple pipeline implementation of the functional unit we can
achieve a near optimal resource utilization.

Keywords— vector processing, sparse matrices, matrix
vector multiplication

I. INTRODUCTION

In many scientific computing areas the manipulation of
sparse matrices constitutes the kernel of the solvers. Due
to the irregularities however of the matrix’ sparsity pat-
terns, i.e. the distribution of the non-zeros within the ma-
trix, make many operations on sparse matrices execute in-
efficiently on traditional scalar and vector architectures.

This problem has been tackled both software and hardware
approaches. Most of the approaches are in software [2],
[3], because they are less costly. However, research fo-
cused on hardware approaches [4], [5], [6], [7] indicates
that much greater improvements can be obtained. In [6]
the authors report a speedup of up to 3 times (depending
on the sparsity pattern) when compared to the aforemen-
tioned JD method on a conventional vector processor when
performing sparse matrix vector multiplication (SMVM)
using a scheme that includes an Augmented Vector Ar-
chitecture (AVA) and an associated sparse matrix storage
scheme (BBCS). Furthermore, using a hierarchical version
of the BBCS scheme called the Hierarchical Sparse Matrix
(HiSM) scheme, SMVM performance improvements of on
average 4-5 times have been achieved.

The problem addressed in this paper is that of the im-
plementation of the vector Functional Unit that supports
the execution of the SMVM using the aforementioned
schemes. The Functional Unit is named the Multiple In-
ner Product and Accumulate (MIPA) Unit and was already
described briefly in [8]. However, the unit was assumed
to process integer rather than floating point values making
the implementation rather straightforward. When floating
point values are processed the implementation becomes
more complicated due to the feedback required over more
than one of the pipeline stages. In this paper we address
this considerations and present an evaluation of the mech-
anism. The contributions of this paper can be summarized
as follows:
� We propose and describe a pipelined mechanism for sup-
porting the SMVM on vector processors using the BBCS
and HiSM schemes. The unit is implemented as a vector
functional unit and performs the Multiple Inner Product
and Accumulate (MIPA) function.� We evaluate and estimate the performance of the MIPA
functional unit.

The remainder of the paper is organized as follows: In
the next Section we provide with some background infor-
mation on vector processors and the hierarchical sparse

481

matrix storage format and sparse matrix vector multipli-
cation. In Section III we describe and evaluate the per-
formance of the proposed mechanism and finally, in Sec-
tion IV we draw some conclusions.

II. BACKGROUND

This section provides some background information and
assumptions made throughout the paper.

Before proceeding with the description MIPA functional
unit we will first give a brief description of the hierarchi-
cal storage format, the sparse matrix format that we will
assume for the remainder of our paper and which is a hier-
archical variation of the aforementioned BBCS format: To
obtain the HiSM an ����� sparse matrix � is partitioned
in 	�
 ��
���	�� ��
 square ����� sub-matrices where � is the
Section Size of the vector architecture. Each of these �����
sub-matrices, which we will call ��� -blocks, is then stored
separately in memory in the following way: All the non-
zero values as well as the positional information combined
are stored in a row-wise fashion in an array (� � -blockarray)
in memory. In Figure 1 (bottom left) we can observe how
such a blockarray is formed containing both the position
and value data from the top left � � -block of an ���������
sparse matrix. The section size is � �"! . Note that the
positional data consists of the column and row position of
the non-zero element with the � � -block The � � -blockarrays
can contain up to �#� non-zero elements and we will assume
that an AVA can operate on these in the same way as de-
scribed in [6].

These �$� -blockarrays that describe the non-empty �%� -
blocks form the lowest (zero) level of the hierarchical
structure of our format. As can be observed in Figure 1,
the non-empty � � -blocks form a similar sparsity pattern
as the non-zero values within an � � -block, Therefore, the
next level of the hierarchy, level- & , is formed in exactly
the same way as level zero with the difference that the val-
ues of non-zero elements are replaced by the pointers to
the � � -blockarrays in memory that describe non-empty � � -
blocks. This new array which contains the pointers to the
lower level is stored in exactly the same fashion in mem-
ory (see Figure 1 (bottom right). Notice that at level-1 the
pointers are stored in a column-wise fashion. In this way
an access pattern is provided where the �'�(� � -element-
wide columns are accessed row-wise. This is favorable
for operations such as matrix-vector multiplication (refer
to [1] for a more elaborate discussion). The next level,
level-2, if there is one (in the example of Figure 1 there is
none), is formed in the same way as level-1 with the point-
ers pointing at the ��� -blockarrays of level-1. Further, as
in any hierarchical structure the higher levels are formed
in the same way and we proceed until we have covered

the entire matrix in)+*-,/.$	103254 � �6
57-	108254 � �9
;: levels. We
can summarize the description of the Hierarchical sparse
matrix storage format as follows:
� The entire matrix is divided hierarchically into blocks
of size �<�9� (called � � -blocks) with the lowest level con-
taining the actual value of the non-zero elements and the
higher levels containing pointers to the non-empty �3� -
blocks of one level lower.� The �=� -blocks at all levels are represented as an array
(called a � � -blockarray whose entries are non-zero val-
ues (for level- >) or pointers to non-empty lower level � � -
blockarrays (for all higher levels) along with their corre-
sponding positional information within the block. The for-
mats are identical for all levels.

In order to perform the Sparse Matrix Vector Multipli-
cation (SMVM) using the HiSM format we need to hier-
archically traverse all the � � -blockarrays and perform a lo-
cal multiplication of the � � -blocks at level-0 and the cor-
responding part of the Multiplicand Vector (MV) produc-
ing a partial Result Vector (RV). The described process is
depicted in Figure 2 for �?�@� . This multiplication is per-

Non-zero valueNon-empty level-0 s -blockarray2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Multiplicant dense vector

Result vector

Fig. 2. Sparse Matrix Vector Multiplication (SMVM) using the
Hierarchical Sparse Matrix (HiSM) storage format

formed by the proposed functional Unit within the vector
processor. Vector processors, such as the one depicted in
Figure 3 are based on architectures that support the execu-
tion of vector instructions. On most current vector archi-
tectures [9], the vectors are copied from the main memory
into vector registers within the processor before they are
operated upon. Vector registers are arrays of scalar regis-
ters that hold (parts of) the vectors to be processed. Due to
the fact that the vector register length can not be arbitrarily
large, when operating on large vectors they have to be di-
vided into smaller parts, a technique that is usually called
strip mining, each of which cannot be larger than the max-
imum amount of elements a vector register can hold, i.e.,
the architecturally defined section size of the VP. In a VP
the operations are carried out by (usually) pipelined Func-

482

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

s -blockarray2

Storage of an 8x8 level 1
hierarchy submatrix

s -blockarray2

Non-zero element

Value Data

Positional Data

Storage of an 8x8 submatrix

Level - 0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Pointer to an 8x8 submatrix
one level lower in the
matrix hierarchy

0 2 1 2 3 1 2 2 3 0 1 2 3 4 4 5 5 6 70 0 1 1 1 2 2 3 4 4 4 4 4 5 5 6 6 73

Level - 1

Positional Data

0 7 1 2 7 2 3 7 0 10 0 1 1 1 2 2 2 3 3 4 7 0 1 4 5 6 6 73 3 4 4 4 5 5 6 7

19 15 1 8 18 6 8

Pointer Data

44 15 9 4 3 13 8 1 8 8 8

Lengths in lower level

Fig. 1. Example of the Hierarchical Sparse Matrix Storage Format

tional Units (FU) that are able to fetch one or more new
element per cycle from each of the source vector regis-
ter(s) involved, operate on it/them, and return the result(s)
to the result (vector) register.

To support the HiSM SMVM two new vector instruc-
tions have been introduced to augment the functionality of
a traditional vector processor. First, the LoaD SectionLDS
instruction loads a section of the �A� -blockarray into two
vector registers of the vector processor. The first vector
register is filled with the non-zero values of the �%� -block.
A second vector register is loaded with the corresponding
column and row positions of those elements. The second

instruction, the MIPA instruction performs the multiplica-
tion of the section loaded by the LDS by a dense vector
which resides in a third register and produces the partial
result which is stored in a forth vector register. The MIPA
instruction is using the MIPA functional unit that will be
described in the following Section.

III. THE MIPA PIPELINE

This section describes the workings of the MIPA func-
tional unit. As mentioned, the function to perform is the
multiplication of the � � -blockarray elements and the mul-
tiplicand vector to produce the result vector at the output.

483

Functional Unit 1

Functional Unit 2

Functional Unit 3

Functional Unit N

Scalar PipelineScalar RegistersCache

Scalar Controller

Vector Controller

Store

Unit

Load
Vector

Register

File

Vector processor

Main

Memory

Vector Unit

Scalar Unit

Fig. 3. Vector Architecture

The unit can consume B?� � -blockarray elements each cycle
where B is the parallelism of the unit. An instance of this
unit with a parallelism B of four is depicted in Figure 4.
The unit can be divided into 3 main parts: (a) the value se-
lection, (b) the multiplication and (c) the addition. At the
value selection the column information corresponding to
each of the B+��� -blockarray elements is used to select the
correct B values from the Multiplicand Vector (MR) . Note
that the values from MR can be the same if the values in
the input buffer belong to the same column. Subsequently,
the resulting pairs of values are multiplied resulting into
B products. Note that on each stage the row information
of each of the partial results that propagate through the
pipeline, their row position information is preserved. Fol-
lowing the multiplication, the elements that have the same
row position plus the RV value at the same row position
are added with each other to produce the final values at
the end of the pipeline. There is however one complica-
tion which occurs when there are elements belonging to
the same row but reside in different stages of the pipeline.
This happens for instance when more than B elements be-
long to the same row. In this case the values resulting from
the addition have to be fed back in the pipeline to be added
again. To facilitate this we have added a buffer, called the
Intermediate Buffer (IB), before the first stage of the addi-
tion pipeline. The IB holds several sets of 2 entries: The
value of the element and its associated row position. An
element is forwarded to the IB when another element with
the same row position is either in the addition pipeline or
already in the IB. In the second case the element is actually
directly forwarded to the first stage of the addition, bypass-
ing the IB. Due to the addition of the IB, the functionality
of the first stage of the addition is slightly different than

Row
Info

Row
Info

Row
Info

Row
Info

Row
Info

Row
Info2/1

To Output

Stage 1

Stage 2

Stage 4

Stage 5

Stage 6

Stage 7

Multiplicant Vector

Selector
Col Col Col Col

Row

Value

Row Row Row

Value Value Value

s2-blockarray elementsInput Buffer

RV vector

RV Vector

Value Row

Intermediate Buffer

Stage 3

Fig. 4. The Multiple Inner Product and Accumulate (MIPA)
vector functional unit

described earlier: In addition to the products from the mul-
tiplication stages also the elements residing in the IB are
used when grouping the elements according to the row po-
sition for the addition. As can be observed in Figure 4, up
to 7 values can simultaneously enter the addition pipeline
and possibly added together (if on the same row). For this
reason the addition occupies 3 pipeline stages.

Using this way of processing the data we can achieve a
maximum throughput of the elements through the pipeline.
The use of the IB for feeding back the elements to the addi-
tion pipeline does not inhibit the continuous stream of B el-
ements per cycle that is produced at the multiplication part
of the pipeline. This implies that the elements at the output
will not appear in the order that they enter the pipeline.

A. Timing Evaluation

In this section we will provide performance estimations
of the proposed MIPA mechanism. As we have discussed
in the previous section, the processing of the �1� -blockarray
elements depends on the distribution of the row elements
within the loaded section of the �C� -blockarray that is pro-
cessed by the MIPA unit. To understand the behavior of
the MIPA unit it is best to consider the two most extreme

484

cases that can appear:
� All the elements in the loaded section of the � � -
blockarray belong to different rows. In this case the output
of the MIPA is a vector of length equal to the input vector.� All the elements in the loaded section of the � � -
blockarray belong to the same row. In this case the output
of the MIPA is a single value.
In the first case the elements will not have to be fed back
in the pipeline and therefore the number of cycles that the
mechanism will need to complete the operation will be
	 �D
FE'G where � is the section size of the vector processor,
B the parallelism of the functional unit and G the total num-
ber of stages of the functional unit pipeline. In the second
case we have to note that all elements that pass through
the pipeline have to be fed back to the addition pipeline to
be added to the remaining elements. The behavior of this
pipeline is similar to a regular vector accumulation unit.
Therefore the number of cycles to complete the accumu-
lation is given by 	 �D
HEIGJELK . The seven extra cycles is
the feedback penalty when using 3 stages for the addition
pipeline. All other row configurations of the input vector
will result in a completion time that lies between 	 �D
ME�G
and 	 �D
ME�GIENK .

IV. CONCLUSIONS

In this we have proposed and described a pipelined
mechanism for supporting the SMVM on vector proces-
sors using the BBCS and HiSM schemes. The unit is
implemented as a vector functional unit and performs the
Multiple Inner Product and Accumulate (MIPA) function
when invoking the MIPA vector instruction. Furthermore,
we evaluated and estimated the performance of the MIPA
functional unit and showed that the number of cycles to
complete the MIPA instruction will lie between 	 �D
OELG
and 	 �D
ME(GNEPK depending on the positional information
of the input vector.

REFERENCES

[1] S. Vassiliadis, S. Cotofana, and Pyrrhos Stathis, “Vector isa exten-
sion sprase matrix multiplication.,” in EuroPar’99 Parallel Pro-
cessing. 1999, Lecture Notes in Computer Science, No. 1685, pp.
708–715, Springer-Verlag.

[2] Victor Eijkhout, “LAPACK working note 50: Distributed sparse
data structures for linear algebra operations,” Tech. Rep. UT-
CS-92-169, Department of Computer Science, University of Ten-
nessee, Sept. 1992, Mon, 26 Apr 99 20:19:27 GMT.

[3] Yosef Saad, “SPARSKIT: A basic tool kit for sparse matrix com-
putations,” Tech. Rep., Computer Science Department, University
of Minnesota, Minneapolis, MN 55455, June 1994, Version 2.

[4] Hideharu Amano, Taisuke Boku, Tomohiro Kudoh, and Hideo
Aiso, “(SM) Q -II: A new version of the sparse matrix solving ma-
chine,” in Proceedings of the 12th Annual International Sympo-
sium on Computer Architecture, Boston, Massachusetts, June 17–

19, 1985, IEEE Computer Society TCA and ACM SIGARCH, pp.
100–107.

[5] Valerie E. Taylor, Abhiram Ranade, and David G. Messerschitt,
“SPAR: A New Architecture for Large Finite Element Computa-
tions,” IEEE Transactions on Computers, vol. 44, no. 4, pp. 531–
545, April 1995.

[6] Pyrrhos Stathis, Stamatis Vassiliadis, and Sorin Cotofana, “Sparse
matrix vector multiplication evaluation using the bbcs scheme,” To
appear in 8th PCI, Nov 2001.

[7] A. Wolfe, M. Breternitz, Jr., C. Stephens, A. L. Ting, D. B. Kirk,
R. P. Bianchini, Jr., and J. P. Shen, “The white dwarf: A high-
performance application-specific processor,” in Proceedings of the
15th Annual International Symposium on Computer Architecture,
H. J. Siegel, Ed., Honolulu, Hawaii, May–June 1988, pp. 212–222,
IEEE Computer Society Press.

[8] Stamatis Vassiliadis, Sorin Cotofana, and Pyrrhos Stathis, “Block
based compression storage expected performance,” in Proceedings
of HPCS2000, Victoria, 2000, pp. 389–406.

[9] John L. Hennessy and David A. Patterson, Computer Architecture
A Quantative Approach, Morgan Kaufman, San Mateo, California,
1990.

485

