A Low-Cost Approach Towards Mixed Task and Data Parallel Scheduling *

Andrei Ridulescu, Arjan J.C. van Gemund
Faculty of Information Technology and Systems
Delft University of Technology
{A.Radulescu,A.vGemund} @its.tudelft.nl

Abstract

A relatively new trend in parallel programming schedul-
ing is the so-called mixed task and data scheduling. It
has been shown that mixing task and data parallelism to
solve large computational applications often yields better
speedups compared to either applying pure task parallelism
or pure data parallelism. In this paper we present a new
compile-time heuristic, named Critical Path and Alloca-
tion (CPA), for scheduling data-parallel task graphs. De-
signed to have a very low cost, its complexity is much lower
compared to existing approaches, such as TSAS, TwoL or
CPR, by one order of magnitude or even more. Experimen-
tal results based on graphs derived from real problems as
well as synthetic graphs, show that the performance loss of
CPA relative to the above algorithms does not exceed 50%.
These results are also confirmed by performance measure-
ments of two real applications (i.e., complex matrix multi-
plication and Strassen matrix multiplication) running on a
cluster of workstations.

1 Introduction

Recent studies has shown that, for a large class of large
computational applications, exploiting both task and data
parallelism yields better speedups compared to either pure
task parallelism or pure data parallelism [2, 7, 20, 17, 26].
In large applications, pure data parallelism is relatively lim-
ited, especially for irregular applications. Pure task paral-
lelism, on the other hand, can indeed expose a degree of
parallelism that is comparable to the combined task and data
parallelism. However, this can only be achieved using a
huge time and memory compared to a mixed task and data
parallelism approach. Thus, exploiting the hierarchy of task
and data parallelism has emerged as a natural solution.

*This research is partially granted by the Netherlands Computeér Sci-
ence Foundation (SION) with financial support from the Netherlands Or-
ganization for Scientific Research (NWO) under grant number SION-
2519/612-33-005.

0190-3918/01 $10.00 © 2001 IEEE

69

Efficiently exploiting mixed task and data parallelism
within an application involves (a) good support at the lan-
guage level for both task and data parallelism, and (b) a
good scheduler. At the language level, there has been
a considerable effort in (a) adding task support to data-
parallel languages, as in Fx {24, 26], Fortran M [7] or
Paradigm HPF [17], or (b) adding data-parallel support to
task-parallel languages such as in Orca [2].

Efficient support for mixed task and data parallel
scheduling is a critical issue for fully exploiting the poten-
tial advantage of the mixed task and data parallelism. Mixed
task and data parallel scheduling algorithms use a directed
acyclic graph in which data parallel tasks are the nodes and
precedence relationships are the edges [16, 17, 23]. A task
can run on any number of processors, as opposed to pure
task scheduling algorithms where a task runs on a single
processor [12, 16, 21, 22, 23, 29, 30]. To distinguish be-
tween the two scheduling techniques, we shall use the terms
M-task and S-task to denote a task that can run on multiple
processors and a single processor, respectively.

An M-task can be either a purely data parallel task, or
a mixed task/data parallel routine. While pure data-parallel
scheduling techniques [1, 5, 13, 14, 15, 18, 28] could still
be applied within data-paralle]l M-tasks, pure task schedul-
ing techniques [12, 16, 21, 22, 23, 29, 30] are no longer ap-
plicable to schedule M-tasks. As a result, new approaches
have to be found that fully exploit the available parallelism.

Scheduling is known to be NP-complete even for the
more simpler problem of scheduling S-tasks [9]. As a re-
sult, M-task scheduling is also NP-complete and heuris-
tics are used. Ramaswamy et al. have proposed a two-
step approach, called Two Step Allocation and Schedul-
ing (TSAS) [17]. First, they use convex programming to
find the number of processors each M-task will be executed
on, such that a compromise is obtained between processor
utilization and the overall critical path. The M-tasks are
then scheduled to processors using a list scheduling algo-
rithm. Rédulescu et al. have proposed a single step schedul-
ing algorithm, called Critical Path Reduction (CPR) [20].
CPR starts from an one-processor allocation for each task,

and iteratively improves this allocation until no further gain
is obtained. Although compared to TSAS, CPR has a

higher time complexity, the schedules are better. Rauber

and Riinger consider a restricted case of task graphs with
a series-parallel (SP) topology [19]. SP graphs are con-
structed merely by series and/or parallel node composi-
tions [6]. A parallel composition consists of a set of inde-
pendent M-tasks that are scheduled by partitioning the pro-
cessors to disjoint sets and assigning the M-tasks to these
processors sets. A series composition consists of a se-
quence of M-tasks, which are allocated the entire processor
set mapped to the composition. Other approaches that fo-
cus on specific task graph topologies include the approach
of Subhlok and Vondran that schedules pipelined M-tasks
computations [25], and the approach of Prasanna et al. that
schedules M-tasks organized in a tree topology [16]. Both
latter approaches obtain optimal results for these particu-
lar cases, respectively. Turek present an approximate algo-
rithm for scheduling independent M-tasks, which are shown

to yield a performance within a factor of 2 compared to the -

optimal et al. [27]. Chakrabarti et al. also tackle the mixed
task and data parallel scheduling problem by switching be-
tween pure task and pure data parallelism while running the
program [4]. This, somewhat different, scheme is designed
to have very low cost as it is used at runtime, as opposed to
the other approaches that focus on compile-time scheduling.

In this paper, we aim at exploiting the cost advantage
of the two-step approach. We present a new heuristic,
named Critical Path and Area-based Scheduling (CPA),
which solves the M-task scheduling problem, like in TSAS,
in two steps. In the first step, the tasks are allocated a num-
ber of processors on which the tasks will run. In the sec-
ond step, the tasks are scheduled on the available number of
processors using a list scheduling. The difference between
CPA and TSAS lies in the first step, where TSAS uses con-
vex programming to find the task allocations, while CPA
uses a greedy heuristic. Our approach has a considerably
lower time complexity, while the results are still accurate.
The performance of CPA is measured using both simula-
tions and real executions based on synthetic, as well as real
application task graphs. Our experiments show that CPA
has a good cost/performance ratio compared to the other
task/data parallel scheduling algorithms.

The paper is organized as follows. The next section spec-
ifies the scheduling problem and introduces some defini-
tions used in the paper. In Section 3, our CPA algorithm is
presented. Section 4 describes its performance, while Sec-
tion 5 concludes the paper.

2 Preliminaries

A parallel program can be modelled by a directed acyclic
graph G = (V,€), where V is a set of V nodes and &

70

is a set of F edges. A node in the task graph represents
a task that runs non-preemptively on any number of pro-
cessors. Such a task is called an:M-task, as opposed to a
S-task which can run only on a single processor. Each M-
task t € V is assumed to have a computation time, denoted
T (t, Np), which is a function of the number of processors
(N,). The computation time function can be obtained ei-
ther by estimation [17, 19] or by profiling. When the cost
is obtained through estimation, it is usually a simple func-
tion according to Amdahl’s law. As a consequence, the ex-
ecution time of an M-task ¢ is predicted by: Ty, (¢, Np) =
(a+ (1 —a)/Ny)T, where 7 is the M-task’s execution time
on a single processor, IV, is the number of processors, and
«a is the fraction of the M-task that executes serially. If pro-
filing is used, the M-tasks’ computation time is either fitted
to a function such as described above (e.g., in case profiling
data is incomplete over the whole number of processors), or
the profiled values are used directly through a table.

The task graph’s edges correspond to precedence re-
lationships (communication messages or synchronization
constraints) and are assigned a communication cost, de-
noted T,(¢1,t2), which depends on the network character-
istics, the amount of data to be transferred, the number of
processors allocated to the predecessor and successor M-
tasks, and the data distribution over the processors for both
the predecessor task ¢; and the successor task to. As for
computation costs, communication costs can be obtained
by estimation [17, 19] or by profiling. In contrast to S-task
scheduling, where scheduling a series of two tasks on the
same processor typically implies that the communication
cost becomes negligible, for M-task scheduling, mapping
a series of two tasks on the same set of processors does
not necessarily mean that the communication cost becomes
negligible, since a data redistribution may occur.

An M-task with no input edges is called an entry task,
while an M-task with no output edges is called an exit task.
The length of a path is the sum of the computation and com-
munication costs of the M-tasks and edges belonging to the
path. The critical path is the longest path in the graph. An
M-task’s top level (T}) is defined as the longest path from
any entry task to the given task, excluding the given task.
Similarly, the M-task’s bottom level (T}) is defined as the
longest path from and including the given task to any exit
task. One can note that the tasks in the critical path have the
highest T; + T}, values. An M-task is said to be ready if all
its parents have finished their execution. A task can start its
execution only after all its messages have been received.

As a distributed system we assume a set P of P homoge-
neous processors, connected in a clique topology in which
inter-processor communication is assumed to perform with-
out contention.

The information on an M-task ¢ which is generated in
the scheduling process is: (a) the number of allocated pro-

CPA ()
BEGIN
Obtain the task allocation using MA().
Schedule the tasks using MLS().
END

Figure 1. The CPA Algoriihm

cessors Np(t), (b) the allocated processor set Py(t), (c)
the start time Ts(t), and (d) the finish time Ty(t). The
last message arrival time of a ready task ¢ is defined as
Tm(t) = max pee {T5(t") + Te(t',t)}. The processor
ready time of a processor p € P on a partial schedule is
defined as the finish time of the last task scheduled on that
processor: Tr.(p) = maxsey pep, (t) Tr(t)-

The scheduling problem objective is to find a scheduling
of the tasks in V on the processors in P such that the par-
allel completion time (schedule length) is minimized. The
parallel completion time is defined as T, = maxpep Tr(p).

3 The Algorithm

In this section, we present our multi-step scheduling al-
gorithm, called Critical Path and Area-based scheduling
(CPA), that produces good schedules, despite the fact that
the time complexity is reduced with one order of magnitude
compared to other well-known multi-step methods, such
as TSAS and TwoL. Unlike some of the related work, the
CPA algorithm is generally applicable, i.e., it admits task
graphs of any topology. CPA uses a two-step approach
similar to TSAS (see Figure 1). First, CPA allocates the
number of processors on which each task will run. Second,
CPA schedules the allocated tasks using a list scheduling
algorithm, such as the one described in Section 3.2. How-
ever, instead of using the costly convex programming, as
in TSAS, CPA uses a greedy algorithm to obtain the task
allocation in the first step.

3.1 Task Allocation

Like in TSAS, we define the critical path of the task
graph: Top = maxeey {Tp(t)} and computing area:
Ta =+ Ysep (Tw(t, Np(t)) x Ny(t)).

Both metrics represent theoretical lower bounds for the
completion time Tp,. However, Tcp and T4 characterize
two different aspects of Tp. T p is a measure of the depen-
dence paths, that can be shortened by allocating more pro-
cessors to tasks. T4 is a measure of processor utilization,
that is increased by allocating more processors to tasks.

The parallel completion time, T}, can be approximated
by the following formula: T = max {T¢p,Ta}. Our goal
in the allocation phase is to find a task allocation that mini-
mizes 777, which in TSAS is achieved through convex pro-

71

MA O
BEGIN
FORALL¢ € VDO
Ny(t) « 1;
END FORALL
WHILE Tcp > T4 DO
t + CP task such that (N,(t) < P)and

Tw(t,Np(t)) _ Tw(t,Np(t)+1)
Np(t) Np(t)+1

Np(t) + Np(t)+1;
Recompute T3 and T values;
END WHILE
END

) is maximized;

Figure 2. The Task Allocation Procedure

gramming. We present a different approach using a simple
yet effective greedy heuristic as described in Figure 2.

We start with the most unfavourable case for Top,
namely with one processor allocated for each task. This
task allocation yields the minimum value for T4. There-
fore, if T4 > Tep then this allocation is also the one that
minimizes T;. If T4 < Teop, we must decrease Top by
allocating more processors to tasks.

We proceed by allocating at each step one more proces-
sor to a critical path task. We consider only critical path
tasks, because increasing the number of processors for any
other task does not reduce T¢ p. From the critical path tasks,
we select the task that determines the highest decrease of
Tcp (i.e., the maximum gain for T;).

The algorithm terminates when Top exceeds T4, from
which point onwards any task allocation increase will only
increase T;, as the largest term T'4 is increased.

At each iteration, Ty and T} need to be recomputed due
to the new task allocation. This computation is not neces-
sary for all the tasks, but only for the tasks affected by the
reallocation. Consequently, only the T; values of the cur-
rent task’s ancestors and the 1} values of the current task’s
descendents must be recomputed.

3.2 Task Scheduling

After the M-tasks have been allocated a number of pro-
cessors, the tasks are actually scheduled on the processors
using a list scheduling procedure (MLS, see Figure 3) sim-
ilar to that used in TSAS or CPR.

At each step the ready M-task with the highest priority
(p(t)) is scheduled. Tasks can have different priorities, such
as the earliest starting time, as in TSAS, or bottom level, as
in CPR. In our algorithms we use bottom level as the M-task
priority used in MLS. As the number of processors (/Vp) to
be allocated on each M-task has already been determined,
MLS only assigns the physical processors to the tasks, and
also computes the task start and finish times.

MLS ()
BEGIN
WHILE NOT all tasks scheduled DO
t « ready task with the maximum p(t).
Schedule t on the first NV, (t) processors becoming idle.
END WHILE
END

Figure 3. The List Scheduling Procedure

The processors are maintained sorted by their processor
ready times (T3). The set P;(t) of the first N, (t) processors
having the lowest T are assigned to the task # that is to be
scheduled. The task start and finish times are then computed
as Ts(t) = maxyep, (1){Tm(t), Tr(Np(t))}, and Ty (t) =
T,(t) + Tw(t, Np(t)), respectively.

Once the task has been scheduled, MLS checks all the
successors of the given task to see if they become ready
for execution. The algorithm computes the priorities for
the new ready tasks and adds them to the ready task set.
Then the procedure continues until all the tasks have been
scheduled.

3.3 Complexity Analysis

The time complexity of the task allocation procedure is
analyzed as follows. Computing T3, T3, Tcp and T4 takes
O(V + E) time. Computing the critical path and selecting
the task with the maximum T gain also takes O(V + E).
Consequently, the loop body of the task allocation proce-
dure (MA) takes O(V + E) time.

The scheduling loop is executed at most P times for each
task, because at each step one more processor can be allo-
cated and there can be at most P processors allocated to a
task. As there are V tasks in the task graph, the schedul-
ing loop can be executed at most V P times. Although this
is the worst case, in practice, however, the scheduling loop
is executed considerably less frequent. Nevertheless, the
worst-case time complexity for the task allocation proce-
dureis O(V(V + E)P).

The complexity of MLS breaks down in three com-
ponents: (a) O(E + V) to compute task priorities, (b)
O(V'log V) to sort the tasks, and (c) O(V P) to schedule
tasks to processors, resulting in a total time complexity of
O(E + Vlog (V) + VP). Thus, it follows that the total
worst time complexity of CPA is O(V(V + E)P).

The worst time complexity of CPA is considerably
lower compared to the worst time complexities of TSAS
(O(V#5Plog P)), TwoL (O(VZP2?logP)), and CPR
(O(EV?P + V3Plog (V) + V3P?)). Considering its low
time complexity, and its relatively good performance (see
Section 4), we consider it as being a good choice when rea-
sonably good schedules must be produced at very low cost.

72

4 Performance Analysis

The performance of our CPA algorithm is compared with
three well-known existing M-task scheduling algorithms,
namely TSAS [17], TwoL [19], and CPR [20], as well
as with pure task and data parallel scheduling algorithms
(called TASK and DATA, respectively). TASK and DATA
use an allocation of 1 processor, and all P processors for
each M-task using a list scheduling algorithm, respectively.
We selected TSAS and CPR because, like CPA, they are
targeted towards general task graphs and it has been shown
to yield good performance compared to pure task and data
scheduling algorithms [17, 20]. As the convex program-
ming algorithm used by TSAS was not available, we have
used the GENOCOP nonlinear solver [11] instead. We se-
lected TwoL, because it is targeted to a large class of task
graphs (i.e., SP graphs) and has been shown to yield good
performance for a number of real problems [19, 20].

We consider both real problems and synthetic task
graphs. The selected real problems are complex matrix mul-
tiplication (“Cmatmul”) and Strassen’s matrix multiplica-
tion (“Strassen”) [10]. We use matrix sizes of 64 x 64 and
128 x 128 for Cmatmul, and 128 x 128 and 256 x 256
for Strassen, in order to observe how the scheduling algo-
rithms perform on different levels of problem granularity.
The execution times for the M-tasks are given by the cost
estimation functions as defined in Section 2. These estima-
tion functions are an approximation of the task execution
times on our network of workstations cluster.

For the two real problems, we present both simulation
and execution measurements. For the execution measure-
ments, we use a cluster of Pentium Pro/200MHz PCs with
64MB RAM connected through Myrinet. We use Panda as
the thread and communication library {3].

We generated 10 different synthetic task graphs for our
comparison. The task graphs have an SP topology, such that
they can be scheduled by TwoL without any modification,
thus avoiding possible unfairness. The task graphs contain
between 11 and 22 M-tasks, with an average sequential frac-
tion of a = 0.2.

For all the task graphs, we use as a relative performance
measure the normalized schedule lengths, defined as the ra-
tio between the T, produced by the measured algorithm and
that produced by TSAS: T,7SA4S = Tale /TTSAS, ‘

4.1 Complex Matrix Multiplication

In order to assess the cost improvement of CPA, in
Figure 4 we show the running times for TwoL, CPR and
CPA when applied to Cmatmul when run on a Pentium
Pro/200MHz PC. We do not include running times- for
TSAS, because the original convex algorithm implementa-
tion for processor allocation was not available. One can

P 1

2

Figure 4. Running Times for Cmatmul

TTSAS
1.6
12
1 1
0.8l Al g
yili
vl /
0.4 Vil W
] i
A (O N K N Bl
00 N k NJ Di 4
2 4 8 16 P
64x64
Simulation
TTSAS
n
1'6
12 ;‘ i
L ‘ ’
0.8 .. B ‘ .
4
0.4 il B
N]
i N i
0.05 Lol Mty N
2 4 8 16 P
128x128
Simulation

—m-measured
=~ simulated

—&— measured
=0~ simulated

8 16 32 P
128x128

2 4 8 16 32 P 4

64x64

Figure 5. CPA Speedups for Cmatmul

BTASK OTSAS BCPR
ODATA BTwoL BCPA

64x64
Execution
T,TSAS - _
1_6
]2
34
o8 MKR--f---
NAH
0.4 ‘ X
Y h
0.0 &4 LA
2 4
128x128
Execution

Figure 6. Relative Performance for Cmatmul

note that CPA proves to have a very short running time,
running up to 12 and 10 times faster than TwoL and CPR,
respectively. -

In Figure 5 we present the simulation and execution
speedups for Cmatmul using 64 x 64 and 128 x 128 matrix
sizes. The execution speedups obtained using CPA are 12
and 13 for 64 x 64 and 128 x 128 matrix sizes at P = 32.
One can note some differences with respect to the execu-
tion times between the problem simulations and executions.
This is caused by the limited quality of the estimation func-
tion we used for the task execution times, instead of using
profiled execution times.

In Figure 6, we present the normalized schedule lengths
of the six M-task scheduling algorithms. Compared to
TwoL and CPR, CPA obtains slightly lower performance,
down to 44%. CPA has the same drawbacks as TSAS,
namely it has a lower performance because in the first step it
does not always allocate the ideal number of processors for

73

each task. However, the overall performance of CPA is bet-
ter when compared to TSAS, up to 32%, even though CPA
has a lower time complexity. The main reason is that TSAS
obtains its allocation in the real number domain, which must
later be transformed to the integer number domain. In con-
trast, in CPA we directly compute an integer solution, which
leads to a more accurate solution. '

The execution performance of CPA has the same char-
acteristics as for simulations, namely it has a lower perfor-
mance when compared to CPR and TwoL, down to 44%,
and outperforms TSAS, up to 45%.

4.2 Strassen Matrix Multiplication

As mentioned earlier, TwoL can only schedule SP task
graphs. However, the task graph associated with Strassen
has a non-SP topology. As a consequence, in order to be
able to schedule this problem with TwoL, we need to trans-

T[ms}

Figure 7. Running Times for Strassen

TnTSAS

1.6

AVAVATAVATATA

128x128
. Simulation
TTSAS 0
1_6
j
1‘.2 -.' ’
X i
08 1 11l 11
vl g !
04 K ‘W X
N 5 g
0.0 LAEE Nl [bR R ©
2 4 8 16 32
256x256
Simulation

—&—measured
=0~ simulated

—&— measured
—0~simulated

2 4 8§ 16 32 P
256x256

4 8 16 2P
128x128

Figure 8. CPA Speedups for Strassen

BTASK OTSAS BCPR
ODATA BTwolL BCPA

T.,TSAS

1.6

1.2
0.8
0.4
0.0

— PSSSITSNNNSSY

128x128
Execution

TTSAS
’ 1.6
1.2

0.8

0.4

0.0

Vi A A
— SRS

256x256
Execution

Figure 9. Relative Performance for Strassen

form the task graph of Strassen into an SP graph. This trans-
formation is done by introducing two dummy synchroniza-
tion tasks, before and after the multiplication tasks. For a
fair comparison with the other algorithms, we do not add
either execution or communication costs to these dummy
tasks. We also do not include the synchronizations corre-
sponding to these dummy tasks in the application imple-
mentation, but only use the processor allocation and task
ordering obtained using TwoL.

In Figure 7 we show the running times for TwoL, CPR
and CPA when applied to Strassen. Again, CPA has the
shortest running time, running up to 20 and 10 times faster
than TwoL and CPR, respectively.

In Figure 8 we present the simulation and execution
speedups for Strassen. As for Cmatmul, slightly different
speedups are achieved for simulations and executions due
to the limited quality of the estimation function we used for

74

the task execution times, instead of using profiled execution
times. CPA yields a speedup of 15 and 19 on 32 processors,
for 64 x 64 and 128 x 128 matrices, respectively.

In Figure 9, we present the schedule lengths normalized
to TSAS for Strassen. Similar to Cmatmul, the simulation
results for CPA are similar to those obtained for Cmatmul.
CPA performance is lower compared to CPR and TwoL,
down to 24%. However, for Strassen there are a few cases,
especially for low number of processors, where CPA out-
performs TwoL up to 42%. CPA also has an overall better
performance compared to the performance of TSAS, up to
50%. One may note that CPA obtains this performance at
a significantly lower time complexity compared to TSAS,
TwoL, and CPR.

The execution results for Strassen also show that CPA is
outperformed by CPR, up to 21%, and outperforms TSAS,
up to 74%. CPA outperforms TwoL for low number of pro-

BTwol]2
i 125
3 0

BTASK OTSAS BCPR
BDATA BTwoL ECPA

T;{'SAS
1.6
124
08/
0.4

0 =4 s 16 2 P T3 & 8 16 2P 0.0
Figure 10. Running Times Figure 11. CPA Speed- Figure 12. Relative Performance for
for Synthetic DAGs ups for Synthetic DAGs Synthetic DAGs

cessors, up to 40%, and is outperformed by TwoL for larger
number of processors, up to 20%.

4.3 Synthetic Task Graphs

In Figure 10 we show the average running times for
TwoL, CPR and CPA when applied to the 10 synthetic task
graphs. Also in this case CPA clearly has the shortest run-
ning time, up to 9 and 15 times faster compared to TwoL
and CPR, respectively.

The speedup averaged over the 10 synthetic task graphs
is shown in Figure 11, while in Figure 12 the performance
of the algorithms relative to CPR is presented. CPA is con-
sistently outperformed only by CPR, up to a maximum of
50%. On the other hand, CPA generally outperforms TwoL
for small number of processors, up to 22%, and is outper-
formed for larger number of processors, up to 20%. Also in
this case, CPA outperforms TSAS, up to 25%, even though
the time complexity of CPA is much lower.

5 Conclusion

In this paper we present a new compile-time heuristic,
called Critical Path and Area-based scheduling (CPA), for
high-performance scheduling of arbitrary M-task graphs.

- The algorithm is intended for scheduling mixed task and
data parallel applications at a very low time complexity, and
yet producing reasonable performance.

Experiments are conducted using task graphs derived
from real problems as well as synthetic graphs. Experi-
mental results show that CPA yields reasonable good perfor-
mance, generally outperforming TSAS, up to 74%, and be-
ing outperformed by CPR up to 50%. Compared to TwoL,
CPA generally performs better for a low number of proces-

75

sors, up to 42%, and is outperformed by TwoL for a larger
number of processors, up to 44%.

The CPA algorithm produces these results at a time
complexity of (V(V + E)P) which is considerably
lower compared to the time complexities of TSAS
(O(V?3Plog P)), TwoL (O(VZ?P2?logP)), and CPR
(O(EV?P + V3Plog(V) + V3P?)). This is also con-
firmed by the running times that were measured, showing
that CPA runs up to 20 and 15 times faster compared to
TwoL and CPR, respectively.

Future work includes moving the M-task scheduling at
run-time in a manner similar to the RAPID system for
S-task scheduling [8]. The reason for moving the schedul-
ing at runtime is that the scheduling is dependent on the
problem size, and therefore needs to be recomputed for each
problem size. Moving the scheduling at runtime implies
only one compilation at the expense of extra runtime cost.
CPA is a good candidate for runtime scheduling, because
it produces good schedules at a very low complexity which
implicitly means a very small scheduling runtime offset.

In summary, CPA still produces good schedules at a time
complexity which is much lower compared to existing ap-
proaches. Therefore, considering its cost/performance ra-
tio, CPA is an attractive option for mixed task/data paral-
lel scheduling of task graphs with arbitrary topology, espe-
cially when scheduling is performed at runtime.

References

[1] A. Aiken and A. Nicolau. Optimal loop paralleliza-
tion. In PLDI, 1998.

[2] S. Ben Hassen, H. E. Bal, and C. J. Jacobs. A task and
data parallel programming language based on shared

objects. ACM Trans. on Programming Languages and
Systems, 20(6):1131-1170, Nov. 1998.

R. A. Bhoedjang, T. Ruhl, R. Hofman, K. G. Lan-
gendoen, H. E. Bal, and M. E Kaashoek. Panda:
A portable platform to support parallel programming
languages. In SEDMS 1V, 1993.

S. Chakrabarti, J. Demmel, and K. Yelick. Models and
scheduling algorithms for mixed data and task parallel
programs. J. of Parallel and Distributed Computing,
9:168-184, 1997.

A. Darte and Y. Robert. Constructive methods for

scheduling uniform loop nests. IEEE Trans. on Paral-
lel and Distributed Systems, 5(8):814-822, 1994,

L. Finta, Z. Liu, 1. Milis, and E. Bampis. Schedul-
ing UET-UCT series—parallel graphs on two proces-
sors. Theoretical Computer Science, 162:323-340,
Aug. 1996.

I. T. Foster and K. M. Chandy. Fortran M: A language
for modular parallel programming. J. of Parallel and
Distributed Computing, 26:24-35, 1995.

C. Fu and T. Yang. Run-time techniques for exploit-
ing irregular task parallelism on distributed memory
architectures. J. of Parallel and Distributed Comput-
ing, 42(2):143-156, May 1997.

M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Co., 1979.

3]

{4]

(5]

(6]

(7

(8]

(9]

{10} G. Golub and C. F. van Loan. Matrix computations.
Baltimore: Johns Hopkins University Press, 1996.

{111 S. Kozietand Z. Michalewicz. Evolutionary algo-
rithms, homomorphous mappings, and constrained
parameter optimization. Evolutionary Computation,
7(1):19-44, 1991.

[12] Y.-K. Kwok and I. Ahmad. Benchmarking and com-
parison of the task graph scheduling algorithms. J.
of Parallel and Distributed Computing, 59:381-422,
1999.

[13] M. Lam. Software pipelining: An effective scheduling
technique for VLIW machines. In PLDI, 1988.

[14] K. K. Parhi and D. G. Messerschmitt. Static rate-
optimal scheduling of iterative dataflow programs via

optimum unfolding. [EEE Trans. on Computers,
40(2):178-195, 1991.

[15] C. D. Polychronopoulos. Parallel Programming and
Compilers. Kluwer Academic, 1988.

[16] G. Prasanna, A. Agarwal, and B. R. Musicus. Hi-
erarchical compilation of macro dataflow graphs for
multiprocessors with local memory. IEEE Trans. on
FParallel and Distributed Systems, 5(7):720-736, July
1994.

76

[17] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A
framework for exploiting task and data parallelism on
distributed memory multicomputers. IEEE Trans. on
Parallel and Distributed Systems, 8(11):1098-1115,
Nov. 1997.

[18] B. R. Rau. Iterative modulo scheduling. Int’l J. of
Parallel Programming, 24(1):3-64, 1996.

[19] T. Rauber and G. Riinger. Compiler support for task
scheduling in hierarchical execution models. J. of Sys-
tems Architecture, 45:483-503, 1998.

[20] A. Radulescu, C. Nicolescu, A. J. C. van Gemund,
and P. P. Jonker. CPR: Mixed task and data parallel
scheduling for distributed systems. In /PDPS, 2001.
Best Paper Award.

[21] A. Réidulescu and A. J. C. van Gemund. FLB: Fast
load balancing for distributed-memory machines. In
ICPP, 1999.

[22] A. Rédulescu and A. J. C. van Gemund. On the com-
plexity of list scheduling algorithms for distributed-
memory systems. In ICS, 1999.

[23] V. Sarkar. Partitioning and Scheduling Parallel Pro-
grams for Execution on Multiprocessors. MIT Press,
1989.

[24] J. Subhlok, J. M. Stichnoth, D. R. O’Hallaron, and
T. Gross. Exploiting task and data parallelism on a
multicomputer. In PPoPP, 1993.

[25] J. Subhlok and G. Vondran. Optimal use of mixed
task and data parallelism for pipelined computations.
J. of Parallel and Distributed Computing, 60:297-319,
2000.

[26] J. Subhlok and B. Yang. A new model for integrated
nested task and data parallel programming. In PPoPP,
1997.

[27} J. Turek, J. L. Wolf, and P. S. Yu. Approximate al-
gorithms for scheduling parallelizable tasks. In SPAA,
1992.

M. Wolfe. High Performance Compilers for Paral-
lel Computing. Addison-Wesley Publishing Company,
1995.

M.-Y. Wu and D. D. Gajski. Hypertool: A program-
ming aid for message-passing systems. IEEE Trans.
on Parallel and Distributed Systems, 1(7):330~343,
July 1990.

T. Yang and A. Gerasoulis. DSC: Scheduling parallel
tasks on an unbounded number of processors. IEEE
Trans. on Parallel and Distributed Systems, 5(9):951—
967, Dec. 1994.

(28]

(29]

{301

