
Compiler Strategies
for

Transport Triggered Architectures

Johan Janssen

Compiler Strategies
for

Transport Triggered Architectures

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.F. Wakker,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 17 september 2001 om 16:00 uur

door

Johannes Antonius Andreas Jozef JANSSEN

elektrotechnisch ingenieur
geboren te Wamel

Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. A.J. van de Goor
Prof.dr. H. Corporaal

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. A.J. van de Goor, Technische Universiteit Delft, promotor
Prof.dr. H. Corporaal, T.U. Eindhoven / IMEC, promotor
Prof.dr.ir. E.F. Deprettere, Universiteit Leiden
Prof.dr.ir. Th. Krol, Universiteit Twente
Prof.dr.ir. R.H.J.M. Otten, Technische Universiteit Eindhoven
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft
Dr. C. Eisenbeis, INRIA, Rocquencourt

Published and distributed by: DUP Science

DUP Science is an imprint of
Delft University Press
P.O. Box 98
2600 MG Delft
The Netherlands
Telephone: +31 15 27 85 678
Telefax: +31 15 27 85 706
E-mail: DUP@Library.TUDelft.NL

ISBN 90-407-2209-9

Keywords: Compilers, Instruction Scheduling, Register Assignment

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 69.

Copyright c© 2001 by Johan Janssen

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by anymeans, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the publisher: Delft University Press.

Printed in The Netherlands

This dissertation is dedicated to the loving memory of my mother

Acknowledgements

This Ph.D. thesis is the result of my research at the Computer Engineering
group of the Electrical Engineering department of the Delft University of Tech-
nology.

First, I would like to express my gratitude to Henk Corporaal, my super-
visor, for his everlasting support, valuable comments and for the numerous
discussions we had. In addition, I want to thank prof. Ad van de Goor for
being my promotor and for giving me the opportunity to perform my research
in his group.

Secondly, I thank the reviewers of this thesis, Andrea Cilio, Henjo Schot
and my sister Willemien Korfage for their valuable comments on (parts of)
the first drafts of this thesis. I thank Walter Groeneveld for his contribution
on the formulation of the “stellingen”. Furthermore, I would like to thank
my fellow Ph.D. students within the MOVE project: Marnix Arnold, Jeroen
Hordijk, Steven Roos and especially Jan Hoogerbrugge for their work on the
TTA compiler. I would like to thank the system administrators Jean-Paul van
der Jagt, Tobias Nijweide and Bert Meijs for providing an excellent working
computer environment. In addition, I would also like to thank all my former
colleagues and students of the Computer Engineering group for the enjoyable
working environment.

Finally, I would like to thank my family, friends and TNO colleagues for
their support and encouragement.

Johan Janssen
Delft, July 2001

vii

viii

Contents

Acknowledgements vii

1 Introduction 1
1.1 Instruction-Level Parallelism . 2

1.1.1 ILP Architecture Arena 3
1.1.2 Architectural Trade-off . 6

1.2 Research Goals . 9
1.3 Thesis Outline . 11

2 TTAs: An Overview 13
2.1 From VLIW to TTA . 13
2.2 Transport Triggered Architectures 15

2.2.1 TTA Instruction Format 16
2.2.2 Function Units . 17
2.2.3 Register Files . 18
2.2.4 Immediates . 18
2.2.5 Move Buses . 18
2.2.6 Sockets . 19
2.2.7 Control Flow and Conditional Execution 19
2.2.8 Software Bypassing . 20
2.2.9 Operand Sharing . 21

3 Compiler Overview 23
3.1 Front-end . 24
3.2 Back-end Infrastructure . 26

3.2.1 Reading and Writing . 26
3.2.2 Control Flow Analysis . 27
3.2.3 Data Flow Analysis . 30
3.2.4 Data Dependence Analysis 32
3.2.5 Loop Unrolling, Function Inlining and Grafting 35

3.3 Register Assignment . 35
3.3.1 Graph Coloring . 36
3.3.2 Spilling . 40

ix

3.3.3 State Preserving Code . 41
3.3.4 TTA vs. OTA . 43

3.4 Instruction Scheduling . 43
3.4.1 List Scheduling . 44
3.4.2 Resource Assignment . 45
3.4.3 Local Scheduling . 46
3.4.4 Global Scheduling . 50
3.4.5 Software Pipelining . 54

4 Evaluation Methodology 59
4.1 Benchmark Suite . 59
4.2 TTA Processor Suite . 60

4.2.1 Space Walking . 60
4.2.2 Selected TTA Processors 63

4.3 Scheduling Scopes . 65
4.4 Exploitable ILP . 67

5 The Phase Ordering Problem 69
5.1 Early Register Assignment . 70

5.1.1 ILP and Early Register Assignment 70
5.1.2 Dependence-Conscious Register Assignment Strategies . 72
5.1.3 Dependence-Conscious Early Register Assignment for

TTAs . 78
5.1.4 Discussion, Experiments and Evaluation 81

5.2 Late Register Assignment . 83
5.2.1 ILP and Late Register Assignment 84
5.2.2 Register-Sensitive Instruction Scheduling Strategies . . . 86
5.2.3 Register-Sensitive Instruction Scheduling for TTAs . . . 88
5.2.4 Experiments and Evaluation 90

5.3 Integrated Register Assignment 91
5.3.1 Interleaved Register Assignment 92
5.3.2 Integrated Instruction Scheduling and Register Assign-

ment . 93
5.4 Conclusion . 96

6 Integrated Assignment and Local Scheduling 99
6.1 Resource Assignment and Phase Integration 100
6.2 Register Resource Vectors . 101
6.3 The Interference Register Set . 105
6.4 Spilling . 109

6.4.1 Integrated Spilling . 110
6.4.2 Updating Data Flow and Data Dependence Relations . . 110
6.4.3 Scheduling Issues . 112
6.4.4 Peephole Optimizations 117

6.5 State Preserving Code . 118

x

6.5.1 Generation of Callee-saved Code 118
6.5.2 Generation of Caller-Saved Code 120

6.6 Experiments and Evaluation . 121
6.6.1 Register Selection . 122
6.6.2 Operation Selection . 123
6.6.3 Basic Block Selection . 124
6.6.4 Early vs. Integrated Assignment 126

6.7 Conclusions . 130

7 Integrated Assignment and Global Scheduling 131
7.1 The Interference Register Set . 131

7.1.1 Importing a Use . 132
7.1.2 Importing a Definition . 133

7.2 Importing Operations . 136
7.3 Example . 137
7.4 Spilling . 140
7.5 State Preserving Code . 141
7.6 Experiments and Evaluation . 143

7.6.1 Region Selection . 143
7.6.2 Global Spill Cost Heuristic 144
7.6.3 Early vs. Integrated Assignment 145

7.7 Conclusions . 150

8 Integrated Assignment and Software Pipelining 151
8.1 Register Pressure . 152
8.2 Register Assignment and Software Pipelining 156
8.3 Integrated Assignment and Modulo Scheduling 158

8.3.1 The Interference Register Set 159
8.3.2 Spilling . 160

8.4 Experiments and Evaluation . 161
8.4.1 Spilling or Increasing the II 161
8.4.2 Early vs. Integrated Assignment 162

8.5 Conclusions . 164

9 The Partitioned Register File 167
9.1 Register Files . 168

9.1.1 Silicon Area . 169
9.1.2 Access Time . 170
9.1.3 Power Consumption . 171
9.1.4 Partitioned Register Files 171

9.2 Early Assignment and Partitioned Register Files 174
9.2.1 Simple Distribution Methods 175
9.2.2 Advanced Distribution Methods 177
9.2.3 Equal Area Compiling . 179

9.3 Late Assignment and Partitioned Register Files 180

xi

9.4 Integrated Assignment and Partitioned Register Files 183
9.4.1 Local Heuristics . 184
9.4.2 A Global Heuristic . 186

9.5 Conclusions . 189

10 Summary and Future Research 191
10.1 Summary . 191
10.2 Contributions . 195
10.3 Proposed Research Directions . 196

A Integrated Assignment Benchmark Results 203

B Partitioned Register File Benchmark Results 211
B.1 Early Assignment . 211
B.2 Integrated Assignment . 213

Glossary 217

Bibliography 223

Samenvatting 237

Curriculum Vitae 241

xii

Introduction 1
T oday, microprocessors can be found in virtually every electronic device.

Not only workstations and PCs contain microprocessors; they can also
be found in equipment for daily use such as television sets, mobile phones,
PDAs (Personal Digital Assistant), microwaves and cars, or in specialized de-
vices such as the automatic pilot in an aircraft, robots and medical instrumen-
tation. More than 100 million microprocessors for general-purpose comput-
ers (PCs, workstations, mainframes, etc.) are sold annually. This is however,
only the tip of the iceberg. Over two billion microprocessors are estimated to
be sold annually for embedded applications [Leh00]. The embedded micro-
processor market is growing, according to Dataquest, from $7.5 billion in 1998
to$ 26 billion by 2002 [FBF+00]. Furthermore, the amount of produced em-
bedded software exceeds the produced general-purpose software by a factor
of five [EZ97].

The performance of microprocessors is increasing rapidly. This increase
is driven by the demand to execute over and over again, more complex and
larger applications. Various architectures are used to deliver the requested
performance, like CISC (Complex Instruction Set Computer) and RISC (Reduced
Instruction Set Computer) processor architectures. At this moment, we are in the
middle of the instruction-level parallelism (ILP) era. The power of ILP process-
ing lies in the ability to execute multiple operations in parallel. It should be
obvious that this potentially results in large performance improvements. Var-
ious ILP architectures like superscalar architectures, VLIWs (Very Long Instruc-
tionWord architectures) and TTAs (Transport Triggered Architectures) are proposed
and implemented. Unfortunately, the ability in hardware to execute multiple
operations in parallel, by adding extra resources, does not always lead to a

1

2 CHAPTER 1. INTRODUCTION

performance increase. Numerous constraints prevent the efficient usage of the
resources of ILP processors. To efficiently utilize the available resources the
order of operations in the program code should be rearranged. This process
is called instruction scheduling. Register assignment manages the available high-
speed on-chip memory elements called registers. These registers are used for
holding temporary values produced by the operations. The order, in which
register assignment and instruction scheduling are applied, plays an impor-
tant role in the exploitation of ILP. An efficient register assignment may hin-
der an efficient reordering of the operations. In addition, efficient instruction
scheduling may result in an inefficient use of the registers. In this dissertation,
this phase ordering problem is discussed, solutions are proposed and results are
given.

The research is performed within the MOVE project at the Delft University of
Technology. The MOVE project aims at bringing instruction-level parallelism
within the reach of application specific processors (ASPs) in a flexible, scalable
and cost effective way. These processors are designed for a specialized task
and can be found in all kinds of equipment like TVs, cars, copiers, cameras,
etc. To achieve these goals, a new processor architecture is proposed and de-
scribed. This new architecture is called the Transport Triggered Architecture,
or in short TTA [Cor98]. Several processors using this new architecture have
been designed and implemented [CvdA93, AHC96, TNO99, VLW00]. The per-
formance of TTA processors highly depends on the quality of the compiler.
Therefore, to fully exploit the available ILP provided by TTA processors, re-
search is performed to develop new compiler techniques and strategies to en-
hance instruction-level parallelism.

In this chapter, the concept of instruction-level parallelism is introduced in Sec-
tion 1.1. The research goals of this thesis are formulated in Section 1.2. An
overview of the remaining chapters of this thesis is given in Section 1.3.

1.1 Instruction-Level Parallelism

Instruction-Level Parallelism (ILP) is the family of processor architectures and
compiler techniques that enhances performance by executing multiple opera-
tions in parallel. The processors provide the resources to execute operations
in parallel. The architecture of an ILP processor allows simultaneously ac-
cess to the duplicated resources, which improves performance. The question
of how much ILP is available in programs is addressed in a number of arti-
cles [JW89, Wal91, LW92, TGH92, LW97]. Studies to measure the maximum
available ILP have critical shortcomings, however. First, many of these studies
assume the presence of infinite processor resources and assume perfect pro-
gram behavior predictors. In this case, the upper limit is too optimistic. Sec-
ondly, these studies do not consider modern or future techniques to enhance
ILP. This results in a too pessimistic upper limit. Therefore, these studies are of

1.1. INSTRUCTION-LEVEL PARALLELISM 3

processing
Central

unit

Instruction
fetch
unit

decode
Instruction

unit

FU-1

FU-2

FU-3

FU-4

FU-5

In
st

ru
ct

io
n

m
em

or
y

D
at

a
m

em
or

y

R
eg

is
te

r
fi

le

Figure 1.1: General organization of ILP architectures.

limited value. The maximum available ILP estimates range between 2 [JW89]
and 1000 [LW97]. One should keep in mind that the exploitable ILP highly de-
pends on the application. Scientific programs have inherently more ILP than
control-intensive programs. To discover and to increase the ILP in programs,
compiler technology is used. Discovering and exploiting ILP in programs, will
be key to future increases in microprocessor performance [SCD+97].

Various architectures used to exploit ILP are described in Section 1.1.1. The
architectural trade-off is discussed in Section 1.1.2.

1.1.1 ILP Architecture Arena

The general organization of ILP architectures is shown in Figure 1.1. The in-
struction fetch unit reads the instructions from the instruction memory. These
instructions are decoded and sent to the function units (FUs). The central pro-
cessing unit (CPU) shown in the figure contains five FUs. The FUs perform the
actual computation such as additions, multiplications, etc. One of the FUs in
the figure is able to perform load and store operations on the data memory. Tem-
porary data is stored in registers. These registers are grouped into the register
file (RF). The FUs exchange data via this shared RF.

The main reason for the enormous research interest in ILP architectures
nowadays, is the ability to have more silicon space available than a RISC pro-
cessor requires. This allows the duplication of FUs and data paths. Having du-
plicated FUs means that multiple operations can be executed simultaneously.
The data path transports data between the various resources in a processor.
More FUs results in the need for a larger data path. The registers in an RF can
be accessed by a limited number of ports. Increasing the number of ports, and
thus increasing the data path to and from the RF, enables the exploitation of
more ILP.

In [RF93] an excellent overview of the dynamic history of ILP architectures
is given. Although the importance of ILP was already recognized in the early

4 CHAPTER 1. INTRODUCTION

fifties [Wil51], and ILP processors were build in the eighties [BYA93, RYYT89,
SS93], it took until the nineties, to become a key technology for microprocessor
performance. Rau and Fisher [RF93] classify ILP architectures into three cate-
gories: sequential architectures, dependence architectures, and independence
architectures.

Sequential architectures

Sequential architectures execute programs that contain no explicit information
regarding dependences between operations. The programs for these architec-
tures consist of a sequential operation stream. It is the responsibility of the
hardware to detect dependences between operations, and to rearrange the op-
eration order to achieve fast computation; this is called dynamic scheduling. An
operation starts to execute if it does not depend on an operation currently being
executed and if the resources needed for the operation are free.

Implementations of sequential ILP architectures are known as super-
scalars [Joh91]. Superscalars exploit the ILP of a program in hardware; this
requires extra logic to detect ILP and to dispatch operations to the FUs. Super-
scalars differ in their issue width (i.e., the maximum number of operations that
can be simultaneously executed), and in the complexity of their instruction
scheduler. Simple superscalars, like the Alpha 21064, issue operations in the
same order as they appear in the program while others, like the PowerPC 601
and the Pentium 4 [Int00], allow instructions to be issued out-of-order [SW94].
A disadvantage of superscalars is their limited scalability, for example increas-
ing the issue width often results in a completely new and much more complex
design [PJS96].

Superscalars do not require a compiler to exploit ILP, since there is no way
to explicitly communicate information regarding ILP from the compiler to the
hardware. However, many ILP compiler techniques may be beneficial to en-
hance superscalar performance [SCD+97, STK98, Wol99].

Dependence architectures

Dependence architectures execute programs consisting of operations and infor-
mation about the data dependences between operations. The programmer or
compiler adds this information to the program, which releases the hardware
from detecting these dependences. The responsibility of the hardware is to
detect operations that are ready for execution and to find free resources.

Data-flow processors [GS95] are representatives of this class. The operations
of these processors contain a list of all data dependent successor operations.
When an operation finishes execution, a copy of its result is created for each
of its successor operations. As soon as all the input operands of an opera-
tion and the required resources are available the operation is executed. Since

1.1. INSTRUCTION-LEVEL PARALLELISM 5

the operands of an operation are implicitly specified by its predecessors, the
operands do not have to be specified.

Independence architectures

Programs for independence architectures contain, besides the operations, infor-
mation about independences between the operations. The compiler is respon-
sible for identifying parallelism in a program. It communicates this informa-
tion to the hardware by specifying which operations are independent of each
other.

An example of an independence architecture is the Horizon architec-
ture [TS88]. The compiler encodes an integer H into each operation. This in-
teger tells the hardware that the next H operations in the operation stream are
data independent of the current operation. This releases the hardware from
detecting data independence, however, the hardware still is responsible for as-
signing resources to the operations.

Also the Explicitly Parallel Instruction Computing (EPIC) architec-
ture [ACM+98] is classified as an independence architecture. The instructions
of an EPIC architecture contain multiple operations. Each instruction includes
a template, which indicates whether the operations in the instruction are
independent. The template also indicates whether the instruction can be
executed in parallel with neighbor instructions. An example of the EPIC
architecture is the IA-64 instruction set architecture [IA99] as developed by
Intel and Hewlett Packard in a joint effort. An actual implementation is Intel’s
Itanium processor [Abe00].

Another independence architecture is the Very Long Instruction
Word (VLIW) architecture [BYA93, DT93, L+93, SS93, GNAB92, HA99, Kla00].
A VLIW compiler not only releases the hardware from detecting indepen-
dences, but it also assigns the FUs to the operations. A VLIW program specifies
on which FU each operation should be executed, and when each operation
should be issued. In the context of VLIW architectures, it is important to
distinguish between operations and instructions. An operation is a unit of
computation, such as an addition, memory load or branch. An instruction
consists of multiple operations. The operations in an instruction are issued
simultaneously.

The compiler plays an important role to enhance the performance of VLIW
processors. In fact, the compiler decides in which order operations are exe-
cuted, with respect to the data dependence and resource constraints. To ac-
complish this the compiler uses a detailed description of the processor. It must
exactly know how many operations can be executed in parallel. This is in
contrast with the previous discussed approaches, where the hardware does
the assignment of FUs to operations. Research in the area of exploiting ILP
with the use of compilers is still ongoing as a result of the growing interest in
VLIW processors. Examples of VLIW implementations are Cydrome’s Cydra

6 CHAPTER 1. INTRODUCTION

processing
Central

unit

In
st

ru
ct

io
n

m
em

or
y

D
at

a
m

em
or

y

RF-2

RF-1

FU-3

FU-2

FU-1

In
te

rc
on

ne
ct

io
n

ne
tw

or
k

decode
Instruction

unit

Instruction
fetch
unit

Figure 1.2: General organization of a TTA.

5 [RYYT89], Multiflow’s TRACE 14/300 [SS93], Philip’s TriMedia [SRD96] pro-
cessor, the TMS320C6201 DSP processor of Texas Instruments [TI99], BOPS’s
ManArray [PV00] and Transmeta’s Crusoe processor [Kla00].

The Transport Triggered Architecture (TTA) is also classified as an inde-
pendence architecture. TTAs resemble VLIWs; however, where VLIWs specify
operations in an instruction, TTAs also specify the transports between FUs and
RFs. This gives the compiler an even larger responsibility, since now not only
the FUs and registers need to be assigned but also the transport resources. The
general organization of a TTA is given in Figure 1.2. It differs from other ILP
architectures (see Figure 1.1) in the sense that not all FUs require a direct con-
nection to the RF. The FUs exchange data via the interconnection network instead
of using a shared RF. This reduces the complexity of the data path considerably
as will be shown in Section 2.1.

The difference, between the three classes of ILP architectures, is the division of
the responsibility of the ILP exploitation between the hardware and the com-
piler. Figure 1.3 summarizes the responsibilities for each type of ILP architec-
ture.

1.1.2 Architectural Trade-off

The most visible ILP processors are general-purpose processors, which can be
found in workstations and PCs. For these processors, the superscalar architec-
ture is the current technology of choice. Superscalars have advantages com-
pared to VLIWs and TTAs because they provide binary compatibility, which
allows existing applications to run on new machines with a different level of
ILP without recompiling. Binary compatibility is an important issue for users
who want to upgrade their hardware, without buying new application soft-
ware. The dynamic scheduling ability of superscalars can adapt the order of
execution in situations that were unknown at compile time. It can handle op-
erations with variable latencies, such as load operations with potential cache

1.1. INSTRUCTION-LEVEL PARALLELISM 7

Application code

Determine dependencies

Determine independencies

Bind function units

Front-end

Determine dependencies

Determine independencies

Bind function units

Bind datapaths

Sequential

Independence

Independence

Independence

Hardware’s responsibility

Execute

Dependence

Bind datapathsBind datapaths

(Data-flow)

Compiler’s responsibility

(Superscalar)

(TTA)

(VLIW)

(Horizon, EPIC)

Figure 1.3: ILP architecture classification.

misses. Furthermore, it can reorder memory references whose independence
could not be determined at compile time. It does this by comparing their ef-
fective addresses. On the other hand, superscalars have a limited view of the
operations it can reorder, typically 4 to 64 operations can be considered. The
hardware needed to perform the data independence tests and the assignment
of the resources largely limits the scalability of superscalars. The number of
transistors required to implement this level of intelligence is substantial and
the time it takes to execute this work also adds a significant overhead to the
pipeline. The enormous design effort required to increase the issue width of a
superscalar increases the time-to-market. Furthermore, the increasingly com-
plex design needed to make these processors puts a question mark over how
many companies can afford designing them.

8 CHAPTER 1. INTRODUCTION

Dataflow and Horizon processor architectures are academic research
projects and did not found widespread application in the microprocessor mar-
ket. Processors with an EPIC architecture are just starting to emerge. Initially
they will replace superscalars in high-end PCs and workstations. Their hard-
ware complexity is between superscalars and VLIWs. Compiler techniques
developed for VLIWs and TTAs are also useful for EPIC based processors.

For Application Specific Processors (ASPs) time-to-market is an important
issue. For many companies, it is of vital importance to introduce high quality
ASPs at a low cost and within a short time frame. This is the promise of VLIWs
and TTAs: by removing complexity from the hardware, simple processors are
created that increase performance far more easily than superscalars. Simple
hardware increases clock speeds more aggressively than is possible with to-
day’s complex superscalars, and more FUs can be easily added to exploit the
parallelism existing in applications. TTAs are even more scalable than VLIWs
since they do not require that each FU has its own private connection to the
RF. VLIWs and TTAs can exploit large amounts of ILP with relatively simple
control logic. This not only results in less silicon, but also reduces the power
consumption. The compiler for these architectures can reorder the operations
within a larger scope, normally tens or hundreds of operations. This gives a
major performance benefit compared to superscalars. Unfortunately, VLIWs
and TTAs do not provide binary compatibility. Changing the issue width re-
quires recompiling the application. Several methods are proposed to solve this
limitation [Rau93, CS95], however no widely accepted solution has been found
yet1. For companies that develop ASPs, binary compatibility is not an issue, be-
cause they usually own the application code and can recompile it for another
processor. VLIWs and TTAs are not able to adapt their instruction scheduling
strategy to run-time unpredictable situations. When, for instance, a cache miss
is encountered and the following instruction needs the data, the processor is
locked until the data is available. Furthermore, the instruction scheduler is
often hindered by ambiguous memory references. Compile-time analysis can
help to alleviate this problem. The instructions of a VLIW or a TTA specify
which n operations must be executed in parallel. However, it is very unlikely
that n operations can be found. The empty places in the instructions are then
filled with no-ops. This lowers the code density compared with superscalars.
Efficient encoding and compression techniques [CBLM96, L+93, RYYT89] can
be used to solve this problem. Although the market for processors in embed-
ded systems is less visible than themarket for superscalars, the embeddedmar-
ket is much larger. Due to these reasons, new compiler techniques for VLIW
and TTAs have a lot of interest in academic and industrial research.

1The Java [GJS96] platform solves this problem by using a virtual machine. This extra soft-
ware layer decreases performance and does not yet support the exploitation of ILP. Research has
to prove whether ILP can efficiently be exploited by the Java platform [EA97, GV97]. Code morph-
ing [Kla00], as introduced in Transmeta’s Crusoe processor translates during execution x86 instruc-
tion in VLIW instructions. This software layer implements a virtual machine on a VLIW processor.

1.2. RESEARCH GOALS 9

1.2 Research Goals

The research described in this dissertation is performed within the MOVE
project. This project aims at the automatic generation of application specific
processors and their compilers. In this project, a new architecture is developed:
the Transport Triggered Architecture (TTA). TTAs are very well suited for ASPs
since they provide scalability and flexibility. Since TTAs fall into the category
of independence architectures, the compiler is responsible for detecting and
exploiting ILP. Two of the most important code generation phases for ILP pro-
cessors in general, and TTAs in specific, are register assignment and instruction
scheduling [HP90]. Applying these two phases separatelymay havemajor per-
formance drawbacks. This is especially true for applications for which registers
are a critical resource, and for processors with a small register set.

In this dissertation, problems related to the interaction between register as-
signment and instruction scheduling are analyzed and new methods are re-
searched. This includes the following topics:

Evaluation of the phase ordering problem
An evaluation of the phase ordering problem of instruction scheduling and
register assignment is given. The instruction scheduler is responsible for
creating a legal reordering of operations such that the execution time of a
program is reduced and the semantics of the program are preserved. The task
of the register allocator is to assign the program’s variables to the registers of
the processor. Instruction scheduling can be done either before or after register
assignment. Consider the example in Figure 1.4, which shows three possible
scenarios for scheduling the code fragment of Figure 1.4b, assuming a 2-issue
processor with three registers. When register assignment is carried out before
instruction scheduling (Figure 1.4c), the selection of registers may limit the
possibilities to reorder the operations. This has a negative impact on the appli-
cation’s performance. On the other hand, when scheduling precedes register
assignment, more variables become live simultaneously. For the scheduled
code in Figure 1.4d no legal assignment can be found with three registers. This
means that register assignment has to introduce extra operations, so-called
spill code, to read and write values from memory. This lengthens the program
and increases the execution time. The code example of Figure 1.4e shows
the generated code when register constraints and instruction scheduling
freedom are considered simultaneously. This approach results in the fastest
executing code. In general, the more simultaneously issued operations, the
more registers are potentially required. Therefore, it seems advantageous to
address register assignment and instruction scheduling simultaneously in
order to maximize ILP and to manage the registers efficiently. In this thesis,
phase orderings are evaluated and TTA related issues are researched. In
addition, solutions proposed in the literature are discussed.

10 CHAPTER 1. INTRODUCTION

for(i = 0; i < 100; i++)
{

a[i] = a[i]/3 + 10 + a[i]*b[i];
b[i] = b[i]*3 + 2;

}

ld v1
div v2, v1, #3
add v3, v2, #10
ld v4
mul v5, v1, v4
add v6, v5, v3
st v6
mul v7, v4, #3
add v8, v7, #2
st v8

a) Example loop. b) Code without loop control.

add r2, r2, #10
add r1, r1, r2
st r1 mul r1, r3, #3
add r1, r1, #2
st r1

Register Assignment

Instruction Scheduling

ld r1
div r2, r1, #3
add r2, r2, #10
ld r3
mul r1, r1, r3
add r1, r1, r2
st r1

add r1, r1, #2
st r1

mul r1, r3, #3

ld r1 ld r3
div r2, r1, #3 mul r1, r1, r3

ld v4
mul v7, v4, #3
mul v5, v1, v4
add v8, v7, #2
st v8

ld v1
div v2, v1, #3
add v3, v2, #10
add v6, v5, v3
st v6

mul r1, r1, r3add r2, r2, #10
ld r3

ld r3
add r2, r3
st r2

add r1, r1, r2
st r1

st r3 a

b

b

a

b
, #2

Register Assignment

Instruction Scheduling

ld r1
st r3
ld r3

b

a

a
mul r3 , r3a, #3div r2, r1, #3

c) Register assignment before
instruction scheduling.

d) Register assignment after
instruction scheduling2

ld r1 ld r2
mul r3, r1, r2div r1, r1, #3

add r1, r1, #10
add r1, r3, r1 add r2, r2, #2
st r1 st r2

mul r2, r2, #3

e) Integrated register assignment and instruction scheduling.

Figure 1.4: Motivating example: phase ordering problem.

2The live ranges of the variables v4 and v7 are replaced by two short live ranges. Both live
ranges with the index a originate from the live range of variable v4, while the live ranges with
index b originate from the live range of v7.

1.3. THESIS OUTLINE 11

Integrated register assignment and local scheduling
A new algorithm, which integrates register assignment and local scheduling,
is developed. Local scheduling is one of the simplest instruction scheduling
techniques. It exploits the ILP within basic blocks. A basic block is a sequence
of consecutive statements in which the flow of control enters at the beginning
and always leaves at the end. It will be shown that the introduced algorithm
can gracefully handle situations in which insufficient registers are available. It
also inserts store and reload code around procedure calls to preserve the state
of the program. The state of the program consists of the contents of the regis-
ters. The results of the new introduced method are evaluated and compared
with the results of early assignment methods, within the same compiler.

Integrated register assignment and global scheduling
Normally, a basic block consists of a small number of operations. This gives
few opportunities to exploit ILP. Therefore, it is beneficial to exploit the ILP
across several basic blocks. This increases the register requirements. We re-
search the effectiveness of integrated assignment using a global scheduler,
which exploits ILP without being restricted to basic block boundaries.

Integrated register assignment and software pipelining
A powerful and efficient scheduling technique for exploiting ILP in loops is
software pipelining. It results in high performance, but increases the register
requirements. When this scheduling technique runs out of registers, the com-
piler is faced with a severe problem. We present a solution based on our devel-
oped integrated register assignment and instruction scheduling technique.

Efficient code generation in the context of partitioned RFs
A practical implementation of high performance ILP architectures is con-
strained by the difficulty to build a large multi-ported RF. A solution is pro-
posed to partition the RF into smaller RFs while keeping the total number of
registers and ports equal. The advantages and disadvantages of partitioning
RFs are discussed. In this dissertation, compiler techniques are proposed to
generate code for TTAs containing partitioned RFs. Solutions for separated
register assignment and instruction scheduling, as well as for an integrated
approach are presented and the results of experiments are given.

1.3 Thesis Outline

This dissertation is organized as follows. Chapter 2 describes the concept of
TTAs. Starting from the VLIW concept this new class of processors is derived.
In Chapter 3, the compiler framework is discussed. This includes a descrip-
tion of instruction scheduling and register assignment. A thorough knowl-
edge of compiler techniques is necessary in order to comprehend the new
methods. Chapter 4 discusses the environment for the experiments, includ-
ing the used TTA configurations and benchmarks. The relationship between

12 CHAPTER 1. INTRODUCTION

instruction scheduling and register assignment is described in Chapter 5. It
evaluates techniques from literature that tackle the phase ordering problem.
The new developed method, which fully integrates register assignment and
instruction scheduling in a single phase, is described in the following three
chapters. Chapter 6 describes the simplest case. Register assignment is in-
tegrated with a local scheduler. A local scheduler can exploit only a modest
amount of ILP; therefore, in Chapter 7, a global scheduling method is used.
In Chapter 8, the application of integrated register assignment in combination
with software pipelining, an even more aggressive scheduling technique, is
discussed. This scheduling technique can only be applied to loops. When the
amount of exploitable ILP increases, the register pressure increases also. Con-
sequently, more registers are read and written simultaneously, which requires
a large multi-ported RF. However, RFs with a high number of ports are diffi-
cult to realize. In Chapter 9, solutions are proposed to solve this problem. Two
solutions are implemented: one for a phase ordering in which register assign-
ment precedes instruction scheduling, and one method in which both phases
are fully integrated. The last chapter concludes this dissertation, the findings
are summarized and suggestions for further research directions are proposed.

TTAs: An Overview 2
I ncreasing computing power is the subject of many research programs.
The need for more powerful processors not only originates from general-

purpose computing, but also from dedicated applications. To satisfy the need
for more powerful processors, computer researchers develop new computer
architectures and architectural features. Themost well known ILP (Instruction-
Level Parallel) computer architectures are superscalars and VLIW (Very Long
Instruction Word) processors. Corporaal [Cor98] developed a new computer
architecture, called Transport Triggered Architecture (TTA). The research pre-
sented in this dissertation is done in the context of this architecture. Knowledge
of the TTA concept is necessary to fully understand all aspects of the research
presented in the remainder of this dissertation.

The TTA concept evolved from the VLIW concept. The evolution from
VLIW to TTA is described in Section 2.1. The TTA’s characteristics are de-
scribed in Section 2.2.

2.1 From VLIW to TTA

TTAs resemble VLIW architectures; both exploit ILP at compile-time. An ex-
ample of the data path of a VLIW is given in Figure 2.1. This processor con-
tains five function units (FUs) connected through a 15-ported register file (RF).
An operation, performed by an FU, usually reads two values (operands), ma-
nipulates them and produces a single result. Consequently, the RF of a VLIW
withK FUs must have 3K ports: 2K read ports andK write ports.

The data transport bandwidth in a VLIW is proportional with K. As was
observed by [Cor98], VLIWs are designed for the worst case; however, it is very

13

14 CHAPTER 2. TTAS: AN OVERVIEW

Register
FU-3 FU-4

FU-5

FU-2

File

FU-1

Figure 2.1: Register file connectivity within a VLIW.

unlikely that all FUs are busy simultaneously and that the data bandwidth is
utilized for the full 100%. Some VLIWs havemore FUs than the instruction size
permits [SRD96]. For these VLIWs it is not even possible to keep all FUs busy,
assuming single cycle pipelined FUs. Even when all FUs are busy, the data
path is not likely to be fully used due to operations that require only one source
operand or do not produce a result. The addition of a bypassing network to
a VLIW may result in a better performance but decreases the utilization of the
data path even further. The complexity of a fully connected bypassing network
grows quadratically with the number of FUs [Cor98].

Due to the enormous effort towards the exploitation of more and more ILP,
a processor architecture must be designed for scalability. However, the scala-
bility of a VLIW is limited by the rapidly increasing complexity of the required
data path; especially as its RF and bypass circuit become complex [Cor98]. This
may increase the cycle time of the processor and hence degrades the perfor-
mance. Furthermore, area and power consumption can become a bottleneck,
which can make a processor too expensive and unsuited for specific applica-
tions.

Because the data path of a VLIW is rarely used for 100% it seems logical to
share the transport capability with other FUs. This not only improves the uti-
lization of the data path, but also decreases the number of ports on the RF. To
accomplish this, an extra level of control is needed to ensure that no two trans-
ports use the same connection at the same time. This task is the responsibility
of the compiler. The generated instructions have to specify transports instead
of operations, hence the name of this new architecture: Transport Triggered
Architecture.

2.2. TRANSPORT TRIGGERED ARCHITECTURES 15

SocketSocket

FU-1 FU-5

Bus
Interconnection network

FU-2 FU-3Register File FU-4

Figure 2.2: Block diagram of a TTA.

2.2 Transport Triggered Architectures

Unlike VLIWs, TTAs do not require that each FU has its own private connection
to the RF. An example of the computing core of a TTA is given in Figure 2.2. An
FU is connected to the RF by means of an interconnection network. It contains
buses and sockets. A socket can be viewed as a gateway, which is able to pass one
data item per cycle. The inputs and outputs of the FUs and RFs are connected
to respectively input and outputs sockets. It is not necessary that all buses are
connected to a socket. In the figure, the dots indicate to which bus a socket is
connected.

FUs can be designed separately, pipelined independently and can have an
arbitrary number of inputs and outputs. Examples of standard FUs are:

• Instruction Fetch Unit: Reads the instructions from memory and controls
the flow of the program (jumps and calls).

• Integer Unit: Performs integer operations (add, subtract, etc.).
• Floating-point Unit: Performs floating-point operations (add, subtract,
etc.).

• Logic Unit: Performs logical operations (and, or, xor, etc.).
• Load/Store Unit: Reads data from and writes data to external memory.

For some applications it is profitable to have FUs dedicated to a specific task,
for instance a Multiply-Add or an RS232 - interface [AHC96]. These Special
Function Units (SFUs) can also easily be integrated within the processor and
exploited by the compiler.

The design space of TTAs is enormous. The number and type of FUs and
RFs, and the capacity of the interconnection network can be changed easily.
Performance gains can be achieved by: adding FUs, pipelining FUs, increasing
the number of buses, or changing the RFs. Due to these qualities TTAs are
extremely useful for Application Specific Processors (ASPs). For more details

16 CHAPTER 2. TTAS: AN OVERVIEW

destination-idsource-idguard-id

slot Nslot 1 ...slot 2

0

1

short immediate

source register-id

Figure 2.3: General instruction format of a TTA.

on TTAs and prototype realizations, the reader is referred to [CM91, Cor93,
CvdA93, AHC96, Cor98, TNO99].

TTAs are composed of various highly regular building blocks. These build-
ing blocks can be customized to the needs of an application. In the remainder of
this section, a general description of these building blocks is given. In addition,
the instruction format and TTA specific properties that allow the exploitation
of ILP to a greater extent are discussed.

2.2.1 TTA Instruction Format

TTAs mirror the traditional programming model. Traditional architectures are
programmed by specifying operations. The data transports between FUs and
RFs are implicitly triggered by executing the operations. Therefore, traditional
architectures are called Operation Triggered Architectures (OTAs). TTAs are pro-
grammed by specifying the data transports; as a side effect, the operations are
performed. Programming TTAs shows much resemblance with programming
VLIWs. Instead of packing the operations in a single instruction, like VLIWs,
TTAs pack multiple transports in a single instruction.

The general instruction format of a TTA is shown in Figure 2.3. Each slot
of the TTA instruction controls directly a bus. A data transport, also called
move, describes a data transfer between the source and destination as specified
by the source-id and destination-id of a slot. The source- and destination-ids
specify registers. Examples of registers are: general-purpose registers, operand
registers, trigger registers and result registers. The source-id does not always
specify a register; it can also contain a small integer. A 1-bit flag is added to the
source-id to specify whether the source-id specifies a register or contains a short
immediate. The guard-id is used to support conditional or guarded execution.
It specifies a Boolean expression. The outcome of this expression determines
whether a move is executed or not. In a two-stage instruction pipeline, the FUs
do not have a result register. For these TTAs, the destination-id specifies the
FU output instead of a register.

2.2. TRANSPORT TRIGGERED ARCHITECTURES 17

2.2.2 Function Units

The function units or FUs are the components of a TTA that perform the com-
putations or communicate with the outside world. Tasks performed by the FUs
are for example: additions, multiplications, and load and stores to memory.

An FU contains one or more input and output registers. These registers
are subdivided into three types: operand registers, result registers and a trigger
register. Executing an operation with n (source) operands consists of moving
n− 1 operands to the operand registers and one operand to the trigger register
of the FU. A trigger register is a special kind of operand register because mov-
ing an operand to a trigger register starts an FU operation. The results of the
operation can be read from its result registers. As an example we show how a
RISC type add instruction translates into three transports:

add r3,r2,r1; ⇒ r1 → add.o; r2 → add.t;
add.r → r3;

First, the values of r1 and r2 aremoved from the RF to the operand and trigger
registers add.o and add.t of the FU. After a delay (depending on the latency
of the adder), the result is moved from the result register add.r to r3 in the
RF. An FU may support various operations. The type of operation is specified
by its trigger register. Writing to a specific trigger register of an FU starts the
corresponding operation.

Operations that have a longer latency than a single cycle are subject to
pipelining. There are several alternatives for pipelining the FUs. The two
alternatives that are currently supported are hybrid pipelines and virtual-time
latching (VTL) pipelines.

A hybrid pipeline ensures that data in the pipeline is never overwritten.
This implies that when a result is not read from the result register, another
operation that is started one cycle later will not overwrite the old result. A
pipeline full exception is raised, when an attempt is made to write to a trigger
register of a hybrid pipelined FU, while it cannot accept an operation because
the pipeline is full. On the other hand, the processor locks when a read attempt
ismade from a result register, which contains no valid data. The lock is released
when the result register receives a valid value from a previous pipeline stage.
This pipelining discipline is used in the MOVE32INT [CvdA93] processor and
the Phoenix processor [CL95].

Operations executing on a VTL pipelined FU proceed unconditionally from
one pipeline stage to the next (except for data and instruction cache misses and
exceptions). This means that the value of a result register can be overwritten
even when the old value was not even read. The availability of the old value
depends on how soon another operation triggers the FU. It is the responsibility
of the compiler to ensure that no data is unintentionally overwritten.

The experiments performed in [Hoo96] show that both pipeline alterna-
tive have a comparable performance. VTL pipelined FUs are easier to im-
plement in silicon and less likely increase the cycle time due to complex con-

18 CHAPTER 2. TTAS: AN OVERVIEW

trol logic [Cor98]. In the remainder of this thesis, all FUs have VTL pipelines.
For a detailed evaluation of various pipeline disciplines the reader is referred
to [Cor98].

2.2.3 Register Files

Registers can be seen as small, first level, fastest accessible components of the
memory hierarchy. Registers bridge the gap between main memory speed and
the rate at which FUs can process data. The values of variables are stored
in registers to speed up the execution time. Registers are grouped into reg-
ister files (RFs). An RF has a number of ports through which the registers
are accessible. The RF in Figure 2.2 has two read ports and two write ports.
Two register reads and two register writes can be performed simultaneously.
The more ports on an RF the more freedom in access patterns; however, in-
creasing the number of ports increases the chip area [CDN95], the access
time [FJC95, Cor98], and the power consumption [ZK97]. The current TTA
framework provides three types of RFs: RFs for integer registers (32 bits), RFs
for floating-point registers (64 bits) and RFs for Boolean registers (1 bits). How-
ever, no fundamental restrictions exist for using an arbitrary number of bits for
the registers, or for using an arbitrary number of RFs.

2.2.4 Immediates

Not all values originate from registers. For example, values that are fixed
throughout the program can be coded into the instructions. As already dis-
cussed in Section 2.2.1, small immediates can be coded in the source-id of a
move. The size of a short immediate is usually less or equal to 8 bits.

Immediates that do not fit into the source-id of a move are handled differ-
ently. To support these long immediates the compiler must encode them in the
instructions. This can be done by adding one or more immediate fields to the
instruction format. When an instruction is fetched from the instruction mem-
ory, the immediates stored in the immediate fields are placed in special regis-
ters. These registers are called immediate registers. The immediates can now be
transported by specifying the id of the immediate register in the source-id of
the move. Other implementations to handle long immediates are also feasible,
see [Jan01].

2.2.5 Move Buses

The communication between FUs and RFs is done over the interconnection net-
work. This network consists of a set of sockets and buses. A bus, also denoted
as move bus, is controlled by a slot of the TTA instruction. The implementa-
tion of a move bus not only provides the necessary data transport capability,

2.2. TRANSPORT TRIGGERED ARCHITECTURES 19

but it also performs the distribution of the control signals. The control sig-
nals include the source and destination register-ids and the signals for locking,
guarding and exceptions.

A fully connected interconnection network simplifies the code generation
task. From the hardware point of view, a fully connected interconnection net-
work may result in a high bus load, which may affect the cycle time. For
ASPs, the interconnection network should represent the communication re-
quirements for the executed application(s) under its performance constraints.
Paths in the interconnection network that are heavily used should be provided,
while less frequently used paths can be removed1.

2.2.6 Sockets

The interface between the interconnection network and the FUs and RFs is pro-
vided by input and output sockets, see Figure 2.2. Sockets primarily consist of
a comparator, input multiplexers (for the input sockets) and output demulti-
plexers (for the output sockets). The register-id that is supplied on the bus is
checked by the socket whether the specified register is accessible through it.
When a register is accessible, the data is passed in the wanted direction.

2.2.7 Control Flow and Conditional Execution

To execute high-level language statements, such as while and if-then-else state-
ments, the processor must be able to change the flow of control conditionally.
This is usually done by changing the contents of the program counter. In a
TTA, the flow of control can be changed by directly writing a value to the pro-
gram counter. The program counter is accessible for writing through the jump
register. A jump is simply performed by writing the address of the target of the
jump into the jump register. Depending on the instruction pipeline, the jump
can have one or more delay slots.

A jump operation usually executes under a certain condition. When this
condition is met, the jump is carried out, otherwise normal execution contin-
ues. TTAs support conditional execution by means of guarded or predicated ex-
ecution. A Boolean expression is associated with each move. Only when this
expression is evaluated to be true, the move takes place. The Boolean expres-
sion, also called guard expression, is constructed out of Boolean values that are
stored in the Boolean RF. These values are defined by compare operations. The
following C-code fragment:

if(a > b)
c = a;

label:

1The current compiler requires that there should be at least a (single) connection between the
RF and the FU registers.

20 CHAPTER 2. TTAS: AN OVERVIEW

translates with guarded execution into:

r1 → gt o; r2 → gt t; /* b1 = a > b */
gt r → b1;
!b1:label → jump; /* if (b1 == false) goto label */
r1 → r3; /* c = a*/

label: ...

where the variables a, b and c are respectively mapped onto the registers r1,
r2 and r3. The operation gt performs the greater-than operation and generates
a Boolean value. Boolean register b1 holds the Boolean value and guards the
jump operation. The notation !b1: indicates that the operation following this
guarded expression is only executed when b1 evaluates to false.

Conditional execution can also be used to prevent the insertion of jumps
into the code. Consider the following example:

if(a > b)
c = a;

else
c = b;

With conditional execution this code fragment translates into:

r1 → gt o; r2 → gt t; /* b1 = a > b */
gt r → b1;
b1:r1 → r3 !b1:r2 → r3; /* if (b1 == true) c = a else c = b */

where the variables a, b and c are respectively mapped onto the registers
r1, r2 and r3. The notation b1: indicates that the operation following the
guarded expression is only executed when b1 evaluates to true.

2.2.8 Software Bypassing

Software bypassing is one of the advantages of TTAs above more traditional ar-
chitectures. Using software bypassing the compiler can eliminate the need of
some RF accesses, see for example the following code fragment:

r1 → add.o; r2 → add.t; /* r3 = r1 + r2 */
add.r → r3;
r3 → sub.o; r4 → sub.t; /* r5 = r3 - r4 */
sub.r → r5;

Software bypassing allows the two flow dependent moves (add.r → r3 and
r3→ sub.o) to be scheduled in the same instruction, provided that the result
of the addition is directly written to the operand of the subtraction. This opti-
mization shortens the execution time and saves one RF read. This reduces the
RF-port requirements. The scheduled version when applying software bypass-
ing is:

2.2. TRANSPORT TRIGGERED ARCHITECTURES 21

r1 → add.o; r2 → add.t;
add.r → r3; add.r → sub.o; r4 → sub.t;
sub.r → r5;

When the value of r3 is not needed anymore, the defining move add.r→ r3
can be removed by dead-result move elimination: the result of the addition is
directly bypassed to the subtraction. This results in the following code:

r1 → add.o; r2 → add.t;
add.r → sub.o; r4 → sub.t;
sub.r → r5;

Dead-result elimination not only reduces the register requirements, but also
saves a data transport and an RF write access. The freed resources can be used
by other moves, which may lead to higher performance.

2.2.9 Operand Sharing

Since moves are handled individually by the compiler, it is also possible to
share an operand move by multiple operations. This is illustrated in the fol-
lowing example, which shows two additions with a common operand (e.g.,
r1).

r1 → add1.o; r2 → add1.t; /* r3 = r1 + r2 */
add1.r → r3;
r1 → add2.o; r4 → add2.t; /* r5 = r1 + r4 */
add2.r → r5;

When both additions are executed on the same FU, the second operand move
r1 → add2.o can be eliminated because the value of r1 is already present in
the operand register of the FU. This results in the following code:

r1 → add1.o; r2 → add1.t;
add1.r → r3; r4 → add2.t;
add2.r → r5;

The optimized version saves a move and an RF access. This optimization can
only be applied when the following requirements are met: (1) the value of the
common operand is the same, (2) the operations execute on the same FU, (3)
the common operand is provided to the FU via the same operand register, and
(4) the operand register is not changed by other intervening operations.

22 CHAPTER 2. TTAS: AN OVERVIEW

Compiler Overview 3
A compiler is used to translate a program into executable machine code.

Especially for VLIW and TTA based processors, the compiler plays an
important role, because it assigns the resources to the operations and the oper-
ations to the instructions. In the remainder of this dissertation, new compiler
technologies are described to increase the amount of exploitable instruction-
level parallelism (ILP). A thorough knowledge of the internals of the TTA com-
piler is essential in order to understand the work presented in this dissertation.

This chapter describes the compiler infrastructure to generate parallel TTA
code. The developed infrastructure is shown in Figure 3.1. The compiler ac-
cepts applications written in a High Level Language (HLL) like C, C++ or For-
tran. It translates these applications into an intermediate representation, the
sequential TTA code. The sequential TTA code is simulated with as input a
data set that is representative for future runs of the application. The simula-
tion is used for: (1) verification of the produced code, (2) obtaining application
statistics and (3) obtaining profiling information.

The research presented in this thesis focuses on the TTA compiler back-end.
It reads the sequential TTA code, the architectural description and the profil-
ing information. It translates the sequential TTA code to parallel (i.e. sched-
uled) TTA code for the TTA processor specified in the architectural description.
When available, profiling information is used to optimize the scheduling pro-
cess. The parallel code simulator is used to verify the generated code and to
evaluate the results.

In the remainder of this chapter, the front-end and the back-end of the TTA
compiler are discussed in more detail. Section 3.1 discusses front-end issues
relevant for this thesis. The back-end infrastructure is the focus of Section 3.2.

23

24 CHAPTER 3. COMPILER OVERVIEW

Compiler front-end

Architecture
description

Input/Output

Input/Output

Compiler back-end

Parallel
TTA code

Sequential Sequential code

TTA code simulator

Parallel code
simulator

Application

(C/C++/Fortran)

Profiling information

Figure 3.1: Information flow in the TTA compiler.

It describes code restructuring and analysis techniques, necessary to compre-
hend the methods introduced in this thesis. The two most important phases of
the compiler back-end are register assignment and instruction scheduling. In
Section 3.3, the basic principles of the popular graph coloring register allocator
are given. Finally, Section 3.4 describes instruction scheduling techniques that
are used throughout this thesis.

3.1 Front-end

The job of the compiler front-end is to translate the application code written
in a HLL into sequential TTA code. In order to be assured of good code qual-
ity, good HLL compatibility and a well debugged compiler, the freely avail-
able GNU C compiler [Sta94] of the Free Software Foundation is used as the
front-end of the TTA compiler. The ported compiler transforms programs
coded in the programming languages ANSI C, C++ or Fortran 77 to sequen-
tial TTA code. Other compilers can also be used as a front-end. More recently
the SUIF C [WFW+95] compiler has been ported to produce sequential TTA
code [CC97]. The SUIF C compiler gives more control over optimizations and
provides the ability to combine the benefits of exploiting both coarse and fine
grained parallelism.

The complete operation repertoire of a generic TTA processor is listed in
Table 3.1. Note that no mnemonic is needed for a register copy. A specific TTA
processor does not have to support all operations, this is indicated in the table.
When operations are not supported by the TTA, the front-end will replace it by
other supported operations, or it generates a call to a library function.

3.1. FRONT-END 25

Table 3.1: Operation set of the TTA compiler.

Operation type Mnemonic Optional
Integer add and subtract add, sub No
Integer multiply and divide mul, div, divu, mod, modu Yes
Word load/store ld, st No
Sub-word load/store ldb, ldh, stb, sth Yes
Integer compare eq, gt, gtu No
Shift shl, shr, shru No
Logical and, ior, xor No
Sign-extend sxbh, sxbw, sxhw Yes
Sub-word insert/extract insb, insh, extb, exth Yes
Floating-point arithmetic addf, subf, negf, mulf, divf Yes
Floating-point load/store ldd, lds, std, sts Yes
Floating-point compare eqf, gtf Yes
Type conversions f2i, f2u, i2f, u2f Yes
Register copy No

To hold temporary values, variables are used. The front-end uses 128 32-bit
integer variables to hold the integer values. When a floating-point RF is avail-
able in the target TTA, 128 64-bit floating-point variables are used for storing
the floating-point values. When the target TTA does not contain a floating-
point RF, the compiler front-end will use integer variables for holding floating-
point values. The large number of variable names prevents that the front-end
maps variables onto the main memory. The actual register assignment for the
target TTA processor is done by the back-end. The front-end uses a single
Boolean variable to support conditional execution of jumps. Only jumps are
guarded in the sequential TTA code. All moves contain at least one variable or
one immediate. The front-end does not apply TTA specific optimizations such
as software bypassing.

To support procedure calls, a call register is used. Writing to the call register
is similar to writing to the jump register (i.e. the program counter), with the
difference that the address of the next instruction is placed in the return address
register. The value of the return address register is used to resume execution
when the called procedure finishes execution. The front-end does not insert
state preserving code around procedure calls, because register assignment is
not performed yet. For interfacing with the operating system a trap register is
used. The value that is written to it indicates the requested (4.3BSD) system
call. Passing information between procedures is accomplished with the use of
special variables. These variables are listed below:

1. Variables v1 and v2 are used for the stack and frame pointer respectively.
These two variables have aliases sp and fp respectively.

26 CHAPTER 3. COMPILER OVERVIEW

2. Results are returned via v0 (for integers) and vf0 (for floating-point
numbers). We will use rv and fv as aliases for v0 and vf0 respectively.

3. The integer arguments are passed via variables v3..v6 and the floating-
point arguments are passed via vf1..vf4. The remaining parameters are
passed via the stack.

3.2 Back-end Infrastructure

The back-end exploits the ILP of an application and maps it onto the TTA pro-
cessor that is specified in the architecture description. Figure 3.2 shows the
TTA compiler back-end. Transforming the sequential TTA code to correct par-
allel TTA code requires that the semantics of the application are preserved and
the architectural description is respected. In this section, the infrastructure of
the back-end is presented. The back-end infrastructure provides the follow-
ing functionality: (1) I/O components that perform conversions between inter-
nal data structures and external files (architecture description reader, sequen-
tial TTA code reader, profiling information reader, parallel TTA code writer),
(2) analysis functions (control flow analysis, data flow analysis, data depen-
dence analysis) and (3) code transformation functions (function inlining, loop
unrolling, grafting and controlled node splitting).

3.2.1 Reading and Writing

The sequential TTA code of the program generated by the front-end is read by
the back-end and transformed into an internal representation. The following
definitions define the elements of this representation:

Definition 3.1 A program P describes the behavior of an application. It consists of
a set of procedures.

Definition 3.2 A procedure P is a code abstraction element of a program. Each
procedure implements a specific task. Each procedure consists of a set of basic blocks.

Definition 3.3 A basic block b is a sequence of consecutive instructions in which the
flow of control always enters at the beginning and always leaves at the end. A basic
block consists of a set of operations.

Definition 3.4 An operation o describes the computation to be performed on an FU.
An operation consists of a set of moves.

Definition 3.5 Amovem describes data transports between hardware components.

The internal representation of a program P is annotated with profiling infor-
mation, which consists of the execution counts of the basic blocks and control
flow edges. When profiling information has been generated by the sequential

3.2. BACK-END INFRASTRUCTURE 27

Parallel TTA Code Writer

Parallel
TTA code

Architecture
description

Function Inlining

Data

Internal

Structures

Control Flow Analysis

Data Flow Analysis

Data Dependence Analysis

Profiling Information Reader

Register Assignment

Sequential TTA Code Reader

Architecture
Description Reader

Sequential

TTA code
Profiling data

Controlled Node Splitting

Loop Unrolling

Grafting

Instruction Scheduling

Figure 3.2: Structure of the TTA compiler back-end.

simulator, it is read from a file. Otherwise, it is generated based upon the loop
nesting in the procedures.

The machine description file contains the description of the target TTA pro-
cessor. This information is also stored into an internal representation. The
back-end generates parallel code using this internal representation. The gener-
ated parallel TTA code is written to a file.

3.2.2 Control Flow Analysis

Conditional branches determine the order in which basic blocks are executed.
AControl Flow Graph (CFG) makes these execution paths visible to the compiler.

Definition 3.6 The control flow graph CFG of a procedure P is a triple (B,CE, s)
where (B,CE) is a finite directed graph, with B the set of basic blocks and CE the set

28 CHAPTER 3. COMPILER OVERVIEW

of control flow edges. From the initial basic block s ∈ B there is a path to every basic
block of the graph.

Control flow analysis (CFA) uses the CFG to compute the relations between
basic blocks; successive compiler phases can use this information for opti-
mizing the program. CFA computes the dominator and post-dominator re-
lations between basic blocks, identifies loops, and determines the nesting of
the loops [ASU85].

Dominator information is used to identify loops and to determine whether
code motion between basic blocks requires code duplication.

Definition 3.7 A basic block bi dominates basic block bj if every path from the initial
node of the CFG to bj goes through bi. More formally bi doms bj .

Note that a basic block dominates itself. Dominator information is computed
by solving control flow equations [ASU85].

Several compiler optimizations require as input a reducible CFG. Many def-
initions for reducible CFGs are proposed. The one adopted here, is given
in [ASU85] and is based on the partitioning of the control flow edges into two
disjoint sets:

1. The set of back edges BE consists of all control flow edges whose heads
dominate their tails.

2. The set of forward edges FE consists of all control flow edges that are not
back edges, thus FE = CE − BE.

The definition of a reducible flow graph is as follows:

Definition 3.8 A CFG = (B,CE, s) is reducible if and only if its subgraph
CFG′ = (B,FE, s) is acyclic and every basic block b ∈ B can be reached from
the initial basic block s.

The CFG of Figure 3.3a is reducible since CFG′ = (B,FE, s) is acyclic,
see Figure 3.3b. The CFG of Figure 3.4a is irreducible. The set of back edges is
empty, because neither basic block a nor basic block b dominates the other. FE
is equal to {(s, a) , (s, b) , (a, b) , (b, a)}, and CFG′ = (B,FE, s) is not acyclic.

Many compiler optimizations such as data flow analysis, loop transforma-
tions, the exploitation of ILP, and memory disambiguation are simpler, more
efficient, or only applicable when the control flow graph of the program is
reducible. To overcome this limitation, irreducible CFGs are transformed to
reducible CFGs. In the past, some methods were given to solve this prob-
lem [CM69, Hec77, ASU85]. Most methods for converting an irreducible CFG
are based on a technique called node splitting. The principle of node splitting is
illustrated in Figure 3.4; basic block a of the CFG is split. The CFG is converted
into a reducible CFG at the cost of code duplication.

Unfortunately, existing methods have the problem that the resulting code
size, after converting an irreducible CFG, can grow uncontrolled. In [JC96] we

3.2. BACK-END INFRASTRUCTURE 29

s

a

c

d

f

b

e

s

a

c

d

f

b

e

a) CFG = (B,CE, s) b) CFG′ = (B,FE, s)

Figure 3.3: a) Reducible control flow graph; b) the graph CFG′ = (B,FE, s).

reported an average increase in code size of 236% for procedures with an irre-
ducible CFG. In the same article, we described a new method for transforming
irreducible CFGs to reducible CFGs, called Controlled Node Splitting (CNS). This
method minimizes the number of copies by duplicating only basic blocks with
specific properties. This method resulted in an average increase in code size of
only 3%. As we have proven in [JC97a] this method is optimal in the sense that
it only needs a minimal number of copies to make a CFG reducible. After ap-
plying CNS the resulting CFG contains only natural loops. Natural loops have
one header and may have multiple back edges and exit edges.

s

ba a

s

a’

b

a) An irreducible CFG. b) The reducible CFG after applying
node splitting to basic block a.

Figure 3.4: An irreducible CFG and its reducible counterpart.

30 CHAPTER 3. COMPILER OVERVIEW

3.2.3 Data Flow Analysis

Data Flow Analysis or DFA can be described as the process of ascertaining and
collecting information on how a program manipulates data. There are several
levels for this analysis. The ones used in the TTA compiler back-end are the
analysis at the basic block level and at the procedure level. First, some terms
are defined to describe the problem more formally.

Definition 3.9 A variable v is a place holder for temporary values.

Definition 3.10 A variable v is defined at a point in a program when a value is
assigned to it.

Definition 3.11 A variable is v used at a point in a program when its value is refer-
enced in an expression.

Definition 3.12 A variable v is said to be live at a pointQ in a program if it has been
defined earlier and will be used later. The set live(Q) consists of all variables that are
live at point Q.

Definition 3.13 The live range lr(v) of a variable v is the execution range between
its definitions and uses.

Definition-use chains (du-chains) are added between the definitions of a variable
and its reachable uses. These du-chains are used for memory disambiguation
and register assignment.

Definition 3.14 The du-chain(v) of a variable v is a directed graph (Ndu, Edu) that
connects the moves that define variable v to the moves that use v. The nodes and edges
of a du-chain(v) are defined as:

Ndu = NDef(v) ∪ NUse(v)

Edu =
{
(ndef , nuse) | ndef � nuse, ndef ∈ NDef(v) ∧ nuse ∈ NUse(v)

}
whereNDef (v) is the set of moves that define variable v andNUse(v) is the set of moves
that use variable v. The notation ndef � nuse means that there exists an execution
order from ndef to nuse that does not redefine v.

The du-chains are constructed by applying a standard iterative data flow
algorithm [ASU85]. Figure 3.5a shows the du-chains of the variables v1 and
v2. In this figure def vi denotes a definition of a variable vi and use vi
denotes a use of a variable vi.

Renaming is a transformation that may increase the scheduling freedom. The
naming of the variables as shown in Figure 3.5a prevents, for example, that the
instruction scheduler can reorder the definition and the use of variable v1 in
basic block B. Reordering these operations would result in incorrect program
execution. This ordering constraint, or dependence, is caused by the re-use of

3.2. BACK-END INFRASTRUCTURE 31

B C

D

def

A

use use
def

control flow edge
du-chain

use
def
def

use
use

v1
v1v1

v1

v1
v2

v1
v2
v1

B C

D

def

A

use use
def

use
def
def

control flow edge
du-chain

v2
v3

v1
v2
v1

use
use

v1
v3

v1
v3

a) Du-chains of v1 and v2. b) Renaming.

Basic block liveDef liveUse liveIn liveOut

A {v1,v2} ∅ ∅ {v1,v2}
B {v3} {v1} {v1,v2} {v2,v3}
C {v3} {v1} {v1,v2} {v2,v3}
D ∅ {v2,v3} {v2,v3} ∅

c) The live sets of figure b.

Figure 3.5: Data flow analysis.

variable v1. Renaming [CF87, Muc97] removes this type of dependence by
splitting up the du-chain. The newly created du-chains are assigned to new
variables. In Figure 3.5b, the second live-range of variable v1 is renamed to
variable v3. This removes the false dependences in the basic blocks B and C.

Live-Variable Analysis computes whether a variable is live in a particular basic
block. For each basic block the sets liveUse(b) and liveDef (b) are computed.
The set liveUse(b) is defined as the set of variables that are used in basic block b
before they are defined in basic block b. The set liveDef (b) is defined as the set
of variables that are defined in basic block b before they are used in this basic
block. The set of variables that are live on entry and exit of a basic block can
now be computed with:

liveIn(b) = (liveOut(b) − liveDef (b)) ∪ liveUse(b) (3.1)

and
liveOut(b) =

⋃
b′∈Succ(b)

liveIn(b′) (3.2)

where Succ(b) is the set of all successor basic blocks of basic block b in the CFG.
More formally:

Succ(b) = {b′ ∈ B| (b, b′) ∈ CE} (3.3)

32 CHAPTER 3. COMPILER OVERVIEW

Algorithms to solve these equations can be found in [ASU85, Muc97]. In Fig-
ure 3.5c the result of applying the live-variable analyses to the program of Fig-
ure 3.5b is given. Live information is used by the scheduler to test for off-
liveness during speculative execution, and by the register allocator to deter-
mine the live ranges of the variables.

3.2.4 Data Dependence Analysis

Data Dependence Analysis (DDA) is a vital tool in instruction scheduling, it de-
termines the ordering (also known as data dependence) relations between op-
erations that must be satisfied for the code to execute correctly. The set of rela-
tions is represented by a directed graph, called the data dependence graph (DDG).
For each procedure a DDG is build. The scheduler uses the DDG to exploit the
available ILP without violating the data dependences.

Definition 3.15 A DDG = (NDDG, EDDG) is a finite directed graph, with NDDG

the collection of operations andEDDG the collection of data dependence edges. An edge
leading from node ni to node nj indicates that ni must be executed before nj .

Data dependences between operations indicate accesses to the same location.
The set of data dependences EDDG can be divided into three subsets:

• Memory data dependences are caused by accesses to the samememory loca-
tion. The set of memory edges, EMem, is the set of edges that represents
memory data dependences.

• Register data dependences are caused by accesses to the same register. The
set of register edges, EReg, is the set of edges that represent register data
dependences. These dependences arise when the variables are mapped
onto the registers of the target machine.

• Variable data dependences are caused by accesses to the same variable. The
set of variable edges, EV ar, is the set of edges that represent variable data
dependences. These dependences arise when the variables are not yet
mapped onto the registers.

A data dependence between two operations o1 and o2 arises from the flow
of data between both operations. Assuming that o1 occurs before o2 then the
types of data dependences that constrain the execution order are:

• Flow dependence: the value of a memory location, register or variable de-
fined by o1 may be used by o2. This dependence is denoted as o1 δf o2.

• Anti dependence: the value of a memory location, register or variable used
by o1 may be redefined by o2. This is denoted as o1 δa o2.

• Output dependence: the value of a memory location, register or variable
defined by o1 may be redefined by o2. This is denoted as o1 δo o2.

3.2. BACK-END INFRASTRUCTURE 33

for(i = 0; i < 100; i++, j++)
x[i] = a * x[i] + b / y[j];

o1 ld v3, 0(v1)
o2 mulv4, v7, v3
o3 ld v3, 0(v2)
o4 div v5, v8, v3
o5 add v6, v4, v5
o6 st v6, 0(v1)

a) Source code. b) Code of loop body.

o

o

o

o

o

o

1

2

3

5

6

4

Flow dependences o1 δf o2

o3 δf o4

o2 δf o5

o4 δf o5

o5 δf o6

Anti dependences o2 δa o3

o1 δa o6

Output dependences o1 δo o3

c) The DDG of the loop body. d) The dependence relations.

Figure 3.6: Example of dependence relations.

For a correct execution of the application, all three data dependence types
must be respected during instruction scheduling. Unfortunately, data depen-
dences may hinder the exploitation of ILP. Avoiding or eliminating data de-
pendences may increase the exploitable ILP. Flow dependences cannot be elim-
inated and are also known as true dependences. Anti and output dependences
are known as false dependences. They are caused by name conflicts and can be
eliminated by renaming [HP90].

Figure 3.6b shows the RISC style code of the loop of Figure 3.6a. The corre-
sponding DDG is given in Figure 3.6c and the data dependence relations with
their types are listed in Figure 3.6d. The data dependences can be categorized
in the following sets:

EV ar =
{
o1 δf o2, o3 δf o4, o2 δf o5, o4 δf o5, o5 δf o6, o2 δa o3, o1 δo o3

}
EMem = {o1 δa o6}
EReg = ∅

Note that the set EReg is empty because the registers are not yet assigned to the
variables.

34 CHAPTER 3. COMPILER OVERVIEW

In the TTA compiler back-end, the nodes of the DDG represent moves instead
of operations; edges represent data dependences between moves. The moves
that make up an operation must be executed in a specific order. The operand
move must be executed before or at the same time as the trigger move. The
result move must be executed after the trigger move. To guarantee that the
execution order of the moves is not violated, extra TTA specific dependence
edges, so-called intra operation edges, are added to the DDG.

• Trigger-result dependence: guarantees that the trigger move of an operation
is always scheduled in an earlier instruction than the result move of the
same operation. This relation is denoted with δtr.

• Operand-trigger dependence: guarantees that the operand move of an oper-
ation is never scheduled in a later instruction than the trigger move. This
relation is denoted with δot.

A delay is associated with each dependence edge. This delay is added to the
data dependence relation in the form of o1 δtype

delay o2, where type represents the
type of the data dependence. The delay indicates that operation o2 should be
scheduled at least delay instructions after the instruction of o1. For TTAs the
delay of a flow dependence caused by a register or variable is always zero (δf

0),
because values can be defined and used in the same instruction by using soft-
ware bypassing. This does not apply to flow dependences caused by accesses
to the same memory location. Their delay is set to one cycle (δf

1) in order to en-
sure that the correct value is read from memory. In the TTA processor model,
it is assumed that when a read and a write to the same location occur in the
same instruction, the read will get the previous value. Consequently, anti de-
pendences have a delay of zero (δa

0). The delay of an output dependence is
one instruction (δo

1), because multiple writes to the same register or memory
location in the same instruction are undefined. The delay associated with the
operand-trigger dependence is at least zero. In the remainder of this thesis,
it is assumed that this delay is always equal to zero (δot

0). The delay between
the trigger and the result is equal to the latency of the FU that will execute the
operation (δtr

delay FU).

The dependence edges of the DDG impose a partial order in which the moves
must be executed. A path in the DDG is called a dependence path. The longest
dependence path is called the critical path. The dependences restrict the re-
ordering of the moves. As already mentioned, reducing the number of depen-
dence edges results in a larger scheduling freedom and may result in faster
executing code. Methods for reducing the number of data dependences are
register renaming as discussed in Section 3.2.3 and memory reference disam-
biguation.

Memory reference disambiguation is used for proving the independence be-
tween two memory references. It attempts to answer the question: given two
memory references m1 and m2, could they possibly refer to the same mem-
ory location? The most simple memory reference disambiguator answers this

3.3. REGISTER ASSIGNMENT 35

question simply with yes. This preserves program semantics, but limits the ex-
ploitation of ILP. A more accurate memory reference disambiguation improves
the ability for ILP exploitation by removing spurious data dependences. When
the memory disambiguator cannot guarantee whether two memory references
never refer to the same location, dependence is assumed.

3.2.5 Loop Unrolling, Function Inlining and Grafting

A method to reduce the overhead of executing loops and to improve the effec-
tiveness of other optimizations, such as the exploitation of ILP is loop unrolling.
Loop unrolling replaces the body of a loop by several copies of the loop and
adjusts the loop-control code accordingly. This enlarges the loop body and de-
creases the number of iterations of the loop. A larger loop body allows a more
aggressive exploitation of ILP, which benefits performance. To take full ad-
vantage of loop unrolling in the context of exploiting ILP, variable renaming is
applied to the replicated loop bodies. This increases the register pressure.

Function inlining replaces calls to procedures with copies of their bodies. This
transformation removes barriers between procedures and increases the scope
of optimizations, such as common subexpression elimination and constant
propagation. Because the optimization scope is enlarged, more ILP can be ex-
ploitable. This has also its consequences for register assignment. More vari-
ables are live simultaneously and thus the register pressure increases. Another
advantage is the reduction of overhead around procedure calls. A detailed
analysis concerning procedure inlining can be found in [HC89]. They claim
that 59% of the procedure calls can be eliminated with a modest code expan-
sion (17%).

Basic blocks are often too small too contain sufficient ILP.Grafting is a technique
that increases the size of basic blocks by duplicating join-point basic blocks1. In
Figure 3.7 the join-point basic block D is duplicated. After duplication, the
basic blocks B and D, and C and D’ can be merged into larger basic blocks.

3.3 Register Assignment

Register assignment is the problem of finding a mapping of program variables
to the registers of the target machine, while preserving the semantics of the pro-
gram. A valid solution is to place each variable in a different register. However,
usually the number of variables exceeds the number of registers. Fortunately,
not all variables are live simultaneously. This means that we can map multiple
variables to a single register, as long as the corresponding live ranges do not
overlap. A proper register assignment is a mapping such that no register is

1Grafting is closely related to tail duplication. Grafting duplicates only join-point basic blocks,
while tail duplication copies the complete tree below the join-point basic block.

36 CHAPTER 3. COMPILER OVERVIEW

CB

A

D D’

FE

CB

A

D D’

FE

CB

A

D

FE

A

B+D C+D’

FE

Figure 3.7: Grafting and merging of basic blocks.

assigned to any two variables that are live simultaneously. When no proper
register assignment can be found, some variables must be mapped onto mem-
ory locations.

In literature, register allocation is often used when register assignment is
meant. Register allocation deals with the determination of type and num-
ber of resources, while register assignment is the assignment to register in-
stances [MLD92]. Register assignment can be applied to expressions, basic
blocks (local register assignment), procedures (global register assignment),
or collections of procedures (inter-procedural register assignment). Aggres-
sive techniques to exploit ILP operate on whole (or even beyond) procedures.
Therefore, we believe that at least global register assignment is required to sup-
port the exploitation of ILP. In the remainder of this thesis, we mean by register
assignment, global register assignment, unless stated otherwise.

3.3.1 Graph Coloring

Graph coloring [BCKT89, Bri92, BCT94, CK91, CAC+81, Cha82, CH90, GL95,
GSS89, Mue92] is the most popular method to assign registers. Graph coloring
as originally proposed by Chaitin [CAC+81, Cha82] performs register alloca-
tion and assignment at the same time. An interference graph is constructed to
find an efficient mapping. The interference graph consists of a node for each
variable and edges between any two nodes, if and only if, the two variables
associated with the nodes are live simultaneously for the given operation or-
der. When variables are live simultaneously, we say that these variables inter-
fere. Two variables interfere if one of them is live at a definition point of the
other [CAC+81].

Definition 3.16 An interference graph IG =
(
Nvar, Einterf

)
is a finite undirected

graph, with Nvar the set of variables and Einterf the set of interference edges. Einterf
is defined as Einterf = {(vi, vj) | vi, vj ∈ Nvar ∧ vi �= vj ∧ vj ∈ interf(vi)} where
interf(vi) = {v ∈ live(Q) | Q ∈ NDef (vi)}.

The problem of register assignment can be described as: the problem of
finding a proper node coloring for the interference graph with k colors, where

3.3. REGISTER ASSIGNMENT 37

Live ranges

v1
v3
v2
v2
v4
v1
v3
v4

v1 v2 v3 v4
def
def
def
use
def
use
use
use

Program
v1

v2

v4

v3

a) Program and live ranges. b) Interference graph.

Figure 3.8: Graph coloring example.

k is the number of available machine registers. In a proper node coloring, no
adjacent nodes have the same color (register). A graph is said to be k-colorable
when a proper coloring can be found. In Figure 3.8a a program and its cor-
responding live ranges, are given. Figure 3.8b shows the interference graph.
Variables v2 and v4 can be mapped onto the same register, but v2 and v1
cannot. A proper register assignment for the program-segment of Figure 3.8a
requires at least three registers.

The first global register allocator, based on graph coloring, was imple-
mented at IBM Yorktown [CAC+81] by Chaitin et al. The problem of finding a
proper node coloring is known to be NP-complete [Kar72]. Therefore, this reg-
ister allocator, also denoted as the Yorktown Allocator, uses a fast and simple
heuristic. It relies on the following graph theoretic property:

Theorem 3.17 Given a graphG = (N,E) and a node n ∈ N such that degree(n) <
k, then G is k-colorable if and only if G − n is k-colorable. The degree of a node is
defined as the number of its neighbors.

This theorem states that there will always be at least one color left for n,
no matter how the reduced graph G − n is colored. When a graph is not k-
colorable, some program variables must be placed in a non-register resource.
This resource is usually an off-chip read/write memory. This creates a definite
speed penalty, so variables must be chosen carefully for these locations.

The Yorktown Allocator uses Theorem 3.17 to simplify the interference
graph by repeatedly removing nodes with a degree less than k until the graph
is empty, or until only nodes with a degree greater or equal to k are left. If
the reduced graph is empty, then finding a k-coloring of the interference graph
is reduced to finding a k-coloring of the empty graph. The nodes are then re-
inserted into the graph in the reverse order in which they were removed. Each
node is given a color distinct from its neighbors. Since each node had a degree
less than k when removed, each node is guaranteed to be colorable when it is
re-inserted. If the reduced graph was not empty, i.e., all nodes of the reduced
graph have a degree larger or equal to k, then the graph cannot be colored with

38 CHAPTER 3. COMPILER OVERVIEW

Algorithm 3.1 OPTIMISTICREGISTERALLOCATOR(P)

spilling = TRUE
WHILE spilling DO

IG = BUILD(P)
SPILLCOSTS(P)
SIMPLIFY(IG)
SELECT(IG)
spilling = INSERTSPILLCODE(P , IG)

ENDWHILE

ASSIGNREGISTERS(P , IG)
GENERATESTATEPRESERVINGCODE(P)

k colors and hence the number of registers is insufficient to hold all variables.
In the Yorktown Allocator, this situation is solved by marking an uncolorable
node for spilling and removing this node. The process of simplifying andmark-
ing nodes for spilling continues until the graph is empty. Afterwards the vari-
ables of the marked uncolorable nodes are spilled; a store to main memory is
inserted after each definition of the variable and a load from main memory
is inserted before each use. Because the inserted spill code changes the reg-
ister requirements, the entire process of building, simplifying and spilling is
repeated until no further spilling is needed. The resulting interference graph is
guaranteed to be k colorable. At this time registers are assigned to variables.

Briggs et al. [BCKT89] developed an improvement to the Yorktown Allo-
cator; this allocator is called the Optimistic Allocator. It removes also uncol-
orable nodes, without marking them for spilling, from the graph as if their
degree were less than k. It optimistically hopes a color will be available during
the coloring phase. For nodes with degree greater or equal to k it is possi-
ble to find a color, when two or more non-interfering neighbors have received
the same color. Since more nodes can be colored, less spill code is required.
When all neighbor nodes have been assigned all k colors, the node is marked
for spilling. Then, just as in the Yorktown Allocator, the variables associated
with the marked nodes are placed in memory. In [BCT94], it was reported that
the Optimistic Allocator inserts 32% less spill code than the Yorktown Alloca-
tor does. Spill code may increase the execution time of a program, therefore it
should be avoided when possible.

The register allocator used in the TTA compiler back-end is based on the
Optimistic Allocator, see Algorithm 3.1. The phases of this allocator are:

BUILD This phase constructs the interference graph of a procedure P .

SPILLCOSTS In preparation for coloring, a spill cost estimate is computed for
every live range. The spill cost per live range reflects the expected in-
crease in execution time when spilling the variable associated with the
live range.

3.3. REGISTER ASSIGNMENT 39

Table 3.2: Mapping special variables to registers.

integer
variable rv sp fp v3 v4 v5 v6
register r0 r1 r2 r3 r4 r5 r6

floating-point
variable fv fv1 fv2 fv3 fv4
register f0 f1 f2 f3 f4

SIMPLIFY This phase removes nodes with degree < k from the interference
graph. Whenever it discovers that all remaining nodes have degree ≥ k,
it chooses a spill candidate. This node is also removed from the graph,
hoping a color will be available in spite of its high degree.

SELECT Colors are selected for nodes. The nodes are reinserted in the interfer-
ence graph in the reverse order in which they were removed, and given a
color distinct from their neighbors. Whenever it discovers that it has no
color available for some node, it leaves the node uncolored and continues
with the next node.

INSERTSPILLCODE Spill code is inserted for the live ranges of all uncolored
nodes. If no spill code is required, this phase sets the variable spilling to
false otherwise to true. When spilling is required, the register allocator
starts again with the first phase in an attempt to color the modified code
with k colors.

ASSIGNREGISTERS The registers (colors) are assigned to the variables.

GENERATESTATEPRESERVINGCODE Generates the code required to ensure
correct execution around procedure calls.

The preceding discussion assumes that each variable can be mapped on an
arbitrary register. However, some variables are mapped on specific registers;
an example is the stack pointer, see Section 3.1. These variables and the register
they are mapped on, are listed in Table 3.2. The variables that must be mapped
on a special register are assigned first. The compiler front-end guarantees that
these registers can be assigned correctly and thus do not overlap.

An efficient register assignment is a crucial problem in modern microproces-
sors. The increasing gap between the internal clock and memory latency re-
quires that variables are kept in registers and to avoid spilling. Furthermore,
reads and writes to memory consume more power than a register access. Un-
fortunately, an optimal coloring of the interference graph does not necessarily
correlate with good machine utilization. This will be demonstrated in Chap-
ter 5.

40 CHAPTER 3. COMPILER OVERVIEW

v3 → sub.o;#10 → sub.t;
sub.r → v1;

v3 → sub.o; #10 → sub.t;
sub.r → v1;
fp → add.o; #offset → add.t;
add.r → v2;
v2 → st.o; v1 → st.t;

a) Original operation sequence. b) Spill code sequence.

Figure 3.9: Spilling.

3.3.2 Spilling

A processor has a limited number of registers. When not enough registers are
available to hold all variables, some of them are spilled to memory. Spilling is
required when the register pressure, at some point in the program, is higher
than the number of available registers. The register pressure at a point in a pro-
gram is the number of variables that could reside in registers.

A spilled variable is written to a memory location. Each procedure claims
memory locations where it can store the spilled values [ASU85]. This is ac-
complished by using the frame pointer fp. The address of the frame pointer is
supplied by the calling procedure. The memory address of a spilled variable is
an offset from the frame pointer. The basic TTA template does not support loads
and stores with offsets, therefore additions are inserted to compute the mem-
ory address2. The operation sequences of spilling and reloading of a variable
v1 are given in Figure 3.9 and Figure 3.10.

Figure 3.9a shows the TTA code for a subtraction. The result of the sub-
traction is stored in variable v1. When insufficient registers are available, the
value of variable v1must be spilled to memory. To accomplish this, two opera-
tions (an addition and a store operation) are inserted in the code. This is shown
in Figure 3.9b. The addition computes the memory address of the memory lo-
cation, in which the value of v1 will be stored. It adds an offset to the frame
pointer fp. The store operation stores the value of v1 in memory.

A similar situation arises when a value must be reloaded from memory.
Assume that the variable v1 in Figure 3.10a is spilled to memory. In order to
retrieve its value, reload code (an addition and a load operation) is inserted in
the code. This is shown in Figure 3.10b. The addition computes the memory
address in the same way as for spilling. The load operation reads the value
from memory and writes it to variable v1.

Spilling splits a long live range in multiple shorter live ranges. It is not
permitted to spill these newly created live ranges. Spilling these variables will
result in an infinite loop in the register allocator. Short live ranges in the origi-
nal code may also lead to superfluous spill code insertion. Spilling these short
live ranges does not reduce the register pressure, because the spill and reload
code itself also requires registers. Precautions are taken too avoid the spilling
of these short live ranges as much as possible.

2When the offset is zero no additions are needed.

3.3. REGISTER ASSIGNMENT 41

v1 → mul.o;#5 → mul.t;
mul.r → v2;

fp → add.o; #offset → add.t;
add.r → v3;
v3 → ld.t;
ld.r → v1;
v1 → mul.o; #5 → mul.t;
mul.r → v2;

a) Original operation sequence. b) Reload code sequence.

Figure 3.10: Reloading.

A number of heuristics that attempt to minimize the impact of spill code inser-
tion when using graph coloring [Cha82, BGM+89] have been published. The
spill heuristic used in the register allocator of the TTA compiler back-end is
based on the work of Chaitin. However, two changes were made. First of all,
we do not use the nesting of loops as an estimate for the execution frequency,
but instead profiling information is used. This results in more accurate esti-
mates. Secondly, Chaitin’s heuristic assumes that an operation executes in a
single machine cycle. However, loading data from memory may take consid-
erable more time than storing data to memory. Our cost function considers this
difference:

Cspill(v) =

∑
nuse∈NUse(v)

(L (add) + L (ld)) · f (nuse)

degree(v)

+

∑
ndef∈NDef (v)

(L (add) + L (st)) · f (ndef)

degree(v)
(3.4)

where v is a variable that is candidate for spilling, L (add), L (ld), L (st) are
respectively the latencies for an addition, a load and a store operation. The
expressions f(nuse) and f(ndef) are the frequencies of respectively the uses
and definitions of v, and degree(v) is the degree of the node v. The heuristic
selects the variable v with the lowest cost Cspill(v) for spilling.

3.3.3 State Preserving Code

When a program executes a procedure call statement, the state of the calling
procedure (caller) may be destroyed by the called procedure (callee). The state
consists of the values residing in registers and the value of the program counter.
A convention can be adopted that specifies which registers may be overwrit-
ten by a called procedure; however, this practice removes resources that other-
wise could be well used. An alternative convention saves the values needed in
memory before they are overwritten. When control is returned to the calling
procedure, the state is restored frommemory and execution can resume. Using

42 CHAPTER 3. COMPILER OVERVIEW

B C

D

A

v1

(90)

(10)
v1def

def v2

call
use v2

call
use

(1)

(10)

Figure 3.11: Heuristic for caller-saved and callee-saved registers.

this alternative, two choices exist: (1) the caller saves the values before trans-
fer of execution and restores them upon return or, (2) the callee saves them
immediately upon entrance and restores them before exit.

To generate high quality code, compilers divide the set of machine registers
in caller-saved (Rcaller-saved) and callee-saved registers (Rcallee-saved). Caller-saved
registers are stored and reloaded by the caller and callee-saved registers are
stored and reloaded by the callee. Note that only the registers referenced in the
procedure need to be saved.

The task of the register allocator is to decide to which set, the caller- or
callee-saved set, the variable must be assigned in order to obtain fast code.
Consider the CFG in Figure 3.11. The number between parentheses in each
basic block represents its execution frequency. Variable v1 is live in the basic
blocks A and B. Since the call in basic block B is executed more frequently
than the entry and exit basic blocks (A andD), it is more advantageous to map
this variable onto a callee-saved register. Consequently, variable v1 is saved
and restored in respectively basic block A and D. For variable v2, it is more
advantageous to assign it to a caller-saved register, because basic blocks A and
D are more frequently executed than basic block C. The caller-saved store and
restore code are inserted respectively before and after the call.

The TTA compiler back-end divides the registers of the target TTA equally
into the two sets. To decide to which set a variable will be assigned, caller-
saved and callee-saved costs are computed.

Ccaller-saved (v) =
∑

call ∈ lr(v)

(2 · L (add) + L (ld) + L (st)) · f (call) (3.5)

Ccallee-saved (v) = (2 · L (add) + L (ld) + L (st)) · f (entry basic block) (3.6)

where lr(v) is the live range of variable v, f(call) the execution frequency of
the call and f(entry basic block) the execution frequency of the first basic block
of the procedure. The register allocator tries to map a variable in the set with

3.4. INSTRUCTION SCHEDULING 43

the lowest costs. When no registers of a set are available, a register from the
other set is chosen.

3.3.4 TTA vs. OTA

TTAs have an advantage over most OTAs (Operation Triggered Architectures)
in the context of register assignment. The live ranges of TTAs are finer grained.
OTAs require that the register, which holds the result of an operation, is in use
at the moment the operation starts executing, see Figure 3.12a [Cor98, page
268]. TTAs, however, do not have this limitation; a register is only in use at
the moment it is defined, see Figure 3.12b. This may result in a lower register
requirement.

...

...

...

v1 v2

Live ranges

def v1

...
use v2

ld v2, (v1)
...

v1 v2

Live ranges

...
use v2

...

def v1

v1 ld.t

ld.r v2

a) Live range of an OTA. b) Live range of a TTA.

Figure 3.12: Live ranges of TTAs and OTAs.

3.4 Instruction Scheduling

The aim of instruction scheduling is to reorder operations and packing them
into a minimum number of instructions, in order to reduce the execution time
of an application, while preserving the semantics of the application and re-
specting the resource constraints. To ensure correct semantics of the produced
schedule the dependences between operations should be respected. These de-
pendences are given by the edges of the DDG. Furthermore, operations that
are executed in parallel should not use the same hardware resources. A TTA
instruction scheduler attempts to pack moves, instead of operations, into a
minimum number of instructions. A TTA Instruction scheduler is more com-
plex than an OTA instruction scheduler is. In this section, various instruction
scheduling scopes and techniques in the context of TTAs are discussed. The
presented algorithms are based on the work of Hoogerbrugge [Hoo96].

44 CHAPTER 3. COMPILER OVERVIEW

3.4.1 List Scheduling

Finding the optimal schedule is an NP-complete problem [GJ79]. A sim-
ple and efficient heuristic to schedule the code is list scheduling. It is the
most popular technique used for instruction scheduling nowadays because
it gives most of the time optimal results and has a short compilation time
[BR91, BEH91b, Ell86, Fis81, HA99, HMC+93]. It comes as no surprise that
the instruction scheduler in the TTA compiler back-end is also based on list
scheduling. List scheduling repeatedly assigns an operation to an instruction
without backtracking or lookahead. List scheduling schedules the operations
in topological order. This order is determined by the DDG. An operation is
scheduled when all its predecessors in the DDG within its scheduling scope
have been scheduled. Such an operation is said to be ready and is a mem-
ber of the ready set. Selecting operations from the ready set guarantees that
scheduling will never block, because there are only upwards exposed con-
straints. There are two variants of list scheduling: instruction and operation-
based list scheduling.

• Instruction-based list scheduling tries to place as many operations as pos-
sible in the current instruction, while respecting data dependence and
resource constraints. When no more operations can be placed in the cur-
rent instruction it proceeds to the next instruction.

• Operation-based list scheduling repeatedly selects a ready operation and
places it in the first instruction where dependences and resources con-
straints are satisfied. In contrast with instruction-based list scheduling,
this method does not create a schedule by filling one instruction at a
time. Operation-based list scheduling is more general than instruction-
based list scheduling because the number of operations in its ready set is
larger: ready(instruction-based) ⊆ ready(operation-based). Consequently,
operation-based list scheduling has a larger freedom in selecting opera-
tions for scheduling and potentially can achieve a higher performance.

Instruction-based list scheduling is more popular than operation-based
list scheduling due to its lower engineering complexity. Unfortunately,
instruction-based list scheduling is less suitable for TTAs because of the fol-
lowing three reasons[Hoo96]:

• Inefficient hardware usage. Scheduling the operand and trigger move
individually, can result in a schedule in which they are scheduled far
away from each other. In the interjacent instructions no other operations
can use the operand register of the FU.

• Deadlocks. Scheduling moves individually can result in, for example, a
situation where the trigger move of operation o1 cannot be scheduled,
because it depends on an operation o2 that needs the same FU, and o2

cannot be scheduled because operation o1 has occupied the operand reg-
ister.

3.4. INSTRUCTION SCHEDULING 45

• Pipelining problems. When VTL pipelined FUs are used, the results
must be read in time before they are overwritten by successive opera-
tions scheduled on the same FU. When it is impossible to schedule the
result move in time due to dependence or resource constraints, the op-
eration must be unscheduled. This requires a backtracking scheduler,
which increases the compilation time and the engineering complexity of
the scheduler.

Because of the above mentioned problems, the TTA scheduler uses the
operation-based list scheduling technique and schedules the moves of an op-
eration in one indivisible step.

3.4.2 Resource Assignment

Resource parallelism in a processor exists in two forms [JW89]. The first is the
ability of a processor to issue multiple instructions simultaneously. This is de-
termined by the degree to which resources are duplicated in the processor. The
second is the ability to overlap the execution of multiple operations, caused by
the degree of pipelining of the FUs. Both forms of resource parallelism affect
the extent to which a processor can exploit the ILP of an application.

Resource assignment assigns resources to operations. It is the responsibility
of the scheduler to assign FUs to operations; buses and sockets tomoves; and to
decidewhether an immediate is encoded in the source field of amove, or stored
in an immediate field. In general, resource assignment in a TTA compiler is
more complex than in an OTA compiler, because a TTA compiler has to assign
more resources. Consequently, more resources have to be checked for conflicts.

The TTA compiler back-end uses a first-fit assignment algorithm to assign
FUs, long immediates and sockets. The order of examination is determined by
the order in which the resources are specified in the machine description file.
Resources can have overlapping functionality; for instance, an FU can support
a subset of operations of another FU in addition to its own operation set. To
obtain the best results, resources with themost specialized functionality should
be selected first. It is the responsibility of the designer to specify this order in
the machine description file.

Move buses are assigned in a two step process [HC96]. A first-fit algo-
rithm is used for finding a free move bus. When the interconnection network
is fully connected and no move bus is found then it is guaranteed that no move
bus is available. However, if the interconnection network is irregular, then re-
shuffling of the already made move bus allocation in the same instruction can
lead to a valid allocation. A bipartite matching algorithm [DA93] is used for
finding a valid move bus allocation. After scheduling, the actual move bus
assignment is carried out.

46 CHAPTER 3. COMPILER OVERVIEW

Algorithm 3.2 SCHEDULEBASICBLOCK(b, EDDG)

ready = {o ∈ b | ¬∃(oi, o) ∈ EDDG, oi ∈ b}
S = ∅
WHILE S �= b DO

o = SELECTOPERATION(ready)
IF ISCOPY(o) THEN
SCHEDULECOPY(o)

ELSE IF ISPROCEDURECALL(o) THEN
SCHEDULEPROCEDURECALL(o)

ELSE IF ISJUMP(o) THEN
SCHEDULEJUMP(o)

ELSE

SCHEDULEOPERATION(o)
ENDIF

S = S ∪ {o}
ready = {o | o ∈ b − S ∧ ∀(oi, o) ∈ EDDG, oi ∈ S}

ENDWHILE

3.4.3 Local Scheduling

There are several hierarchical levels or scopes at which instruction scheduling
can be applied. The scheduling scope of a local or basic block scheduler con-
sists of a single basic block. Scheduling decisions made in one basic block have
no effect on scheduling decisions made in other basic blocks. Due to the lim-
ited size of basic blocks, typical 5 or 6 operations [JW89], the amount of ILP
that can be exploited is modest. However, many scheduling techniques that
exploit ILP in a larger scope use the principles of basic block scheduling.

Algorithm 3.2 shows the steps to create a schedule S of a basic block b.
Operations for scheduling are selected from the set of ready operations. This
process is repeated until all operations are scheduled. The order in which the
operations are selected for scheduling has a large performance impact. Intu-
itively, operations along the critical path of the DDG should be scheduled first,
since they are the primary bottleneck. The operations in the TTA compiler
back-end are ordered with this observation in mind. The slack based priority
heuristic is used for computing the priorities of the operations [Hoo96].

slack(oi) = alap(oi) − asap(oi) (3.7)

where asap() is the as-soon-as-possible limit while respecting the data depen-
dences. This limit represents the earliest instruction where operation oi can be
scheduled.

asap(oi) =
{

max{asap(oj) + delay(oj , oi)} : if ∃(oj , oi) ∈ EDDG

0 : otherwise (3.8)

3.4. INSTRUCTION SCHEDULING 47

where delay(oj , oi) is the delay associated with the data dependence between
the operations oj and oi. The function alap() computes the as-late-as-possible
limit; it represents the latest instruction where operation oi can be scheduled
without increasing the critical path length Lmax (b) of basic block b.

alap(oi) =
{

min{alap(oj) − delay(oi, oj)} : if ∃(oi, oj) ∈ EDDG

Lmax (b) : otherwise (3.9)

The scheduler selects the operation from basic block b that minimizes slack(o)
and whose predecessors in the DDG are scheduled. The following priority
function is used for ordering the operations:

priorityslack (oi ∈ ready) =
(

1 − slack (oi)
Lmax (b)

)
(3.10)

Each time an operation is scheduled the priorities are recomputed.
The basic block scheduling algorithm distinguishes four types of opera-

tions: copies, procedure calls, jumps and data operations. Copy, jump and
call operations are relatively easy to schedule. Each consists of a single move.
Scheduling a data operation, like additions, subtractions, etc., is more difficult.
These operations consist of multiple moves. For each move, resources have to
be found. The moves of an operation o are scheduled with Algorithm 3.3. The
earliest instruction in which an attempt is made to schedule a transport mi of
an operation o is computed with:

EARLIESTINSN(mi) = max
mj∈pred(mi)

insn(mj) + delay(mj ,mi) (3.11)

where pred(mi) = {mj | (mj ,mi) ∈ EDDG,mj ∈ S} and insn(mj) represents
the instruction in which the transport mj is scheduled. When pred(mi) = ∅
then EARLIESTINSN(mi) = 0. Scheduling attempts in earlier instructions will
always fail because of the data dependence constraints. To obtain a compact
schedule, the instruction counter i is incremented from the lower bound to the
upper bound of the trigger move (see Algorithm 3.3). The upper bound is
computed with:

LATESTINSN(mt) = LASTINSN(S) + NUMBEROFOPERANDMOVES(o) + 1 (3.12)

where LASTINSN(S) returns the number of instructions in the current schedule
and NUMBEROFOPERANDS(o) gives the number of operand moves of opera-
tion o. The resources in the instructions between the last instruction of the
current schedule and the upper bound are all free. Consequently, it is always
possible to find free resources for the operand and trigger moves.

The first resource that is assigned to an operation is the FU. Assigning an
FU to an operation differs from assigning move buses and sockets, in the sense
that an FU is assigned to all moves of an operation, while move buses and
sockets are assigned to each individual move. After an FU is found on which

48 CHAPTER 3. COMPILER OVERVIEW

Algorithm 3.3 SCHEDULEOPERATION(o)

FOR i = EARLIESTINSN(TRIGGER(o)) TO LATESTINSN(TRIGGER(o)) DO
FOR EACH fu ∈ FUset DO

IF OPERATIONTYPE(o) ∈ OPERATIONSET(fu) THEN
ASSIGNFU(o, fu)
IF SCHEDULETRIGGERMOVE(mt ∈ o, fu, i) THEN
IF SCHEDULEOPERANDMOVES(o, fu, i) THEN
IF SCHEDULERESULTMOVE(mr ∈ o, fu, i) THEN
return TRUE

ENDIF

ENDIF

ENDIF

RELEASERESOURCES(o)
ENDIF

ENDFOR

ENDFOR

return FALSE

Algorithm 3.4 SCHEDULETRIGGERMOVE(mt, fu, i)

IF ISTRIGGERED(fu, i) THEN
return FALSE

ELSE IF ¬ ASSIGNTRANSPORTRESOURCES(mt, i) THEN
return FALSE

ENDIF

return TRUE

the operation can be executed, the trigger, operand and result moves are sched-
uled. When scheduling of an operand and/or trigger move fails, the already
assigned resources are released.

Algorithm 3.4 shows the steps necessary to schedule a trigger move mt in
instruction i. The algorithm first checks whether in instruction i another oper-
ation already performed a write to the fu’s trigger register. It is not allowed to
write more than once in the same instruction to the same FU register. Schedul-
ing of mt succeeds when legal assignments can be found for the transport re-
sources (sockets and move buses).

The operand moves3 are scheduled using Algorithm 3.5. The first instruc-
tion, in which an attempt is made to schedule an operand move mo, is equal
to the instruction in which the trigger move is scheduled. If scheduling in
this instruction fails, earlier instructions are tried. The earliest instruction in
which the algorithm tries to schedule the operand move, is bounded by the

3Complex operations can have more than a single operand. For example addmul has two
operands and one trigger: (mt +mo1) · mo2 .

3.4. INSTRUCTION SCHEDULING 49

Algorithm 3.5 SCHEDULEOPERANDMOVES(o, fu, i)

FOR EACH mo ∈ o DO
FOR i′ = i downto max (i − otfreedom, EARLIESTINSN(mo)) DO
IF ISOPERANDREGISTEROCCUPIED(fu, i′) THEN
return FALSE

ELSE IF ASSIGNTRANSPORTRESOURCES(mo, i′) THEN
return TRUE

ENDIF

ENDFOR

ENDFOR

return FALSE

data dependence constraints of mo and the parameter otfreedom. This param-
eter ensures that the trigger and operand move are scheduled close to each
other. This prevents inefficient hardware usage (see Section 3.4.1). A typical
value for otfreedom is three4. Scheduling fails, if mo overwrites an operand
register, which is in use by another operation, or when no free transport re-
sources (sockets and buses) can be found.

Algorithm 3.6 is used for scheduling the result moves. The first legal in-
struction in which the result move can be scheduled is equal to the instruction
of the trigger move plus the latency of the operation. The upper bound is equal
to the lower bound incremented with the constant trfreedom. This constant
prevents that the result move is scheduled too far from the trigger move. A
typical value for trfreedom is three5. To prevent incorrect resource assignment
three checks are required: (1) the trigger and result moves of all operations
executing on fu have to be scheduled in FIFO order, (2) the number of oper-
ations in the pipeline may not exceed the capacity of the pipeline, and (3) on
VTL pipelined FUs, collisions have to be prevented. The last check prevents
that the contents of pipeline stages are unintentionally overwritten. If all these
checks are passed, it is checked that no dependence constraints (output depen-
dences) are violated: a result move cannot be scheduled earlier than its depen-
dence constraints allow. The result move is scheduled successfully in instruc-
tion i′, when legal assignments are found for the transport resources (sockets
and move buses).

It should be stated that the presented algorithms give just a glimpse of the
complexity of the issues involved for instruction scheduling for TTAs. Other
issues are scheduling across procedure calls. All moves of an operation should
be scheduled before or after the call. In addition, the exploitation of the TTA
specific optimizations is done during scheduling.

4A value of zero would restricts the operand-trigger scheduling freedom completely. Experi-
ments indicate that this may result in a performance loss of 7% [Hoo96].

5A value of zero would restricts the trigger-result scheduling freedom completely. Experiments
indicate that this may result in a performance loss of 3% [Hoo96].

50 CHAPTER 3. COMPILER OVERVIEW

Algorithm 3.6 SCHEDULERESULTMOVE(mr , fu, i)

FOR i′ = i + LATENCY(fu) to i + LATENCY(fu) + trfreedom DO

IF NOTINFIFOORDER(fu, i′) THEN
return FALSE

ELSE IF PIPELINEOVERFLOW(fu, i′) THEN
return FALSE

ELSE IF ISVTLPIPELINE(fu) ∧ COLLISION(fu, i′) THEN
return FALSE

ELSE IF i′ < EARLIESTINSN(mr) THEN
continue

ELSE IF ASSIGNTRANSPORTRESOURCES(mr , i′) THEN
return TRUE

ENDIF

ENDFOR

return FALSE

3.4.4 Global Scheduling

As already stated in the previous section, the size of a basic block is limited:
typical 5 or 6 operations for non-numeric code. As a result, the amount of
ILP that can be exploited by a basic block scheduler is limited. To increase
the amount of exploitable ILP the scheduling scope should be larger than a
single basic block. Scheduling scopes that exploit ILP across multiple basic
blocks are called extended basic block schedulers or global schedulers. The schedul-
ing scope of these schedulers consist of an acyclic CFG. The inter basic block
ILP is exploited by moving operations between basic blocks belonging to the
same scheduling scope. This may require speculative execution and code du-
plication. In literature various extended basic block scheduling scopes are
introduced [BR91, Fis81, HMC+93, MLC+92, Mah96]. Regions [BR91] should
potentially give, due to their generality, the best performance. Regions corre-
spond to the body of a natural loop. Note that this body may contain arbitrary
nested conditional statements. Figure 3.13a shows the region hierarchy of a
program. The region scheduler used in the TTA compiler back-end is inspired
on the work of Bernstein [BR91] and has extensions for multi-way branching
and predicated execution.

Basic blocks of a region are scheduled in topological order; a basic block is
scheduled after all its predecessors are scheduled. Region scheduling enlarges
the exploitable ILP by moving operations over basic block boundaries. This
is illustrated in Figure 3.13b. First, all operations of destination basic block b
are scheduled using the basic block scheduler. Afterwards, the remaining op-
erations in the sequential code of the same region are examined, to find opera-
tions from other basic blocks that can be scheduled in b, see Algorithm 3.7. The
process of scheduling an operation into another basic block is called importing

3.4. INSTRUCTION SCHEDULING 51

Region 3

Region 1

Region 2

bD

bD

bD

b’

/ b

a) Nesting of regions. b) Code motion in a region.

Figure 3.13: Regions.

operations. When an operation o is selected for importing, it is removed from
its source basic block b′ and added to the destination basic block b. To ensure
correct semantics, code duplication might be necessary. Consider Figure 3.13b,
moving an operation from basic b′ to basic block b requires the insertion of
duplicates in the basic blocks bD in order to preserve the semantics of the pro-
gram. Duplication of an operation is required when basic block b does not
dominate b′. The algorithm to compute the set of duplication basic blocks D
can be found in [Hoo96]; D includes the destination basic block b. To simplify
scheduling, no control paths are allowed between the elements of D. This is
known as the single copy on a path rule (SCP) described in [BCK91].

Algorithm 3.8 is used for importing an operation o in a basic block b. The
function BB(o) returns the (source) basic block of operation o. Note that some
of the duplication basic blocks D might be scheduled already. In the present
implementation, the imported operations are not permitted to enlarge these
basic blocks. Importing also fails when in one of the scheduled duplication
basic blocks insufficient resources are available.

The code motion from basic block b′ to b in Figure 3.13b is always profitable
because all execution paths starting at b go through b′. This is not the case for
the other two duplication basic blocks. If the outcome of the branch in one of

52 CHAPTER 3. COMPILER OVERVIEW

Algorithm 3.7 SCHEDULEREGION(Region, EDDG)

is scheduled = ∅
FOR EACH b ∈ Region IN TOPOLOGICAL ORDER DO
SCHEDULEBASICBLOCK(b, EDDG)
is scheduled = is scheduled ∪ {b}
WHILE NOT EACH REACHABLE OPERATION o TRIED DO

TRYTOIMPORTOPERATION(b, o)
ENDWHILE

ENDFOR

Algorithm 3.8 TRYTOIMPORTOPERATION(b, o)

b′ = BB(o)
D = COMPUTEDUPLICATIONSET(b, b′)
FOR EACH b′′ ∈ D DO

IF b′′ ∈ is scheduled THEN
IF ¬ TRYTOSCHEDULEOPERATION(b′′ ,o) THEN
RELEASERESOURCES(D, o)
return

ENDIF

ENDIF

b′′ = b′′ ∪ {o}
ENDFOR

b′ = b′ − {o}

these duplication basic blocks is not in the direction of basic block b′, then the
operation imported from basic block b′ is executed, but its result is never used.
Code motions into basic blocks containing jumps that might not branch in the
direction of b′, are said to be speculative.

Some operations are not allowed to be speculatively executed. Specu-
latively imported operations that produce exceptions, overwrite registers or
overwrite memory locations, may change the state of a program when the out-
come of the branch is not in the direction of b′. This may lead to incorrect
program execution. To eliminate these restrictions operations can be guarded6,
see Figure 3.14. The copy operation is guarded by a guard expression, that is
computed by combining the guards of the branches over which the operation
is imported. When the operation was not guarded and the jump branched to
basic block C, the imported operation would unintentionally overwrite regis-
ter r3 and would change the outcome of the addition. This is also known as
off-liveness.

Instead of moving whole operations across basic block boundaries, it can also
6Operations that produce exceptions are never speculatively executed.

3.4. INSTRUCTION SCHEDULING 53

def b1

b1:B jump

A

C
r3 add.o#10 r3

B

def b1

b1:B jump
b1:#10 r3

B

A

C
r3 add.o

a) Original code fragment. b) Code fragment after importing.
Figure 3.14: Speculative code motion with guarding.

om om
BA

C

D E

tm

rmrm

Figure 3.15: Scheduling over basic block boundaries.

be advantageous to import individual moves. The TTA region scheduler tries
to schedule individual moves across basic block boundaries in the following
situations, see Figure 3.15:

• When the trigger move of an operation is scheduled in basic block C and
the operand move cannot be placed in the same or earlier instruction
of C, then the scheduler will try to schedule the operand move in the
predecessor basic blocks A and B.

• When the result move cannot be placed in an instruction in C, the sched-
uler tries to place the result move in the successor basic blocks D and E.

To prevent inefficient hardware usage, due to a large number of instructions
between the moves of an operation, individual moves are only imported in
direct successor or predecessor basic blocks.

The performance of an extended basic block scheduler depends on the order in
which ready operations are tried for importing. The priority function used for
the TTA region scheduler [Hoo96] is given by:

priority (o) = Pr (b′|b) ·
(

1 − slack (o, b′)
Lmax (b′)

)
(3.13)

where o is the candidate operation for the codemotion from basic block b′ to ba-
sic block b and Pr (b′|b) is the probability that b′ will be executed after b. A large
probability makes it very likely that the imported operation will indeed be exe-
cuted and hence the used resources are spend well. The parameter slack (o, b′)

54 CHAPTER 3. COMPILER OVERVIEW

gives the slack or criticality of operation o in basic block b′. This parameter is
normalized with Lmax (b′), the critical path length of b′, to prevent that opera-
tions from small basic blocks are prioritized over operations from larger basic
blocks. The operation with the highest priority is selected for importing. This
process is repeated until all ready operations have been tried.

3.4.5 Software Pipelining

As already mentioned in Section 3.2.5, loop unrolling enables the exploitation
of ILP of successive loop iterations. However, replicating the loop body in-
creases the code size. Furthermore, prior to scheduling, one has to decide how
many times to unroll the loop. Software pipelining is a technique that potentially
achieves the same performance as infinite loop unrolling with only a modest
code size expansion.

Software pipelining has received widespread attention in academic and in-
dustrial research [Lam88, Rau94, LVAG95]. This scheduling technique exploits
ILP of loops by overlapping the execution of successive iterations. During the
execution of a non-pipelined loop, the first iteration is started and executed to
its completion. The second iteration is then initiated and executed until com-
pletion, etc. In contrast, for a software pipelined loop, the second iteration of
the original loop is allowed to start before the first iteration is completed. The
interval at which iterations of the software pipelined loop are started is called
the initiation interval (II), which is expressed in the number of cycles. The goal
of software pipelining is to find a schedule with the shortest possible initiation
interval. A number of methods on construction of software pipelined loops
were published, the most widely used is Iterative Modulo scheduling [Rau94].
The algorithm chosen for the research presented in this thesis is also based on
this method.

Iterative modulo scheduling first computes a lower bound on the II called
theminimum initiation interval (MII). Then, it tries to schedule the loop inMII
instructions. When scheduling fails the II is increased until a valid schedule
is constructed that fits. In order to reduce the number of iterations required
to generate a valid schedule, theMII should be estimated as precisely as pos-
sible. Resource and dependence constraints are used for this estimation. For
more information on computing the MII the reader is referred to the litera-
ture [Rau94].

Basic block and region scheduling are hindered by resource and depen-
dence constraints between operations in the same iteration. Software pipelin-
ing also has to respect dependences between operations of different iterations.
This is accomplished by adding to the DDG so-called inter-iteration data depen-
dences, denoted as oi δi

delay,distance oj . This data dependence edge states that
oj should be executed at least delay cycles after oi in the distanceth previous
iteration.

Figure 3.16a shows the RISC style code of the loop body that executes the

3.4. INSTRUCTION SCHEDULING 55

L1: add r1, r1, #4
ld r2, (r1)
mul r4, r2, #17
sub r3, r3, #4
st r4, (r3)
bgz r3, L1

δ0,1
i

δ0,1
i

δ0,1
i

δ0,1
i δ1,0

t

δ1,0
t

δ1,0
t

δ1,0
t δ1,1

i

δ1,1
i

δ0,1
i δ2,0

t

add r1, r1, #4

ld r2, (r1)

mul r4, r2, #17 sub r3, r3, #4

bgz r3, L1st r4, (r3)

a) Example loop. b) DDG of the loop.

Prologue
add r1, r1, #4
ld r2, (r1)
add r1, r1, #4 mul r4, r2, #17
ld r2, (r1) sub r3, r3, #4

Kernel
L1: add r1, r1, #4 mul r4, r2, #17 st r4, (r3)

ld r2, (r1) sub r3, r3, #4 bgz r3, L1
Epilogue

mul r4, r2, #17 st r4, (r3)
sub r3, r3, #4

st r4, (r3)

c) Software pipeline with II = 2.

Figure 3.16: Example software pipelining.

computation b[n..1] = 17 * a[1..n]. For reasons of clarity, OTA code
is used in the example instead of TTA code. The DDG with inter-iteration de-
pendences is given in Figure 3.16b. Scheduling the loop with a basic block
scheduler results in 5 cycles per loop iteration, assuming a latency of two for
the multiplier, a single cycle latency for all other operations and infinite re-
sources. Its software pipelined counterpart in Figure 3.16c starts each second
cycle a new iteration.

The schedule produced by a software pipelining algorithm consists of three
different phases: the prologue, the kernel and the epilogue. The pipeline is started
by the prologue, then the kernel is executed (the loop-body of the schedule),
and finally the epilogue drains the pipeline. For high iteration counts, the ker-
nel mainly determines the total execution time.

The software pipelining algorithm (see the Algorithms 3.9 and 3.10) is based

56 CHAPTER 3. COMPILER OVERVIEW

Algorithm 3.9 SOFTWAREPIPELINING(b)

II = COMPUTEMII(b)
budget = budget ratio · |b|
WHILE ¬ ITERATIVEMODULOSCHEDULING(b, II , budget, Huff) ∧

¬ ITERATIVEMODULOSCHEDULING(b, II , budget, Rau) DO
II = II + 1

ENDWHILE

on the algorithm for operation-based list scheduling for basic blocks. The main
differences are:

• In contrast to basic block scheduling, resource conflicts not only can arise
in the same instruction i, but also in all instructions i + II · k ∀ k > 0.
Therefore, when an operation uses a resource in instruction i, the state
of this resource in instruction i mod II is updated. Checking whether a
resource can be used in instruction i, means checking the availability of
this resource in instruction i mod II .

• In local and global scheduling, the first instruction in which an attempt is
made to schedule an operation oi is computed with Equation 3.11. This
computation expects that all predecessors are already scheduled. How-
ever, because of the recurrences in the DDG it is not always possible to
select an operation for scheduling whose predecessors are all scheduled.
Furthermore, also the inter-iteration dependences must be included.

EarliestInsn(oi) = max
oj∈pred∗(oi)

{insn(oj) + delay(oj , oi) − II · distance(oj , oi)}

where pred∗(oi) is the set of scheduled predecessors of operation oi and
max(∅) = 0. The latest instruction in which an operation oi is tried is
equal to EarliestInsn(oi) + II − 1. Searching beyond this boundary is
useless because if there is a resource conflict in instruction i, then there is
also a resource conflict in instruction i + k · II .

• Because an operation can be scheduled before all its predecessors are
scheduled, a dependence constraint can be violated. When an operation
oi is scheduled, the following condition is checked:

insn(oj) < insn(oi) + delay(oi, oj) − II · distance(oi, oj) ∀ oj ∈ succ(oi)

where succ(oi) = {oj | (oi, oj) ∈ EDDG, oj ∈ S}. When this expression
evaluates to true, iterative modulo scheduling corrects the partial sched-
ule by unscheduling all operations that conflict with operation oi.

• As already observed, it is not always possible to generate a correct
schedule in II instructions. To detect the inability to schedule the loop
within the given II a scheduling budget is provided. This budget equals
budget ratio · |b| where |b| is the number of operations in the software

3.4. INSTRUCTION SCHEDULING 57

Algorithm 3.10 ITERATIVEMODULOSCHEDULING(b, II , budget, heuristic)

S = ∅
WHILE S �= b ∧ budget > 0 DO

o = SELECTOPERATION(b - S , heuristic)
IF ISCOPY(o) THEN
IF ¬ SCHEDULECOPY(o) THEN
return FALSE

ENDIF

ELSE IF ISJUMP(o) THEN
IF ¬ SCHEDULEJUMP(o) THEN
return FALSE

ENDIF

ELSE

IF ¬ SCHEDULEOPERATION(o) THEN
return FALSE

ENDIF

ENDIF

S = S ∪ {o}
budget = budget - 1
IF ¬ DEPENDENCESCORRECT(S , o) THEN
UNSCHEDULEALLCONFLICTINGOPERATIONS(S , o)

ENDIF

ENDWHILE

return TRUE

pipelined loop and budget ratio an adjustable parameter (a typical value
is 4.5). The scheduling budget is decremented each time an operation
is scheduled. Scheduling fails when the budget becomes negative. The
larger the value of budget ratio, the harder the scheduler tries to find a
valid schedule.

• The order in which the operations are selected for scheduling influences
the efficiency of the generated schedule. Because operations from differ-
ent iterations are executed at the same time, Huff [Huf93] modified the
slack based priority heuristic of Equation 3.10 by replacing the delay of a
DDG edge by the length of that edge (delay(oi, oj)− II ·distance(oi, oj)).
Another popular priority heuristic is the height-based priority function
proposed by Rau [Rau96]. This heuristic gives a higher priority to op-
erations with a large height. The height of an operation is defined as
the length of the longest path in the DDG from the operation to a stop
pseudo operation that is dependent on all operations in the loop. Hooger-
brugge [Hoo96] evaluated both priority functions. Neither appeared to
be clearly better than the other. As proposed by Hoogerbrugge both

58 CHAPTER 3. COMPILER OVERVIEW

heuristics are tried in order to generate a valid schedule in II instruc-
tions.

A drawback of modulo scheduling is that it can only handle single basic block
loops. To overcome this problem if-conversion [WHB92] is used. This method
combines the branches of an if-then-else construction into a single basic block
with the use of predicates or guards. This method is also applied in the TTA
compiler back-end. Software pipelining can only be performed on the inner
most loops, therefore the remaining parts of the code are handled by the region
scheduler.

Evaluation
Methodology 4
T o evaluate the quality of the introduced algorithms and compiler strate-

gies an experimental framework is defined. This experimental framework
consists of 30 benchmark applications, two TTA processors and ameasurement
methodology. Measurements play an important role in evaluating compiler
techniques. Analysis of the results may lead to various improvements and in a
better understanding of the proposed methods.

The application benchmark suite is described in Section 4.1. This suite
consists of workstation-type applications, benchmarks from the SPECint95
benchmark suite [Spe96], benchmarks from the MediaBench suite [LPMS97],
and DSP (Digital Signal Processing) benchmarks. In Section 4.2, the TTA
processor configurations used in the experiments are described. To give an
impression of the quality of the compiler in combination with the selected TTA
processors, some performance metrics are provided. Section 4.3 evaluates the
three scheduling scopes as discussed in Section 3.4. In Section 4.4, the achieved
amount of instruction-level parallelism (ILP) is given when the benchmarks
are compiled with the selected TTA processors.

4.1 Benchmark Suite

Benchmark applications are used for the evaluation of the developed algo-
rithms. The benchmarks are selected from various application areas in order
to prevent that the developed algorithms are tailored towards a specific appli-
cation or application area. Only real-world applications are taken, synthetic
benchmarks such as Dhrystone or the Livermore loops are not considered. The
benchmark suite consists of:

59

60 CHAPTER 4. EVALUATION METHODOLOGY

• Workstation-type benchmarks. Most of these benchmarks will never be
considered to be mapped onto an ASP (Application Specific Processor).
These benchmarks give a good indication of the quality of the compiler
algorithms when used in combination with general-purpose processors.

• Benchmarks of the SPECint95 suite [Spe96]. The SPECint95 suite is an in-
ternationally recognized benchmark suite that represents a typical work-
load. The amount of ILP is expected to be varying. For example, 132.ijpeg
is expected to have a high degree of ILP because the algorithms used in
this benchmark have a parallel nature. The benchmarks 147.vortex and
099.go are likely to have a low degree of ILP, because usually a database
program respectively a game are dominated by control intensive code1.

• DSP benchmarks obtained from [Emb95]. These benchmarks contain
small loops, which are executed frequently. The algorithms used within
these benchmarks are representative algorithms that are especially suit-
able for implementation within an ASP. A high degree of ILP is expected.

• Benchmarks from the MediaBench suite [LPMS97]. These applications
apply DSP like algorithms. In addition, they also contain control inten-
sive code. These applications are candidates for implementation in ASPs.

The benchmarks and their characteristics are listed in Table 4.1. The table lists
for each benchmark the following characteristics: (1) a short description of
the benchmark, (2) the number of static operations including the library code,
which gives an indication of the code size, and (3) the number of dynamic (ex-
ecuted) operations. This last number highly depends on the input data sets
taken for each benchmark.

Code efficiency is measured by the execution time of an application. When
averaging the results of the measurements, it is assumed that each benchmark
is equally important (independent of the static or dynamic code size of the
benchmark). The presented results in the remainder of this dissertation are the
(unweighted) arithmetic means of the individual measurements.

4.2 TTA Processor Suite

In this section, the TTA processors used for evaluating the developed meth-
ods are described. The TTA processor selection method is described in Sec-
tion 4.2.1. The selected TTA processors are described in detail in Section 4.2.2.

4.2.1 Space Walking

Designing an Application Specific Processor (ASP) consists of finding a proper
set of resources for the given application or application domain. The ASP de-

1A game like Go usually contains more task parallelism than instruction-level parallelism.

4.2. TTA PROCESSOR SUITE 61

Table 4.1: Benchmark characteristics.

Benchmark Description #static #dyn.
oper. oper.

Workstation-type
a68 68K assembler 19646 2805K
bison Parser generator 18962 4902K
cpp C preprocessor 15833 1960K
crypt Encryption 4253 5875K
diff File compare 21802 29M
expand Tab expansion 4895 29M
flex Scanner generator 19567 12M
gawk Language interpreter 36157 42M
gzip File compression 14539 108M
od Octal dump 7315 21M
sed Stream editor 17532 46M
sort Sort lines 7908 81M
uniq Report repeated lines 5368 27M
virtex Text formatting 41789 50M
wc Word count 4481 7192K
SPECint95
099.go Plays the game of Go 133K 236G
124.m88ksim Microprocessor simulator 29K 73G
129.compress Data compression 7051 45G
132.ijpeg JPEG encoder 39K 92G
147.vortex Object-oriented database 122K 72G
DSP-type
instf Frequency tracking 1978 3140K
mulaw Speech compression 1397 330K
radproc Doppler radar processing 1903 29M
rfast Fast convolution using FFT 1946 3098K
rtpse Spectrum analysis 1936 2090K
MediaBench
djpeg JPEG decoder 26K 5568K
rawcaudio Audio encoder 3486 8144K
mpeg2decode MPEG2 decoder 13336 168M
mpeg2encode MPEG2 encoder 20887 1662M
unepic Wavelet decoder 9538 7484K

62 CHAPTER 4. EVALUATION METHODOLOGY

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

0 100 200 300 400 500 600 700

E
xe

cu
tio

n
T

im
e

(n
s)

Cost
Figure 4.1: Curve generated by the synthesis tool for benchmark sort.

sign space is very large. Manual exploration is tedious and error prone. Meth-
ods to automate the design space exploitation are described in [FFD96, HC95].
In [FFD96], a system, which automatically designs VLIW architectures for
a given application, is described. The design methodology as proposed
in [HC95], designs ASPs based on TTAs. This synthesis tool is used for se-
lecting the TTA configurations for this thesis. A popular term to refer to these
techniques is space walking.

Selecting a proper TTA configuration for a given application is a trade-off be-
tween parameters such as performance, chip area, power consumption, code
size, etc. These objectives are in conflict and the relative importance depends
on the application. It is hard to select a TTA processor whose parameters are
close to the desired requirements in a single step. The used synthesis tool per-
forms a quantitative analysis of many design points. The result of this tool is
shown in Figure 4.1 when applied to the sort application. Each point on the
cost-performance curve is a 2-tuple (texec, cost) and corresponds to a particu-
lar TTA processor. The execution time texec is the estimated time in ns to run
the application and is the product of the cycle count and the cycle time. The
compiler determines the cycle count. The cycle time is computed using a cycle
time model. The parameter cost represents the realization cost. This parameter
is expressed in units of a 32-bit integer function unit2. The design points on
the curve are called Pareto points [dM94]. A configuration is a Pareto point

2For amore detailed description of the hardware cost model and the cycle timemodel the reader
is referred to [CH95, Hoo96]. In [Arn01] a new more accurate model is presented.

4.2. TTA PROCESSOR SUITE 63

0

2e+12

4e+12

6e+12

8e+12

0 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(n
s)

Cost

TTA realistic

0

1e+08

2e+08

3e+08

4e+08

0 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(n
s)

Cost

TTA realistic

a) Space walking curve for 132.ijpeg. b) Space walking curve for crypt.

Figure 4.2: Space walking curves.

if it is realizable and there are no other realizable configurations that are both
faster and cheaper. In other words, the curve gives the lowest cost for a given
performance or reverse, gives the best performance for a given cost.

4.2.2 Selected TTA Processors

The synthesis tool, as described in the previous section, is applied to select
a realistic TTA processor (TTArealistic) for the experiments. The space walk-
ing curves of various benchmarks are used to make this selection; the results
of two of them are shown in Figure 4.2. The selected TTA processor should
combine good performance with reasonable cost. Processors that comply with
this requirement can be found in the knee of the curves as indicate by the ar-
rows in Figure 4.2. Besides a realistic TTA processor, a second TTA processor

Table 4.2: Function units characteristics.

FU name Latency Pipelined Operations
load/store FU 2 y ld, ldb, ldh, ldd,

lds, st ,stb, sth,
std, sts

integer FU 1 - add, sub, eq, gt,
gtu, shl, shr, shru,
and, ior, xor, sxbh,
sxbw, sxhw

integer multiply FU 3 y mul
integer divide FU 8 n div, divu, mod, modu
floating-point FU 3 y addf, subf, negf,mulf,

eqf, gtf, f2i, f2u,
i2f, u2f, divf

64 CHAPTER 4. EVALUATION METHODOLOGY

Table 4.3: Supported guard expressions; bx and bx are Boolean registers.

Simple expressions bx, by , !bx, !by

And expressions bx·by , !bx·by , bx·!by , !bx·!by

Or expressions bx+by , !bx+by , bx+!by , !bx+!by

Table 4.4: Benchmark TTA configurations.

Resource Configuration
TTArealistic TTAideal

move buses 8 64
load/store FUs 2 16
integer FUs 3 24
integer multiply FUs 1 8
integer divide FUs 1 8
floating-point FUs 1 8
immediate # short(8-bits) 8 64

long (32 bits) 2 32
integer RF # registers n n

read ports 4 32
write ports 4 32

floating-point RF # registers 48 512
read ports 2 32
write ports 1 32

Boolean RF # registers 4 32
write ports 2 32

is added to the processor benchmark suite. This second TTA processor, named
TTAideal, has many resources of each type. Because compilation for this pro-
cessor is hardly hindered by resource constraints, it is well suited to evaluate
the potential performance of new algorithms. Note that the TTAideal does not
correspond to TTA configurations at the uttermost right of the space walking
curves. The enormous amount of connections to the move buses results in a
large cycle time and hence the execution time increases significantly. In this
respect, the TTAideal configuration would be in the upper right corner. In the
remainder of this thesis, the impact of the cycle time is ignored (unless stated
explicitly) because we are mainly interested in the quality of the generated
code.

The function units (FUs) characteristics of the TTArealistic and TTAideal pro-
cessors are listed in Table 4.2. The pipelined FUs use the virtual time latch-
ing (VTL) pipeline discipline as discussed in Section 2.2.2. Both TTA processors
support guarding. Each move bus is guarded by guard expressions. When this
expression evaluates to true the associated transport is executed, otherwise the

4.3. SCHEDULING SCOPES 65

transport is squashed. Hoogerbrugge [Hoo96] claims that a guard expression
size of more than two does not give much performance gain. Therefore, in our
experiments we use an expression size of two. The available guard expressions
are listed in Table 4.3.

The TTA templates assume a jump latency of two cycles. This results in
one delay slot. The interconnection network is fully connected. The memory
system is assumed to be perfect. Cache or TLBmisses are not taken into consid-
eration. Note that many embedded processors have local memories (instead of
caches) and no virtual memory. The parameters of the two TTA processors are
listed in Table 4.4. The number of read ports of the Boolean register file is not
listed because Booleans are read implicitly by guards. The number of integer
registers n is varied during the experiments between 10 and 512.

4.3 Scheduling Scopes

In Section 3.4, three scheduling scopes were discussed: (1) basic block schedul-
ing, (2) region scheduling and (3) software pipelining. These scheduling
scopes play an important role in this dissertation. In this section, the effect
of the scheduling scope on the performance is measured. Figure 4.3 gives the
speedup relative to basic block scheduling when using the TTAideal template
with 512 registers. As can be seen, region scheduling results in a large improve-
ment, on average 135%. These results clearly demonstrate that exploiting ILP
across basic block boundaries is beneficial.

0

50

100

150

200

250

300

350

400

P
er

fo
rm

an
ce

 g
ai

n
 (

%
)

a6
8

b
is

o
n

cp
p

cr
yp

t

d
if

f

ex
p

an
d

fl
ex

g
aw

k

g
zi

p

o
d

se
d

so
rt

u
n

iq

vi
rt

ex w
c

09
9.

g
o

12
4.

m
88

ks
im

12
9.

co
m

p
re

ss

13
2.

ijp
eg

14
7.

vo
rt

ex

in
st

f

m
u

la
w

ra
d

p
ro

c

rf
as

t

rt
p

se

d
jp

eg

ra
w

ca
u

d
io

m
p

eg
2d

ec
o

d
e

m
p

eg
2e

n
co

d
e

u
n

ep
ic

av
er

ag
e

Benchmarks

Region Scheduling
Software Pipelining

Figure 4.3: Performance gains of region scheduling and software pipelining
relative to basic block scheduling.

66 CHAPTER 4. EVALUATION METHODOLOGY

Table 4.5: The software pipeline ratio.

Benchmark Software pipeline ratio
crypt 0.840
flex 0.148
gzip 0.170
od 0.437
sort 0.172
virtex 0.109
124.m88ksim 0.207
132.ijpeg 0.506
instf 0.735
mulaw 0.995
radproc 0.246
rfast 0.583
rtpse 0.147
djpeg 0.425
mpeg2decode 0.588
mpeg2encode 0.193
unepic 0.229

The average performance gain of software pipelining is even larger, 145%.
However, this gain difference ismainly caused by the benchmarkmulaw, which
resulted in a speedup of 373%. The execution time of this benchmark is dom-
inated by a single loop, which is very suitable for software pipelining. When
the benchmark mulaw is ignored, software pipelining performs only slightly
better than region scheduling. In [Hoo96], various reasons are mentioned to
explain this modest improvement. The two most important are: (1) without
software pipelining, the loops are unrolled which is already quite effective and
(2) only a fraction of the loops can be software pipelined3. Table 4.5 shows the
software pipeline ratio for various benchmarks. The software pipeline ratio rep-
resents the fraction of the execution time spend in software pipelined loops.
Only benchmarks with a software pipeline ratio higher than 10% are listed.
In addition, a third reason for the modest improvement of software pipelin-
ing is identified. Software pipelining generates prologue and epilogue basic
blocks. In the current implementation local scheduling is applied to these ba-
sic blocks. Better results can be achieved when this code is scheduled together
with the code that surrounds the original loop. To achieve high performance a
best-of-both-worlds strategy seems profitable. Such a strategy would generate
per loop two schedules: one using region scheduling and one using software
pipelining. The one with the highest performance should be incorporated in
the total schedule.

3As can be observed many benchmarks give the same results for region scheduling and soft-
ware pipeliningwhich indicates that no loops, or only a small fraction, could be software pipelined.

4.4. EXPLOITABLE ILP 67

0

1

2

3

4

5

6

7

IL
P

a6
8

b
is

o
n

cp
p

cr
yp

t

d
if

f

ex
p

an
d

fl
ex

g
aw

k

g
zi

p

o
d

se
d

so
rt

u
n

iq

vi
rt

ex w
c

09
9.

g
o

12
4.

m
88

ks
im

12
9.

co
m

p
re

ss

13
2.

ijp
eg

14
7.

vo
rt

ex

in
st

f

m
u

la
w

ra
d

p
ro

c

rf
as

t

rt
p

se

d
jp

eg

ra
w

ca
u

d
io

m
p

eg
2d

ec
o

d
e

m
p

eg
2e

n
co

d
e

u
n

ep
ic

av
er

ag
e

Benchmarks

TTA ideal
TTA realistic

Figure 4.4: Exploited ILP for the TTAideal and TTArealistic processors.

4.4 Exploitable ILP

In the previous section, we saw that region scheduling and software pipelin-
ing generate code with a much higher performance than basic block schedul-
ing. Consequently, also the amount of exploited ILP is increased. The prac-
tically exploitable ILP of an application depends on the nature of the appli-
cation (control-intensive, DSP or multimedia) and the used processor. Stud-
ies [JW89, Wal91, LW92, TGH92, LW97] to measure the maximum available
ILP assume the presence of infinite processor resources and perfect predictors
to predict the behavior of a program. In this section, the exploitable ILP of the
benchmark applications is measured using both TTA processors and the region
scheduler. To allow the exploitation of large amounts of ILP, no register assign-
ment is carried out. Consequently, the code does not contain spill and state
preserving code. Although the TTAideal processor is not realistic for practical
use, its (hardware) ability to exploit large amounts of ILP gives an indication of
the performance of the TTA compiler. The exploited ILP varies between 1.5 and
6.9. Figure 4.4 gives the results for the individual benchmarks. As can be seen
the DSP-type benchmarks and benchmarks from the MediaBench suite have a
higher degree of ILP than the more control intensive Workstation-type appli-
cations. Because the TTAideal processor contains more resources, the exploited
ILP is larger than the exploited ILP for the TTArealistic processor.

68 CHAPTER 4. EVALUATION METHODOLOGY

The Phase Ordering
Problem 5
M odern optimizing compilers consist of several optimization phases. An

important research topic in compiler design is to find the optimal phase
ordering. In this thesis, we focus on the phase ordering of the two most im-
portant phases in ILP compilers: register assignment and instruction schedul-
ing [HP90]. Both phases have received widespread attention in academic
and industrial research [ASU85, BR91, Bri92, CH90, CAC+81, CH95, Ell86,
Fis81, GL95, GS90, HHR95, Hoo96, Lam98, ME92, NP95, Pin93, Rau94,WM95].
The interaction between these two phases is becoming increasingly important,
since the number of simultaneously executed operations increases due to ad-
vances in silicon and compiler technology. Executing more operations simul-
taneously results in a higher register pressure.

An important question to answer is when, during compilation, should reg-
ister assignment take place. In one sense, one would like register assignment
to be done very late in the compilation process. This approach maintains the
myth of unlimited registers until after traditional optimizations, such as com-
mon subexpression elimination, copy propagation, and dead code removal.
These optimizations increase or reduce the number of required registers by cre-
ating or removing variables, or by changing the live range of variables. Since
register assignment is not yet applied, it is valid to create variables and to alter
their live ranges. If registers are assigned before one or more of these opti-
mizations, assignment and spilling decisions are based on a poor estimate of
the register usage.

So far, the timing of register assignment with respect to traditional compiler
optimizations is discussed. How does inclusion of an instruction scheduling
phase affect the optimal placement of register assignment? While scheduling

69

70 CHAPTER 5. THE PHASE ORDERING PROBLEM

itself will not create variables, it will most certainly alter the live ranges of
variables by changing the relative order of operations. Applying register as-
signment first, limits the instruction scheduler’s ability to reorder operations.
Applying scheduling first, most likely results in schedules that require more
registers than available. The interaction between register assignment and in-
struction scheduling has its impact on the produced code; decisions made by
one phase can have negative effects on the other. The order, in which these two
phases should be applied, is a point of dispute.

This chapter gives an overview of several strategies towards the phase
ordering of register assignment and instruction scheduling. Section 5.1 de-
scribes and evaluates methods that apply register assignment before instruc-
tion scheduling. Approaches in which instruction scheduling precedes register
assignment are evaluated in Section 5.2. A third strategy, which integrates reg-
ister assignment and instruction scheduling into a single phase is discussed in
Section 5.3. Finally, Section 5.4 evaluates the strategies and gives the direction
in which research should go.

5.1 Early Register Assignment

We speak of early register assignment or post-pass scheduling when register as-
signment precedes instruction scheduling. This results in an efficient register
assignment; i.e., few variables are spilled to memory. However, the register
allocator is likely to assign the same register to variables, which are referenced
by unrelated operations. The re-use of registers introduces new (false) depen-
dence constraints in the data dependence graph (DDG), making instruction
scheduling more restricted.

Historically, the merit of early assignment was that processors offered little
exploitable ILP and contained few registers. So, whereas there was much to
be lost by poor register assignment, there was little to be gained by good in-
struction scheduling. Today, however, modern microprocessors contain many
registers and provide opportunities to exploit ILP.

In Section 5.1.1, the limitations of early register assignment in relation to
ILP exploitation are discussed. Section 5.1.2 evaluates solutions in literature
that try to alleviate this problem. In Section 5.1.3, a practical implementation
as used in the TTA compiler back-end is discussed. Section 5.1.4 summarizes
the presented methods and gives an evaluation of the implemented method.

5.1.1 ILP and Early Register Assignment

The selection of registers in an early assignment register allocator may limit
the possibilities to reorder instructions, due to extra dependences that are in-
troduced with the re-use of registers. These extra dependences are called false
dependences. A false dependence connects two dependence paths in the DDG;

5.1. EARLY REGISTER ASSIGNMENT 71

o1 ld v1
o2 div v2, v1, #3
o3 add v3, v2, #10
o4 ld v4
o5 mul v5, v1, v4
o6 add v6, v5, v3
o7 st v6
o8 mul v7, v4, #3
o9 add v8, v7, #2
o10 st v8

v7 v1

v2

v3v4v6

v8 v5

a) Code fragment. b) The interference graph.

false dependence
flow dependence

o3

o2

o1

o8

o4

o5

o6

9o

7o

o10

c) DDG with a false dependence.

Figure 5.1: Early assignment example.

false dependences can increase the critical path length and the execution time
of a program.

Let’s look again at the example of Figure 1.4. The corresponding code frag-
ment with operation numbers is shown in Figure 5.1a. The interference graph
associated with the code fragment is given in Figure 5.1b. It can be colored
with three colors in various ways. Figure 5.1c shows the DDG. Without false
dependences the DDG has a critical path of five cycles, under the assumption
that each operation takes one cycle. Assuming infinite resources, this code
fragment can therefore be scheduled in five instructions. When the variables
v1, v5, v6, v7 and v8 are mapped onto register r1, variable v2 and v3 onto
r2 and v4 onto register r3, as shown in Figure 1.4, it is no longer possible
to schedule the code fragment in five instructions. This is caused by the false
dependence introduced by the register allocator, see Figure 5.1c. The critical

72 CHAPTER 5. THE PHASE ORDERING PROBLEM

path of the DDG increases to seven cycles, assuming that a read and a write
of a register can occur in the same cycle. A mapping of the form v1 and v5
onto register r1; v2, v3 and v6 onto r2; and v4, v7 and v8 onto r3 would
not result in a longer schedule, since this register assignment does not increase
the critical path of the DDG. From the register allocator’s point of view, both
register assignments are equally good; however, the latter assignment results
in faster executing code.

When not enough registers are available to hold all variables that are live
simultaneously, some variables are spilled to memory. This is done before in-
struction scheduling. The extra inserted instructions can be scheduled in the
same way as other instructions. The same idea applies to the code that is re-
sponsible for saving the state of a program around procedure calls. The pro-
gram is analyzed and the necessary code is inserted in the unscheduled (se-
quential) code. The describedmethod is referred to as global strictly early assign-
ment because the registers are assigned to variables for a complete procedure
prior to instruction scheduling.

5.1.2 Dependence-Conscious Register Assignment Strategies

Most methods for global early register assignment are based on the work
of Chaitin [CAC+81, Cha82]; a number of improvements are published later
on [Bri92]. These methods are based on graph coloring and assume that opera-
tions do not move relative to one another. However, in the presence of instruc-
tion scheduling this assumption is wrong. This observation is the basis of a
series of papers that try to extract information from the unscheduled program
about operations that may move relative to one another. In the following, ap-
proaches are discussed that try to avoid the introduction of false dependences
in an early assignment register allocator, thus preserving more ILP enhancing
possibilities for the instruction scheduler.

Round-robin Register Selection [HG83, GWC88, BEH91a]
In an attempt to efficiently allocate variables to registers, most register alloca-
tors select the first available register for a variable. Registers with a low index
are selected first and are re-used more frequently than registers with a high
index. As a result, false dependences are primarily associated with low in-
dexed registers. Balancing the variables more equally across all registers, using
a round-robin approach, very likely reduces the number of false dependences.
This observation is made in several papers [HG83, BEH91a] and is considered
to be better than a first-fit approach.

However, a round-robin selection policy of registers does not explicitly take
into consideration how false dependences are introduced. As a result, it can
add false dependences, which were not present when using a first-fit approach.
As observed in [GWC88], no selection policy is uniformly (i.e. for large and
small register sets) superior to others in balancing the length of merged depen-
dence paths in the DDG.

5.1. EARLY REGISTER ASSIGNMENT 73

Another disadvantage of a round-robin assignment not observed in [HG83,
GWC88, BEH91a] is the impact of a round-robin selection policy on the amount
of callee-saved code. When more registers are used, more callee-saved code is
required. A round-robin selection policy uses, when there are more variables
than registers, all registers. A first-fit approach, however, allocates the same
set of variables into a much smaller set of registers. In these cases, a first-fit
selection policy is preferable.

DAG-Driven Register Allocation [GWC88]
Goodman and Hsu [GWC88] introduced a register assignment method that
uses the data dependence graph (denoted as DDG or DAG) of each individual
basic block to avoid the introduction of false dependences. Their strategy uses
the width and height of the DDG. The width of a DDG is defined as the maxi-
mum number of mutually independent nodes that need a destination register.
The height of a DDG is defined as the length of the longest path (i.e. the critical
path). The left-edge algorithm is used for assigning registers. When insuffi-
cient registers are available, the register allocator will reduce the width of the
DDG to be smaller or equal to the number of registers by reusing registers.
While the width is reduced, the height may increase since each re-use of reg-
isters may merge two independent paths in the DDG into one. This decreases
the exploitable ILP and results in a longer schedule.

To minimize the increase in height of the DDG, the register allocator tries
to select registers in a manner such that only redundant false dependences are
introduced. A false dependence is redundant if the ordering between the op-
erations is already enforced by other dependences. When there are no redun-
dant false dependences, the DAG-driven register allocator tries to minimize
the growth of the height, by giving priority to the merging of short paths.

Themethod as proposed byGoodman andHsu is only able to allocate regis-
ters in straight-line code (i.e. a single basic block). DAG-driven allocation does
not consider false dependences between operations of different basic blocks,
which make this method less suiteable in combination with extended basic
block schedulers. Furthermore, constraints, imposed by for example a limited
set of FUs, are not considered when reducing the width of the DDG. These con-
straints would probably already result in a reduction of the width of the DDG
and thus the number of required registers. The reported results are based on a
limited set of benchmarks. It is shown that the DAG-driven register allocation
outperforms local strictly early assignment.

Register Allocation with Instruction Scheduling: a New Approach [Pin93]
In [Pin93] an early assignment method is proposed, which preserves the prop-
erty that no false dependences are introduced. Therefore, all options for par-
allelism are kept for the instruction scheduler. The method is based on the
Yorktown Allocator [Cha82]. Instead of using an interference graph, a paral-
lel interference graph is used for graph coloring. This interference graph is the
union of the traditional interference graph IG = (Nvar, Einterf) and the false

74 CHAPTER 5. THE PHASE ORDERING PROBLEM

dependence graph Gf = (NDDG, Ef). The false dependence graph Gf is gen-
erated by analyzing the data dependence graph DDG.

Definition 5.1 The graphGt = (NDDG, Et) is a finite undirected graph withNDDG

the set of nodes of the DDG. The set Et is defined as the set of edges of the transitive
closure C(DDG) after removal of the direction of the edges.

Definition 5.2 For a given basic block the false dependence graph is defined as
the undirected graph Gf = (NDDG, Ef). The set Ef is defined as Ef =
{(ni, nj) | ni, nj ∈ NDDG ∧ ni �= nj ∧ (ni, nj) /∈ Et}.

Observe that the variables v ∈ Nvar are defined by nodes n ∈ NDDG. Thus
a node n ∈ NDDG may correspond to a defining operation and to a variable.
This relation is used to construct the parallel interference graph.

Definition 5.3 The parallel interference graph, IGpar = (Nvar, Epar) is a finite
undirected graph, with Nvar the set of variables and Epar the set of parallel inter-
ference edges: Epar = Einterf ∪ Efdp. The set of false dependence prevention edges
Efdp is defined as Efdp = {(vi, vj) | (nref(vi), nref(vj)) ∈ Ef ∧ vi, vj ∈ Nvar ∧
nref(vi), nref(vj) ∈ NDDG} where nref(v) is a node that references variable v.

Note that the sets Einterf and Efdp may overlap. Due to the sequentiality of the
input code, Einterf may contain some false dependence prevention edges.

As proven in [Pin93], an optimal coloring of the parallel interference graph
provides an optimal register assignment and preserves the property that no
false dependences are introduced. However, the number of edges is increased
and the probability of finding a legal coloring is reduced. When no valid color-
ing is found, heuristics are used for trading off parallel scheduling (i.e. the in-
troduction of a false dependence) and spilling. A solution, proposed in [Pin93],
is to addweights to the edges of the parallel interference graph that distinguish
between those edges that preserve parallelism (Efdp) and those that prevent
spills (Einterf). The weights should reflect the importance of violating the inter-
ference. No examples of how to compute such weights are given in this article.

Figure 5.2a shows the false dependence graph Gf of the code fragment of
Figure 5.1. As can be seen the false dependence graph Gf contains many more
edges than the data dependence graph DDG of Figure 5.1c. The edges Ef and
the interference graph of Figure 5.1b are used to construct the parallel interfer-
ence graph IGpar. This graph is given in Figure 5.2b. At least four registers
are required in order to color this interference graph. Adding a false depen-
dence between the operations o2 and o5 such that the variables v1 and v5 can
be mapped onto the same register, reduces the minimal number of required
registers to three without increasing the critical path in the DDG.

The method is presented in the context of a basic block, extensions for reg-
ister assignment and instruction scheduling over multiple basic blocks are pro-
vided. However, the constructed parallel interference graphmay containmany
interference edges that never restrict parallelism. This occurs when references

5.1. EARLY REGISTER ASSIGNMENT 75

o3

o2

o1

o8

o4

o5

o6

9o

7o

o10

v7

v6

v8 v5

v4

v1

v2

v3

a) False dependence graph Gf . b) Parallel interference graph IGpar.

Figure 5.2: Construction of the parallel interference graph of Figure 5.1.

of involved variables are far apart in the code and thus never will be scheduled
in parallel. The large number of interference edgesmakes coloring difficult. No
results are presented to support Pinter’s claims that this method improves the
quality of the produced code.

Dependence-Conscious Global Register Allocation [AEBK94]
The early register assignment method, proposed by Ambrosch, Ertl, Beer and
Krall [AEBK94], is based upon the Optimistic Allocator [Bri92]. In conven-
tional graph coloring [Cha82, Bri92], the interference graph is computed from
totally ordered code. This ordering may cause some interference edges that
need not to be valid for the final schedule. To avoid this problem, Ambrosch et
al. compute the interference edges of a basic block b from its DDG. The notions
of “before” and “after” in a totally ordered basic block are replaced by the data
dependence relations, which is a partial ordering. Into the DDG of b a top node

 is inserted that represents the definition point of all variables that are refer-
enced in b and are elements of the set liveIn(b). Similarly, a bottom node ⊥ is
inserted that is the use point of all variables referenced in b that are members of
liveOut(b). The set NDef(v,b) is defined as the set of nodes that define variable
v in basic block b andNUse(v,b) is defined as the set of nodes that use variable v
in basic block b. The constructed interference graph is denoted as the minimal
interference graph IGmin. This graph only contains interference edges that are
present in all possible code orderings.

Definition 5.4 The minimal interference graph IGmin(b) = (Nvar, Emin) of a ba-
sic block b, is a finite undirected graph, with Nvar the set of variables and Emin

the minimal set of interference edges: Emin = {(vi, vj) | vi, vj ∈ Nvar ∧ vi �=

76 CHAPTER 5. THE PHASE ORDERING PROBLEM

v7 v1

v2

v3v4v6

v8 v5

Figure 5.3: The minimal interference graph of Figure 5.1.

vj ∧ ∃(ndef(vi), nuse(vj)) ∈ C(DDG) ∧ ∃(ndef(vj), nuse(vi)) ∈ C(DDG)} where
ndef(v) ∈ NDef(v,b) and nuse(v) ∈ NUse(v,b).

To construct the minimal interference graph for a complete procedure, all
graphs IGmin(b) of all basic blocks are combined into a single interference
graph. Conventional data flow analyses is used for computing the global inter-
ferences. In contrast with the conventional interference graph, this graph con-
tains fewer edges because it is not bound to a preordered operation sequence.

The minimal interference graph IGmin of Figure 5.1 is shown in Figure 5.3.
This graph only contains two interference edges. Both interference edges will
be present in any possible code ordering. This graph shows that the code frag-
ment of Figure 5.1 only requires two registers. However, to accomplish this, a
false dependence must be added between o10 and o1. This results in a critical
path of eight cycles. Note further that in any schedule variable v2 interferes
with v1 or v5.

During coloring, the register selection algorithm is made aware of the false
dependences it can introduce. The absence of an edge in the minimal interfer-
ence graph indicates that coloring a pair of nodes with the same color might in-
troduce a false dependence. This only hurts performance when the introduced
false dependence is not redundant. The register selection algorithm avoids in-
troducing non-redundant false dependences, if possible. If this is not possible,
false dependences are introduced that connect only short paths in order tomin-
imize the increase of the dependence paths in the DDG. The introduction of a
false dependence results in changes of the minimal interference graph. Conse-
quently, each time a false dependence is introduced, the minimal interference
graph must be recomputed.

Only preliminary results are published based on two benchmark programs.
The results show that the number of interference edges is reduced by 7%–24%
and false dependences by 46%–100%. The impact on the execution time of the
benchmarks is not listed.

5.1. EARLY REGISTER ASSIGNMENT 77

A Scheduler-Sensitive Global Register Allocator [NP93]
Norris and Pollock [NP93] present an approach to build a Scheduler-Sensitive
Global register allocator (SSG) based upon Brigg’s Optimistic Allocator [Bri92].
The main difference lies in building the interference graph. Norris and Pollock
build the interference graph from the data dependence graphs (DDG) of each
individual basic block, rather than from the ordering of the intermediate code.
The later ordering is usually the coincidental result of some earlier compiler
phase. The interference graph IGSSG(b) reflects whether two variables inter-
fere given any legitimate code ordering. As a result IGSSG(b) contains many
more interference edges than IGmin(b).

Definition 5.5 The interference graph IGSSG(b) = (Nvar, ESSG) of a basic block b,
is a finite undirected graph, with Nvar the set of variables and ESSG a set of interfer-
ence: ESSG = EA ∪ EB ∪ EC where:

EA = {(vi, vj) | vi ∈ liveDef (b), vj ∈ liveIn(b) ∧ vj ∈ liveOut(b)}
EB = {(vi, vj) | vi ∈ liveDef (b), vj ∈ liveIn(b) ∧ vj /∈ liveOut(b),

∃(nuse(vj), ndef(vi)) /∈ ET
}

EC =
{
(vi, vj) | vi, vj ∈ liveDef (b), nk ∈ Ndef(vj), nl ∈ Ndef(vi), k < l ∧

∃(nuse(vj), ndef(vi)) /∈ ET
}

where ET is the set of edges of the transitive closure of the DDG, and k < l indicates
that node nk precedes node of nl in the preordered operation sequence.

The interference graph IGSSG for the code fragment of Figure 5.1 is in this case
equal to IGpar and is shown in Figure 5.2b. Both graphs are equal because in
this particular situation the set EA is empty.

Although the interference graph now reflects the maximum freedom of
code reordering per basic block, the increased number of interferences will
make the register allocator’s task more difficult as it will be less able to color
the larger interference graph. Norris and Pollock propose to add extra DDG
edges in two steps to reduce the number of interferences. First, they add DDG
edges prior to building the interference graph. To identify the basic blocks
whose DDGs require additional DDG edges, the register requirements per ba-
sic block are estimated. In this step, only scheduler-sensitive edges are added
to the DDG. An edge is scheduler-sensitive if the schedule generated by the
instruction scheduler would contain the edge anyway. This can be the result
of other dependences or resource constraints. Adding only scheduler-sensitive
edges may not be sufficient to create a colorable graph. To handle these situa-
tions, in a second step additional DDG edges are added during register assign-
ment. When no legal coloring can be found, a node of the interference graph
is selected with the greatest number of interferences that can be eliminated by
adding false dependence edges to the DDG. If there are not enough possibili-
ties to eliminate interferences so that the node will be colorable, no DDG edges

78 CHAPTER 5. THE PHASE ORDERING PROBLEM

live = {v1}Out

v1

v2

v1

Inlive = {v1}

use v1
def v2

def v1
use v2

Figure 5.4: Non-interference that results in an interference edge in ESSG.

are added and the node with the least spill costs is selected for spilling. Their
experiments show a significant improvement over global strictly early register
assignment for Livermore loops.

Examination of the presented algorithm shows that the construction of
IGSSG is too conservative. The set ESSG contains more edges (and thus inter-
ferences) than necessary. This is illustrated in Figure 5.4. Variable v1 is live on
entry and exit of the basic block, but will never interfere with variable v2. The
set ESSG contains, however, the interference edge (v1, v2) because this edge is
a member of the set EA.

Another disadvantage of this method is that only the false dependences
within basic blocks are considered. As a result, a region scheduler will be con-
strained by inter basic block false dependences. To extend this method for re-
gion scheduling, one should compute the IGSSG for a region instead of a basic
block. This, however, results in many more interference edges, which makes
coloring hard.

5.1.3 Dependence-Conscious Early Register Assignment for
TTAs

The previous paragraphs showed that avoiding false dependences, or placing
them where they cannot hurt performance, is an important technique to en-
hance performance. The TTA instruction scheduler operates on regions. Con-
sequently, methods that have the ability to avoid potential false dependences
between operations in the same basic block, and between operations in differ-
ent basic blocks, are required to exploit a large amount of ILP. The early register
allocator used in this thesis is based on the work of Pinter [Pin93]. Instead of

5.1. EARLY REGISTER ASSIGNMENT 79

A

D F G

H

E

CB

def v1

def v2

Figure 5.5: CFG of code fragment.

the Yorktown Allocator [Cha82], the Optimistic Allocator [Bri92] is used, be-
cause of it’s better performance.

Pinter’s parallel interference graph may represent interferences that almost
never restrict parallelism. This occurs when references of involved variables
are far apart in the code and thus never will be scheduled in parallel. This is
illustrated in Figure 5.5, which shows the CFG of a code fragment. A false de-
pendence between the definition of variable v1 and the definition of variable
v2 only restricts ILPwhen both operations are imported in basic blockA. How-
ever, this is very unlikely because of resource constraints and dependences on
other operations. Pinter’s parallel interference graph reflects this dependence.
This makes coloring hard and may even result in spilling, or the introduction
of more restrictive false dependences.

Based on this observation, the method to build the false dependence graph
is slightly modified [Hoo96]. The new constructed graph is called the forward
false dependence graph Gff = (NDDG, Eff). To avoid too many false dependence
edges, only potential forward false dependences are recorded. A forward false
dependence is a false dependence between operations between which a control
flow path exists. The Gff is defined as:

Definition 5.6 The forward false dependence graph, Gff(P) =
(
NDDG, Eff

)
of a procedure P is a finite undirected graph, with NDDG the set of
operations and Eff the set of forward false dependence edges: Eff =
Ef − {(ni, nj) | bb(ni) ¬doms bb(nj) ∧ bb(nj) ¬doms bb(ni) ∧ ni, nj ∈ NDDG}
where bb(n) is the basic block of operation n and doms gives the dominance relation
between basic blocks.

80 CHAPTER 5. THE PHASE ORDERING PROBLEM

The forward parallel interference graph is constructed by combining the
edges of Eff and Einterf in the same way as Pinter suggests.

Definition 5.7 The forward parallel interference graph, IGfpar(P) =
(
Nvar, Efpar

)
of a procedure P is a finite undirected graph, with Nvar the set of variables and
Efpar the set of forward parallel interference edges: Efpar = Einterf ∪ Effdp. The set
of forward false dependence prevention edges Effdp is defined as Effdp = {(vi, vj) |
(nref(vi), nref(vj)) ∈ Eff ∧ vi, vj ∈ Nvar ∧ nref(vi), nref(vj) ∈ NDDG}.

The forward parallel interference graph IGfpar for the code fragment of Fig-
ure 5.1 is in this case equal to IGpar because the false dependences do not
cross basic block boundaries. However, the forward parallel interference graph
for a complete procedure reflects fewer potential false dependences than the
original parallel interference graph as proposed by Pinter. Consequently, the
forward parallel interference graph is easier to color. Also the following ob-
servation justifies the choice only to consider forward false dependences. To
achieve high performance, the operation selecting heuristics of the instruction
scheduler will favor operations from control flow paths with a high execution
probability. Because most branches are biased towards one direction [PSM97],
operations will be selected from the same control flow path. Therefore, false
dependences between operations in the same control flow path will hurt the
attainable performance more than false dependences between operations in
different control flow paths.

When insufficient registers are available, the register allocator has to decide
whether to spill a variable or to add a false dependence. The method proposed
in [Hoo96] always chooses for the latter if possible. In order to decide which
false dependence to introduce, each interference edge is augmented with a
weight. This weight reflects the possible negative effect on performance when
two variables vi and vj are assigned to the same register.

Wffdp(vi, vj) = max
(

f(mref(vi)) · Pr(mdef(vj)|mref(vi))
dist(mref(vi),mdef(vj))

)
(5.1)

The move mref(vi) uses or defines variable vi and move mdef(vj) defines vari-
able vj . The weight is proportional to the execution frequency f ofmref(vi) and
the probability that mdef(vj) will be executed after mref(vi). The weight is in-
verse proportional to the number of moves (the distance) betweenmref(vi) and
mdef(vj) in the sequential code. Because there can be multiple combinations of
potential false dependences between two variables, the maximum weight of
all combinations is taken. A high weight indicates that avoiding the associated
false dependence is important and will probably result in higher performance
of the generated schedule. When the register allocator cannot find a proper
node coloring, it introduces a false dependence with the lowest weight.

In the remainder of this thesis, the method described in this section is re-
ferred to as DCEA or Dependence-Conscious Early Assignment.

5.1. EARLY REGISTER ASSIGNMENT 81

5.1.4 Discussion, Experiments and Evaluation

In the previous sections, various dependence-conscious register assignment
strategies were described. The round-robin approach distributes the registers
in a round-robin fashion to the variables hoping that false dependences are
not introduced. This does not seem to be a constructive method. All other
discussed methods use the DDG to identify whether a particular assignment
will result in a false dependence. Goodman and Hsu [GWC88] assign registers
with the use of a left-edge algorithm, without introducing false dependences.
When insufficient registers are available, false dependences are added in such
a way that the impact on the total schedule is minimized. This method can
only be applied to straight-line code. The method as proposed by Norris and
Pollock [NP93] is too conservative, the method as proposed by Ambrosch et
al. [AEBK94] is computational intensive and the method of Pinter [Pin93] re-
sults in graphs that are hard to color (the same holds for the method as pro-
posed by Norris and Pollock). The method as used by Hoogerbrugge [Hoo96]
does not have these problems, however, it may ignore important false depen-
dences.

The approaches of Norris and Pollock, Ambrosch et al., Pinter and Hooger-
brugge are closely related. All are based on graph coloring. The following
relations are identified assuming all methods operate on the same scheduling
scope.

Emin ⊆ Einterf ⊆ Efpar ⊆ Epar (5.2)
E ffdp ⊆ Efdp (5.3)

The graph IGSSG(b) does not consider false dependences between operations
in different basic blocks. Whenwe restrict the scheduling scope to a basic block,
the following relation is identified.

Emin ⊆ Einterf ⊆ Efpar = Epar ⊆ ESSG (5.4)

It should be noted that ESSG is the largest set of edges. It even contains edges
that are not interference edges. Observe that the sets Emin and Einterf are not
equal. The set Emin only contains interferences that are present in all possible
code orderings, while Einterf also can contain additional edges from the set Efdp.
Note further, edges present in Emin also can be present in Efdp. For example,
the edge (v1, v4) in the parallel interference graph of Figure 5.2b originates
from the set Efdp (and Einterf) and is also present in the minimal interference
graph of Figure 5.3.

Experiments are performed to evaluate the importance of dependence-
conscious early register assignment. Strictly early assignment is compared
with DCEA using the region scheduler. Global register assignment is used,
e.g. registers are assigned for a complete procedure. For all applications in the
benchmark suite (see Section 4.1) the performance gain is measured. The re-
sults of these measurements for both target TTAs are shown in Figure 5.6. The

82 CHAPTER 5. THE PHASE ORDERING PROBLEM

0

4

8

12

16

20

24

28

32

P
er

fo
rm

an
ce

 g
ai

n
 (

%
)

10 12 14 16 18 20 22 24 26 28 30 32 48 64 512

Number of registers

TTA
TTA

ideal

realistic

Figure 5.6: Speedup of DCEA compared with strictly early assignment.

number of integer registers is varied and is listed along the x-axis. The speedup
of DCEA is listed along the y-axis. The results clearly show that DCEA out-
performs strictly early assignment. The performance gain decreases when the
number of registers decreases. When a large number of registers is available
all potential false dependences can be avoided and thus the impact of DCEA
is high. When registers are scarce, it is no longer possible to avoid all potential
false dependences, and DCEA has to decide, which false dependences to avoid
or to introduce. Consequently, the false dependences introduced by DCEA re-
sulted in a smaller performance gain.

It is also interesting to note that the performance gain of the TTAideal pro-
cessor is larger than the performance gain of the TTArealistic processor. Because
strictly early assignment introduces many false dependences, the instruction
scheduler is not capable to exploit the large number of resources provided by
the TTAideal processor. As a result, the performance of the TTAideal proces-
sor is only slightly higher than the performance of the TTArealistic processor
when using strictly early assignment. On the other hand, DCEA leaves many
code reordering possibilities to the instruction scheduler. Especially, when a
large number of registers is available the instruction scheduler is able to use as
many resources of the TTAideal processor as needed. Consequently, the perfor-
mance difference between the TTAideal and the TTArealistic processor is sub-
stantial when using DCEA. Both effects explain the larger performance gain of
the TTAideal processor whenwe compare DCEAwith strictly early assignment.

Based on the above discussion one would expect that using fewer regis-
ters would result in a smaller performance gain. However, Figure 5.6 shows
a minimum around 14 registers. This strange effect can be explained by the
observation that for some benchmarks, when using strictly early assignment,
the performance decreases significantly when the number of registers drops
below 14 registers. This is caused by the introduction of a significant amount

5.2. LATE REGISTER ASSIGNMENT 83

of spill code. The introduced short live ranges are causing extra false depen-
dences. Both early assignment methods are faced with this problem. However,
DCEA is still capable to avoid false dependences and to keep the performance
degradation limited.

The performance gain of a dependence-conscious early register assignment
method is caused by its ability to identified potential false dependences. How-
ever, it is difficult to predict which false dependences are really important. It
may happen that a false dependence between two operations is avoided that
did not limit the available ILP. In these situations, avoiding a different false
dependence would be more profitable.

An additional problem with early assignment approaches within the con-
text of TTAs, is their inability to take advantage of software bypassing and
dead-result move elimination. These techniques can eliminate the need of
some register file accesses; see for example the following code fragment:

r1 → add.o; r2 → add.t;
add.r → r3;
r3 → sub.o; r4 → sub.t;
sub.r → r5

The scheduled version may turn out not to use register r3, because the result
of the addition is bypassed to the subtraction and never used again.

r1 → add.o; r2 → add.t;
add.r → sub.o; r4 → sub.t;
sub.r → r5

From [Hoo96] it is known that more than 35% of the register file accesses are
eliminated. The registers assigned to these variables could be used, when this
was known in advance, to avoid spilling or to avoid the introduction of false
dependences. An early assignment register allocator has, however, no idea
which register references will be eliminated by the scheduler. Whereas soft-
ware bypassing decreases the register pressure in the scheduled code, the early
assignment method cannot exploit this advantage.

5.2 Late Register Assignment

When register assignment is performed after instruction scheduling, i.e. late
register assignment or pre-pass scheduling, the scheduler, uninhibited by false de-
pendences, can generate an efficient schedule. However, the instruction sched-
uler, in its attempt to reorder instructions to maximize ILP, may lengthen the
live ranges of values and thus increases the contention for registers. If not
enough registers are provided by the target processor, the data is written to
memory, introducing spill code which itself also requires registers. The in-
crease in ILP can be nullified by the amount of spill code.

84 CHAPTER 5. THE PHASE ORDERING PROBLEM

o1 :ld v1 o4 :ld v4
o2 :div v2, v1, #3 o8 :mul v7, v4, #3
o3 :add v3, v2, #10 o5 :mul v5, v1, v4
o6 :add v6, v5, v3 o9 :add v8, v7, #2
o7 :st v6 o10 :st v8

a) Schedule for a 2-issue processor.

v4

v1v3

v2

v5

v6v7

v8

b) Associated interference graph.

Figure 5.7: Late assignment example.

In Section 5.2.1, the limitations of late register assignment in relation to ILP
are described. Section 5.2.2 discusses various approaches proposed in litera-
ture to solve the problems related to ILP and late assignment. Section 5.2.3
presents the late register allocator as implemented in the TTA compiler back-
end and Section 5.2.4 gives an evaluation of late assignment in the context of
TTAs.

5.2.1 ILP and Late Register Assignment

Performing instruction scheduling prior to register assignment has the advan-
tage that the available ILP can be exploited without constraints imposed by
register assignment. However, applying late assignment may result in a large
register pressure since multiple variables are becoming live simultaneously.

Let’s return to the example of Figure 1.4b. Figure 5.7a shows the scheduled
version of the code fragment for a 2-issue processor, when instruction schedul-
ing is uninhibited by register assignment. The code fragment executes in five
cycles. The associated interference graph is shown in Figure 5.7b. As can be
easily seen, at least four registers are required to color the graph. The sched-
uler has reordered the code in such a way that the register pressure is increased
compared to the sequential code of Figure 1.4b. Note that switching the oper-
ations o5 and o8 results in a register pressure of three. From the instruction
scheduler’s point of view, both schedules are equally good, however, the latter
results in a better overall schedule when only three registers are available.

When only three registers were available, the schedule shown in Figure 5.7a

5.2. LATE REGISTER ASSIGNMENT 85

ld r1 ld r3a

st r3a

div r2,r1,#3 mul r3b,r3a,#3
st r3b

ld r3a

add r2,r2,#10 mul r1,r1,r3a

ld r3b

add r1,r1,r2 add r2,r3b, #2
st r1 st r2

a) Schedule with inserted spill code.

ld r1 ld r3a

st r3a

div r2,r1,#3 mul r3b,r3a, #3
st r3b ld r3a

add r2,r2,#10 mul r1,r1,r3a

ld r3b

add r1,r1,r2 add r2,r3b, #2
st r1 st r2

b) Rescheduled code.

Figure 5.8: Late assignment and spilling.

requires spill code. The spill code generated by the register allocator is inserted
in already scheduled code as shown in Figure 5.8a. Inserting new instructions
into the compacted code could violate the constraints under which the code
was originally scheduled (this certainly holds for TTAs as we will see later).
Rescheduling is usually applied to efficiently integrate the spill code within
the schedule, see Figure 5.8b. However, rescheduling may rearrange the code
completely. The false dependences introduced by the late register allocator
may restrict the new code reordering. This may lead to less efficient sched-
ules. Instead of adding spill code into the already scheduled code, Sweany
and Beaty [SB90] proposed to add the spill code to the original unscheduled
code without assigning registers to variables. The resulting code is scheduled
again and may result in efficient code since the scheduler is never hindered by
false dependences. Rescheduling, however, does not guarantee that the newly
scheduled code is colorable. Consequently, additional spill code is inserted.
This process is repeated until a legal register assignment is found.

Sweany and Beaty [SB90] also observed that insertion of state preserving
code is difficult in late assignment approaches. This causes a phase ordering
problem, because, until after register assignment, it is not known how many
registers need to be saved and restored. The method as proposed for inserting
spill code does not apply, because scheduling of state preserving code can lead
to other register usage patterns. This may result in the need for more, fewer or

86 CHAPTER 5. THE PHASE ORDERING PROBLEM

different state preserving code. The solution they propose is to consider all reg-
isters callee-saved. After register assignment, new entry and exit basic blocks
are added to each procedure. The necessary callee-saved code is inserted in the
new created basic blocks and is scheduled using a local scheduler.

5.2.2 Register-Sensitive Instruction Scheduling Strategies

The simplest late assignment approach is to apply instruction scheduling and
register assignment in two separate phases without any form of communica-
tion between the two phases, called strictly late assignment. This implementa-
tion is quite straightforward, but the instruction scheduler may produce sched-
ules that require more registers than available. The approaches discussed in
this section add extra heuristics to the instruction scheduler in order to reduce
the register pressure.

Integrated Prepass Scheduling [GWC88]
Goodman and Hsu presented a method, called integrated prepass schedul-
ing (IPS), which performs late register assignment, but attempts to restrict the
number of concurrently live local variables by giving each basic block a regis-
ter limit. The register limit places an upper bound on the number of live local
variables, thus limiting the amount of ILP that the local instruction scheduler
may exploit. The instruction-based list scheduler selects operations to exploit
ILP, unless the number of live local variables is greater or equal to the given
limit. The scheduler then tries to schedule operations that reduce the number
of simultaneously live local variables. By keeping track of the number of avail-
able registers, the scheduler can choose the appropriate scheduling technique
to produce a better code sequence. The initial number of available registers per
basic block is determined by the total number of registers, minus the number
of global registers live-on-entry of the basic block. The method combines two
scheduling techniques, one to exploit ILP and the other to minimize register
usage, into a single phase. After scheduling, a local register allocator assigns
registers to the variables within the basic block; spills to memory are inserted if
the limit could not be met. The proposedmethod assumes that global variables
are already assigned to registers. Furthermore, no attempt is made to schedule
inserted spill code efficiently.

The reported results are based on a limited set of benchmarks (the first
twelve Livermore loops) and showed improvements in the order of 15% for 10
registers compared to strictly late assignment. The method heavily depends on
the availability in the ready set of operations that can decrease the number of
simultaneous live registers. Goodman also observed that late assignment often
resulted in register spilling. Therefore, the scheduled programs had significant
larger sizes than programs produced with an early assignment approach. This
makes late assignment less suitable for application specific processors, since
often the code size is a critical design parameter.

5.2. LATE REGISTER ASSIGNMENT 87

A variation of Integrated Prepass Scheduling [BEH91a]
The method proposed by Bradlee, Eggers and Henry is a variant of Goodman
and Hsu’s Integrated Prepass Scheduling (IPS) [GWC88]. The main improve-
ment is the use of a global register allocator. Tomodel reserved registers for im-
portant global variables, Bradlee’s IPS sets the local register limit for each basic
block to the maximum number of available registers. This limit is reduced by
the number of unique global variables referenced within the basic block, in-
stead of assigning global variables prior to running IPS as done in [GWC88].
Instruction scheduling is applied per basic block. It tries to generate code
within the local register limit. After scheduling, the variables in the scheduled
code are assigned to registers by the Chaitin’s global register allocator [Cha82].
A local post-pass scheduler is invoked after register assignment to ensure that
spill code is scheduled as well as possible. The reported results showed that
for 32 registers this variation of IPS produces code that is on average 13% faster
than strictly early assignment.

Like the method of Goodman, this method also applies instruction schedul-
ing per basic block. The reported results show that the proposed method pro-
duces code that is on average faster than a strictly early assignment method.
However, the results are based on comparison with a non-dependence-
conscious early register allocator.

The (α, β)-Combined Heuristic [MPSR95]
Motwanu et al. propose a heuristic, which combines controlling register pres-
sure and instruction-level parallelism considerations. Prior to scheduling, an
ordering of the operations is determined. The priority function, which deter-
mines the ordering, consists of two parts: (1) the schedule rank γS for which a
priority function of any good list scheduling can be chosen, and (2) the register
rank γR defined as:

γR(oi) = min
oj∈succv(oi)

max
{

Lpath(oi, oj),
Tpath(oi, oj)
| FUset |

}
∀ oi ∈ NDDG (5.5)

where Lpath(oi, oj) represents the distance in the DDG between the operations
oi and oj , Tpath(oi, oj) is defined as the total path length in the DDG of all
paths from oi to oj , succv(oi) the set of all successors of oj in the DDG that
read variable v which is referenced by oi, and | FUset | represents the number
of function units. The register rank is zero when succv(oi) = ∅. This priority
function favors operations that use variables in short live ranges. Scheduling
these uses close to their definition reduces the register pressure.

The combined rank function γ = α · γS + β · γR orders the operations into
a list in increasing order of rank. With the parameters α and β the algorithm
is tuned. These parameters obey the following equality α + β = 1. Without
worrying about the register bound, a greedy local list scheduling algorithm
uses the ordered list to obtain a schedule. Afterwards the code is checked for
over-using registers and spill code is inserted.

88 CHAPTER 5. THE PHASE ORDERING PROBLEM

r1 → add1.o; r2 → add1.t;
r4 → add2.o; r5 → add2.t;
add1.r → r3;
add2.r → r6;

r1 → add1.o; r2 → add1.t;
r4 → add2.o; r5 → add2.t;
...
add1.r → r3;
add2.r → r6;

a) Original schedule. b) Schedule with inserted instruction.

Figure 5.9: Instruction insertion problem.

Instead of verifying the algorithm with real programs, Motwanu veri-
fies the algorithm with randomly generated DDGs of unrealistic large basic
blocks (100 operations). The experiments showed that the (α, β)-combined
heuristic outperforms on average strictly late assignment with 16% and strictly
early assignment with 4% when 16 registers were available.

In contrast to IPS, this method does not switch abruptly from selection pri-
ority, but uses a smoother transition to decide whether reducing register pres-
sure is more important than increasing ILP. However, the proposed method
accomplishes this by assigning prior to scheduling a static priority to the op-
erations; it does not adapt its operation selection criteria during scheduling.
Since the results were obtained by using synthetic benchmarks, they cannot be
straightforwardly extrapolated to real programs.

5.2.3 Register-Sensitive Instruction Scheduling for TTAs

In the context of TTAs, early assignment has the drawback that it is unable to
exploit the registers saved by software bypassing and dead-result move elim-
ination. Late assignment, however, can exploit this TTA specific optimization.
Since fewer variables exist in the scheduled code, it is more likely to find a
legal register assignment. This results in an interesting observation. Late as-
signment for TTAs results in more spill code because of the increase of the live
spans, but on the other hand it reduces the number of spills due to the ability to
exploit the benefits of software bypassing and dead-result move elimination.

Unfortunately, late assignment has additional problems in the context of
TTAs. The first problem is called the instruction insertion problem [Cor98]. Be-
cause operation latencies are visible, the insertion of instructions in already
scheduled code may violate the constraints under which the code was origi-
nally scheduled. This is shown in Figure 5.9. Assume both additions are ex-
ecuted on the same VTL pipelined FU, which has a latency of two cycles. In-
serting an instruction as is done in Figure 5.9b has as a consequence that both
operations produce the same result. This occurs because the result register in
the FU is overwritten by the second operation before the first operation could
read it. Note, that this problem does not arise when hybrid pipelined FUs were
used.

Independent of the type of FU pipelining there is another problem related

5.2. LATE REGISTER ASSIGNMENT 89

r1 → ld.t;
v1 → add.o;
ld.r → r3;

r1 → ld.t;
spill address → ld.t;
ld.r → add.o;
ld.r → r3;

a) Schedule prior to spilling. b) Schedule after spilling.

Figure 5.10: Spill code insertion for TTAs.

to inserting spill code; this problem is illustrated in Figure 5.10a. Suppose vari-
able v1 must be spilled. In this case, a load operation is required to read the
value of v1 from memory. However, simply inserting a load operation will
result in an invalid schedule, see Figure 5.10b. The operation is inserted in the
middle of another operation. This disturbs the pipeline of the FU; the original
load will receive a value from an incorrect memory location. Note, that this
problem can be alleviated when both load operations are executed on differ-
ent FUs. This requires, however, a TTA that has at least one free FU that can
perform a load operation.

The last problem mentioned in relation to the insertion of spill code is
rescheduling. In contrast to conventional processors, where after register as-
signment and spilling all variables reside in registers or memory, in TTAs vari-
ables are also hidden by software bypassing and dead-result move elimination.
The hidden variables might reappear in the rescheduled code, however, they
are not mapped onto a register. Rescheduling might also result in an opposite
effect; variables that were mapped onto registers become hidden because of
software bypassing and dead-result move elimination. A solution to solve this
problem is to use the approach described in [SB90]. After register assignment,
spill code is inserted in the original unscheduled code. To the unscheduled
code, no software bypassing and dead-result move elimination optimizations
are applied. Consequently, the code with the inserted spill code can be sched-
uled in the sameway as the original code. This process is repeated until no spill
code is required. Note that schedulers with large scheduling scopes (extended
basic block schedulers) rearrange code drastically and due to the insertion of
spill code the schedule will not resemble the first version. Spill code inserted in
the early iterations might be void in the eventual schedule. Another drawback
is the long compile time to generate the schedule. Despite of the disadvantages
mentioned above, the proposed method is implemented in the TTA compiler
back-end because it seems to be the only valid approach to generate code in
the context of late assignment.

Inserting state preserving code gives another problem. As was observed
in [SB90] the insertion of caller- and callee-saved code is in itself a phase or-
dering problem. The solution proposed by Sweany is to save all used registers
on entry and on exit of a procedure by adding extra basic blocks. Thus, all
registers are callee-saved. This approach is also applicable to the TTA late as-
signment approach. Note, however, that this may lead to inefficient schedules

90 CHAPTER 5. THE PHASE ORDERING PROBLEM

since it is no longer possible to make a trade-off between caller- and callee-
saved registers. Furthermore, the extra inserted basic blocks are scheduled by
a local scheduler. This leads to a reduction of the exploitable ILP.

To prevent the insertion of too much spill code, we tried to limit the greed-
iness of the scheduler. In the previous section, register sensitive scheduling
methods are described that keep track of the number of available registers.
The scheduler switches between a selection heuristic that exploits ILP, and a
heuristic that favors operations that reduce the register pressure. Key to these
approaches is an accurate estimate about the registers required when selecting
an operation for scheduling. This can easily be done in an instruction-based
list scheduler; however, for an operation-based list scheduler, as used in our
compiler back-end, this is problematic. Each instruction in the partial schedule
has its own different register limit. Because it is not known in which instruc-
tion an operation will be scheduled, it is also not known which register limit
to use. In our experiments, we favored operations that free registers when it
turned out that scheduling the most critical operation in the ready set increases
the register pressure above a certain threshold. Unfortunately, on average no
performance improvements were found. This is caused by various reasons: (1)
it is not possible to make a good register pressure estimate, (2) the ready set
is small, which reduces the probability of finding a register pressure reducing
operation, (3) changing the priority function, which favors operations in the
critical path, has a negative impact on performance and (4) floaters. Floaters are
operations that do not depend on other operations in a basic block and when
unhindered by false dependences float to the top of a basic block. When these
floaters define variables, they increase the register pressure.

5.2.4 Experiments and Evaluation

In the previous sections, various register-sensitive instruction scheduling
strategies were described. These strategies try to limit the register pres-
sure when scheduling. The methods known from literature are all based on
instruction-based list scheduling. Scheduling for TTAs, however, requires
operation-based list scheduling. Our experiments showed that applying the
methods for instruction-based list scheduling in a TTA instruction scheduler
did not result in any improvement.

Most of the methods known from literature can only operate on single ba-
sic blocks. Our experiments indicate that DCEA outperforms late assignment
on average with 5% when using a local scheduler. However, in order to ex-
ploit larger amounts of ILP, larger scheduling scopes should be considered as
well. The performance gain of DCEA over late assignment, when using region
scheduling, is shown in Figure 5.11. The performance penalty of late assign-
ment is large. The scheduler in a late assignment strategy is not constrained
by false dependences. It imports as many operations as permitted by other re-
sources constraints. This results in a huge amount of variables that are simul-

5.3. INTEGRATED REGISTER ASSIGNMENT 91

0
5

10
15
20
25
30
35
40
45
50
55
60

P
er

fo
rm

an
ce

 g
ai

n
 (

%
)

10 12 14 16 18 20 22 24 26 28 30 32 48 64 512

Number of registers

TTA
TTA

ideal

realistic

Figure 5.11: Speedup of DCEA compared with late assignment in the context
of region scheduling.

taneously alive. When not enough registers are available this results in a large
amount of spill code. The performance difference between the two benchmark
TTA processors can be explained by the following. For the TTArealistic proces-
sor, due to resource constraints other than registers, the scheduler cannot ap-
ply importing as aggressively as for the TTAideal processor. Consequently, the
schedules generated for a TTAideal processor contain more simultaneous live
variables. This results in a higher register pressure and thus more spill code is
required. This reduces the performance. Despite our effort to find heuristics
to improve the performance of late assignment, early assignment still gener-
ates faster executing code. This behavior of late assignment was also observed
in [BSBC95] where it was stated that there are times when spilling dramatically
increases the execution time well beyond any scheduling gain obtained by late
register assignment.

5.3 Integrated Register Assignment

As we have seen in the previous sections, the division of instruction schedul-
ing and register assignment into separate phases can affect the performance
of these tasks and thus the quality of the generated code. Both discussed ap-
proaches, early and late assignment, have problems. In effect, the lack of com-
munication and cooperation between the instruction scheduler and the register
allocator can result in code that contains excess register spills and/or lower de-
gree of instruction-level parallelism than possible. Improved performance in
one phase can deteriorate the performance of the other phase, possibly result-
ing in poorer overall performance.

In this section, various approaches from literature are discussed that ad-
dress integrated register assignment and instruction scheduling. These ap-

92 CHAPTER 5. THE PHASE ORDERING PROBLEM

proaches can be divided into three classes: the first class invokes register as-
signment and instruction scheduling multiple times for a complete procedure.
These methods are discussed in Section 5.3.1. The second class uses integer
linear programming to address the phase ordering problem [EGS95, CCK97].
We chose not to discuss them because these methods tend to have long compi-
lation times. Their practical use is limited to straight-line code or small loops
only. The third class truly integrates both phases into a single phase; these
approaches are discussed in Section 5.3.2.

5.3.1 Interleaved Register Assignment

Interleaved register assignment and instruction scheduling strategies apply
both phases multiple times to get correct estimates of the expected constraints
imposed by one phase to the other phase. Only a few approaches are known
which apply this strategy. This is probably caused by the long compilation
times required for these methods.

Register Allocation with Schedule Estimates [BEH91a]
The strategy proposed by Bradlee et al. [BEH91a], called RASE (Register Allo-
cation with Schedule Estimates), consists of three steps. The first step performs
multiple times local early register assignment, followed by local instruction
scheduling with a varying number of registers. A schedule cost estimate is com-
puted for each number of registers. This schedule cost estimate is the estimated
number of cycles required to execute the basic block while remaining within a
certain register limit. In the second step, a global register allocator (based on
the work of Chaitin [Cha82]) partitions the register set for each basic block into
two sets. One set is used for global variables and the other set is the basic
block’s register limit. Based on the spill costs and the schedule cost estimate,
the global register allocator determines the appropriate balance between these
two competing needs for registers. The third step schedules each basic block
and assigns registers to variables within the basic block’s register limit in the
same way as suggested in [GWC88]. Spill code is inserted when insufficient
registers are available for the local live ranges. The reported results showed
that RASE produced code is on average 8% faster than strictly early assign-
ment for Intel’s i860. A drawback of RASE is that it can only be applied to basic
block scheduling, because otherwise the register limit per basic block loses its
meaning.

Combining Register Assignment Interference Graphs [BSBC95]
Brasier et al. [BSBC95] describe in their paper a framework, called CRAIG (Com-
bining Register Assignment Interference Graphs) that combines register assign-
ment and instruction scheduling to tackle the phase ordering problem. CRAIG
performs first late assignment. The generated schedule is not hindered by reg-
ister assignment and exploits all available ILP. The register allocator is invoked
to compute the late interference graph. The generated schedule is accepted when

5.3. INTEGRATED REGISTER ASSIGNMENT 93

no spilling is required. Otherwise, CRAIG constructs an early interference graph
for the original unscheduled code. This graph generally has fewer interference
edges than the late interference graph. When spill code is needed to color the
early interference graph, CRAIG inserts spill code and invokes the scheduler,
based upon the assumption that this is the best that can be done under the cir-
cumstances. Otherwise, it assumes that it is likely that false dependences have
been added by the register allocator, and thus, the resulting schedule can be
improved. CRAIG will attempt to reclaim some of this lost efficiency by re-
moving as many of the false dependences as possible, up to the point where
spilling is needed. By adding edges to the early interference graph that are
found exclusively in the late interference graph, CRAIG creates interference
between those values, which the scheduler forced to be in different registers.
If they were mapped onto the same register in the early interference graph,
then a false dependence that potentially inhibits a more efficient schedule is
identified and removed.

The method is applied to a limited set of benchmarks. When registers are
scarce the results showed an average performance increase of 6.7% compare to
strictly early assignment, and 3.9% compared to strictly late assignment. The
described method uses a random approach towards selecting edges that can
remove false dependences. It is observed that more accurate selection criteria
must be found to increase the performance. The proposed algorithm stops
removing false dependences when spill code is required. As a result, it can
occur that not all false dependences that prevent the generation of an efficient
late assignment schedule are removed. This may result in a schedule in which
originally not recorded false dependences restrict parallelism due to a different
scheduling order of the operations than the scheduling order that was used to
compute the late interference graph.

5.3.2 Integrated Instruction Scheduling and Register Assign-
ment

There are obvious pros and cons to doing register assignment early or late. Be-
cause register assignment and instruction scheduling are antagonistic, it seems
profitable to merge both phases into a single step. In the past, the integration
of the instruction scheduling and the register assignment has been considered
as too complicated [BEH91a]. However, due to the ongoing research to exploit
more and more ILP, the register pressure will increase and registers should be
assigned in such a way that exploitation of ILP is not hindered.

A Unified Resource Allocator [BGS93]
TheURSA (Unified ReSource Allocator) presented by Berson et al. [BGS93] unifies
the problems of allocating registers and function units. This technique operates
on the DDG of the program. The purpose of the URSA is to modify the DDG
in such a way that its resource requirements cannot exceed the capacity of the
target machine. Therefore, it is only concerned with the allocation of resources,

94 CHAPTER 5. THE PHASE ORDERING PROBLEM

and not their actual assignment. The first phase carries out the measurement
of resource requirements and identifies regions with excess requirements. A
so-called re-use directed acyclic graph (DAG) is constructed for every resource.
These DAGs are used to determine the maximum number of resources of a
specific type to obtain an optimal schedule. The second phase applies trans-
formations to the DDG that reduce the requirements to levels supported by
the target machine. These transformations add sequential dependence edges
to the DDG that remove excess resource requirements. The transformation
that is best with respect to the combination of minimizing the critical path and
reduction of excess requirements is selected and applied. These extra edges in-
troduce sequentiality, i.e. reduce the exploitable ILP. When it is not possible to
reduce the register requirements by adding sequential dependence edges, spill
code is introduced. Resource assignment and instruction scheduling follow
the DDG transformations. The assignment phase is also responsible for han-
dling any excessive requirements that were not identified byURSA’s heuristics.
URSA requires a large number of representations to expose the availability of
resources. Furthermore, no experimental results are presented to give an indi-
cation of the method’s effectiveness.

The URSA is defined for local scheduling. In [BGS94] resource spackling,
an extension of the URSA, which also supports global code motion, is pre-
sented. Resource requirement measurements are used for finding areas where
resources are either under or over utilized, called resource holes and excessive
sets, respectively. Conditions for code motion are established to increase the
resource utilization in the resource holes and to decrease the resource require-
ments in excessive sets. These conditions are applicable to both local and global
code motion. The results are, however, disappointing, the improvements of
global over local instruction scheduling are on average 5.5% while other ap-
proaches have shown much larger improvements (e.g. 135%, see Section 4.3).

Integrated Register Assignment in the Bulldog Compiler [Ell86]
The approach described by Ellis [Ell86] integrates register assignment and trace
scheduling. Registers are assigned to variables by an instruction-based list
scheduler as it produces code for a trace. Since trace scheduling starts schedul-
ing on the crucial traces first, the trace scheduler, which uses a pool of registers,
takes as many registers from the pool as it requires. When the trace is sched-
uled, the register locations of the variables are recorded at every entry and exit
of the trace. Later traces adjoining the exits and entries are advised to use these
locations. Traces are scheduled as independent entities, therefore it is not al-
ways possible to keep a variable in all traces in the same register. To guarantee
correct execution, repair code is required.

Ellis showed that trace scheduling makes it hard to manage registers ef-
fectively; a register written to an operand of an operation must be considered
occupied until the operation has written its result. When this restriction is not
respected, the code will execute incorrectly when an operation with a multi-
cycle latency is bisected by joining or splitting traces. This restriction implies

5.3. INTEGRATED REGISTER ASSIGNMENT 95

that the live ranges of the operands and results of the same operation always
interfere when the operation is scheduled for execution on an FUwith multiple
pipeline stages (e.g. the latency is larger than one). When the pipeline is fully
utilized, 2(d−1) extra registers are required for an FU pipeline of d stages. This
really becomes a bottleneck on processors that can execute several multi-cycle
operations in parallel, which is not uncommon.

The method as proposed by Ellis does not include the insertion of state
preserve code and spill code. However, a remark is made that an operation-
based list scheduler probably outperforms the instruction-based list scheduler
in the context of spilling. The operation-based list scheduler can look back into
the already generated schedule and can schedule spill code as early as possible.
The list scheduler is always constrained to schedule newly generated code after
or in the current instruction being scheduled.

No heuristics were presented to prevent the scheduler from being too
greedy. Consequently, it will easily over utilize the available registers. An-
other potential performance bottleneck is the amount of inserted repair code.
No measurements are provided to evaluate the performance of this approach.

Trace Scheduling as a Global Register Allocation Framework [FR91]
Freudenberger and Ruttenberg [FR91] observe that often registers are the most
critical instruction scheduling resource. To manage them well, they describe
how global register assignment is integrated into trace scheduling in the Mul-
tiFlow compiler [L+93, SS93]. The scheduler drives the register assignment
process to place the variables referenced within the heavily-used traces in reg-
isters. The article does not discuss the assignment of registers to variables in-
side the traces1, but merely presents the communication required to keep an
assignment consistent between traces. Since traces have multiple entry and
exit points, repair code is inserted to obtain correct programs. When other, less
crucial, traces hook up to this trace, extra analysis is needed to check whether
a variable is allocated in the same register in all traces. When this is not true,
extra code is inserted to make the necessary corrections.

Freudenberger and Ruttenberg observed that repair code for register as-
signment purposes alone, already contributed 5% to the total operation count.
They compared their results to two other processors (with other compilers) by
counting the executed operations. It is shown that the proposed method is
competitive with both other approaches. However, comparing compilers from
other vendors on other architectures is difficult; results cannot be generalized
without listing the algorithms used by the other compilers.

Instruction Scheduling for TriMedia [HA99]
In [HA99], Hoogerbrugge and Augusteijn describe the compiler for the Tri-
Media VLIW mediaprocessor family. The operation-based list scheduler oper-
ates on decision trees. In practice, decision trees are often too small to contain
sufficient ILP, especially in control intensive applications. Grafting is used to

1The assignment inside traces is based on the work of Ellis [Ell86]

96 CHAPTER 5. THE PHASE ORDERING PROBLEM

remove decision tree boundaries by duplication join-point basic blocks. In or-
der to support speculative execution, guards are assigned to operations when
required. The register allocator is split into two parts: a global and a local reg-
ister allocator. To support this division, the registers are divided into local and
global registers. The global variables are assigned using a graph coloring based
algorithm prior to instruction scheduling. A local integrated register allocator
assigns the variables local to a decision tree. A register is assigned to a variable
as soon as the definition is scheduled. Since the scheduler uses decision trees
as a scheduling scope, all live ranges are tree-shaped (a single definition per
live range) and definitions are scheduled before their uses are scheduled. This
greatly simplifies integrated local register assignment.

To keep the register pressure under control, heuristics are used. Hooger-
brugge introduces the notion of floater operations. A floater operation has ei-
ther none or a single predecessor (which is also a floater) in the DDG and its
result is used only once. These operations are called floaters because they tend
to float to the top of the decision tree when the list scheduler schedules them
as soon as possible. This results in long live ranges and thus in an increased
register pressure. Therefore, floaters are handled differently in the TriMedia
scheduler. First, they are not in the ready set. When a non-floater is scheduled,
its preceding floaters, if any, are scheduled as close as possible before it. Unfor-
tunately, no results are given to verify the impact of this idea on performance.

When the register allocator runs out of registers, variables are spilled. Be-
cause a register is required between the operation and the actual spill and
reload operations, a few registers are reserved. Without these registers the
scheduler might get stuck. The insertion of state preserving code is not re-
quired since the compiler does not support procedure calls.

The proposed method divides the register set in three sets: global registers,
local registers and spill registers. This can lead to an inefficient usage of reg-
isters: one set might be under utilized while the other is over utilized. This
will, however, not be a severe problem for the TriMedia processor family since
it contains 128 registers. For processors with a smaller amount of registers,
it is expected to become a problem. Global register assignment is performed
prior to instruction scheduling; this may lead to the introduction of false de-
pendences, which limits the performance. Unfortunately, no comparison is
made with a conventional approach, such as early assignment, to evaluate the
presented method.

5.4 Conclusion

Register assignment and instruction scheduling are antagonistic phases in
compilers that exploit ILP. The phase executed first may hinder the other. In
theory, if there are an infinite number of resources, early, late and integrated
assignment, generate code with the same performance. However, for register

5.4. CONCLUSION 97

accesses to be fast, the size of the register file should be limited. Hence, the
question is: how to use a limited set of registers efficiently? This problem was
addressed in this chapter. We discussed the problems related to early and late
register assignment and TTA related issues. In summary:

• The assignment of registers to variables prior to instruction scheduling
may limit the possibilities to reorder operations because of false depen-
dences introduced with the re-use of registers. Lately, some work is done
on the interaction between instruction scheduling and register assign-
ment. In order to avoid the introduction of false dependences, the regis-
ter allocator is made aware of the code motions the instruction scheduler
wants to perform.

• Instruction scheduling uninhibited by constraints imposed by register as-
signment leads to efficient schedules. Unfortunately, it may also increase
the span of live ranges, which leads to excessive spilling. An efficient
schedule can lose its achieved degree of ILP when spill code is inserted
afterwards. Heuristics are introduced that limit the greediness of the in-
struction scheduler.

• Early assignment cannot exploit the software bypass and dead-result
move elimination advantage of TTAs. Consequently, the resulting code
has a lower efficiency caused by wasted registers.

• The insertion of spill code in TTA code when using late assignment
is much more complicated than for conventional architectures. This is
caused by the software bypassing and dead-result move elimination ca-
pability. Furthermore, because operation latencies are visible, the inser-
tion of instructions in already scheduled code may violate the constraints
under which the code originally was scheduled.

Today, the problems related to early and late assignment hinder the genera-
tion of high performance code. At the same time ILP compiler techniques are
advancing and the available silicon space increases. Both advances allow the
execution of an increasing number of operations in parallel to boost perfor-
mance. The more simultaneously issued operations, the more registers are po-
tentially required. Thus, register assignment and instruction scheduling must
be addressed simultaneously in order to maximize ILP.

98 CHAPTER 5. THE PHASE ORDERING PROBLEM

Integrated Assignment
and Local Scheduling 6
T he goal of register assignment is to map the variables of a program as

efficiently as possible to the set of registers of a processor to obtain fast
programs and to minimize the number of executed memory accesses. The task
of the instruction scheduler is to order the instructions in such a way that the
execution time of a program is minimized. Both the instruction scheduler and
the register allocator have the same goal: minimizing the execution time of a
program. However, decisions made by one phase can deteriorate the overall
performance because they put too many constraints on the other phase.

This chapter describes a global register assignment method integrated
within a local operation-based list scheduler. To the best of our knowledge,
no integrated approach towards global register assignment and instruction
scheduling exists using an operation-based list scheduler. The method is de-
scribed in the context of a basic block scheduler. The next two chapters will
discuss extensions of this method for two more aggressive scheduling tech-
niques, which are region scheduling and software pipelining.

To make a new register assignment approach applicable for use in pro-
duction compilers it should incorporate all aspects of register assignment,
including spilling and the insertion of state preserving code. Unlike many
other researched methods, our integrated method incorporates all these as-
pects. Therefore, we are able to compile any ANSI C/C++ program including
SPECint95 benchmarks.

This chapter is structured as follows. Section 6.1 discusses issues related
to resource assignment and instruction scheduling. The register assigned to a
particular variable is selected from a set of free registers. An important data
structure to compute this set is described in Section 6.2. The definition of the

99

100 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

set itself is given in Section 6.3. When insufficient registers are available to
hold all variables, spill code is inserted. The insertion of spill code is discussed
in Section 6.4. In contrast to other approaches [HA99], our method allows pro-
cedure calls. The insertion of code to preserve the state of the program across
procedure calls is described in Section 6.5. In Section 6.6, experiments are
described to evaluate the new method. The developed integrated assignment
method is implemented in the same compiler as the early and late assignment
methods. This gives the opportunity to make a fair comparison with early and
late assignment. Finally, Section 6.7 states the conclusions.

6.1 Resource Assignment and Phase Integration

Integration of instruction scheduling and register assignment has as a goal to
generate code that is more efficient by letting the two phases interact. This
complicates register assignment, because variables that were not live simulta-
neously before a scheduling step can be simultaneously live after this step and
vice versa. In other words, the live relations between the variables can change
in time during instruction scheduling. To get insight in the complexity of ap-
plying register assignment and instruction scheduling simultaneously, the im-
pact of the assignment of other resources, such as buses and FUs, is compared
with the assignment of registers.

To make correct resource assignments it is necessary to collect information
about previous assignments. This is accomplished with the use of so-called
resource vectors. For example, to record the assignment of buses to moves a bus
availability vector is created for each instruction. When a move m is scheduled
in instruction i the bus assigned to m is set as occupied in the bus availability
vector associated with i. Before scheduling another move in instruction i the
scheduler checks the bus availability vector for available buses. The same kind
of administration is used for sockets. In terms of register assignment, the live
ranges of buses and sockets always span a single instruction.

Assigning an FU to an operation involves checking the availability of this
FU and, when the FU is selected, updating the appropriate resource vectors1.
In contrast to buses and sockets, the resource vectors of an FU span multiple
instructions, ranging from the instruction where the operand move is sched-
uled to the instruction in which the result move is scheduled. Typically, the
number of spanned instructions is equal to the latency of the FU performing
the operation. In other words, the live range of an FU is equal to the latency of
the FU.

Variables are in general referenced by many operations. Once a variable is
assigned to a register, this register cannot be used for storing other values until
its content is killed. In contrast to other resources, the live range of a register

1The precise administration of the availability of FUs is outside the scope of this thesis. The
interested reader is referred to [Hoo96].

6.2. REGISTER RESOURCE VECTORS 101

spans many instructions and may even cross basic block and region bound-
aries. Therefore, registers can be considered as a global kind of resource, re-
served and released at different points of the program. All other resources can
be considered as local resources since these resources are reserved and released
within a single or a few instructions. The larger scope of register assignment
makes registers the hardest allocatable resource.

The question arises when to assign registers to variables. One approach is
to assign a register to a variable vwhen all references to v are scheduled. At this
point, all instructions spanned by the live range are known. The main reason
not to choose this approach are the problems related to the insertion of spill
code in already scheduled code. Therefore, a method that avoids the insertion
of spill code in already scheduled instructions is chosen. The fundamental idea
of our approach is as follows:

A register r is assigned to a variable v as soon as a move m is scheduled
that refers to v.

The complete live range of a variable is checked for a common available regis-
ter, before any of the references to this variable are scheduled.

Algorithm 6.1 assigns the transport resources (buses, sockets and registers).
A valid transport resource combination for a move m in instruction i consists
of a source socket si, a move busmb and a destination socket di, which are not
already in use (in other words available) in this instruction. This combination
should form a data path from the source register (FU or RF) to the destination
register (FU or RF) in the TTA processor.

6.2 Register Resource Vectors

A register is assigned to a variable when the first move referring to this vari-
able is scheduled. Bookkeeping is necessary to guarantee that variables with
overlapping live ranges are not mapped onto the same register. Just as creating
a bus availability vector for each instruction, a Register Resource Vector (RRV) is
associated with each instruction.

Definition 6.1 The Register Resource VectorRRV (i) is defined as the set of registers
that are in use at instruction i.

An example is given in Figure 6.1. Note that a register can be re-defined by
another operation in the same instruction as where it was last used.

When the live range of a variable v spans multiple basic blocks, the register
r mapped onto v is added to the RRVs of all instructions in the spanned basic
blocks. Observe that a basic block has no instructions when it is not yet selected
for scheduling and therefore the usage of r cannot be recorded properly. This
leads to incorrect assignments. To solve this problem, initially to each basic
block a single instruction, and thus a single RRV, is added. This enables the
correct recording of the assignments.

102 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

Algorithm 6.1 ASSIGNTRANSPORTRESOURCES(m, i)

src = SOURCE(m)
dst = DESTINATION(m)
FOR EACH si ∈ AVAILABLESRCSOCKETS(src, i) DO
FOR EACH di ∈ AVAILABLEDSTSOCKETS(dst, i) ∧ di �= si DO
FOR EACH mb ∈ AVAILABLEMOVEBUSES(si, di, i) DO
IF ISVARIABLE(src) THEN

rsrc = SELECTSRCREGISTER(m, i)
IF rsrc = ∅ THEN
continue

ENDIF

ENDIF

IF ISVARIABLE(dst) THEN
rdst = SELECTDSTREGISTER(m, i)
IF rdst = ∅ THEN
continue

ENDIF

ENDIF

IF ISVARIABLE(src) THEN
ASSIGNREGISTER(src, rsrc)

ENDIF

IF ISVARIABLE(dst) THEN
ASSIGNREGISTER(dst, rdst)

ENDIF

ASSIGNSOURCESOCKET(m, si)
ASSIGNDESTINATIONSOCKET(m, si)
ASSIGNMOVEBUS(m, mb)
return TRUE

ENDFOR

ENDFOR

ENDFOR

return FALSE

2

1

0

r3

r3add.r r3

r3 sub.o

RRVInstruction

Figure 6.1: Usage of RRVs.

6.2. REGISTER RESOURCE VECTORS 103

add.r r3

RRVInstruction

r30 add.r r3

RRVInstruction

r3

r3

2

1

0

r3

a) Initial schedule. b) Adding two instructions.

Figure 6.2: The impact on RRVs when enlarging a basic block.

During scheduling of a basic block b, new instructions are added to it when
an operation cannot be scheduled in the currently available instructions. The
RRVs associated with these added instructions are initialized with the infor-
mation recorded in the RRV of the last instruction of b. This is valid because a
register is available again in the instruction in which it is killed (the last use of
the variable onto which the register is mapped) and the live information of the
newly added instructions is identical to the live information of the last instruc-
tion of b. An example, which illustrates the addition of instructions, is given
in Figure 6.2. Figure 6.2a shows a basic block with a scheduled definition of
register r3. In Figure 6.2b, the basic block is enlarged with two instructions.
The contents of the last RRV is copied, hence r3 is also set to be unavailable in
the newly added instructions.

When a register is selected and assigned to a variable v, the RRVs must be up-
dated to guarantee that subsequent assignments are legal and do not interfere
with this assignment. Each time a move referring to variable v is scheduled,
more information about the size of its live range is known. As a result, the
RRV information can be refined.

A register is assigned to v when the first move referring to it is scheduled.
Consequently, all the othermoves referring to v have already a register assigned
to them, before they are scheduled. When such a move, for example a defini-
tion is scheduled, the register associated with it can be set as available again
in the instructions before this definition. This is illustrated in Figure 6.3. Fig-
ure 6.3a shows the situation before the definition is scheduled. In Figure 6.3b
the definition is scheduled and the appropriate RRVs are updated. There is,
however, one exception. When a use of a register was already scheduled in
a lower or the same instruction as the definition, the register can only be re-
moved in the instructions between this use and the definition.

The RRVs are also updated when a use is scheduled, to which already a reg-
ister was assigned. Figures 6.4b to Figures 6.4e show various scenarios when
scheduling the code fragment of Figure 6.4a, it is assumed that r3 is not in
liveOut. Figure 6.4b shows the situation when the definition and the first use
are scheduled. Since it is not known in which instruction the second use is go-
ing to be scheduled the worst is assumed and r3 is not available in all instruc-
tions of the basic block. Figure 6.4c shows the contents of the RRVs when the

104 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

RRVInstruction

r3

r3

2

1

0

r3

3 r3

RRVInstruction

2

1

0

r3

3 r3

add.r r3

a) RRVs prior to scheduling the
definition.

b) RRVs when the definition is
scheduled.

Figure 6.3: Updating RRVs after scheduling a definition.

second use is also scheduled. More information about the live range is known
and the RRVs are updated as shown in the figure. Since operation-based list
scheduling is used, the second use can be scheduled in an earlier instruction
than the first use. In this situation, in the second instruction, register r3 can
be released for re-usage. This is shown in Figure 6.4d. Not all live ranges are
local to a basic block. Assume, in our example, that the second use of r3 is
located in a successor basic block. The RRVs associated with the instructions
of the successor basic block must all contain register r3. When the second use
is scheduled, the RRVs in the successor basic block can be updated. This situ-

add.r → r3;
r3 → sub.o;
r3 → mul.o;

add.r r3

RRVInstruction

2

1

0

r3r3 sub.o

r3

r3

a) Code fragment. b) Definition and first use scheduled.

add.r r3

r3 sub.o r3

RRVInstruction

2

1

0

r3

r3

r3 mul.o3

c) Second use scheduled after first
use.

add.r r3

r3 sub.o

r3 mul.o

RRVInstruction

2

1

0

r3

r3

d) Second use scheduled before
first use.

r3 mul.o

add.r r3

r3 sub.o

1

0

RRVInstruction

r3

2

1

0

r3

r3

r3

e) Variable live across basic block
boundaries.

Figure 6.4: Updating RRVs after scheduling a use.

6.3. THE INTERFERENCE REGISTER SET 105

add.r r3

RRVInstruction

r3

r3

1

0 add.r sub.o

RRVInstruction

1

0

a) Initial schedule. b) Software bypassing and dead-result
move elimination.

Figure 6.5: Updating RRVswhen applying software bypassing and dead-result
move elimination.

ation is depicted in Figure 6.4e. Because register r3 is live until the end of the
original basic block, it is not released in its last RRVs.

TTAs have a property that makes integrated register assignment even more
attractive: its ability to forward data directly from the output of one FU to
the input of another or the same FU. How this advantage is exploited in our
integrated assignment method is shown in Figure 6.5. Figure 6.5a gives the
situation where a definition of register r3 is scheduled. Figure 6.5b shows the
schedule and its RRVs when the variable is software bypassed, and this use
ends the live range (i.e. dead-result move elimination can be applied). The
variable disappears from the code and therefore also register r3 is removed
from the RRVs and can be used again for another variable. The register can
only be removed from the RRVs when all uses are scheduled in the same in-
struction as their definition.

6.3 The Interference Register Set

The interference register set of a variable v contains the registers that are mapped
onto variables that may interfere with v under any legitimate schedule. This
set is used for the selection of a register for variable v. For each basic block b in
the live range of v, an interference register set is constructed.

The basic blocks spanned by the live range of variable v can be partitioned into
two sets.

• BIO(v), variable v is live on entry and exit of these basic blocks, but it is
not referenced. This set is constructed using2:

BIO(v) = {b ∈ B |v∈ liveIn(b) ∧ v ∈ liveOut(b) ∧ v /∈ liveUse(b)} (6.1)

All variables live in these basic blocks interfere with variable v. The in-
terference register set RIO(v, b) for a basic block b ∈ BIO(v) is simply

2Note that due to the definitions of the sets liveIn, liveOut, liveDef and liveUse it is not nec-
essary to include v /∈ liveDef (b) in the construction of this set.

106 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

v4(r2) → add.o; v1(r1) → add.t;
add.r → v3;
v3 → mul.o; v0(r0) → mul.t;
mul.r → v1(r1);
v1(r1) → v2(r0);
v5(r4) → sub.o; #4 → sub.t;
sub.r → v6(r5);

a) Unscheduled TTA code.

live = {v0, v1, v4, v5}In

Outlive = {v1, v2, v6}

RRV

r0..r2, r4, r5

A

b) The unscheduled basic block Awith its RRV.

Outlive = {v1, v2, v6}

A live = {v0, v1, v4, v5}In

v4(r2) v1(r1)

v6(r5)

v5(r4)

v0(r0)

v1(r1)

v2(r0)

v1(r1)

v3

sub add

mul

copy

c) The DDG of basic block A.

Figure 6.6: RRV based register interference.

computed with:

RIO(v, b) =
⋃
∀i∈b

RRV (i), b ∈ BIO(v) (6.2)

• BDU (v), these basic blocks have references to variable v. This set is de-
scribed with:

BDU (v) = {b ∈ B | v ∈ liveDef (b) ∨ v ∈ liveUse(b)} (6.3)

The set of interfering registers of a basic block b ∈ BDU (v) is denoted
with RDU (v, b).

Computing the interference register set RDU (v, b) is much more complicated
than computing RIO(v, b). A conservative approach is simply to include all
registers in the RRVs of all instructions of the basic blocks b ∈ BDU (v). Fig-
ure 6.6 gives an example. Figure 6.6a shows the operations of a basic block
A. The notation v4(r2) means register r2 is mapped onto variable v4. Fig-
ure 6.6b gives the (empty) schedule and the RRV. According to the RRV infor-
mation variable v3 cannot be mapped onto any of the registers r0, r1, r2, r4
and r5. However, careful examination of the code learns that registers r1 and
r2 never interfere with variable v3, independent of the generated schedule.
Consequently, the information in the RRV is too conservative.

To efficiently exploit the available registers, amore accurate estimation is re-
quired. The DDG’s partial ordering within basic blocks is used for constructing
the interference set. To capture all interference types, four non-interference sets
are defined per basic block. In the formulas, all references to variables aremade

6.3. THE INTERFERENCE REGISTER SET 107

by operations belonging to basic block b, i.e., nuse(v), nuse(vi), ndef(v), ndef(vi)

are contained in b.

Definition 6.2 The non-interference set VBelow(b, v) contains all variables vi, whose
live range starts after the end of the live range of v in basic block b. The ordering of the
live ranges is not the result of the ordering in the sequential intermediate code, but is
the result of the dependence relations in the DDG. The set VBelow(b, v) is constructed
with:

VBelow(v, b) =
{
vi ∈ liveDef (b) | (nuse(v), ndef(vi)) ∈ ET ∀ nuse(v) ∈ b

}
(6.4)

where ET is the set of edges of the transitive closure of the DDG.

A similar situation arises when v and vi change roles.

Definition 6.3 The non-interference set VAbove(b, v) contains all variables vi, whose
live range ends before the live range of v starts in basic block b. More formally:

VAbove(v, b) =
{
vi ∈ live¬Out(b) | (nuse(vi), ndef(v)) ∈ ET ∀ nuse(vi) ∈ b

}
(6.5)

where live¬Out(b) = (liveDef (b) ∪ liveIn(b)) − liveOut(b).

Things become more complex when the live range of vi is loop carried, e.g. the
variable vi is live at entry of basic block b and it is redefined within b.

Definition 6.4 The non-interference set VAround(v, b) contains all variables that do
not interfere with v in basic block b, and are live on entry and are redefined in basic
block b. This set is constructed with:

VAround(v, b) = { vi ∈ liveLoop(b) | (nuse(v), ndef(vi)) ∈ ET ∀ nuse(v) ∈ b

∧ (nuse(vi), ndef(v)) ∈ ET ∀ nuse(vi) ∈ K(vi, b) } (6.6)

where liveLoop(b) = liveIn(b) ∩ liveDef (b) and K(v, b) is the set of uses of v, which
will be executed before the definition of v in basic block b.

K(v, b) =
{
n ∈ NUse(v) | (ndef(v), nuse(v)) /∈ ET , ndef(v), nuse(v) ∈ b

}
(6.7)

A similar situation occurs when the roles of v and vi are interchanged.

Definition 6.5 The non-interference set VBetween(v, b) contains all variables that do
not interfere with v in basic block b, when v is live on entry and exit of b. More
formally:

VBetween(v, b) ={vi ∈ liveLocal(b) | (nuse(vi), ndef(v)) ∈ ET ∀ nuse(vi) ∈ b

∧ (nuse(v), ndef(vi)) ∈ ET ∀ nuse(v) ∈ K(v, b) } (6.8)

where liveLocal(b) = liveDef (b) − liveOut(b).

108 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

0

1

RRV

r0..r2

r0..r2, r5

#4r4

sub.r

sub.o

r5

sub.t

A

Figure 6.7: Partial schedule of basic block A.

The non-interference set of a basic block b ∈ BDU (v) can now be computed
with the four non-interference sets of the Equations 6.4, 6.5, 6.6 and 6.8:

Vnon-interf(v, b) = VBelow(v, b) ∪ VAbove(v, b) ∪ VAround(v, b) ∪ VBetween(v, b) (6.9)

The set of interfering registers in b ∈ BDU (v) can now be determined with:

RDU (v, b) =
{
r(vi) | vi ∈ live(b) − Vnon-interf(v, b) − v

}
(6.10)

where r(vi) returns the register mapped on variable vi. When no register is
assigned to vi then r(vi) = ∅.

Figure 6.6c shows the portion of the DDG of the basic block of Fig-
ure 6.6a. The figure only shows a small part of the DDG of the complete
procedure, which explains the dangling edges. The following sets are now
constructed: VBelow(v3,A) = {v2}, VAbove(v3,A) = {v4}, VAround(v3,A) =
{v1} and VBetween(v3,A) = ∅. According to Equation 6.9, the set of non-
interfering variables becomes Vnon-interf(v3,A) = {v1, v2, v4}. Since live(A) =
{v0, v1, v2, v3, v4, v5, v6} the set of interfering registers becomesRDU (v3,A) =
{r0, r4, r5}. The registers in the set {r0, r4, r5}may interfere with variable v3
under any legitimate schedule.

For all basic blocks in the set RDU (v, b), the interference register set is com-
puted using Equation 6.10. These basic blocks are not scheduled yet. There
is, however, one exception: the currently scheduled basic block b∗. The set
RDU (v, b∗) indeed contains all registers that might possibly interfere with v,
prior to scheduling any of the operations of b∗. However, when the scheduler
has already assigned some operations to instructions, some of the registers do
not interfere anymore. This is illustrated in Figure 6.7, which shows the sched-
ule of our running example (see Figure 6.6) after scheduling the subtraction.
As can be seen, variable v3 can never interfere anymore with register r4 be-
cause the definition of v3 will always be scheduled after the use of r4. When
the information in the RRVs is combined with RDU (v, b∗), a more accurate in-
terference set can be constructed. The exact construction of this set depends on
whether a definition or a use of a variable v is scheduled.

• When a definition n of variable v is scheduled in instruction icur, only the
RRVs of instruction icur until the last instruction of basic block b∗ need to

6.4. SPILLING 109

be checked for a free register.

RRRV (v, n) =
LastInsn(bb(n))⋃

i=icur

RRV (i) (6.11)

• A similar approach is used for constructing the interference register set
when a use n of variable v is scheduled in instruction icur.

RRRV (v, n) =
LastUseInsn(n,v)⋃

i=0

RRV (i) (6.12)

where

LastUseInsn(n, v) =




LastInsn(bb(n)) : NUse(v) − n �= ∅
LastInsn(bb(n)) : v ∈ liveOut(bb(n))

icur − 1 : otherwise
(6.13)

Combining the setsRRRV (v, n) andRDU (v, b∗) results in an instruction precise
registers interference set of variable v, for any possible code ordering of the
remaining unscheduled operations in basic block b∗. This set, RCur(v, n), is
computed with:

RCur(v, n) = RRRV (v, n) ∩ RDU (v, bb(n)) (6.14)

The first scheduled move in our running example (see Figure 6.6 and 6.7),
referring to v3, is a definition (e.g., add.r → v3). The first instruction in
which it can be scheduled is instruction 1. As a result RRRV (v3, add.r → v3) =
{r0, r1, r2, r5} and RCur(v3, add.r → v3) = {r0, r5}.
The complete set of interfering registers can now be computed with:

RInterfere(v, n) =


 ⋃

b∈BIO(v)

RIO(v, b)


 ∪ RCur(v, n)

∪


 ⋃

b∈BDU (v)−bb(n)

RDU (v, b)


 (6.15)

6.4 Spilling

In this section, issues related to spilling in the context of our integrated as-
signment method are discussed. Late and early assignment insert spill code
in either completely scheduled code, or completely unscheduled code. Inte-
grated assignment has to insert spill and reload code in partly scheduled code.
In Section 6.4.1, a solution is presented, which solves this problem. Adding

110 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

operations changes the data dependence relations and the data flow relations.
This issue is addressed in Section 6.4.2. Scheduling of on-the-fly inserted spill
code has complications. These complications are identified in Section 6.4.3 and
their solutions are presented.

6.4.1 Integrated Spilling

The problem of inserting spill code in partly scheduled code seems to be similar
to the problem of inserting spill code in completely scheduled code. Extra op-
erations must be squeezed into scheduled instructions. As already discussed
in Section 5.2.3, this requires rescheduling in order to generate correct code.
Reschedulingmay lead to changes in the register requirements; non-interfering
live ranges in the original scheduled code may interfere in the rescheduled
code, or variables that were software bypassed, are not software bypassed
anymore, and require registers. These effects result in an iteration of regis-
ter assignment, spill code insertion and rescheduling steps. It is unclear how
to apply this strategy in the context of integrated assignment because it is not
desirable to restart scheduling, when during scheduling it is discovered that
spilling is required.

Because of the above mentioned reasons, it was decided not to insert spill
code in already scheduled code. Instead, spill code is only inserted in the still
to be scheduled code. This strategy fits very well in our integrated assignment
approach, because a register is assigned to a variable when the first reference
to this variable is being scheduled. As a result, all references are located in un-
scheduled basic blocks. This avoids the insertion of code in already scheduled
code and therefore is easier to implement.

The principle of our approach is illustrated in the example of Figure 6.8.
Figure 6.8a shows the CFG of a procedure. Assume that the basic blocks A
and B are already scheduled and basic block C is being scheduled. The shaded
parts indicate which code is already scheduled. In this example, it is assumed
that no more free registers are available in basic block D. Consequently, no
register can be found for the live range of variable v2. Integrated assignment
detects this situation when it tries to schedule the definition of v2 in basic block
C. As illustrated in Figure 6.8b spill and reload code is inserted in the unsched-
uled code of respectively basic block C and D. For reasons of clarity the code
for the address calculations is omitted.

6.4.2 Updating Data Flow and Data Dependence Relations

Spill code insertion changes the data dependence and data flow relations. This
information was originally computed before scheduling, now, during schedul-
ing the necessary updates must be made to ensure correct code generation.
New live ranges are created to hold the memory addresses, and the to be
spilled and reloaded values. To maintain the fully renaming property, and

6.4. SPILLING 111

A

B C

 D
use v2

def v2

B C

 D

load v2"

def v2’
store v2’

A

use v2"

a) Before spilling. b) After Spilling.

Figure 6.8: Integrated spilling.

thus a large scheduling freedom, new and unique variable names are associated
with these live ranges. In the following, the changes to the DDG are described
in detail when spilling a variable v.

• A store operation stdefi
is inserted just after each operation ndefi(v) ∈

NDef(v). A unique index i is given to each definition of v in NDef(v). A
data dependence edge, of the flow dependence type, is added between
the definition ndefi(v) and the associated stdefi

.

NDDG = NDDG ∪ {stdefi
}

EDDG = EDDG ∪
{

(ndefi(v) δf
0 stdefi

) | stdefi
, ndefi(v) ∈ NDDG

}
An addition adddefi

is inserted just before each inserted stdefi
. This ad-

dition computes the memory address of the location where the spilled
variable is stored. The DDG is updated with:

NDDG = NDDG ∪ {adddefi
}

EDDG = EDDG ∪
{

(adddefi
δf
0 stdefi

) | adddefi
, stdefi

∈ NDDG

}
• A load operation ldusej

is inserted just before each operation nusej(v) ∈
NUse(v). The index j distinguishes the various uses of v inNUse(v). A data
dependence edge is added between the load and the related consumer:

NDDG = NDDG ∪
{
ldusej

}
EDDG = EDDG ∪

{
(ldusej

δf
0 nusej(v)) | ldusej

, nusej(v) ∈ NDDG

}

112 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

An addition addusej
is inserted just before each inserted ldusej

. This addi-
tion computes the memory address of the location fromwhich the spilled
variable should be reloaded.

NDDG = NDDG ∪
{
addusej

}
EDDG = EDDG ∪

{
(addusej

δf
0 ldusej

) | addusej
, ldusej

∈ NDDG

}
• Two types of memory data dependence edges are added between the
inserted store and load operations. The first edge prevents that a value
is read from memory before it is written. The flow dependence edge
between ndefi(v) and nusej(v) is replacedwith amemory flow dependence
edge between the stdefi

and ldusej
.

EDDG = EDDG ∪
{

(stdefi
δf
1 ldusej

) | (ndefi(v) δf
0 nusej(v)) ∈ EDDG

}
−

{
(ndefi(v) δf

0 nusej(v))
}

The second memory dependence edge prevents that a value is written to
memory before it is read. This edge replaces the anti dependence edge
between nusej(v) and ndefi(v). Such an edge only exists when variable v
was loop carried.

EDDG = EDDG ∪
{
(ldusej

δa
1 stdefi(v)) | (nusej(v) δa

0 ndefi(v)) ∈ EDDG

}
−

{
(nusej(v) δa

0 ndefi(v))
}

The sets with live information are also updated. Variable v is removed from
all the sets liveIn, liveOut, liveDef and liveUse. The new variables, created to
hold the temporary values, are added to the liveDef sets of their basic blocks.
In addition, for each new live range a new du-chain is created3.

After the insertion of spill code, the operation sequences for spilling and
reloading are stand-alone pieces of code. That is, they are no longer directly
connected by a du-chain and the data is transported via memory.

6.4.3 Scheduling Issues

Normally, an operation is scheduled in the first instruction where its data de-
pendence and resource constraints are met. The used basic block scheduling
method guarantees that there always exists an instruction in which both the
data dependence and the local resource constraints (FUs, buses and sockets)
can be fulfilled. When necessary, new (empty) instructions are created and

3The additions use the frame-pointer (fp) to compute the address of a memory location. In
order to be complete, du-chains and data dependency edges between the definition of the frame-
pointer and the uses of it by the additions must be inserted. For reasons of clarity, they are omitted
in the above discussion.

6.4. SPILLING 113

r0, r2

0

1

2

Instruction RRV

r0, r1 .. rn

r0, r1 .. rn

a) Initial schedule.

r0, r2

r0, r2

add.r st.o #20

#offset

fp

st.t

add.o

add.t

0

1

2

3

Instruction RRV

r0, r1 .. rn

r0, r1 .. rn

b) Direct spilling.

r0, r1, r2r1

0

1

2

Instruction RRV

r0, r1 .. rn

r0, r1 .. rn

#20

c) Postponed spilling.

Figure 6.9: Direct vs. postponed spilling when scheduling transport #20→v1.

added to the basic block. For global resources, such as registers, it is not guar-
anteed that the resource constraints can be met, because variables can cross
basic block boundaries.

Two strategies were explored when the inability to schedule an operation
in a particular instruction is caused by register shortage:

• Direct spilling: Spill code is generated in the first instruction where all
data dependence and all resource constraints in an instruction can bemet,
except registers.

• Postponed spilling: The scheduler tries to schedule the transport in later in-
structions, hoping that in one of these instructions more registers become
available. When no extra registers become available, the first strategy is
used as a fallback strategy.

Figure 6.9 shows the impact of both strategies. Transport #20 → v1 must be
scheduled in the basic block given in Figure 6.9a. Direct spilling inserts spill
code because all resource and dependence constraints, except registers, are met
in instruction 1. This is shown in Figure 6.9b. When postponed spilling is
used (see Figure 6.9c), the scheduler discovers that a register becomes available
when the transport is scheduled in instruction 2. Consequently, no spill code
is inserted.

Preliminary experiments indicated that postponed spilling results in a
higher performance. Despite the engineering complexities, this strategy is cho-
sen for implementation in our integrated assignment approach.

114 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

add add

mul

sub

register pressure = 3

mul

add

st

add ld1

sub

mul

ld2

register pressure = 2

mul

add

st

add ld1 ld2

mul

sub

mul

register pressure = 3

a) Original DDG. b) DDGwith spill code. c) Scheduled code.
Figure 6.10: Impact of spilling and instruction scheduling on register pressure.

The idea behind spilling is to reduce the register pressure by replacing a long
live range with a number of short live ranges. However, in some situations
spilling increases the register pressure. For example, when inserting a store op-
eration, the original live range is replaced with two simultaneously live, short
live ranges: one for the memory address calculation and one for the value to be
stored in memory. This is a problem when insufficient registers are available
to hold these short live ranges; a condition very probable since spilling is due
to register shortage. Other register pressure problems are related to instruction
scheduling. The instruction scheduler may decide to schedule the operations
required for spilling far apart. This also increases register pressure, see for in-
stance Figure 6.10. In Figure 6.10a the original graph is shown, this program
requires three registers. When only two registers are available, spill code is
introduced as shown in Figure 6.10b. The resulting code requires only two reg-
isters. Because instruction scheduling techniques tend to schedule instructions
as early as possible, it can happen that operation ld2 is scheduled in the same
instruction as operation ld1, see Figure 6.10c. In this situation, the register
requirement is still three, and spilling did not help at all.

In [LVA96] this problem is attacked by scheduling the operation, which
variable is spilled, and the spill code itself close together in a single scheduling
step. However, this does not guarantee that no deadlock situation can arise,
since there are still registers required for the introduced short live ranges.

In [CLM+95, HA99], it is suggested to use a limited set of reserved registers
for these newly created live ranges. This method has three major drawbacks:

6.4. SPILLING 115

fp → add.o; #offset → add.t;
add.r → ld.t;
ld.r → use;

Figure 6.11: Software bypassed reload code.

(1) variables are spilled to memory, although some registers were available, (2)
false dependences are introduced that could be avoided if the complete set of
registers was available, and (3) it introduces false dependences between spill
code because the newly created live ranges are only mapped onto a small set of
registers. Consequently, reserving registers for the short live ranges introduced
by spilling results in inefficient register usage.

A better solution is to exploit the software bypassing property of TTAs and
dead-result move elimination. The newly created live ranges are directly trans-
ported from FU to FU; they disappear completely from the code. Because no
registers are required, it is guaranteed that this method always converges. The
corresponding TTA code for reload code is given in Figure 6.11. The result of
the addition is bypassed to the load, and the result of the load is bypassed to
the operation that uses the reloaded value.

To ensure that the code can be scheduled without the need of reserved reg-
isters, the address calculation, the load or store, and the operation, which re-
quires spilling, must be scheduled in such a way that all variables are bypassed
when required. This cannot be guaranteed when the involved operations are
scheduled in individual scheduling steps. For example: assume the result
move of the addition performing the memory address calculation is scheduled
in instruction i. The trigger of the load should also be scheduled in this instruc-
tion. However, when not enough move buses or FUs are available the trigger
will be scheduled in instruction i + 1 or higher, and software bypassing cannot
be applied.

To guarantee software bypassing, the address calculation, the load or store,
and the operation, which requires spilling are scheduled in a single (atomic)
scheduling step. To achieve this, the scheduler recognizes spill code. It selects
stand-alone pieces of spill or reload code as if it were a single operation. The
scheduler uses backtracking to ensure software bypassing. The scheduler is
not always required to software bypass variables. When, for example, spilling
was caused by an assignment in another basic block, some registers may still
be available in the currently scheduled basic block. In these situations, the
scheduler is allowed to use these available registers. This decreases the num-
ber of backtracking steps. Scheduling of spill code is a complex engineering
challenge, especially when another variable, defined or used by the operation
that originally required spilling, also requires spilling.

The most general spill code data dependence graph is shown in Figure 6.12,
intra operation edges are omitted. It shows the worst case situation for an
operation op with n operands andm results. In practice most operations have
only one or two operands and one result; furthermore it is not likely that all

116 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

re
lo

ad
 c

od
e

sp
ill

 c
od

e
op

er
at

io
n

op.o

op.rop.r

op.t

ld.t

add.t

ld.r

add.r

ld.t

add.o add.t

ld.r

add.r

op.o

st.o

add.t

add.r

add.o

add.o

ld.t

add.o add.t

ld.r

add.r

add.o add.t

add.r

st.t st.ost.t

1 n

m1

Figure 6.12: Largest recognizable spill/reload code sequence.

6.4. SPILLING 117

def
fp
add.r
v1

add.r
v1
ld.r
v2"

fp add.o;
v1;

add.o; #offset add.t;

v2’
#offset add.t;

st.t;st.o;
v1;

v2’;

ld.t;
v2";
use;

def

fp add.o

add.r st.o st.t def use

#offset add.t

b) Optimization with software bypassing.

fp

add.r

r1

add.o

st.o

#offset add.t

def st.t def r1

use

a) Unscheduled code. c) Optimization with register usage.

Figure 6.13: Definition-use peephole optimization.

operands and results need spill/reload code. When loads and/or stores with
address offsets are supported, the graph complexity reduces substantially.

6.4.4 Peephole Optimizations

Up to now, the general spilling process is outlined, but there are cases where
some of the added operations turn out to be superfluous. Integrated assign-
ment considers several particular cases:

• When a definition and a use of a variable v are scheduled in nearby in-
structions, and v is spilled, the reload code can be omitted when the use
can be scheduled in the same instruction as the definition. The value
can be software bypassed directly to the use, without reloading the value
from memory. An example is given in Figure 6.13. Figure 6.13a shows
the code containing spill and reload code. The reload code (shaded in the
figure) can be left out in the generated schedule. This schedule is shown
in Figure 6.13b; the result of the definition (def) is spilled to memory and,
directly software bypassed to the use.

When a register is available between the definition and the use, this
register can be used for holding the value generated by the definition.
Again the reload code can be omitted. This is shown in Figure 6.13c.
Register r1 is used for temporary storage. The discarding of the super-
fluous operations is carried outwhen the use and its associate spill code is
scheduled. Only at this point, it is known in which instructions the defi-
nition and the use are scheduled, and whether any registers are available.

• When two uses of the same variable are scheduled in nearby instructions,
the reload code of one of the uses can be omitted. This is illustrated in
Figure 6.14. Figure 6.14a shows a code fragment, which reloads the same
value from memory twice. This code can be optimized by removing the
second reload (shaded in the figure) and replacing it with a short live
range from the first load operation to the second use. Figure 6.14b shows
the resulting schedule. The discarding of the superfluous operations is
carried out, when the second use and its associate spill code is scheduled.

118 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

fp add.o; #offset add.t;
add.r v1;
v1 ld.t;
ld.r v2’;
v2’ use1;
fp add.o; #offset add.t;
add.r v1;
v1 ld.t;

v2" use2;
ld.r v2";

fp

add.r

r1

add.o

ld.t

use2

#offset add.t

ld.r use1 ld.r r1

a) Unscheduled code. b) Optimization with register usage.

Figure 6.14: Use-use peephole optimization.

6.5 State Preserving Code

When a procedure invokes another procedure, parameters are passed from
the calling procedure to the called procedure, and on return from the called
procedure to the calling procedure. These parameters are located in the vari-
ables v0..v6 for integer values, and vf0..vf4 for floating-point values, as de-
fined by the front-end (Section 3.1). Precautions have to be taken, to ensure that
the contents of these variables are not altered by register assignment. There-
fore, integrated assignment assigns prior to scheduling the correct registers to
these variables, just as in the graph coloring approach. These registers, how-
ever, are not dedicated for parameter passing exclusively4. They can also be
used for holding other variables, as long as their live ranges do not interfere.

An invoked (called) procedure normally changes the contents of the reg-
isters that are in use by the calling procedure. To save the contents of these
registers, state preserving code must be inserted. In the remainder of this sec-
tion, methods to generate caller- and callee-saved code, in the context of in-
tegrated assignment, are discussed. Section 6.5.1 discusses the generation of
callee-saved code and Section 6.5.2 describes the approach used for generating
caller-saved code.

6.5.1 Generation of Callee-saved Code

The convention used in our compiler dedicates the upper half of the register
set to callee-saved registers. It is the responsibility of the called procedure to
save these registers when it is called. Callee-saved code is inserted in the entry
and exit basic blocks of a procedure. The registers saved and restored are those
which are referenced in the called procedure and are a member of the callee-
saved register set. In the context of integrated assignment two methods for
inserting callee-saved code are developed:

4The registers sp and fp can never be used by another variable, since they are live in the com-
plete procedure.

6.5. STATE PRESERVING CODE 119

• Create an extra hierarchy level by adding extra entry and exit basic blocks
in the sameway as Sweany and Beaty [SB90] propose for late assignment.
These added basic blocks are dedicated to hold callee-saved code solely.
This approach has as a drawback that the callee-saved code is not sched-
uled with the code of the original entry and exit basic blocks: this will
likely result in a small performance loss.

• To overcome the limitation of the previous method the callee-saved code
must be inserted within the original entry and exit basic blocks. To gen-
erate legal code the following steps should be performed:

1. Schedule all basic blocks, except the entry and exit basic blocks.

2. Map all remaining, not yet assigned variables whose references are
located in the not yet scheduled entry and exit basic blocks, onto
registers. Thus effectively applying early assignment to these basic
blocks. When no register can be found, no spill code is generated in
the hope that integrated assignment can find a free register during
scheduling.

3. Insert save-code in the entry basic block, and restore-code in the exit
basic blocks for each referenced callee-saved register in this proce-
dure. To ensure that the operations are scheduled in the correct
order, extra data dependency edges must be added between the
callee-saved code and all not yet scheduled references to the callee-
saved registers.

4. Set all never referenced callee-saved registers as used in the RRVs
of the entry and exit basic blocks. For these registers, no callee-
saved code is generated. This prevents the use of these registers by
the yet to be scheduled operations, and thus avoids the insertion of
callee-saved code in already scheduled code.

5. Schedule the operations in the entry and exit basic blocks.

The drawback of this method is that the variables, which were not yet
mapped onto registers, can only be mapped onto the caller-saved regis-
ters and the saved callee-saved registers5. This generally does not impose
severe problems; when there are many registers the probability of find-
ing a register is high, since at least all caller-saved register are available.
When there are only a few registers, all callee-saved registers are used in
the other basic blocks and thus all registers are available.

Both methods avoid the problem of inserting callee-saved code in already
scheduled basic blocks. The second method potentially results in a larger
amount of exploitable ILP. It places the callee-saved code and the code of the
original entry and exit basic blocks into the same basic block. Based on this

5When no register can be found at all, the variable is of course spilled.

120 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

foo → pc
v2 → sub.t #11 → sub.o
sub.r → v1

live In = {fp, v2}

live Out = {fp, v1, v2}

0

Instruction RRV

fp

a) Unscheduled code. b) Partial schedule.
fp → add.o; #offset → add.t;
add.r → v3;
v3 → st.o; r7 → st.t;
foo → pc
fp → add.o; #offset → add.t;
add.r → v4;
v4 → ld.t;
ld.r → r7;
r7 → sub.t #11 → sub.o
sub.r → v1

#offset add.t add.ofp

st.t

fp add.o

add.r st.o

pcfoo

#offset add.t

ld.tadd.r

ld.r sub.t

0

1

2

3

4

5

6

fp, r7

r0..r9

fp

fp

fp

fp, r7

fp, r3, r7sub.r r3

Instruction RRV

#11 sub.o

ld.r

r7

r7

c) Inserted caller-saved code d) Generated schedule

Figure 6.15: On-the-fly caller-saved code generation.

observation and preliminary experiments, the second approach is selected and
incorporated within the TTA compiler back-end.

6.5.2 Generation of Caller-Saved Code

It is the responsibility of the register allocator to save and restore caller-saved
registers around procedure calls with the use of caller-saved code. In an inte-
grated assignment approach, this code cannot be generated before scheduling
the procedure. At that point in time, no registers are assigned yet, and thus it
is unknown which registers are alive across the procedure calls. Instead, the
caller-saved code must be generated at the moment the procedure call opera-
tion is selected for scheduling. The following steps show how this problem is
solved in our integrated assignment approach.

1. First, the variables that are live across the procedure call are identified
by using live-variable information. Because other operations are al-
ready scheduled, it is very likely that some of these variables are already
mapped onto a register. For the unassigned variables, the integrated as-
signment method has the freedom to map them onto either the caller-
or the callee-saved register set. The same heuristic as in early assign-
ment is used to determine the best register set (see Section 3.3.3). When a
caller-saved register is selected, the variable is mapped onto this register
although no reference to this variable is scheduled yet. An example is
given in Figure 6.15. Figure 6.15a shows the unscheduled code and Fig-
ure 6.15b shows the produced schedule so far. The next operation to be
scheduled is the procedure call foo → pc. Prior to scheduling the proce-
dure call, variable v2 ,which is live across the procedure call, is mapped
onto the caller-saved register r7.

2. Caller-saved code is inserted for all variables that are mapped onto a

6.6. EXPERIMENTS AND EVALUATION 121

caller-saved register and are live across the procedure call. In the sequen-
tial code, save-code is inserted before the procedure call, and consists of a
store and an add operation. Restore-code, a load and an addition, is in-
serted after the procedure call in the sequential code. The additions are
required to compute the memory locations. An incremental live-variable
algorithm is used for generating the new live-variable information. Ex-
tra data dependences are inserted to prevent that the loads of the restore
code can be scheduled before the procedure call. Figure 6.15c shows the
unscheduled (sequential) code with the inserted state preserving code for
register r7.

3. The operations of the inserted save-code are scheduled in the same man-
ner as all other operations.

4. When all save-code operations are scheduled, the procedure call is sched-
uled. This implies that it is no longer allowed to assign a caller-saved
register to an unassigned variable that is live across this procedure call.
Without this restriction, the required extra save-code must be inserted in
already scheduled code. As discussed previously, this is problematic for
TTAs. To prevent such an assignment, all caller-saved registers are set as
occupied in the RRV of the instruction of the procedure call. This is illus-
trated in Figure 6.15d assuming a TTA with 20 registers. All caller-saved
registers (r0 - r9) are set as occupied.

5. In the last step, the operations of the restore-code are scheduled. The
generated schedule is shown in Figure 6.15d.

6.6 Experiments and Evaluation

In this section, the performance of the proposed register assignment method
is measured and evaluated. The target TTAs used in the experiments are in-
stances of the TTAideal and the TTArealistic processors (see Section 4.2.2). The
instances of each processor only differ in the number of integer registers. The
largest model supports 512 registers. The smallest model still requires 10 reg-
isters. The reason is twofold: from the set of registers, seven registers are
reserved by the compiler front-end as special registers (for the stack pointer,
frame pointer and parameter passing). In addition to these seven registers,
early assignment requires at least three registers for spilling6. Integrated as-
signment can always find a solution when the target TTA contains at least
seven registers, because no reserved registers are needed for spilling. For
the experiments a single RF for each register type (integer, floating-point and
Boolean) is used. In Chapter 9, this restriction is released.

To measure the performance of the proposed integrated assignment
6These three extra registers are required to hold the memory addresses and the results of the

reload operations in case all three operands of, for example, a multiply-add are spilled.

122 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

method the benchmarks are first compiled to sequential move code and sim-
ulated with representative data sets. The sequential code is scheduled for the
target architecture with the use of profiling information. The last step com-
bines the information from the parallel code with the profiling information in
order to compute, for example, the cycle count. The performance numbers are
obtained by averaging the speedups over all benchmarks.

Since both instruction scheduling and register assignment are NP-complete
problems, heuristics are used for guiding the instruction scheduling and regis-
ter assignment process. The heuristics are defined at three hierarchical levels:

• Register selection (Section 6.6.1)
• Operation selection (Section 6.6.2)
• Basic block selection (Section 6.6.3)

To evaluate the heuristics in a structured manner, they are evaluated indepen-
dently. We are aware of the fact that the heuristics are not independent. How-
ever, evaluating all combinations of heuristics is too time-consuming. Further-
more, it is not to be expected that a set of heuristics exists, which in all situ-
ations, outperforms the others. In the final section, the performance of inte-
grated assignment is compared with the best approach found in Chapter 5.

6.6.1 Register Selection

When an operation n that referes to a not already assigned variable v is sched-
uled, then a non-interfere register set is constructed for v. Each member of this
set can be mapped onto a v. This set is defined as:

RNon-interfere(v, n) = R − RInterfere(v, n) (6.16)

where R is the set of registers of the target processor of the required type (inte-
ger, floating-point, etc.). The set RInterfere(v, n) is computed with equation 6.15.

Normally, this set has more than one element. The question arises which
register to select. Integrated assignment has three choices: (1) mapping the
variable onto a caller-saved register, (2) mapping the variable onto a callee-
saved register or (3) spilling the variable to memory. The cost functions
for each of these three choices are given in the Equations 3.5 (caller-saved
cost), 3.6 (callee-saved cost) and 3.4 (spill cost). We propose to choose the ca-
tegory with the lowest cost. When the spill cost is the lowest, the variable is
spilled to memory even when registers are available. When one of the other
two categories has the lowest cost, a register is selected from the associated
part of the register set. When no register in such a register set can be found,
the category is chosen which has the second lowest costs. If this also fails no
register can be found and the variable is spilled to memory.

6.6. EXPERIMENTS AND EVALUATION 123

6.6.2 Operation Selection

As discussed in Section 3.4.1, operations are selected for scheduling when they
become a member of the ready set. A heuristic is used to select an operation
from this set. The basic block scheduler uses the priorityslack heuristic as de-
fined in Equation 3.10, which favors operations in the critical path. However,
when registers are scarce it may be profitable to use a modified operation selec-
tion heuristic, which decrease the register pressure [GWC88]. This may reduce
the amount of spill code and hence results in an improved performance. The
goal of such a heuristic is to favor operations in the ready set that will decrease
the number of live ranges, i.e. select operations that end the live range of vari-
ables. This set of operations is denoted as O⊥ ⊆ ready. Three heuristics are
proposed that increase the priorities of the operations in the set O⊥. The prior-
ities of all other operations (ready − O⊥) remain unchanged.

• Step:

prioritystep (o ∈ O⊥) = priorityslack (o) +
{

δ : |Rfree| < α
0 : |Rfree| ≥ α

where Rfree is set of available registers in the last instruction of the cur-
rently scheduled basic block. This priority function increases the priority
of operations in O⊥ when |Rfree| drops below a certain threshold α.

• Linear:

prioritylinear(o ∈ O⊥) = priorityslack(o) ·
{

1 + δ
(

α−|Rfree|
α

)
: |Rfree|<α

1 : |Rfree|≥α

where α is the register limit that determines when the priority should
be increased. The parameter δ determines how strong the number of
available registers |Rfree| influences the priority.

• Exponential:

priorityexponential (o ∈ O⊥) = priorityslack (o)
(

1 + δ · e−
Rfree

α

)

This priority scheme favors operations in O⊥ using an exponential func-
tion. The parameters α and δ determine the impact of the number of
available registers |Rfree| on the priority.

The impact on the priority of all three heuristics is shown in Figure 6.16. As
can be clearly seen, the heuristics have more influence when the number of
available registers decreases.

For all three heuristics a large number of experiments are performed while
varying the parameter values. Unfortunately, the experiments showed that
changing the priority function has little impact on the resulting performance.

124 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

α0

Step

Exponential

1

1+δ

w
ei

gh
t

free|R |
|R|

Linear

Figure 6.16: The priority as a function of the number of available registers for
the three heuristics.

Only when registers are extremely scarce, a change in the priority scheme is
profitable. However, the performance gain is very small (in the order of 0.1%).
Changing the operation priority scheme, when a sufficient amount of registers
is available may even hurt performance. Analysis of this unexpected behavior
resulted in the following observations:

• The size of the ready set is usually small. Since O⊥ is a subset of ready,
this set is even smaller. Consequently, only few operations are subject to
a change in priority.

• A change in the priority when registers were scarce did not result in an
increased performance, because the operations that were selected due to
the new heuristic were selected anyway with the slack priority function.
The same operations were selected independent of the priority function.

• Changing the priority hurts performance when operations that are not
in the critical path are selected first. This was especially true when the
priority was increased when sufficient registers (> 3) were available.

The above observations result in the conclusion that the slack priority heuristic,
when using integrated assignment, not only favors critical operations but also
does a fair good job in controlling the register pressure.

6.6.3 Basic Block Selection

In all experiments, the procedures of the benchmark programs are scheduled
independently. Decisions made in one procedure do not influence decisions in
other procedures. The next hierarchical level in a basic block scheduler is the
basic block. When basic block scheduling and register assignment are done in
separate phases, the order in which the basic blocks are scheduled has no in-
fluence on the resulting code. The basic blocks are scheduled as independent
pieces of code. When, however, instruction scheduling and register assignment

6.6. EXPERIMENTS AND EVALUATION 125

0

4

8

12

16

20

P
er

fo
rm

an
ce

 g
ai

n
 (

%
)

10 12 14 16 18 20 22 24 26 28 30 32 48 64 512

Number of registers

TTA
TTA

ideal

realistic

Figure 6.17: Speedup of the BBfreq heuristic compared to the BBtop heuristic.

are integrated into a single phase, the scheduling order of the basic blocks does
matter. Register assignment decisions made during instruction scheduling in
one basic block can influence scheduling/assignment decisions in other basic
blocks since the live ranges of variables cross basic block boundaries. Refer-
ences in basic blocks that are scheduled early in the process can choose from
all registers, while references in basic blocks that are scheduled later on only
can pick registers from a smaller set of available registers. Register assignment
for these later references is more likely to be hindered by a shortage on regis-
ters. The introduction of false dependences and spill code might be necessary.

In this section, two basic block priority functions are proposed and evalu-
ated. Profiling information is used for determining the execution frequencies
of the basic blocks. The evaluated heuristics are listed below.

BBtop Basic blocks are selected for scheduling in topological order; a basic
block is selected when all its predecessor basic blocks are scheduled.

BBfreq The basic blocks are ordered according to their execution frequency. Ba-
sic blocks, which are executed more frequently, are scheduled first. Con-
sequently, the set of free registers is larger in themost frequently executed
basic blocks. This results in a large scheduling freedom, since registers do
not hinder the construction of an efficient schedule in these code parts.

When multiple basic blocks conform to the used requirement the selection is
done randomly. The assumptions concerning entry and exit basic blocks as
discussed in Section 6.5.1 are respected.

Figure 6.17 compares the performance of both methods. The speedup num-
bers are obtained by averaging the speedups over all benchmarks. As can be
seen from the results, the basic block scheduling heuristic has a large impact on
the performance of integrated assignment. When registers are not a critical re-
source, the methods give approximately the same results. However, when reg-

126 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

0

5

10

15

20

25

P
er

fo
rm

an
ce

 g
ai

n
 (

%
)

10 12 14 16 18 20 22 24 26 28 30 32 48 64 512

Number of registers

TTA
TTA

ideal

realistic

Figure 6.18: Speedup of integrated assignment compared to DCEA.

isters become scarce the execution frequency conscious heuristic outperforms
the topological approach with more than 10%.

The results show a larger performance gain for the TTArealistic than for the
TTAideal. This effect is caused by the fact that the amount of resources like
FUs and buses are more limited for the TTArealistic. When applying the BBtop

heuristic with a limited set of registers, spill code is inserted in code with a
high execution frequency such as loops. These extra operations require ex-
tra resources such as FUs. When these resources are limited, the operations
cannot be executed in parallel, hence the size of the scheduled basic blocks
is increased. When the resources are unlimited, this increases will be less or
non-existing. When applying the BBfreq heuristic, spill code is inserted in code
with a low execution frequency. Because the TTArealistic has a limited set of
resources, these basic blocks also enlarge. However, this does not hurt per-
formance as much as the BBtop heuristic does. For the TTAideal there are a
large number of resources and hence the spill code can be scheduled in paral-
lel when other dependences will permit this. Consequently, the performance
penalty when applying the BBtop heuristic is less pronounced.

It is interesting to note that the performance gain for 10 registers is lower
than for 12 registers for the TTArealistic. This effect can be explained by the
fact that when a large amount of spill code is needed, it will be placed in basic
blocks with a high frequency count anyway.

6.6.4 Early vs. Integrated Assignment

To evaluate the introduced integrated assignment method, we compare its re-
sults, for each of the benchmarks described in Section 4.1, with the results of
DCEA (Dependence-Conscious Early Assignment), the best register assign-
ment method of Chapter 5. The averages of theses measurements for both
target TTAs are shown in Figure 6.18 (the results of the individual benchmarks

6.6. EXPERIMENTS AND EVALUATION 127

add.r → v1;
v1 → st.t;
sub.r → v2;
v2 → mul.t;

δa

st.t

add.r sub.r

v1(r7) v2(r7)

mul.t

a) Code fragment. b) DDG with a false dependence.

add.r → st.t;
sub.r → mul.t;

add.r → st.t; sub.r → mul.t;

c) Early assignment schedule d) Integrated assignment schedule

Figure 6.19: False dependence effect when registers are scarce.

can be found in Appendix A). The number of registers in each target TTA is
placed along the x-axis. The speedup of integrated assignment compared with
DCEA is listed along the y-axis. The average performance gain varies between
0% for 512 registers and 21.3% for 10 registers.

As can be observed from the figure, the speedup is substantial for low regis-
ter counts. As already demonstrated in Section 5.1, DCEA successfully tries to
avoid false dependences; however, when registers become a critical resource it
becomes difficult to avoid false dependences. This is illustrated in Figure 6.19.
Figure 6.19a shows a small code fragment consisting of four transports. When
sufficient registers are available, DCEA will prevent a false dependence and
assigns different registers to v1 and v2. However, when registers are scarce
this is no longer guaranteed. To prevent spilling of other variables, or in an
attempt to prevent other false dependences, DCEA may assign the same regis-
ter to both variables v1 and v2. This results in a false dependence in the DDG
as depicted in Figure 6.19b. Although during scheduling, software bypassing
and dead-result move elimination can, and often will be applied, the false de-
pendence in the DDG prevents an optimal schedule. The resulting schedule is
given in Figure 6.19c. The optimal schedule is given in Figure 6.19d. With in-
tegrated assignment it is possible to generate the optimal schedule even when
registers are scarce, because it can re-use the registers freed due to software
bypassing and dead-result move elimination.

The direction of a false dependence added by an early assignment ap-
proach, such as DCEA, is determined by the operation order in the sequential
code. This is depicted in Figure 6.20. The sequential code is shown in Fig-
ure 6.20a. When the variables v1 and v2 are mapped onto the same register, a
false dependence is added to the DDG. There are two possibilities, δa

1 and δa
2 , as

shown in Figure 6.20b. Only one of them needs to be added. Adding false de-
pendence δa

1 results in a critical path of 5 instructions, while adding δa
2 results

128 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

#100 → ld.t
ld.r → v3
v3 → add.o #4 → add.t
add.r → v1;
v1 → st.o; #100 → st.t
v3 → sub.o #4 → sub.t
sub.r → v2;
v2 → mul.o #7 → mul.t
mul.r → v4;
v4 → st.o; #104 → st.t

δa
δa

1

2

v1(r7) v2(r7)

v4(r6)

v3(r6)

add sub

ld

mulst

st

a) Code fragment. b) DDG with two possible false
dependences.

Figure 6.20: Direction of false dependences.

in 4 instructions in the critical path, assuming single cycle latencies. Appar-
ently, false dependence δa

2 is preferable. Unfortunately, early assignment will
add δa

1 due to the operation order in the sequential code. A solution could be to
take this observation into consideration when adding false dependences prior
to scheduling. However, during scheduling the critical pathmay change due to
scheduling decisions, and thus the effect of the selected false dependence may
turn out not to be advantageous. In other words, the order of operations and
the introduced false dependences hinders out-of-order scheduling. Because
integrated assignment assigns registers during scheduling, it allows reorder-
ing of the operations and can adapt to new situations caused by scheduling
decisions.

Another effect, which emerges when registers become scarce, is the inter-
action between register assignment and instruction scheduling. The scheduler
selects operations for scheduling according to a priority function, which favors
the operations in critical paths. Because integrated assignment assigns a regis-
ter to a variable when the first operation that refers to this variable is scheduled,
it respects the operation ordering of the instruction scheduler. In other words,
for operations in the critical path it is more likely to find a free register. Early
assignment does not interact with the instruction scheduler and may introduce
false dependences and spill code in the critical path.

The results in Figure 6.18 show that the performance gains for the TTAideal

are larger than the performance gains for the TTArealistic. When applying early
assignment for the TTArealistic, false dependences can be concealed by a short-
age on resources such as FUs and buses. In other words, some operations are

6.6. EXPERIMENTS AND EVALUATION 129

0

20

40

60

80

100

120

140

10 12 14 16 18 20 22 24 26 28 30 32 40 48 64 96 128 256

Number of registers

R
el

at
iv

e
cy

cl
e

co
u

n
t

in
cr

ea
se

 (
%

) crypt

132.ijpeg

djpeg

expand

mulaw

Figure 6.21: Cycle count increase relative to the TTAideal with 512 registers
while applying DCEA.

scheduled sequentially anyway due to a resource conflict independent of the
presence of a false dependence. This is not the case for the TTAideal; a false
dependence is not hidden by a resource shortage since a large number of re-
sources are provided. Because a false dependence introduced by early assign-
ment when scheduling for the TTAideal is more visible than when scheduling
for the TTArealistic, the performance gain for the TTAideal is larger.

As can be seen in the tables in Appendix A, the performance gains of the
benchmarks differ significantly. The benchmark crypt, 132.ijpeg and djpeg have
large performance gains while the benchmarks expand and mulaw do not show
any improvement. Figure 6.21 shows the cycle count increase of DCEA relative
to the TTAideal with 512 registers for the five mentioned benchmarks. The rel-
ative cycle count for the benchmarks crypt, 132.ijpeg and djpeg increases when
the number of registers decreases. These benchmarks require a large number
of registers, and thus opportunities are present to allow integrated assignment
to improve performance. The relative cycle count for the benchmarks expand
and mulaw is not influenced when the number of registers is reduced. These
benchmarks only require 10 registers and thus integrated assignment cannot
improve their performance.

In some situations, also a small negative performance effect can be observed
as shown in the tables in Appendix A. This is mainly caused by the register se-
lection heuristics. Bothmethods, DCEA and integrated assignment, use heuris-
tics to determine whether to assign a caller-saved or callee-saved register, or to
spill the variable. In some situations, this choice leads to a negative perfor-
mance impact. The effect is larger for the TTArealistic than for the TTAideal

because the inserted spill code requires extra resources. When resources are
limited, the impact is larger. However, on average, integrated assignment out-
performs DCEA.

130 CHAPTER 6. INTEGRATED ASSIGNMENT AND LOCAL SCHEDULING

6.7 Conclusions

Based on the observations of Chapter 5, an integrated assignment method is
developed in combination with a basic block scheduler. In this chapter, the
general principle of this innovative method is presented. A method is devel-
oped, which constructs a set containing all registers that can be mapped onto
a variable v, while part of the code is already scheduled, and part of the vari-
ables are already assigned to registers. This set contains instruction precise
information about available registers. The introduced method does not add
false dependences prior to scheduling. During scheduling/assignment, false
dependences are only created when there are not enough registers. In contrast
to early assignment methods, the number of required registers is reduced by
exploiting software bypassing in combination with dead-result move elimina-
tion. In order to be complete, specific issues related to the insertion of spill code
and the insertion of caller-saved and callee-saved code are addressed. Further-
more, several heuristics are presented and evaluated.

The method is compared with the best early assignment approach found
in Chapter 5. All methods are implemented within the same compiler, which
makes a fair comparison possible. The experiments showed performance gains
up to 100%. Especially when registers were scarce, integrated assignments out-
performed DCEA. Since we compared our method with the best approach im-
plemented in Chapter 5, we conclude that integrated assignment also outper-
forms late assignment and strictly early assignment.

Although we discussed the new method in the context of TTAs, we believe
that it is also applicable for superscalars and VLIWs. A problem is, however,
that these architectures do not suppress unnecessary register write-backs and
thus spill code cannot be scheduled without the use of registers. To overcome
this problem, one can reserve a small set of registers for spilling. Alternatively,
an extension for superscalar processors, as proposed in [LG95], could alleviate
this problem. Lozano and Gao describe a hardware scheme that avoids the
commits of variables that are only live in the reorder buffer. This is similar
to software bypassing, with the advantage that dependent instructions do not
have to be scheduled in the same cycle in order to avoid commits, which relaxes
the scheduling process and may result in even larger speedups.

Integrated Assignment
and Global Scheduling 7
T he amount of exploitable ILP in basic blocks is limited. To justify the du-

plication cost of FUs and data paths in ILP processors, the ILP between
operations of different basic blocks should also be exploited. In general, more
exploitable ILP increases the number of simultaneously live variables in the
schedule produced. Consequently, the register pressure increases and registers
should be assigned with more care. In this chapter, an extension of integrated
assignment is proposed, which fully integrates register assignment and region
scheduling.

This chapter is organized as follows. In Section 7.1, the construction
of the interference register set is discussed when operations are imported
into basic blocks. The algorithm for importing operations is presented in
Section 7.2. Section 7.3 presents an example of the proposed method. When
integrated assignment runs out of registers, a decision has to be made whether
to insert spill code or to schedule the code less aggressively. This is discussed
in Section 7.4. The insertion of state preserving code in a region scheduler
and its consequences are described in Section 7.5. In Section 7.6, various
register selection heuristics are presented to increase the performance of the
generated code. The last section evaluates the proposed techniques and states
the conclusions.

7.1 The Interference Register Set

An extended basic block scheduler increases the exploitable ILP by moving
operations over basic block boundaries. For reasons discussed in Section 3.4.4,
importing operations may result in code duplication. Importing and duplica-

131

132 CHAPTER 7. INTEGRATED ASSIGNMENT AND GLOBAL SCHEDULING

bDbD

bI

bI

bI

bI

b’

Live Ranges
after importing

Live Ranges

v1 v2 v3 v4

add.o
add.t
v3add.r

v2
v1

v1 v4

before importing

v1 v2 v3 v4

Figure 7.1: Stretching and shrinking of live ranges when importing all the
moves of the addition.

tion changes the live ranges of the variables referenced by the imported oper-
ation. This is shown in Figure 7.1. Importing the addition of basic block b′ to
the basic blocks bD, results in a shorter live range for the variable v2, while the
live range of v3 is stretched. The live range of v1 does not change, because it
is required by the copy operation in the source basic block b′.

Importing operations changes the number of basic blocks spanned by the
referenced live ranges. When a live range is stretched, the register allocator
must check additional basic blocks for a legal assignment. The opposite holds
for live ranges that shrink. The consequences of shrunk and stretched live
ranges on the computation of the interference register set are discussed in re-
spectively Section 7.1.1 and Section 7.1.2.

7.1.1 Importing a Use

Importing an operation n, which uses a variable v, may result in a shorter live
range for v. For a legal register assignment, the live-variable information must
be updated. The imported operation n is removed from basic block b′, therefore
the sets liveUse(b′) and liveDef (b′) are recomputed. Operation n is added to the
duplication basic blocks bD ∈ D. This has the following consequence for the
liveUse sets of these basic blocks.

7.1. THE INTERFERENCE REGISTER SET 133

liveUse(bD) =
{

liveUse(bD) ∪ {v} : v /∈ liveDef (bD)
liveUse(bD) : otherwise

∀ bD ∈ D (7.1)

The basic blocks on all paths from the duplication basic blocks (bD ∈ D) to
the source basic block (b′) are called intermediate basic blocks (bI ∈ I).

I = {b ∈ B | bD � b ∧ b � b′, bD ∈ D} (7.2)

where b � b′ means that there is a control flow path within the region from
b to b′. The live-variable information in these intermediate basic blocks may
change also when operation n is imported. It is tempting to simply remove
the variable v from the sets liveIn and liveOut of all basic blocks bI ∈ I . Un-
fortunately, sometimes the intermediate basic blocks have references to v, or
v is an element of the set liveIn of one of the successors (excluding b′ and the
intermediate basic blocks) of the intermediate basic blocks. In these situations,
the live range shrinks only partly. The new live-variable information in the in-
termediate basic blocks can be computed with the Equations 3.1 and 3.2. Note,
only the live-variable information of the basic blocks b ∈ {b′} ∪ I ∪ D changes.
Only for these basic blocks, the equations have to be solved.

Additional steps are required when variable v is already mapped onto a regis-
ter r. The RRVs that are not spanned anymore by the new shorter live range,
incorrectly indicate that r is already used and cannot be assigned to another
variable. This hinders an efficient register assignment. The RRVs of the inter-
mediate basic blocks bI ∈ I , the source basic block b′ and the duplication basic
blocks bD ∈ Dmust be updated. Register r is removed from all RRVs of a basic
block b ∈ {b′} ∪ I if v /∈ liveIn(b) ∧ v /∈ liveDef (b). The RRV information in the
not yet scheduled duplication basic blocks remains unchanged because before
and after importing, v is live in these basic blocks. The RRV information in the
already scheduled duplication basic blocks is updated in the same way as if
the use was scheduled with local scheduling.

The new live-variable and RRV information is computed prior to importing.
This information reflects the situation as if operation n referring to v is im-
ported in the duplication basic blocks bD

1. Consequently, the same method for
constructing the interference register set as in basic block scheduling can be
used (see Equation 6.15).

7.1.2 Importing a Definition

Importing an operation n, defining a variable v, stretches the live range of v.
The basic blocks spanned by the new live range consist of the basic blocks of
the original live range, the intermediate basic blocks and the duplication ba-
sic blocks. Importing operation n changes the live-variable information. To

1When the live range does not change, neither the live-variable nor the RRV information needs
to be updated.

134 CHAPTER 7. INTEGRATED ASSIGNMENT AND GLOBAL SCHEDULING

produce a legal register assignment, the sets liveUse(b′) and liveDef (b′) are re-
computed. The set liveDef of the duplication basic blocks changes also:

liveDef (bD) =
{

liveDef (bD) ∪ {v} : v /∈ liveUse(bD)
liveDef (bD) : otherwise

∀ bD ∈ D (7.3)

In addition, the liveIn and liveOut sets of the basic blocks b ∈ {b′} ∪ I ∪ D
change. These sets can be computed with Equations 3.1 and 3.2. However,
there is a simpler method to compute these new live sets. For the source basic
block b′ only the set liveIn changes:

liveIn(b′) = liveIn ∪ {v} (7.4)

The duplication basic blocks bD require only an update of the set liveOut:

liveOut(bD) = liveOut(bD) ∪ {v} ∀ bD ∈ D (7.5)

Because the intermediate basic blocks bI ∈ I do not contain any references to v,
otherwise importing operation nwas illegal2, their live information can simply
be computed with:

liveIn(bI) = liveIn(bI) ∪ {v} ∀ bI ∈ I (7.6)
liveOut(bI) = liveOut(bI) ∪ {v} ∀ bI ∈ I (7.7)

The new live-variable information is computed prior to importing. It reflects
the situation as if the reference to v is imported in the duplication basic blocks.

The construction of the interference register set as given in Equation 6.15 as-
sumes that all references to variable v are located in not yet scheduled basic
blocks. When operations are imported, they can also be added to already
scheduled duplication basic blocks3. Let’s denote this set of scheduled du-
plication basic blocks D+ ⊆ D. The ordering of the operations in these basic
blocks is completely known. This allows us to make a more accurate register
availability estimation. The interference register set can now be computedwith
an equation similar to Equation 6.11, where icur is replaced with the earliest
instruction EarliestInsn(b, n) in which the duplicated definition can be sched-
uled. Dependence constraints are used for computing the earliest instruction.

R+
RRV (b, n) =

LastInsn(b)⋃
i=EarliestInsn(b,n)

RRV (i) (7.8)

2Operation n would not be selected for importing, because of a false dependence between the
operation referring to v in one of the intermediate basic blocks and operation n.

3This is caused by the fact that guarded expressions, in the current implementation, are only
computed for already scheduled duplication basic blocks. When, for example, a variable is off-
live, importing may fail because one of the duplication basic blocks is not yet scheduled. When
all duplication basic blocks are scheduled or are being scheduled, the guarded expressions can
be computed and importing may succeed. As a result, the operation is imported into already
scheduled basic blocks.

7.1. THE INTERFERENCE REGISTER SET 135

Live ranges Live ranges
after importing

v1 v2
before importingA

B C

 D

v1 v2

Conflicting

def v2(r1)

def v1(r1)

use v1(r1)

use v2(r1)

assignment of r1

Figure 7.2: Register conflict when operations are imported.

The interference register set for a variable v defined by an imported opera-
tion n can now be computed with:

RInterfere(v, n) =


 ⋃

b∈BIO(v)

RIO(v, b)


 ∪


 ⋃

b∈BDU (v)−D+

RDU (v, b)




∪


 ⋃

b∈D+

R+
RRV (b, n)


 (7.9)

Note that due to importing I ⊆ BIO and D ⊆ BDU .
A refinement can be made when computing the interference register sets

for the basic blocks b ∈ D+. It can happen that the register requirements of the
earliest instruction where the definition can be scheduled, in combination with
the register requirements of the other parts of the live range, exceed the number
of available registers. When the definition is scheduled in a later instruction,
the register pressure may reduce. Therefore, the definition is annotated with
the earliest instruction in which the register requirements are still met. The
scheduler uses this information to determine the earliest instruction in which
a scheduling attempt is made.

The previous discussion assumes that variable v is not yet mapped onto a reg-
ister. This is, however, not always true. When a register was already assigned
before importing, the situation can arise that the assigned register is not free in
the stretched live range. This is illustrated in Figure 7.2. Assume that the defi-
nition of r1 in basic blockD is imported into basic block A. As a consequence,
in basic block C, two variables are live simultaneously that are assigned to the
same register. This will result in incorrect program execution. Consequently,
importing is illegal. However, it may turn out that another register can be used

136 CHAPTER 7. INTEGRATED ASSIGNMENT AND GLOBAL SCHEDULING

Algorithm 7.1 TRYTOIMPORTOPERATION(b, o)

b′ = BB(o)
D = COMPUTEDUPLICATIONSET(b, b′)
UPDATEUSEINFORMATION(b′, D, o)
UNASSIGNDEFINITION(o)
UPDATEDEFINFORMATION(b′, D, o)
FOR EACH b′′ ∈ D DO

IF b′′ ∈ is scheduled THEN
IF ¬ TRYTOSCHEDULEOPERATION(b′′ ,o) THEN
RELEASERESOURCES(D, o)
RESTOREDEFINFORMATION(b′, D, o)
REASSIGNDEFINITION(o)
RESTOREUSEINFORMATION(b′, D, o)
return

ENDIF

ENDIF

b′′ = b′′ ∪ {o}
ENDFOR

b′ = b′ − {o}

for the new stretched live range. Assigning this register to variable v2 allows
the codemotion. Therefore, prior to computing the interference register set, the
assignment of the definition is undone, and the same procedure is followed as
if the variable was not assigned. When it turns out that not sufficient resources
are available to successfully import the operation, importing fails and the orig-
inal assignment is redone.

7.2 Importing Operations

The implementation of integrated assignment into the region scheduler re-
quires some changes to Algorithm 3.8 as shown in Algorithm 7.1. Prior to
importing, the live-variable and RRV information is changed, as if the oper-
ation was imported, using the functions UPDATEUSEINFORMATION and UP-
DATEDEFINFORMATION. As discussed in the previous section, an earlier as-
signment of the definition may hinder the algorithm to find a free register.
Therefore, the assignment of the definition is undone with the function UNAS-
SIGNDEFINITION. When all information is updated, the scheduler attempts to
import operation o in the duplication basic blocks D. After an operation has
been imported successfully, the RRV information is updated. When however,
due to some resource constraint this is not feasible, all scheduling decisions
made so far for this operation, and the changed live-variable and RRV infor-

7.3. EXAMPLE 137

mation, must be restored to their original state.
When a variable has definitions or uses outside the scheduled region, the

RRVs in the live-range that are outside the region are also updated. This is
in contrast with the approach chosen by [FR91], where special data structures
are needed to distribute the register assignment information from one trace
to another. In our approach, the register assignment information is implicitly
distributed to other regions.

7.3 Example

An extensive example is used to demonstrate the operation of the proposed
method. We start this example with the CFG given in Figure 7.3. It shows the
schedule before the addition in basic block E is imported into the duplication
basic blocks A and B. It is assumed that basic block A is currently being sched-
uled and basic block B is already scheduled. Due to earlier scheduling steps,
both basic block A and B contain three instructions (for reasons of clarity, the
already scheduled operations are not shown). The basic blocks are annotated
with live-variable and RRV information. Variable v1 is already mapped onto
register r3. This assignment is reflected in the RRVs of all shown basic blocks.
Because the basic blocks A and B are already scheduled, and v1 is live on en-

E

DC

BA

live

liveOut

r2,r3

r2,r3

r2,r3

liveOut

liveIn

r2,r3

liveOut

liveIn

liveIn

r3

r3

r3

liveIn ={v1,v2}

liveOut ={v1,v2} liveOut ={v1,v2,v4,v5}

={v1,v2,v4}In

r3

={v1,v2,v4,v5}

={v3,v4}

={v1,v2,v4}

r2,r3

={v1,v2,v4,v5}

={v1,v2,v4}

={v1,v2}

mul.r

17

v1(r3)

v5(r2)

#63 st.o

st.t

v1(r3) add.o

add.t

v3(r2)

sub.o

v2

add.r

v2

v4

mul.t

mul.o

Figure 7.3: CFG prior to importing.

138 CHAPTER 7. INTEGRATED ASSIGNMENT AND GLOBAL SCHEDULING

A B

C D

E live

liveOut

r2,r3

r2,r3

r2,r3

liveOut

liveIn

liveOut

liveIn

liveIn

r3

r3

r3

liveIn ={v1,v2}

liveOut ={v1,v2}

v1(r3) add.ov1(r3) add.o

add.tv2add.tv2

liveOut ={v1,v2,v4,v5}

={v2,v4}In

r3

={v1,v2,v4,v5}

={v3,v4}

={v2, v4}

r2

={v2,v4,v5}

={v2,v4}

={v1,v2}

mul.r

17

v1(r3)

v5(r2)

#63 st.o

st.t

v3(r2)

sub.o

add.r

v2

v4

mul.t

mul.o

r2

Figure 7.4: CFG as if the operand and trigger move of the addition were im-
ported.

try of both basic blocks, all their RRVs contain register r3. The other basic
blocks (C, D and E) are not scheduled yet. They have only one RRV with reg-
ister r3 set as unavailable.

Importing the addition results in a shorter live range for variable v1. Be-
cause basic block C contains a reference to v1, the live range cannot shrink
completely. The live range of variable v2 does not shrink at all, because basic
block E contains another use of v2. Figure 7.4 shows the situation as if the
moves v1(r3)→ add.o and v2→ add.t were imported. In addition to the
changes in the live-variable information, some RRVs are also changed. Because
v1 is not live anymore in the basic blocksD and E, register r3 is removed from
their RRVs.

Importing the transport add.r → v3(r2) stretches the live range of vari-
able v3. Note that v3 was already assigned to register r2. This register, how-
ever, is also used in basic block D by variable v5, which makes importing ille-
gal. To allow importing, the assignment of v3 is undone. Figure 7.5 shows the
result of unassigning r2, and the new live-variable and RRV information, as if
the move add.r→ v3 is imported.

In the last step, the addition and its duplicate are scheduled. First, the trig-
ger and operand moves are scheduled. During scheduling, register r1 is as-
signed to variable v2. This register is added to the RRVs spanned by v2’s new

